gp: [N,k,chi] = [880,2,Mod(243,880)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(880, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3, 3, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("880.243");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [236]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{118} - 2 T_{3}^{117} - 235 T_{3}^{116} + 468 T_{3}^{115} + 26789 T_{3}^{114} + \cdots + 441442156675072 \)
T3^118 - 2*T3^117 - 235*T3^116 + 468*T3^115 + 26789*T3^114 - 53110*T3^113 - 1974031*T3^112 + 3894920*T3^111 + 105719153*T3^110 - 207536378*T3^109 - 4386482491*T3^108 + 8564684956*T3^107 + 146789057957*T3^106 - 284962483006*T3^105 - 4072236494047*T3^104 + 7856976953168*T3^103 + 95541465989773*T3^102 - 183128479195690*T3^101 - 1924428296278815*T3^100 + 3662707926003476*T3^99 + 33669602043064897*T3^98 - 63599043476437566*T3^97 - 516456585557047395*T3^96 + 967637238896441048*T3^95 + 6997596922751573365*T3^94 - 12996446356796829298*T3^93 - 84265869495139173383*T3^92 + 155034985183983439388*T3^91 + 906456766676547026969*T3^90 - 1650840428475007528230*T3^89 - 8747191547801964420443*T3^88 + 15756299432358053056032*T3^87 + 75988250252196752941547*T3^86 - 135261617301402426792470*T3^85 - 596016465284767319491209*T3^84 + 1047390410467504152146812*T3^83 + 4231247217485367200227511*T3^82 - 7333015068753089031969026*T3^81 - 27243183012304971685548901*T3^80 + 46508970337696257544566552*T3^79 + 159348366056404235013910051*T3^78 - 267638485425194689452350798*T3^77 - 847846081460603523977233313*T3^76 + 1399108362987135457155200180*T3^75 + 4107881565562191858515160831*T3^74 - 6650412368307788800582911290*T3^73 - 18137846249052873189878949261*T3^72 + 28762415404123133517815182544*T3^71 + 73020995851474474037982788815*T3^70 - 113228929415095318522588829806*T3^69 - 268120115221150243313832302165*T3^68 + 405805527836075902429012796348*T3^67 + 897962691448601875080108726859*T3^66 - 1323985089429153065863732718666*T3^65 - 2742627676333797192862299894017*T3^64 + 3931294790830432519825324432808*T3^63 + 7636480593550939463680967853991*T3^62 - 10618613108265393415183425814470*T3^61 - 19372290519046688629238541106285*T3^60 + 26072530603382524469323943661460*T3^59 + 44738048701094654200025997390195*T3^58 - 58143003148835110167035501549826*T3^57 - 93956955926530166461809006931785*T3^56 + 117635560359867584136760176031680*T3^55 + 179217459261020651735443462211320*T3^54 - 215648546426972240616456794099280*T3^53 - 310002643716369811530091371681240*T3^52 + 357661189226256591082607250047200*T3^51 + 485402646285605246786028430915800*T3^50 - 535764857946775530658074154982016*T3^49 - 686568747120263619890582758682728*T3^48 + 723469712607702747668283151650528*T3^47 + 875125587572547877030925232019216*T3^46 - 878780795704679057923921082007552*T3^45 - 1002478028541828449410707709531632*T3^44 + 957909994072068508151731129970944*T3^43 + 1028849420370089612630733695996048*T3^42 - 934579438625607691134475064073952*T3^41 - 942713375766090401394145235407664*T3^40 + 813773293455216901827920421946624*T3^39 + 768139790048425997332713499945728*T3^38 - 630386275383924061415631618180224*T3^37 - 554105363475832731181858740121344*T3^36 + 432912022354060304713339801371392*T3^35 + 352076035576359742052178453888896*T3^34 - 262531013356311711921249036284672*T3^33 - 195914557048182185744339360260224*T3^32 + 139969199281006620222185719349248*T3^31 + 94842412221837232843108583777536*T3^30 - 65277672318474344660153956928512*T3^29 - 39635963262300203979388759520000*T3^28 + 26474821412027399716837009119232*T3^27 + 14169276302526275433435401415424*T3^26 - 9273223085282955625471854947840*T3^25 - 4284852415186444611069072060672*T3^24 + 2781892397820175563635570456576*T3^23 + 1080827862311765941952961656832*T3^22 - 707511005722387673701559205888*T3^21 - 223229080615578640355193182208*T3^20 + 150621973707750006853843705856*T3^19 + 36769926482378451351580250112*T3^18 - 26410736303432868855898529792*T3^17 - 4633468550840838339506434048*T3^16 + 3734527957513270283784486912*T3^15 + 412461354653944879288025088*T3^14 - 413847358752158005450768384*T3^13 - 20639812350504210927976448*T3^12 + 34507246306999327951421440*T3^11 - 204710090092199417151488*T3^10 - 2033347736760613314625536*T3^9 + 116473964094448116760576*T3^8 + 75866059275595163369472*T3^7 - 8052588042334388092928*T3^6 - 1399061441026103181312*T3^5 + 227862598946161950720*T3^4 + 3069500675892183040*T3^3 - 1690503135548669952*T3^2 + 57325954021720064*T3 + 441442156675072
acting on \(S_{2}^{\mathrm{new}}(880, [\chi])\).