Properties

Label 880.2.bk.b.243.11
Level $880$
Weight $2$
Character 880.243
Analytic conductor $7.027$
Analytic rank $0$
Dimension $236$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(243,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.243"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.bk (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [236] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(236\)
Relative dimension: \(118\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 243.11
Character \(\chi\) \(=\) 880.243
Dual form 880.2.bk.b.507.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.35246 - 0.413341i) q^{2} +2.75998 q^{3} +(1.65830 + 1.11806i) q^{4} +(2.15400 - 0.600239i) q^{5} +(-3.73277 - 1.14082i) q^{6} +(-0.140016 + 0.140016i) q^{7} +(-1.78064 - 2.19757i) q^{8} +4.61751 q^{9} +(-3.16130 - 0.0785374i) q^{10} +(0.707107 + 0.707107i) q^{11} +(4.57688 + 3.08582i) q^{12} +0.570496i q^{13} +(0.247241 - 0.131492i) q^{14} +(5.94500 - 1.65665i) q^{15} +(1.49990 + 3.70814i) q^{16} +(-1.55040 + 1.55040i) q^{17} +(-6.24500 - 1.90861i) q^{18} +(0.0194447 + 0.0194447i) q^{19} +(4.24307 + 1.41292i) q^{20} +(-0.386443 + 0.386443i) q^{21} +(-0.664057 - 1.24861i) q^{22} +(1.45195 + 1.45195i) q^{23} +(-4.91455 - 6.06526i) q^{24} +(4.27943 - 2.58583i) q^{25} +(0.235810 - 0.771573i) q^{26} +4.46431 q^{27} +(-0.388734 + 0.0756426i) q^{28} +(4.12978 - 4.12978i) q^{29} +(-8.72514 - 0.216762i) q^{30} -1.03083i q^{31} +(-0.495831 - 5.63508i) q^{32} +(1.95160 + 1.95160i) q^{33} +(2.73770 - 1.45601i) q^{34} +(-0.217552 + 0.385638i) q^{35} +(7.65721 + 5.16264i) q^{36} -1.59977i q^{37} +(-0.0182609 - 0.0343355i) q^{38} +1.57456i q^{39} +(-5.15457 - 3.66475i) q^{40} -2.73891i q^{41} +(0.682381 - 0.362915i) q^{42} +8.22338i q^{43} +(0.382009 + 1.96318i) q^{44} +(9.94612 - 2.77161i) q^{45} +(-1.36356 - 2.56386i) q^{46} +(-6.69403 - 6.69403i) q^{47} +(4.13971 + 10.2344i) q^{48} +6.96079i q^{49} +(-6.85658 + 1.72837i) q^{50} +(-4.27907 + 4.27907i) q^{51} +(-0.637847 + 0.946053i) q^{52} -4.51442 q^{53} +(-6.03780 - 1.84528i) q^{54} +(1.94754 + 1.09867i) q^{55} +(0.557014 + 0.0583765i) q^{56} +(0.0536671 + 0.0536671i) q^{57} +(-7.29237 + 3.87835i) q^{58} +(0.812680 - 0.812680i) q^{59} +(11.7108 + 3.89963i) q^{60} +(-5.47096 - 5.47096i) q^{61} +(-0.426084 + 1.39415i) q^{62} +(-0.646527 + 0.646527i) q^{63} +(-1.65862 + 7.82617i) q^{64} +(0.342434 + 1.22885i) q^{65} +(-1.83279 - 3.44615i) q^{66} +1.15518i q^{67} +(-4.30445 + 0.837590i) q^{68} +(4.00737 + 4.00737i) q^{69} +(0.453630 - 0.431637i) q^{70} -1.27659 q^{71} +(-8.22214 - 10.1473i) q^{72} +(-6.01688 + 6.01688i) q^{73} +(-0.661253 + 2.16363i) q^{74} +(11.8111 - 7.13685i) q^{75} +(0.0105049 + 0.0539854i) q^{76} -0.198013 q^{77} +(0.650831 - 2.12953i) q^{78} -14.2754 q^{79} +(5.45656 + 7.08703i) q^{80} -1.53111 q^{81} +(-1.13210 + 3.70426i) q^{82} +4.45552 q^{83} +(-1.07290 + 0.208772i) q^{84} +(-2.40895 + 4.27017i) q^{85} +(3.39906 - 11.1218i) q^{86} +(11.3981 - 11.3981i) q^{87} +(0.294812 - 2.81302i) q^{88} +13.7128 q^{89} +(-14.5974 - 0.362647i) q^{90} +(-0.0798787 - 0.0798787i) q^{91} +(0.784406 + 4.03114i) q^{92} -2.84507i q^{93} +(6.28649 + 11.8203i) q^{94} +(0.0535554 + 0.0302124i) q^{95} +(-1.36848 - 15.5527i) q^{96} +(-7.26431 + 7.26431i) q^{97} +(2.87718 - 9.41419i) q^{98} +(3.26507 + 3.26507i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 236 q + 4 q^{3} + 4 q^{5} - 4 q^{7} + 12 q^{8} + 240 q^{9} - 8 q^{12} + 12 q^{14} - 4 q^{15} - 8 q^{16} + 8 q^{17} + 28 q^{18} + 28 q^{19} + 4 q^{20} + 16 q^{21} + 4 q^{22} - 8 q^{23} + 12 q^{25} + 8 q^{26}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.35246 0.413341i −0.956334 0.292277i
\(3\) 2.75998 1.59348 0.796739 0.604324i \(-0.206557\pi\)
0.796739 + 0.604324i \(0.206557\pi\)
\(4\) 1.65830 + 1.11806i 0.829149 + 0.559028i
\(5\) 2.15400 0.600239i 0.963298 0.268435i
\(6\) −3.73277 1.14082i −1.52390 0.465736i
\(7\) −0.140016 + 0.140016i −0.0529212 + 0.0529212i −0.733072 0.680151i \(-0.761914\pi\)
0.680151 + 0.733072i \(0.261914\pi\)
\(8\) −1.78064 2.19757i −0.629552 0.776958i
\(9\) 4.61751 1.53917
\(10\) −3.16130 0.0785374i −0.999692 0.0248357i
\(11\) 0.707107 + 0.707107i 0.213201 + 0.213201i
\(12\) 4.57688 + 3.08582i 1.32123 + 0.890799i
\(13\) 0.570496i 0.158227i 0.996866 + 0.0791136i \(0.0252090\pi\)
−0.996866 + 0.0791136i \(0.974791\pi\)
\(14\) 0.247241 0.131492i 0.0660779 0.0351427i
\(15\) 5.94500 1.65665i 1.53499 0.427745i
\(16\) 1.49990 + 3.70814i 0.374976 + 0.927035i
\(17\) −1.55040 + 1.55040i −0.376027 + 0.376027i −0.869666 0.493640i \(-0.835666\pi\)
0.493640 + 0.869666i \(0.335666\pi\)
\(18\) −6.24500 1.90861i −1.47196 0.449864i
\(19\) 0.0194447 + 0.0194447i 0.00446092 + 0.00446092i 0.709334 0.704873i \(-0.248996\pi\)
−0.704873 + 0.709334i \(0.748996\pi\)
\(20\) 4.24307 + 1.41292i 0.948780 + 0.315938i
\(21\) −0.386443 + 0.386443i −0.0843287 + 0.0843287i
\(22\) −0.664057 1.24861i −0.141577 0.266205i
\(23\) 1.45195 + 1.45195i 0.302753 + 0.302753i 0.842090 0.539337i \(-0.181325\pi\)
−0.539337 + 0.842090i \(0.681325\pi\)
\(24\) −4.91455 6.06526i −1.00318 1.23807i
\(25\) 4.27943 2.58583i 0.855885 0.517166i
\(26\) 0.235810 0.771573i 0.0462461 0.151318i
\(27\) 4.46431 0.859157
\(28\) −0.388734 + 0.0756426i −0.0734639 + 0.0142951i
\(29\) 4.12978 4.12978i 0.766881 0.766881i −0.210675 0.977556i \(-0.567566\pi\)
0.977556 + 0.210675i \(0.0675663\pi\)
\(30\) −8.72514 0.216762i −1.59299 0.0395751i
\(31\) 1.03083i 0.185142i −0.995706 0.0925711i \(-0.970491\pi\)
0.995706 0.0925711i \(-0.0295085\pi\)
\(32\) −0.495831 5.63508i −0.0876513 0.996151i
\(33\) 1.95160 + 1.95160i 0.339731 + 0.339731i
\(34\) 2.73770 1.45601i 0.469511 0.249703i
\(35\) −0.217552 + 0.385638i −0.0367729 + 0.0651847i
\(36\) 7.65721 + 5.16264i 1.27620 + 0.860440i
\(37\) 1.59977i 0.263001i −0.991316 0.131501i \(-0.958020\pi\)
0.991316 0.131501i \(-0.0419795\pi\)
\(38\) −0.0182609 0.0343355i −0.00296231 0.00556996i
\(39\) 1.57456i 0.252131i
\(40\) −5.15457 3.66475i −0.815009 0.579448i
\(41\) 2.73891i 0.427745i −0.976862 0.213873i \(-0.931392\pi\)
0.976862 0.213873i \(-0.0686078\pi\)
\(42\) 0.682381 0.362915i 0.105294 0.0559991i
\(43\) 8.22338i 1.25405i 0.778998 + 0.627027i \(0.215728\pi\)
−0.778998 + 0.627027i \(0.784272\pi\)
\(44\) 0.382009 + 1.96318i 0.0575900 + 0.295960i
\(45\) 9.94612 2.77161i 1.48268 0.413168i
\(46\) −1.36356 2.56386i −0.201045 0.378021i
\(47\) −6.69403 6.69403i −0.976425 0.976425i 0.0233037 0.999728i \(-0.492582\pi\)
−0.999728 + 0.0233037i \(0.992582\pi\)
\(48\) 4.13971 + 10.2344i 0.597515 + 1.47721i
\(49\) 6.96079i 0.994399i
\(50\) −6.85658 + 1.72837i −0.969667 + 0.244428i
\(51\) −4.27907 + 4.27907i −0.599190 + 0.599190i
\(52\) −0.637847 + 0.946053i −0.0884534 + 0.131194i
\(53\) −4.51442 −0.620103 −0.310052 0.950720i \(-0.600346\pi\)
−0.310052 + 0.950720i \(0.600346\pi\)
\(54\) −6.03780 1.84528i −0.821641 0.251111i
\(55\) 1.94754 + 1.09867i 0.262606 + 0.148145i
\(56\) 0.557014 + 0.0583765i 0.0744341 + 0.00780088i
\(57\) 0.0536671 + 0.0536671i 0.00710838 + 0.00710838i
\(58\) −7.29237 + 3.87835i −0.957535 + 0.509253i
\(59\) 0.812680 0.812680i 0.105802 0.105802i −0.652224 0.758026i \(-0.726164\pi\)
0.758026 + 0.652224i \(0.226164\pi\)
\(60\) 11.7108 + 3.89963i 1.51186 + 0.503440i
\(61\) −5.47096 5.47096i −0.700484 0.700484i 0.264030 0.964514i \(-0.414948\pi\)
−0.964514 + 0.264030i \(0.914948\pi\)
\(62\) −0.426084 + 1.39415i −0.0541127 + 0.177058i
\(63\) −0.646527 + 0.646527i −0.0814547 + 0.0814547i
\(64\) −1.65862 + 7.82617i −0.207328 + 0.978272i
\(65\) 0.342434 + 1.22885i 0.0424737 + 0.152420i
\(66\) −1.83279 3.44615i −0.225601 0.424191i
\(67\) 1.15518i 0.141128i 0.997507 + 0.0705638i \(0.0224798\pi\)
−0.997507 + 0.0705638i \(0.977520\pi\)
\(68\) −4.30445 + 0.837590i −0.521992 + 0.101573i
\(69\) 4.00737 + 4.00737i 0.482430 + 0.482430i
\(70\) 0.453630 0.431637i 0.0542192 0.0515905i
\(71\) −1.27659 −0.151503 −0.0757515 0.997127i \(-0.524136\pi\)
−0.0757515 + 0.997127i \(0.524136\pi\)
\(72\) −8.22214 10.1473i −0.968989 1.19587i
\(73\) −6.01688 + 6.01688i −0.704223 + 0.704223i −0.965314 0.261092i \(-0.915918\pi\)
0.261092 + 0.965314i \(0.415918\pi\)
\(74\) −0.661253 + 2.16363i −0.0768691 + 0.251517i
\(75\) 11.8111 7.13685i 1.36383 0.824092i
\(76\) 0.0105049 + 0.0539854i 0.00120499 + 0.00619255i
\(77\) −0.198013 −0.0225657
\(78\) 0.650831 2.12953i 0.0736921 0.241122i
\(79\) −14.2754 −1.60610 −0.803052 0.595909i \(-0.796792\pi\)
−0.803052 + 0.595909i \(0.796792\pi\)
\(80\) 5.45656 + 7.08703i 0.610062 + 0.792354i
\(81\) −1.53111 −0.170124
\(82\) −1.13210 + 3.70426i −0.125020 + 0.409067i
\(83\) 4.45552 0.489057 0.244528 0.969642i \(-0.421367\pi\)
0.244528 + 0.969642i \(0.421367\pi\)
\(84\) −1.07290 + 0.208772i −0.117063 + 0.0227789i
\(85\) −2.40895 + 4.27017i −0.261287 + 0.463165i
\(86\) 3.39906 11.1218i 0.366531 1.19929i
\(87\) 11.3981 11.3981i 1.22201 1.22201i
\(88\) 0.294812 2.81302i 0.0314270 0.299869i
\(89\) 13.7128 1.45355 0.726775 0.686876i \(-0.241018\pi\)
0.726775 + 0.686876i \(0.241018\pi\)
\(90\) −14.5974 0.362647i −1.53870 0.0382264i
\(91\) −0.0798787 0.0798787i −0.00837356 0.00837356i
\(92\) 0.784406 + 4.03114i 0.0817800 + 0.420275i
\(93\) 2.84507i 0.295020i
\(94\) 6.28649 + 11.8203i 0.648402 + 1.21917i
\(95\) 0.0535554 + 0.0302124i 0.00549467 + 0.00309973i
\(96\) −1.36848 15.5527i −0.139670 1.58734i
\(97\) −7.26431 + 7.26431i −0.737579 + 0.737579i −0.972109 0.234530i \(-0.924645\pi\)
0.234530 + 0.972109i \(0.424645\pi\)
\(98\) 2.87718 9.41419i 0.290639 0.950977i
\(99\) 3.26507 + 3.26507i 0.328152 + 0.328152i
\(100\) 9.98766 + 0.496561i 0.998766 + 0.0496561i
\(101\) 5.25513 5.25513i 0.522905 0.522905i −0.395543 0.918448i \(-0.629443\pi\)
0.918448 + 0.395543i \(0.129443\pi\)
\(102\) 7.55600 4.01856i 0.748155 0.397897i
\(103\) −2.72104 2.72104i −0.268112 0.268112i 0.560227 0.828339i \(-0.310714\pi\)
−0.828339 + 0.560227i \(0.810714\pi\)
\(104\) 1.25371 1.01585i 0.122936 0.0996123i
\(105\) −0.600439 + 1.06435i −0.0585968 + 0.103870i
\(106\) 6.10557 + 1.86600i 0.593026 + 0.181242i
\(107\) 16.5058 1.59567 0.797837 0.602873i \(-0.205978\pi\)
0.797837 + 0.602873i \(0.205978\pi\)
\(108\) 7.40316 + 4.99135i 0.712369 + 0.480293i
\(109\) 8.89192 8.89192i 0.851692 0.851692i −0.138650 0.990341i \(-0.544276\pi\)
0.990341 + 0.138650i \(0.0442763\pi\)
\(110\) −2.17984 2.29091i −0.207840 0.218430i
\(111\) 4.41535i 0.419086i
\(112\) −0.729210 0.309189i −0.0689039 0.0292156i
\(113\) −9.94560 9.94560i −0.935603 0.935603i 0.0624451 0.998048i \(-0.480110\pi\)
−0.998048 + 0.0624451i \(0.980110\pi\)
\(114\) −0.0503998 0.0947655i −0.00472037 0.00887560i
\(115\) 3.99903 + 2.25599i 0.372911 + 0.210372i
\(116\) 11.4657 2.23108i 1.06457 0.207150i
\(117\) 2.63427i 0.243539i
\(118\) −1.43503 + 0.763203i −0.132105 + 0.0702585i
\(119\) 0.434162i 0.0397995i
\(120\) −14.2265 10.1147i −1.29870 0.923337i
\(121\) 1.00000i 0.0909091i
\(122\) 5.13788 + 9.66063i 0.465162 + 0.874632i
\(123\) 7.55934i 0.681603i
\(124\) 1.15252 1.70942i 0.103500 0.153510i
\(125\) 7.66576 8.13856i 0.685647 0.727935i
\(126\) 1.14164 0.607165i 0.101705 0.0540906i
\(127\) −10.6479 10.6479i −0.944847 0.944847i 0.0537097 0.998557i \(-0.482895\pi\)
−0.998557 + 0.0537097i \(0.982895\pi\)
\(128\) 5.47810 9.89901i 0.484200 0.874957i
\(129\) 22.6964i 1.99831i
\(130\) 0.0448053 1.80351i 0.00392968 0.158178i
\(131\) −5.49210 + 5.49210i −0.479847 + 0.479847i −0.905083 0.425236i \(-0.860191\pi\)
0.425236 + 0.905083i \(0.360191\pi\)
\(132\) 1.05434 + 5.41834i 0.0917683 + 0.471606i
\(133\) −0.00544515 −0.000472155
\(134\) 0.477483 1.56233i 0.0412483 0.134965i
\(135\) 9.61612 2.67965i 0.827624 0.230628i
\(136\) 6.16781 + 0.646402i 0.528886 + 0.0554285i
\(137\) −10.9783 10.9783i −0.937935 0.937935i 0.0602480 0.998183i \(-0.480811\pi\)
−0.998183 + 0.0602480i \(0.980811\pi\)
\(138\) −3.76339 7.07622i −0.320361 0.602368i
\(139\) −7.14356 + 7.14356i −0.605909 + 0.605909i −0.941874 0.335965i \(-0.890937\pi\)
0.335965 + 0.941874i \(0.390937\pi\)
\(140\) −0.791930 + 0.396268i −0.0669303 + 0.0334907i
\(141\) −18.4754 18.4754i −1.55591 1.55591i
\(142\) 1.72653 + 0.527666i 0.144887 + 0.0442808i
\(143\) −0.403402 + 0.403402i −0.0337341 + 0.0337341i
\(144\) 6.92582 + 17.1224i 0.577151 + 1.42686i
\(145\) 6.41668 11.3744i 0.532877 0.944592i
\(146\) 10.6246 5.65057i 0.879300 0.467644i
\(147\) 19.2117i 1.58455i
\(148\) 1.78864 2.65290i 0.147025 0.218067i
\(149\) 8.48977 + 8.48977i 0.695509 + 0.695509i 0.963439 0.267929i \(-0.0863393\pi\)
−0.267929 + 0.963439i \(0.586339\pi\)
\(150\) −18.9241 + 4.77027i −1.54514 + 0.389491i
\(151\) 22.7826 1.85402 0.927011 0.375035i \(-0.122369\pi\)
0.927011 + 0.375035i \(0.122369\pi\)
\(152\) 0.00810702 0.0773552i 0.000657566 0.00627434i
\(153\) −7.15898 + 7.15898i −0.578769 + 0.578769i
\(154\) 0.267804 + 0.0818469i 0.0215803 + 0.00659541i
\(155\) −0.618744 2.22040i −0.0496987 0.178347i
\(156\) −1.76045 + 2.61109i −0.140949 + 0.209055i
\(157\) −8.02532 −0.640490 −0.320245 0.947335i \(-0.603765\pi\)
−0.320245 + 0.947335i \(0.603765\pi\)
\(158\) 19.3069 + 5.90060i 1.53597 + 0.469427i
\(159\) −12.4597 −0.988121
\(160\) −4.45042 11.8403i −0.351836 0.936062i
\(161\) −0.406594 −0.0320441
\(162\) 2.07077 + 0.632872i 0.162695 + 0.0497231i
\(163\) −20.0328 −1.56909 −0.784545 0.620072i \(-0.787103\pi\)
−0.784545 + 0.620072i \(0.787103\pi\)
\(164\) 3.06225 4.54192i 0.239122 0.354665i
\(165\) 5.37518 + 3.03232i 0.418457 + 0.236066i
\(166\) −6.02591 1.84165i −0.467701 0.142940i
\(167\) −14.2903 + 14.2903i −1.10582 + 1.10582i −0.112121 + 0.993695i \(0.535764\pi\)
−0.993695 + 0.112121i \(0.964236\pi\)
\(168\) 1.53735 + 0.161118i 0.118609 + 0.0124305i
\(169\) 12.6745 0.974964
\(170\) 5.02304 4.77951i 0.385250 0.366572i
\(171\) 0.0897862 + 0.0897862i 0.00686613 + 0.00686613i
\(172\) −9.19420 + 13.6368i −0.701051 + 1.03980i
\(173\) 13.5907i 1.03328i 0.856203 + 0.516640i \(0.172817\pi\)
−0.856203 + 0.516640i \(0.827183\pi\)
\(174\) −20.1268 + 10.7042i −1.52581 + 0.811483i
\(175\) −0.237131 + 0.961247i −0.0179254 + 0.0726634i
\(176\) −1.56146 + 3.68264i −0.117699 + 0.277590i
\(177\) 2.24298 2.24298i 0.168593 0.168593i
\(178\) −18.5460 5.66805i −1.39008 0.424839i
\(179\) 13.5540 + 13.5540i 1.01307 + 1.01307i 0.999913 + 0.0131575i \(0.00418830\pi\)
0.0131575 + 0.999913i \(0.495812\pi\)
\(180\) 19.5924 + 6.52416i 1.46033 + 0.486282i
\(181\) 7.21737 7.21737i 0.536463 0.536463i −0.386025 0.922488i \(-0.626152\pi\)
0.922488 + 0.386025i \(0.126152\pi\)
\(182\) 0.0750156 + 0.141050i 0.00556053 + 0.0104553i
\(183\) −15.0998 15.0998i −1.11621 1.11621i
\(184\) 0.605358 5.77618i 0.0446276 0.425825i
\(185\) −0.960247 3.44591i −0.0705988 0.253348i
\(186\) −1.17599 + 3.84784i −0.0862274 + 0.282138i
\(187\) −2.19259 −0.160338
\(188\) −3.61639 18.5850i −0.263753 1.35545i
\(189\) −0.625076 + 0.625076i −0.0454676 + 0.0454676i
\(190\) −0.0599435 0.0629978i −0.00434876 0.00457034i
\(191\) 8.31703i 0.601799i 0.953656 + 0.300900i \(0.0972869\pi\)
−0.953656 + 0.300900i \(0.902713\pi\)
\(192\) −4.57777 + 21.6001i −0.330372 + 1.55885i
\(193\) −6.19275 6.19275i −0.445764 0.445764i 0.448180 0.893944i \(-0.352072\pi\)
−0.893944 + 0.448180i \(0.852072\pi\)
\(194\) 12.8273 6.82205i 0.920949 0.489795i
\(195\) 0.945113 + 3.39160i 0.0676810 + 0.242878i
\(196\) −7.78255 + 11.5431i −0.555897 + 0.824505i
\(197\) 21.3784i 1.52315i −0.648078 0.761574i \(-0.724427\pi\)
0.648078 0.761574i \(-0.275573\pi\)
\(198\) −3.06629 5.76547i −0.217912 0.409734i
\(199\) 25.8891i 1.83523i 0.397469 + 0.917616i \(0.369889\pi\)
−0.397469 + 0.917616i \(0.630111\pi\)
\(200\) −13.3027 4.79989i −0.940641 0.339404i
\(201\) 3.18827i 0.224884i
\(202\) −9.27952 + 4.93519i −0.652905 + 0.347239i
\(203\) 1.15647i 0.0811684i
\(204\) −11.8802 + 2.31173i −0.831782 + 0.161854i
\(205\) −1.64400 5.89960i −0.114822 0.412046i
\(206\) 2.55538 + 4.80481i 0.178042 + 0.334767i
\(207\) 6.70441 + 6.70441i 0.465989 + 0.465989i
\(208\) −2.11548 + 0.855689i −0.146682 + 0.0593313i
\(209\) 0.0274990i 0.00190214i
\(210\) 1.25201 1.19131i 0.0863970 0.0822083i
\(211\) −16.5135 + 16.5135i −1.13683 + 1.13683i −0.147819 + 0.989014i \(0.547225\pi\)
−0.989014 + 0.147819i \(0.952775\pi\)
\(212\) −7.48625 5.04737i −0.514158 0.346655i
\(213\) −3.52336 −0.241417
\(214\) −22.3234 6.82252i −1.52600 0.466378i
\(215\) 4.93600 + 17.7132i 0.336632 + 1.20803i
\(216\) −7.94934 9.81063i −0.540884 0.667529i
\(217\) 0.144333 + 0.144333i 0.00979794 + 0.00979794i
\(218\) −15.7014 + 8.35057i −1.06343 + 0.565572i
\(219\) −16.6065 + 16.6065i −1.12216 + 1.12216i
\(220\) 2.00122 + 3.99939i 0.134922 + 0.269639i
\(221\) −0.884496 0.884496i −0.0594977 0.0594977i
\(222\) −1.82505 + 5.97159i −0.122489 + 0.400787i
\(223\) −3.70237 + 3.70237i −0.247929 + 0.247929i −0.820120 0.572191i \(-0.806093\pi\)
0.572191 + 0.820120i \(0.306093\pi\)
\(224\) 0.858427 + 0.719579i 0.0573561 + 0.0480789i
\(225\) 19.7603 11.9401i 1.31735 0.796007i
\(226\) 9.34010 + 17.5620i 0.621294 + 1.16820i
\(227\) 8.45393i 0.561107i 0.959838 + 0.280554i \(0.0905181\pi\)
−0.959838 + 0.280554i \(0.909482\pi\)
\(228\) 0.0289932 + 0.148999i 0.00192012 + 0.00986769i
\(229\) −19.6399 19.6399i −1.29784 1.29784i −0.929815 0.368027i \(-0.880033\pi\)
−0.368027 0.929815i \(-0.619967\pi\)
\(230\) −4.47603 4.70410i −0.295141 0.310179i
\(231\) −0.546512 −0.0359579
\(232\) −16.4291 1.72181i −1.07863 0.113043i
\(233\) 8.28654 8.28654i 0.542869 0.542869i −0.381500 0.924369i \(-0.624592\pi\)
0.924369 + 0.381500i \(0.124592\pi\)
\(234\) 1.08885 3.56275i 0.0711807 0.232904i
\(235\) −18.4370 10.4009i −1.20269 0.678481i
\(236\) 2.25629 0.439043i 0.146872 0.0285793i
\(237\) −39.3998 −2.55929
\(238\) −0.179457 + 0.587186i −0.0116325 + 0.0380616i
\(239\) −13.0043 −0.841178 −0.420589 0.907251i \(-0.638177\pi\)
−0.420589 + 0.907251i \(0.638177\pi\)
\(240\) 15.0600 + 19.5601i 0.972120 + 1.26260i
\(241\) 1.02567 0.0660691 0.0330345 0.999454i \(-0.489483\pi\)
0.0330345 + 0.999454i \(0.489483\pi\)
\(242\) 0.413341 1.35246i 0.0265706 0.0869394i
\(243\) −17.6188 −1.13025
\(244\) −2.95564 15.1893i −0.189215 0.972396i
\(245\) 4.17814 + 14.9935i 0.266932 + 0.957902i
\(246\) −3.12459 + 10.2237i −0.199217 + 0.651840i
\(247\) −0.0110931 + 0.0110931i −0.000705840 + 0.000705840i
\(248\) −2.26532 + 1.83554i −0.143848 + 0.116557i
\(249\) 12.2972 0.779301
\(250\) −13.7316 + 7.83850i −0.868465 + 0.495750i
\(251\) −18.0813 18.0813i −1.14128 1.14128i −0.988216 0.153064i \(-0.951086\pi\)
−0.153064 0.988216i \(-0.548914\pi\)
\(252\) −1.79499 + 0.349281i −0.113074 + 0.0220026i
\(253\) 2.05337i 0.129094i
\(254\) 9.99963 + 18.8021i 0.627432 + 1.17975i
\(255\) −6.64865 + 11.7856i −0.416355 + 0.738042i
\(256\) −11.5006 + 11.1237i −0.718787 + 0.695231i
\(257\) 5.81381 5.81381i 0.362656 0.362656i −0.502134 0.864790i \(-0.667452\pi\)
0.864790 + 0.502134i \(0.167452\pi\)
\(258\) 9.38137 30.6960i 0.584058 1.91105i
\(259\) 0.223994 + 0.223994i 0.0139183 + 0.0139183i
\(260\) −0.806063 + 2.42066i −0.0499899 + 0.150123i
\(261\) 19.0693 19.0693i 1.18036 1.18036i
\(262\) 9.69796 5.15773i 0.599142 0.318646i
\(263\) −1.45231 1.45231i −0.0895530 0.0895530i 0.660911 0.750464i \(-0.270170\pi\)
−0.750464 + 0.660911i \(0.770170\pi\)
\(264\) 0.813675 7.76389i 0.0500783 0.477835i
\(265\) −9.72406 + 2.70973i −0.597344 + 0.166458i
\(266\) 0.00736435 + 0.00225071i 0.000451537 + 0.000138000i
\(267\) 37.8470 2.31620
\(268\) −1.29155 + 1.91563i −0.0788942 + 0.117016i
\(269\) −1.13531 + 1.13531i −0.0692212 + 0.0692212i −0.740870 0.671649i \(-0.765586\pi\)
0.671649 + 0.740870i \(0.265586\pi\)
\(270\) −14.1130 0.350615i −0.858892 0.0213378i
\(271\) 3.48320i 0.211589i 0.994388 + 0.105795i \(0.0337386\pi\)
−0.994388 + 0.105795i \(0.966261\pi\)
\(272\) −8.07454 3.42365i −0.489591 0.207589i
\(273\) −0.220464 0.220464i −0.0133431 0.0133431i
\(274\) 10.3099 + 19.3854i 0.622843 + 1.17112i
\(275\) 4.85447 + 1.19755i 0.292735 + 0.0722152i
\(276\) 2.16495 + 11.1259i 0.130315 + 0.669699i
\(277\) 9.52689i 0.572415i −0.958168 0.286208i \(-0.907605\pi\)
0.958168 0.286208i \(-0.0923947\pi\)
\(278\) 12.6141 6.70865i 0.756544 0.402358i
\(279\) 4.75986i 0.284966i
\(280\) 1.23485 0.208599i 0.0737963 0.0124662i
\(281\) 2.85462i 0.170292i −0.996368 0.0851461i \(-0.972864\pi\)
0.996368 0.0851461i \(-0.0271357\pi\)
\(282\) 17.3506 + 32.6239i 1.03321 + 1.94273i
\(283\) 31.1764i 1.85325i 0.375992 + 0.926623i \(0.377302\pi\)
−0.375992 + 0.926623i \(0.622698\pi\)
\(284\) −2.11696 1.42730i −0.125619 0.0846944i
\(285\) 0.147812 + 0.0833858i 0.00875563 + 0.00493935i
\(286\) 0.712328 0.378842i 0.0421208 0.0224014i
\(287\) 0.383491 + 0.383491i 0.0226368 + 0.0226368i
\(288\) −2.28950 26.0201i −0.134910 1.53325i
\(289\) 12.1925i 0.717208i
\(290\) −13.3798 + 12.7311i −0.785690 + 0.747598i
\(291\) −20.0494 + 20.0494i −1.17532 + 1.17532i
\(292\) −16.7050 + 3.25057i −0.977585 + 0.190225i
\(293\) 19.5119 1.13990 0.569949 0.821680i \(-0.306963\pi\)
0.569949 + 0.821680i \(0.306963\pi\)
\(294\) 7.94098 25.9830i 0.463127 1.51536i
\(295\) 1.26271 2.23831i 0.0735178 0.130320i
\(296\) −3.51561 + 2.84863i −0.204341 + 0.165573i
\(297\) 3.15674 + 3.15674i 0.183173 + 0.183173i
\(298\) −7.97291 14.9913i −0.461858 0.868420i
\(299\) −0.828334 + 0.828334i −0.0479038 + 0.0479038i
\(300\) 27.5658 + 1.37050i 1.59151 + 0.0791259i
\(301\) −1.15141 1.15141i −0.0663660 0.0663660i
\(302\) −30.8126 9.41699i −1.77306 0.541887i
\(303\) 14.5041 14.5041i 0.833238 0.833238i
\(304\) −0.0429385 + 0.101269i −0.00246269 + 0.00580817i
\(305\) −15.0683 8.50056i −0.862810 0.486740i
\(306\) 12.6413 6.72314i 0.722658 0.384336i
\(307\) 15.7762i 0.900397i −0.892928 0.450199i \(-0.851353\pi\)
0.892928 0.450199i \(-0.148647\pi\)
\(308\) −0.328364 0.221389i −0.0187103 0.0126148i
\(309\) −7.51002 7.51002i −0.427230 0.427230i
\(310\) −0.0809585 + 3.25876i −0.00459814 + 0.185085i
\(311\) 26.9472 1.52804 0.764018 0.645194i \(-0.223224\pi\)
0.764018 + 0.645194i \(0.223224\pi\)
\(312\) 3.46021 2.80373i 0.195896 0.158730i
\(313\) −11.0430 + 11.0430i −0.624185 + 0.624185i −0.946599 0.322414i \(-0.895506\pi\)
0.322414 + 0.946599i \(0.395506\pi\)
\(314\) 10.8539 + 3.31720i 0.612523 + 0.187200i
\(315\) −1.00455 + 1.78069i −0.0565998 + 0.100330i
\(316\) −23.6728 15.9607i −1.33170 0.897857i
\(317\) −25.7723 −1.44752 −0.723759 0.690053i \(-0.757587\pi\)
−0.723759 + 0.690053i \(0.757587\pi\)
\(318\) 16.8513 + 5.15012i 0.944973 + 0.288805i
\(319\) 5.84039 0.326999
\(320\) 1.12491 + 17.8531i 0.0628841 + 0.998021i
\(321\) 45.5557 2.54267
\(322\) 0.549902 + 0.168062i 0.0306448 + 0.00936574i
\(323\) −0.0602941 −0.00335485
\(324\) −2.53904 1.71187i −0.141058 0.0951039i
\(325\) 1.47521 + 2.44140i 0.0818297 + 0.135424i
\(326\) 27.0936 + 8.28038i 1.50057 + 0.458608i
\(327\) 24.5416 24.5416i 1.35715 1.35715i
\(328\) −6.01894 + 4.87702i −0.332340 + 0.269288i
\(329\) 1.87455 0.103347
\(330\) −6.01633 6.32288i −0.331188 0.348063i
\(331\) 22.7527 + 22.7527i 1.25060 + 1.25060i 0.955450 + 0.295152i \(0.0953703\pi\)
0.295152 + 0.955450i \(0.404630\pi\)
\(332\) 7.38858 + 4.98152i 0.405501 + 0.273396i
\(333\) 7.38698i 0.404804i
\(334\) 25.2338 13.4203i 1.38073 0.734325i
\(335\) 0.693384 + 2.48825i 0.0378836 + 0.135948i
\(336\) −2.01261 0.853357i −0.109797 0.0465544i
\(337\) 7.07442 7.07442i 0.385368 0.385368i −0.487664 0.873032i \(-0.662151\pi\)
0.873032 + 0.487664i \(0.162151\pi\)
\(338\) −17.1418 5.23891i −0.932391 0.284959i
\(339\) −27.4497 27.4497i −1.49086 1.49086i
\(340\) −8.76903 + 4.38787i −0.475568 + 0.237966i
\(341\) 0.728906 0.728906i 0.0394724 0.0394724i
\(342\) −0.0843200 0.158545i −0.00455950 0.00857312i
\(343\) −1.95474 1.95474i −0.105546 0.105546i
\(344\) 18.0715 14.6429i 0.974347 0.789493i
\(345\) 11.0372 + 6.22649i 0.594225 + 0.335223i
\(346\) 5.61759 18.3808i 0.302003 0.988160i
\(347\) −2.13391 −0.114554 −0.0572771 0.998358i \(-0.518242\pi\)
−0.0572771 + 0.998358i \(0.518242\pi\)
\(348\) 31.6452 6.15774i 1.69636 0.330090i
\(349\) −5.62057 + 5.62057i −0.300862 + 0.300862i −0.841351 0.540489i \(-0.818239\pi\)
0.540489 + 0.841351i \(0.318239\pi\)
\(350\) 0.718033 1.20203i 0.0383805 0.0642513i
\(351\) 2.54687i 0.135942i
\(352\) 3.63400 4.33521i 0.193693 0.231067i
\(353\) 7.04955 + 7.04955i 0.375210 + 0.375210i 0.869370 0.494161i \(-0.164525\pi\)
−0.494161 + 0.869370i \(0.664525\pi\)
\(354\) −3.96066 + 2.10643i −0.210507 + 0.111955i
\(355\) −2.74977 + 0.766258i −0.145943 + 0.0406687i
\(356\) 22.7398 + 15.3316i 1.20521 + 0.812575i
\(357\) 1.19828i 0.0634197i
\(358\) −12.7288 23.9336i −0.672737 1.26493i
\(359\) 12.5765i 0.663760i −0.943322 0.331880i \(-0.892317\pi\)
0.943322 0.331880i \(-0.107683\pi\)
\(360\) −23.8013 16.9220i −1.25444 0.891870i
\(361\) 18.9992i 0.999960i
\(362\) −12.7444 + 6.77797i −0.669833 + 0.356242i
\(363\) 2.75998i 0.144862i
\(364\) −0.0431538 0.221772i −0.00226187 0.0116240i
\(365\) −9.34879 + 16.5719i −0.489338 + 0.867414i
\(366\) 14.1805 + 26.6632i 0.741225 + 1.39371i
\(367\) 3.07549 + 3.07549i 0.160539 + 0.160539i 0.782806 0.622266i \(-0.213788\pi\)
−0.622266 + 0.782806i \(0.713788\pi\)
\(368\) −3.20626 + 7.56183i −0.167138 + 0.394188i
\(369\) 12.6469i 0.658373i
\(370\) −0.125642 + 5.05737i −0.00653182 + 0.262920i
\(371\) 0.632092 0.632092i 0.0328166 0.0328166i
\(372\) 3.18095 4.71797i 0.164924 0.244615i
\(373\) −5.56460 −0.288124 −0.144062 0.989569i \(-0.546016\pi\)
−0.144062 + 0.989569i \(0.546016\pi\)
\(374\) 2.96540 + 0.906290i 0.153337 + 0.0468631i
\(375\) 21.1574 22.4623i 1.09256 1.15995i
\(376\) −2.79092 + 26.6303i −0.143931 + 1.37335i
\(377\) 2.35602 + 2.35602i 0.121341 + 0.121341i
\(378\) 1.10376 0.587020i 0.0567713 0.0301931i
\(379\) −11.0691 + 11.0691i −0.568580 + 0.568580i −0.931731 0.363150i \(-0.881701\pi\)
0.363150 + 0.931731i \(0.381701\pi\)
\(380\) 0.0550316 + 0.109979i 0.00282306 + 0.00564181i
\(381\) −29.3880 29.3880i −1.50559 1.50559i
\(382\) 3.43777 11.2485i 0.175892 0.575521i
\(383\) −4.52046 + 4.52046i −0.230985 + 0.230985i −0.813104 0.582119i \(-0.802224\pi\)
0.582119 + 0.813104i \(0.302224\pi\)
\(384\) 15.1195 27.3211i 0.771563 1.39422i
\(385\) −0.426519 + 0.118855i −0.0217374 + 0.00605742i
\(386\) 5.81573 + 10.9352i 0.296013 + 0.556585i
\(387\) 37.9716i 1.93020i
\(388\) −20.1683 + 3.92448i −1.02389 + 0.199235i
\(389\) −23.5877 23.5877i −1.19595 1.19595i −0.975370 0.220576i \(-0.929206\pi\)
−0.220576 0.975370i \(-0.570794\pi\)
\(390\) 0.123662 4.97766i 0.00626186 0.252054i
\(391\) −4.50221 −0.227687
\(392\) 15.2968 12.3947i 0.772606 0.626026i
\(393\) −15.1581 + 15.1581i −0.764625 + 0.764625i
\(394\) −8.83658 + 28.9134i −0.445180 + 1.45664i
\(395\) −30.7491 + 8.56864i −1.54716 + 0.431135i
\(396\) 1.76393 + 9.06500i 0.0886408 + 0.455533i
\(397\) 4.78652 0.240228 0.120114 0.992760i \(-0.461674\pi\)
0.120114 + 0.992760i \(0.461674\pi\)
\(398\) 10.7010 35.0140i 0.536395 1.75509i
\(399\) −0.0150285 −0.000752368
\(400\) 16.0073 + 11.9902i 0.800367 + 0.599511i
\(401\) 29.9895 1.49760 0.748801 0.662795i \(-0.230630\pi\)
0.748801 + 0.662795i \(0.230630\pi\)
\(402\) 1.31785 4.31201i 0.0657282 0.215064i
\(403\) 0.588084 0.0292945
\(404\) 14.5901 2.83904i 0.725885 0.141248i
\(405\) −3.29802 + 0.919034i −0.163880 + 0.0456672i
\(406\) 0.478018 1.56408i 0.0237236 0.0776241i
\(407\) 1.13121 1.13121i 0.0560720 0.0560720i
\(408\) 17.0231 + 1.78406i 0.842767 + 0.0883241i
\(409\) 36.0665 1.78337 0.891686 0.452654i \(-0.149523\pi\)
0.891686 + 0.452654i \(0.149523\pi\)
\(410\) −0.215107 + 8.65851i −0.0106234 + 0.427613i
\(411\) −30.2998 30.2998i −1.49458 1.49458i
\(412\) −1.47002 7.55456i −0.0724226 0.372186i
\(413\) 0.227577i 0.0111983i
\(414\) −6.29624 11.8387i −0.309443 0.581839i
\(415\) 9.59718 2.67438i 0.471107 0.131280i
\(416\) 3.21479 0.282869i 0.157618 0.0138688i
\(417\) −19.7161 + 19.7161i −0.965502 + 0.965502i
\(418\) 0.0113665 0.0371913i 0.000555952 0.00181909i
\(419\) 1.42937 + 1.42937i 0.0698293 + 0.0698293i 0.741159 0.671330i \(-0.234276\pi\)
−0.671330 + 0.741159i \(0.734276\pi\)
\(420\) −2.18571 + 1.09369i −0.106652 + 0.0533668i
\(421\) −18.8889 + 18.8889i −0.920589 + 0.920589i −0.997071 0.0764823i \(-0.975631\pi\)
0.0764823 + 0.997071i \(0.475631\pi\)
\(422\) 29.1595 15.5081i 1.41946 0.754922i
\(423\) −30.9098 30.9098i −1.50288 1.50288i
\(424\) 8.03857 + 9.92075i 0.390387 + 0.481794i
\(425\) −2.62575 + 10.6439i −0.127367 + 0.516304i
\(426\) 4.76520 + 1.45635i 0.230875 + 0.0705604i
\(427\) 1.53205 0.0741409
\(428\) 27.3715 + 18.4544i 1.32305 + 0.892026i
\(429\) −1.11338 + 1.11338i −0.0537546 + 0.0537546i
\(430\) 0.645843 25.9966i 0.0311453 1.25367i
\(431\) 15.0218i 0.723573i −0.932261 0.361787i \(-0.882167\pi\)
0.932261 0.361787i \(-0.117833\pi\)
\(432\) 6.69603 + 16.5543i 0.322163 + 0.796468i
\(433\) 5.48731 + 5.48731i 0.263703 + 0.263703i 0.826557 0.562854i \(-0.190297\pi\)
−0.562854 + 0.826557i \(0.690297\pi\)
\(434\) −0.135545 0.254863i −0.00650639 0.0122338i
\(435\) 17.7099 31.3932i 0.849127 1.50519i
\(436\) 24.6871 4.80379i 1.18230 0.230060i
\(437\) 0.0564656i 0.00270112i
\(438\) 29.3238 15.5955i 1.40114 0.745180i
\(439\) 13.0263i 0.621709i −0.950457 0.310855i \(-0.899385\pi\)
0.950457 0.310855i \(-0.100615\pi\)
\(440\) −1.05346 6.23620i −0.0502218 0.297299i
\(441\) 32.1415i 1.53055i
\(442\) 0.830647 + 1.56185i 0.0395099 + 0.0742894i
\(443\) 4.29913i 0.204258i −0.994771 0.102129i \(-0.967435\pi\)
0.994771 0.102129i \(-0.0325654\pi\)
\(444\) 4.93661 7.32196i 0.234281 0.347485i
\(445\) 29.5373 8.23094i 1.40020 0.390184i
\(446\) 6.53765 3.47696i 0.309567 0.164639i
\(447\) 23.4316 + 23.4316i 1.10828 + 1.10828i
\(448\) −0.863557 1.32802i −0.0407992 0.0627433i
\(449\) 22.6148i 1.06726i −0.845718 0.533630i \(-0.820827\pi\)
0.845718 0.533630i \(-0.179173\pi\)
\(450\) −31.6604 + 7.98076i −1.49248 + 0.376217i
\(451\) 1.93670 1.93670i 0.0911956 0.0911956i
\(452\) −5.37303 27.6125i −0.252726 1.29878i
\(453\) 62.8796 2.95434
\(454\) 3.49436 11.4336i 0.163999 0.536606i
\(455\) −0.220005 0.124112i −0.0103140 0.00581848i
\(456\) 0.0223752 0.213499i 0.00104782 0.00999802i
\(457\) 7.61254 + 7.61254i 0.356099 + 0.356099i 0.862373 0.506274i \(-0.168977\pi\)
−0.506274 + 0.862373i \(0.668977\pi\)
\(458\) 18.4442 + 34.6802i 0.861842 + 1.62050i
\(459\) −6.92146 + 6.92146i −0.323066 + 0.323066i
\(460\) 4.10926 + 8.21223i 0.191595 + 0.382897i
\(461\) −13.4947 13.4947i −0.628509 0.628509i 0.319184 0.947693i \(-0.396591\pi\)
−0.947693 + 0.319184i \(0.896591\pi\)
\(462\) 0.739136 + 0.225896i 0.0343877 + 0.0105096i
\(463\) 15.8225 15.8225i 0.735335 0.735335i −0.236337 0.971671i \(-0.575947\pi\)
0.971671 + 0.236337i \(0.0759468\pi\)
\(464\) 21.5081 + 9.11953i 0.998486 + 0.423363i
\(465\) −1.70772 6.12828i −0.0791937 0.284192i
\(466\) −14.6324 + 7.78205i −0.677832 + 0.360496i
\(467\) 14.3620i 0.664594i 0.943175 + 0.332297i \(0.107824\pi\)
−0.943175 + 0.332297i \(0.892176\pi\)
\(468\) −2.94527 + 4.36841i −0.136145 + 0.201930i
\(469\) −0.161744 0.161744i −0.00746863 0.00746863i
\(470\) 20.6361 + 21.6876i 0.951873 + 1.00037i
\(471\) −22.1498 −1.02061
\(472\) −3.23301 0.338828i −0.148811 0.0155958i
\(473\) −5.81481 + 5.81481i −0.267365 + 0.267365i
\(474\) 53.2867 + 16.2856i 2.44754 + 0.748021i
\(475\) 0.133493 + 0.0329315i 0.00612508 + 0.00151100i
\(476\) 0.485417 0.719969i 0.0222491 0.0329997i
\(477\) −20.8454 −0.954445
\(478\) 17.5878 + 5.37521i 0.804447 + 0.245857i
\(479\) −14.8014 −0.676293 −0.338146 0.941094i \(-0.609800\pi\)
−0.338146 + 0.941094i \(0.609800\pi\)
\(480\) −12.2831 32.6792i −0.560643 1.49159i
\(481\) 0.912665 0.0416139
\(482\) −1.38718 0.423951i −0.0631841 0.0193104i
\(483\) −1.12219 −0.0510615
\(484\) −1.11806 + 1.65830i −0.0508207 + 0.0753772i
\(485\) −11.2870 + 20.0076i −0.512516 + 0.908500i
\(486\) 23.8287 + 7.28257i 1.08089 + 0.330344i
\(487\) 6.83833 6.83833i 0.309874 0.309874i −0.534986 0.844861i \(-0.679683\pi\)
0.844861 + 0.534986i \(0.179683\pi\)
\(488\) −2.28099 + 21.7646i −0.103255 + 0.985239i
\(489\) −55.2902 −2.50031
\(490\) 0.546682 22.0052i 0.0246966 0.994092i
\(491\) −3.57853 3.57853i −0.161497 0.161497i 0.621733 0.783229i \(-0.286429\pi\)
−0.783229 + 0.621733i \(0.786429\pi\)
\(492\) 8.45177 12.5356i 0.381035 0.565150i
\(493\) 12.8056i 0.576735i
\(494\) 0.0195883 0.0104178i 0.000881319 0.000468718i
\(495\) 8.99279 + 5.07314i 0.404196 + 0.228021i
\(496\) 3.82245 1.54614i 0.171633 0.0694238i
\(497\) 0.178743 0.178743i 0.00801771 0.00801771i
\(498\) −16.6314 5.08293i −0.745272 0.227771i
\(499\) −15.8373 15.8373i −0.708974 0.708974i 0.257346 0.966319i \(-0.417152\pi\)
−0.966319 + 0.257346i \(0.917152\pi\)
\(500\) 21.8115 4.92540i 0.975439 0.220270i
\(501\) −39.4410 + 39.4410i −1.76209 + 1.76209i
\(502\) 16.9805 + 31.9279i 0.757875 + 1.42501i
\(503\) 14.9752 + 14.9752i 0.667712 + 0.667712i 0.957186 0.289474i \(-0.0934804\pi\)
−0.289474 + 0.957186i \(0.593480\pi\)
\(504\) 2.57202 + 0.269554i 0.114567 + 0.0120069i
\(505\) 8.16521 14.4739i 0.363347 0.644079i
\(506\) 0.848744 2.77710i 0.0377313 0.123457i
\(507\) 34.9815 1.55358
\(508\) −5.75243 29.5623i −0.255223 1.31161i
\(509\) 11.2971 11.2971i 0.500736 0.500736i −0.410930 0.911667i \(-0.634796\pi\)
0.911667 + 0.410930i \(0.134796\pi\)
\(510\) 13.8635 13.1914i 0.613887 0.584124i
\(511\) 1.68492i 0.0745365i
\(512\) 20.1520 10.2907i 0.890600 0.454788i
\(513\) 0.0868073 + 0.0868073i 0.00383263 + 0.00383263i
\(514\) −10.2660 + 5.45986i −0.452816 + 0.240824i
\(515\) −7.49438 4.22784i −0.330242 0.186301i
\(516\) −25.3758 + 37.6374i −1.11711 + 1.65689i
\(517\) 9.46679i 0.416349i
\(518\) −0.210357 0.395529i −0.00924256 0.0173786i
\(519\) 37.5100i 1.64651i
\(520\) 2.09073 2.94066i 0.0916844 0.128957i
\(521\) 5.01183i 0.219572i 0.993955 + 0.109786i \(0.0350166\pi\)
−0.993955 + 0.109786i \(0.964983\pi\)
\(522\) −33.6726 + 17.9083i −1.47381 + 0.783827i
\(523\) 11.6975i 0.511496i 0.966743 + 0.255748i \(0.0823218\pi\)
−0.966743 + 0.255748i \(0.917678\pi\)
\(524\) −15.2480 + 2.96706i −0.666112 + 0.129617i
\(525\) −0.654477 + 2.65303i −0.0285637 + 0.115788i
\(526\) 1.36389 + 2.56448i 0.0594683 + 0.111817i
\(527\) 1.59819 + 1.59819i 0.0696184 + 0.0696184i
\(528\) −4.30960 + 10.1640i −0.187551 + 0.442333i
\(529\) 18.7837i 0.816681i
\(530\) 14.2714 + 0.354551i 0.619912 + 0.0154007i
\(531\) 3.75256 3.75256i 0.162847 0.162847i
\(532\) −0.00902968 0.00608798i −0.000391486 0.000263948i
\(533\) 1.56254 0.0676810
\(534\) −51.1866 15.6437i −2.21506 0.676971i
\(535\) 35.5534 9.90742i 1.53711 0.428335i
\(536\) 2.53858 2.05696i 0.109650 0.0888472i
\(537\) 37.4087 + 37.4087i 1.61431 + 1.61431i
\(538\) 2.00474 1.06619i 0.0864303 0.0459668i
\(539\) −4.92202 + 4.92202i −0.212007 + 0.212007i
\(540\) 18.9424 + 6.30770i 0.815151 + 0.271440i
\(541\) 29.6989 + 29.6989i 1.27686 + 1.27686i 0.942417 + 0.334440i \(0.108547\pi\)
0.334440 + 0.942417i \(0.391453\pi\)
\(542\) 1.43975 4.71089i 0.0618426 0.202350i
\(543\) 19.9198 19.9198i 0.854842 0.854842i
\(544\) 9.50536 + 7.96789i 0.407539 + 0.341620i
\(545\) 13.8159 24.4905i 0.591809 1.04906i
\(546\) 0.207042 + 0.389296i 0.00886057 + 0.0166603i
\(547\) 2.18513i 0.0934293i −0.998908 0.0467147i \(-0.985125\pi\)
0.998908 0.0467147i \(-0.0148751\pi\)
\(548\) −5.93091 30.4795i −0.253356 1.30202i
\(549\) −25.2622 25.2622i −1.07817 1.07817i
\(550\) −6.07048 3.62620i −0.258846 0.154622i
\(551\) 0.160605 0.00684199
\(552\) 1.67078 15.9422i 0.0711130 0.678543i
\(553\) 1.99878 1.99878i 0.0849969 0.0849969i
\(554\) −3.93786 + 12.8847i −0.167304 + 0.547420i
\(555\) −2.65027 9.51066i −0.112498 0.403705i
\(556\) −19.8330 + 3.85925i −0.841109 + 0.163669i
\(557\) 0.599018 0.0253812 0.0126906 0.999919i \(-0.495960\pi\)
0.0126906 + 0.999919i \(0.495960\pi\)
\(558\) −1.96745 + 6.43752i −0.0832887 + 0.272522i
\(559\) −4.69141 −0.198425
\(560\) −1.75631 0.228292i −0.0742174 0.00964710i
\(561\) −6.05152 −0.255496
\(562\) −1.17993 + 3.86076i −0.0497724 + 0.162856i
\(563\) 18.4868 0.779128 0.389564 0.920999i \(-0.372626\pi\)
0.389564 + 0.920999i \(0.372626\pi\)
\(564\) −9.98119 51.2943i −0.420284 2.15988i
\(565\) −27.3926 15.4531i −1.15241 0.650116i
\(566\) 12.8865 42.1649i 0.541660 1.77232i
\(567\) 0.214381 0.214381i 0.00900314 0.00900314i
\(568\) 2.27315 + 2.80539i 0.0953791 + 0.117711i
\(569\) −0.845321 −0.0354377 −0.0177189 0.999843i \(-0.505640\pi\)
−0.0177189 + 0.999843i \(0.505640\pi\)
\(570\) −0.165443 0.173873i −0.00692965 0.00728273i
\(571\) −21.5317 21.5317i −0.901074 0.901074i 0.0944552 0.995529i \(-0.469889\pi\)
−0.995529 + 0.0944552i \(0.969889\pi\)
\(572\) −1.11999 + 0.217934i −0.0468290 + 0.00911230i
\(573\) 22.9549i 0.958954i
\(574\) −0.360144 0.677170i −0.0150321 0.0282645i
\(575\) 9.96803 + 2.45902i 0.415696 + 0.102548i
\(576\) −7.65871 + 36.1375i −0.319113 + 1.50573i
\(577\) 32.9762 32.9762i 1.37282 1.37282i 0.516580 0.856239i \(-0.327205\pi\)
0.856239 0.516580i \(-0.172795\pi\)
\(578\) 5.03968 16.4899i 0.209623 0.685890i
\(579\) −17.0919 17.0919i −0.710315 0.710315i
\(580\) 23.3580 11.6879i 0.969887 0.485315i
\(581\) −0.623845 + 0.623845i −0.0258814 + 0.0258814i
\(582\) 35.4032 18.8288i 1.46751 0.780477i
\(583\) −3.19218 3.19218i −0.132206 0.132206i
\(584\) 23.9364 + 2.50860i 0.990496 + 0.103806i
\(585\) 1.58119 + 5.67422i 0.0653744 + 0.234600i
\(586\) −26.3891 8.06508i −1.09012 0.333166i
\(587\) −5.92738 −0.244649 −0.122325 0.992490i \(-0.539035\pi\)
−0.122325 + 0.992490i \(0.539035\pi\)
\(588\) −21.4797 + 31.8587i −0.885809 + 1.31383i
\(589\) 0.0200442 0.0200442i 0.000825905 0.000825905i
\(590\) −2.63295 + 2.50530i −0.108397 + 0.103142i
\(591\) 59.0040i 2.42710i
\(592\) 5.93218 2.39950i 0.243811 0.0986190i
\(593\) −9.11761 9.11761i −0.374415 0.374415i 0.494667 0.869082i \(-0.335290\pi\)
−0.869082 + 0.494667i \(0.835290\pi\)
\(594\) −2.96456 5.57418i −0.121637 0.228712i
\(595\) −0.260601 0.935184i −0.0106836 0.0383388i
\(596\) 4.58653 + 23.5706i 0.187872 + 0.965490i
\(597\) 71.4536i 2.92440i
\(598\) 1.46267 0.777904i 0.0598132 0.0318109i
\(599\) 28.8016i 1.17680i 0.808569 + 0.588401i \(0.200242\pi\)
−0.808569 + 0.588401i \(0.799758\pi\)
\(600\) −36.7152 13.2476i −1.49889 0.540832i
\(601\) 2.50539i 0.102197i −0.998694 0.0510984i \(-0.983728\pi\)
0.998694 0.0510984i \(-0.0162722\pi\)
\(602\) 1.08131 + 2.03316i 0.0440708 + 0.0828652i
\(603\) 5.33405i 0.217219i
\(604\) 37.7803 + 25.4722i 1.53726 + 1.03645i
\(605\) 0.600239 + 2.15400i 0.0244032 + 0.0875725i
\(606\) −25.6113 + 13.6211i −1.04039 + 0.553317i
\(607\) 21.3036 + 21.3036i 0.864688 + 0.864688i 0.991878 0.127190i \(-0.0405959\pi\)
−0.127190 + 0.991878i \(0.540596\pi\)
\(608\) 0.0999313 0.119214i 0.00405275 0.00483476i
\(609\) 3.19184i 0.129340i
\(610\) 16.8657 + 17.7250i 0.682871 + 0.717665i
\(611\) 3.81892 3.81892i 0.154497 0.154497i
\(612\) −19.8759 + 3.86758i −0.803434 + 0.156338i
\(613\) −21.4899 −0.867969 −0.433984 0.900920i \(-0.642893\pi\)
−0.433984 + 0.900920i \(0.642893\pi\)
\(614\) −6.52097 + 21.3367i −0.263165 + 0.861081i
\(615\) −4.53741 16.2828i −0.182966 0.656586i
\(616\) 0.352590 + 0.435147i 0.0142063 + 0.0175326i
\(617\) −12.4679 12.4679i −0.501937 0.501937i 0.410102 0.912039i \(-0.365493\pi\)
−0.912039 + 0.410102i \(0.865493\pi\)
\(618\) 7.05280 + 13.2612i 0.283705 + 0.533444i
\(619\) 1.77556 1.77556i 0.0713656 0.0713656i −0.670523 0.741889i \(-0.733930\pi\)
0.741889 + 0.670523i \(0.233930\pi\)
\(620\) 1.45647 4.37388i 0.0584934 0.175659i
\(621\) 6.48197 + 6.48197i 0.260112 + 0.260112i
\(622\) −36.4450 11.1384i −1.46131 0.446609i
\(623\) −1.92001 + 1.92001i −0.0769235 + 0.0769235i
\(624\) −5.83869 + 2.36169i −0.233735 + 0.0945431i
\(625\) 11.6270 22.1317i 0.465079 0.885269i
\(626\) 19.4997 10.3706i 0.779363 0.414494i
\(627\) 0.0758968i 0.00303103i
\(628\) −13.3084 8.97276i −0.531062 0.358052i
\(629\) 2.48029 + 2.48029i 0.0988955 + 0.0988955i
\(630\) 2.09464 1.99309i 0.0834526 0.0794066i
\(631\) 17.6754 0.703647 0.351824 0.936066i \(-0.385562\pi\)
0.351824 + 0.936066i \(0.385562\pi\)
\(632\) 25.4193 + 31.3711i 1.01113 + 1.24788i
\(633\) −45.5769 + 45.5769i −1.81152 + 1.81152i
\(634\) 34.8561 + 10.6528i 1.38431 + 0.423076i
\(635\) −29.3268 16.5443i −1.16380 0.656539i
\(636\) −20.6619 13.9307i −0.819299 0.552387i
\(637\) −3.97110 −0.157341
\(638\) −7.89889 2.41407i −0.312720 0.0955741i
\(639\) −5.89466 −0.233189
\(640\) 5.85805 24.6106i 0.231560 0.972821i
\(641\) −26.4635 −1.04525 −0.522623 0.852564i \(-0.675046\pi\)
−0.522623 + 0.852564i \(0.675046\pi\)
\(642\) −61.6123 18.8301i −2.43164 0.743163i
\(643\) −10.7417 −0.423610 −0.211805 0.977312i \(-0.567934\pi\)
−0.211805 + 0.977312i \(0.567934\pi\)
\(644\) −0.674254 0.454595i −0.0265693 0.0179135i
\(645\) 13.6233 + 48.8880i 0.536416 + 1.92496i
\(646\) 0.0815454 + 0.0249221i 0.00320836 + 0.000980545i
\(647\) −17.7408 + 17.7408i −0.697464 + 0.697464i −0.963863 0.266399i \(-0.914166\pi\)
0.266399 + 0.963863i \(0.414166\pi\)
\(648\) 2.72636 + 3.36473i 0.107102 + 0.132179i
\(649\) 1.14930 0.0451141
\(650\) −0.986028 3.91166i −0.0386752 0.153428i
\(651\) 0.398356 + 0.398356i 0.0156128 + 0.0156128i
\(652\) −33.2203 22.3978i −1.30101 0.877165i
\(653\) 24.4157i 0.955460i 0.878507 + 0.477730i \(0.158540\pi\)
−0.878507 + 0.477730i \(0.841460\pi\)
\(654\) −43.3355 + 23.0474i −1.69455 + 0.901226i
\(655\) −8.53340 + 15.1265i −0.333428 + 0.591043i
\(656\) 10.1562 4.10809i 0.396535 0.160394i
\(657\) −27.7830 + 27.7830i −1.08392 + 1.08392i
\(658\) −2.53525 0.774827i −0.0988343 0.0302059i
\(659\) −18.8135 18.8135i −0.732868 0.732868i 0.238319 0.971187i \(-0.423404\pi\)
−0.971187 + 0.238319i \(0.923404\pi\)
\(660\) 5.52334 + 11.0382i 0.214996 + 0.429663i
\(661\) −24.0145 + 24.0145i −0.934056 + 0.934056i −0.997956 0.0639004i \(-0.979646\pi\)
0.0639004 + 0.997956i \(0.479646\pi\)
\(662\) −21.3675 40.1768i −0.830472 1.56151i
\(663\) −2.44120 2.44120i −0.0948082 0.0948082i
\(664\) −7.93369 9.79131i −0.307887 0.379977i
\(665\) −0.0117289 + 0.00326839i −0.000454825 + 0.000126743i
\(666\) −3.05334 + 9.99059i −0.118315 + 0.387128i
\(667\) 11.9925 0.464351
\(668\) −39.6749 + 7.72021i −1.53507 + 0.298704i
\(669\) −10.2185 + 10.2185i −0.395069 + 0.395069i
\(670\) 0.0907247 3.65187i 0.00350500 0.141084i
\(671\) 7.73710i 0.298688i
\(672\) 2.36925 + 1.98603i 0.0913956 + 0.0766126i
\(673\) 22.9707 + 22.9707i 0.885457 + 0.885457i 0.994083 0.108626i \(-0.0346451\pi\)
−0.108626 + 0.994083i \(0.534645\pi\)
\(674\) −12.4920 + 6.64372i −0.481175 + 0.255907i
\(675\) 19.1047 11.5439i 0.735340 0.444327i
\(676\) 21.0181 + 14.1708i 0.808390 + 0.545032i
\(677\) 6.71129i 0.257936i 0.991649 + 0.128968i \(0.0411664\pi\)
−0.991649 + 0.128968i \(0.958834\pi\)
\(678\) 25.7785 + 48.4707i 0.990018 + 1.86151i
\(679\) 2.03424i 0.0780670i
\(680\) 13.6735 2.30981i 0.524353 0.0885773i
\(681\) 23.3327i 0.894112i
\(682\) −1.28710 + 0.684529i −0.0492857 + 0.0262120i
\(683\) 37.8889i 1.44978i −0.688865 0.724889i \(-0.741891\pi\)
0.688865 0.724889i \(-0.258109\pi\)
\(684\) 0.0485063 + 0.249278i 0.00185468 + 0.00953140i
\(685\) −30.2367 17.0576i −1.15529 0.651736i
\(686\) 1.83573 + 3.45168i 0.0700885 + 0.131786i
\(687\) −54.2059 54.2059i −2.06808 2.06808i
\(688\) −30.4934 + 12.3343i −1.16255 + 0.470240i
\(689\) 2.57546i 0.0981172i
\(690\) −12.3538 12.9832i −0.470300 0.494263i
\(691\) 31.1784 31.1784i 1.18608 1.18608i 0.207940 0.978142i \(-0.433324\pi\)
0.978142 0.207940i \(-0.0666760\pi\)
\(692\) −15.1951 + 22.5374i −0.577632 + 0.856743i
\(693\) −0.914327 −0.0347324
\(694\) 2.88603 + 0.882033i 0.109552 + 0.0334815i
\(695\) −11.0994 + 19.6751i −0.421023 + 0.746318i
\(696\) −45.3442 4.75218i −1.71877 0.180131i
\(697\) 4.24640 + 4.24640i 0.160844 + 0.160844i
\(698\) 9.92482 5.27839i 0.375660 0.199790i
\(699\) 22.8707 22.8707i 0.865050 0.865050i
\(700\) −1.46796 + 1.32891i −0.0554837 + 0.0502280i
\(701\) −5.12726 5.12726i −0.193654 0.193654i 0.603619 0.797273i \(-0.293725\pi\)
−0.797273 + 0.603619i \(0.793725\pi\)
\(702\) 1.05273 3.44454i 0.0397327 0.130006i
\(703\) 0.0311071 0.0311071i 0.00117323 0.00117323i
\(704\) −6.70676 + 4.36112i −0.252771 + 0.164366i
\(705\) −50.8857 28.7064i −1.91647 1.08114i
\(706\) −6.62036 12.4481i −0.249161 0.468491i
\(707\) 1.47161i 0.0553455i
\(708\) 6.22731 1.21175i 0.234037 0.0455405i
\(709\) 33.8473 + 33.8473i 1.27116 + 1.27116i 0.945479 + 0.325683i \(0.105594\pi\)
0.325683 + 0.945479i \(0.394406\pi\)
\(710\) 4.03568 + 0.100260i 0.151456 + 0.00376268i
\(711\) −65.9167 −2.47207
\(712\) −24.4175 30.1347i −0.915086 1.12935i
\(713\) 1.49671 1.49671i 0.0560524 0.0560524i
\(714\) −0.495299 + 1.62063i −0.0185361 + 0.0606504i
\(715\) −0.626789 + 1.11106i −0.0234406 + 0.0415515i
\(716\) 7.32242 + 37.6306i 0.273652 + 1.40632i
\(717\) −35.8916 −1.34040
\(718\) −5.19837 + 17.0092i −0.194002 + 0.634776i
\(719\) 10.2185 0.381086 0.190543 0.981679i \(-0.438975\pi\)
0.190543 + 0.981679i \(0.438975\pi\)
\(720\) 25.1957 + 32.7244i 0.938989 + 1.21957i
\(721\) 0.761978 0.0283776
\(722\) −7.85318 + 25.6957i −0.292265 + 0.956296i
\(723\) 2.83083 0.105280
\(724\) 20.0380 3.89913i 0.744705 0.144910i
\(725\) 6.99417 28.3520i 0.259757 1.05297i
\(726\) 1.14082 3.73277i 0.0423397 0.138536i
\(727\) 5.64423 5.64423i 0.209333 0.209333i −0.594651 0.803984i \(-0.702710\pi\)
0.803984 + 0.594651i \(0.202710\pi\)
\(728\) −0.0333036 + 0.317774i −0.00123431 + 0.0117775i
\(729\) −44.0342 −1.63090
\(730\) 19.4937 18.5486i 0.721495 0.686515i
\(731\) −12.7495 12.7495i −0.471558 0.471558i
\(732\) −8.15752 41.9223i −0.301511 1.54949i
\(733\) 22.7837i 0.841535i 0.907169 + 0.420767i \(0.138239\pi\)
−0.907169 + 0.420767i \(0.861761\pi\)
\(734\) −2.88825 5.43071i −0.106607 0.200451i
\(735\) 11.5316 + 41.3819i 0.425350 + 1.52640i
\(736\) 7.46195 8.90180i 0.275051 0.328125i
\(737\) −0.816835 + 0.816835i −0.0300885 + 0.0300885i
\(738\) −5.22750 + 17.1045i −0.192427 + 0.629625i
\(739\) 9.59846 + 9.59846i 0.353085 + 0.353085i 0.861256 0.508171i \(-0.169678\pi\)
−0.508171 + 0.861256i \(0.669678\pi\)
\(740\) 2.26035 6.78796i 0.0830920 0.249530i
\(741\) −0.0306169 + 0.0306169i −0.00112474 + 0.00112474i
\(742\) −1.11615 + 0.593609i −0.0409751 + 0.0217921i
\(743\) 23.7768 + 23.7768i 0.872288 + 0.872288i 0.992721 0.120434i \(-0.0384285\pi\)
−0.120434 + 0.992721i \(0.538429\pi\)
\(744\) −6.25224 + 5.06605i −0.229218 + 0.185730i
\(745\) 23.3829 + 13.1911i 0.856682 + 0.483283i
\(746\) 7.52590 + 2.30008i 0.275543 + 0.0842119i
\(747\) 20.5734 0.752742
\(748\) −3.63597 2.45144i −0.132944 0.0896336i
\(749\) −2.31108 + 2.31108i −0.0844449 + 0.0844449i
\(750\) −37.8991 + 21.6341i −1.38388 + 0.789967i
\(751\) 28.6759i 1.04640i −0.852210 0.523199i \(-0.824738\pi\)
0.852210 0.523199i \(-0.175262\pi\)
\(752\) 14.7820 34.8628i 0.539044 1.27131i
\(753\) −49.9040 49.9040i −1.81860 1.81860i
\(754\) −2.21259 4.16027i −0.0805776 0.151508i
\(755\) 49.0737 13.6750i 1.78597 0.497685i
\(756\) −1.73543 + 0.337692i −0.0631170 + 0.0122817i
\(757\) 29.0633i 1.05632i 0.849144 + 0.528162i \(0.177119\pi\)
−0.849144 + 0.528162i \(0.822881\pi\)
\(758\) 19.5458 10.3952i 0.709935 0.377570i
\(759\) 5.66727i 0.205709i
\(760\) −0.0289691 0.171489i −0.00105082 0.00622057i
\(761\) 50.4514i 1.82886i −0.404743 0.914431i \(-0.632639\pi\)
0.404743 0.914431i \(-0.367361\pi\)
\(762\) 27.5988 + 51.8934i 0.999800 + 1.87990i
\(763\) 2.49003i 0.0901450i
\(764\) −9.29890 + 13.7921i −0.336423 + 0.498981i
\(765\) −11.1233 + 19.7175i −0.402165 + 0.712889i
\(766\) 7.98224 4.24525i 0.288410 0.153387i
\(767\) 0.463631 + 0.463631i 0.0167407 + 0.0167407i
\(768\) −31.7414 + 30.7012i −1.14537 + 1.10783i
\(769\) 34.6495i 1.24949i 0.780828 + 0.624746i \(0.214797\pi\)
−0.780828 + 0.624746i \(0.785203\pi\)
\(770\) 0.625978 + 0.0155514i 0.0225587 + 0.000560434i
\(771\) 16.0460 16.0460i 0.577884 0.577884i
\(772\) −3.34558 17.1933i −0.120410 0.618799i
\(773\) 40.3554 1.45148 0.725742 0.687967i \(-0.241497\pi\)
0.725742 + 0.687967i \(0.241497\pi\)
\(774\) 15.6952 51.3550i 0.564153 1.84592i
\(775\) −2.66555 4.41135i −0.0957493 0.158460i
\(776\) 28.8990 + 3.02868i 1.03741 + 0.108723i
\(777\) 0.618221 + 0.618221i 0.0221785 + 0.0221785i
\(778\) 22.1517 + 41.6513i 0.794176 + 1.49327i
\(779\) 0.0532573 0.0532573i 0.00190814 0.00190814i
\(780\) −2.22472 + 6.68098i −0.0796578 + 0.239217i
\(781\) −0.902683 0.902683i −0.0323005 0.0323005i
\(782\) 6.08906 + 1.86095i 0.217744 + 0.0665475i
\(783\) 18.4366 18.4366i 0.658871 0.658871i
\(784\) −25.8116 + 10.4405i −0.921842 + 0.372875i
\(785\) −17.2865 + 4.81711i −0.616983 + 0.171930i
\(786\) 26.7662 14.2353i 0.954719 0.507755i
\(787\) 53.5155i 1.90762i −0.300409 0.953810i \(-0.597123\pi\)
0.300409 0.953810i \(-0.402877\pi\)
\(788\) 23.9022 35.4518i 0.851482 1.26292i
\(789\) −4.00834 4.00834i −0.142701 0.142701i
\(790\) 45.1288 + 1.12115i 1.60561 + 0.0398887i
\(791\) 2.78509 0.0990264
\(792\) 1.36130 12.9892i 0.0483716 0.461550i
\(793\) 3.12116 3.12116i 0.110836 0.110836i
\(794\) −6.47357 1.97847i −0.229739 0.0702131i
\(795\) −26.8382 + 7.47882i −0.951854 + 0.265246i
\(796\) −28.9455 + 42.9319i −1.02595 + 1.52168i
\(797\) 21.7656 0.770976 0.385488 0.922713i \(-0.374033\pi\)
0.385488 + 0.922713i \(0.374033\pi\)
\(798\) 0.0203255 + 0.00621192i 0.000719515 + 0.000219899i
\(799\) 20.7568 0.734324
\(800\) −16.6932 22.8328i −0.590195 0.807261i
\(801\) 63.3189 2.23726
\(802\) −40.5596 12.3959i −1.43221 0.437714i
\(803\) −8.50915 −0.300281
\(804\) −3.56467 + 5.28711i −0.125716 + 0.186462i
\(805\) −0.875803 + 0.244054i −0.0308680 + 0.00860176i
\(806\) −0.795360 0.243079i −0.0280153 0.00856210i
\(807\) −3.13344 + 3.13344i −0.110302 + 0.110302i
\(808\) −20.9060 2.19100i −0.735471 0.0770792i
\(809\) 10.2152 0.359148 0.179574 0.983744i \(-0.442528\pi\)
0.179574 + 0.983744i \(0.442528\pi\)
\(810\) 4.84031 + 0.120250i 0.170071 + 0.00422514i
\(811\) −1.10510 1.10510i −0.0388052 0.0388052i 0.687438 0.726243i \(-0.258735\pi\)
−0.726243 + 0.687438i \(0.758735\pi\)
\(812\) −1.29300 + 1.91777i −0.0453754 + 0.0673007i
\(813\) 9.61358i 0.337163i
\(814\) −1.99749 + 1.06234i −0.0700121 + 0.0372350i
\(815\) −43.1506 + 12.0245i −1.51150 + 0.421199i
\(816\) −22.2856 9.44921i −0.780152 0.330788i
\(817\) −0.159901 + 0.159901i −0.00559424 + 0.00559424i
\(818\) −48.7785 14.9078i −1.70550 0.521238i
\(819\) −0.368841 0.368841i −0.0128883 0.0128883i
\(820\) 3.86985 11.6214i 0.135141 0.405836i
\(821\) −6.60603 + 6.60603i −0.230552 + 0.230552i −0.812923 0.582371i \(-0.802125\pi\)
0.582371 + 0.812923i \(0.302125\pi\)
\(822\) 28.4551 + 53.5034i 0.992486 + 1.86615i
\(823\) 25.7130 + 25.7130i 0.896301 + 0.896301i 0.995107 0.0988061i \(-0.0315024\pi\)
−0.0988061 + 0.995107i \(0.531502\pi\)
\(824\) −1.13447 + 10.8249i −0.0395212 + 0.377102i
\(825\) 13.3983 + 3.30523i 0.466467 + 0.115073i
\(826\) 0.0940668 0.307788i 0.00327300 0.0107093i
\(827\) 9.95386 0.346130 0.173065 0.984910i \(-0.444633\pi\)
0.173065 + 0.984910i \(0.444633\pi\)
\(828\) 3.62200 + 18.6138i 0.125873 + 0.646875i
\(829\) 16.4770 16.4770i 0.572269 0.572269i −0.360493 0.932762i \(-0.617391\pi\)
0.932762 + 0.360493i \(0.117391\pi\)
\(830\) −14.0852 0.349925i −0.488906 0.0121461i
\(831\) 26.2941i 0.912131i
\(832\) −4.46480 0.946238i −0.154789 0.0328049i
\(833\) −10.7920 10.7920i −0.373921 0.373921i
\(834\) 34.8147 18.5158i 1.20554 0.641149i
\(835\) −22.2037 + 39.3589i −0.768390 + 1.36207i
\(836\) −0.0307454 + 0.0456015i −0.00106335 + 0.00157716i
\(837\) 4.60194i 0.159066i
\(838\) −1.34235 2.52399i −0.0463707 0.0871896i
\(839\) 43.0584i 1.48654i 0.668992 + 0.743270i \(0.266726\pi\)
−0.668992 + 0.743270i \(0.733274\pi\)
\(840\) 3.40816 0.575730i 0.117593 0.0198646i
\(841\) 5.11014i 0.176212i
\(842\) 33.3541 17.7389i 1.14946 0.611324i
\(843\) 7.87870i 0.271357i
\(844\) −45.8472 + 8.92126i −1.57813 + 0.307082i
\(845\) 27.3009 7.60775i 0.939181 0.261715i
\(846\) 29.0279 + 54.5805i 0.998001 + 1.87652i
\(847\) −0.140016 0.140016i −0.00481101 0.00481101i
\(848\) −6.77119 16.7401i −0.232524 0.574857i
\(849\) 86.0464i 2.95311i
\(850\) 7.95078 13.3101i 0.272709 0.456532i
\(851\) 2.32280 2.32280i 0.0796244 0.0796244i
\(852\) −5.84278 3.93931i −0.200170 0.134959i
\(853\) −0.642584 −0.0220017 −0.0110008 0.999939i \(-0.503502\pi\)
−0.0110008 + 0.999939i \(0.503502\pi\)
\(854\) −2.07203 0.633258i −0.0709034 0.0216696i
\(855\) 0.247293 + 0.139506i 0.00845723 + 0.00477101i
\(856\) −29.3909 36.2726i −1.00456 1.23977i
\(857\) 23.4155 + 23.4155i 0.799858 + 0.799858i 0.983073 0.183215i \(-0.0586505\pi\)
−0.183215 + 0.983073i \(0.558651\pi\)
\(858\) 1.96601 1.04560i 0.0671186 0.0356961i
\(859\) 40.2351 40.2351i 1.37280 1.37280i 0.516541 0.856263i \(-0.327220\pi\)
0.856263 0.516541i \(-0.172780\pi\)
\(860\) −11.6189 + 34.8924i −0.396203 + 1.18982i
\(861\) 1.05843 + 1.05843i 0.0360712 + 0.0360712i
\(862\) −6.20912 + 20.3163i −0.211483 + 0.691978i
\(863\) 5.26168 5.26168i 0.179110 0.179110i −0.611858 0.790968i \(-0.709578\pi\)
0.790968 + 0.611858i \(0.209578\pi\)
\(864\) −2.21354 25.1568i −0.0753062 0.855850i
\(865\) 8.15766 + 29.2743i 0.277369 + 0.995356i
\(866\) −5.15323 9.68949i −0.175114 0.329262i
\(867\) 33.6512i 1.14285i
\(868\) 0.0779745 + 0.400718i 0.00264663 + 0.0136013i
\(869\) −10.0942 10.0942i −0.342423 0.342423i
\(870\) −36.9281 + 35.1377i −1.25198 + 1.19128i
\(871\) −0.659025 −0.0223302
\(872\) −35.3739 3.70728i −1.19791 0.125544i
\(873\) −33.5430 + 33.5430i −1.13526 + 1.13526i
\(874\) 0.0233396 0.0763675i 0.000789474 0.00258317i
\(875\) 0.0661987 + 2.21286i 0.00223792 + 0.0748083i
\(876\) −46.1055 + 8.97152i −1.55776 + 0.303120i
\(877\) 49.9187 1.68563 0.842817 0.538200i \(-0.180896\pi\)
0.842817 + 0.538200i \(0.180896\pi\)
\(878\) −5.38429 + 17.6175i −0.181711 + 0.594562i
\(879\) 53.8526 1.81640
\(880\) −1.15292 + 8.86966i −0.0388648 + 0.298996i
\(881\) 14.2647 0.480591 0.240295 0.970700i \(-0.422756\pi\)
0.240295 + 0.970700i \(0.422756\pi\)
\(882\) 13.2854 43.4702i 0.447344 1.46372i
\(883\) 36.7057 1.23525 0.617623 0.786474i \(-0.288096\pi\)
0.617623 + 0.786474i \(0.288096\pi\)
\(884\) −0.477842 2.45567i −0.0160716 0.0825933i
\(885\) 3.48506 6.17771i 0.117149 0.207661i
\(886\) −1.77701 + 5.81440i −0.0596998 + 0.195339i
\(887\) 20.8967 20.8967i 0.701644 0.701644i −0.263119 0.964763i \(-0.584751\pi\)
0.964763 + 0.263119i \(0.0847513\pi\)
\(888\) −9.70304 + 7.86216i −0.325613 + 0.263837i
\(889\) 2.98175 0.100005
\(890\) −43.3502 1.07696i −1.45310 0.0360999i
\(891\) −1.08266 1.08266i −0.0362705 0.0362705i
\(892\) −10.2791 + 2.00017i −0.344169 + 0.0669708i
\(893\) 0.260327i 0.00871151i
\(894\) −22.0051 41.3756i −0.735960 1.38381i
\(895\) 37.3309 + 21.0596i 1.24783 + 0.703945i
\(896\) 0.618999 + 2.15304i 0.0206793 + 0.0719282i
\(897\) −2.28619 + 2.28619i −0.0763336 + 0.0763336i
\(898\) −9.34765 + 30.5857i −0.311935 + 1.02066i
\(899\) −4.25709 4.25709i −0.141982 0.141982i
\(900\) 46.1182 + 2.29288i 1.53727 + 0.0764292i
\(901\) 6.99915 6.99915i 0.233175 0.233175i
\(902\) −3.41983 + 1.81879i −0.113868 + 0.0605591i
\(903\) −3.17786 3.17786i −0.105753 0.105753i
\(904\) −4.14658 + 39.5657i −0.137913 + 1.31594i
\(905\) 11.2141 19.8784i 0.372768 0.660779i
\(906\) −85.0422 25.9907i −2.82534 0.863485i
\(907\) 34.1766 1.13482 0.567408 0.823437i \(-0.307946\pi\)
0.567408 + 0.823437i \(0.307946\pi\)
\(908\) −9.45197 + 14.0191i −0.313675 + 0.465242i
\(909\) 24.2656 24.2656i 0.804840 0.804840i
\(910\) 0.246247 + 0.258794i 0.00816302 + 0.00857894i
\(911\) 11.7387i 0.388920i −0.980910 0.194460i \(-0.937705\pi\)
0.980910 0.194460i \(-0.0622955\pi\)
\(912\) −0.118510 + 0.279501i −0.00392425 + 0.00925519i
\(913\) 3.15053 + 3.15053i 0.104267 + 0.104267i
\(914\) −7.14908 13.4422i −0.236470 0.444629i
\(915\) −41.5883 23.4614i −1.37487 0.775610i
\(916\) −10.6103 54.5273i −0.350574 1.80163i
\(917\) 1.53797i 0.0507881i
\(918\) 12.2219 6.50007i 0.403384 0.214534i
\(919\) 18.7391i 0.618146i −0.951038 0.309073i \(-0.899981\pi\)
0.951038 0.309073i \(-0.100019\pi\)
\(920\) −2.16315 12.8052i −0.0713169 0.422176i
\(921\) 43.5422i 1.43476i
\(922\) 12.6731 + 23.8289i 0.417366 + 0.784763i
\(923\) 0.728288i 0.0239719i
\(924\) −0.906280 0.611031i −0.0298144 0.0201015i
\(925\) −4.13674 6.84611i −0.136015 0.225099i
\(926\) −27.9394 + 14.8592i −0.918146 + 0.488304i
\(927\) −12.5644 12.5644i −0.412670 0.412670i
\(928\) −25.3193 21.2240i −0.831147 0.696711i
\(929\) 17.3125i 0.568006i −0.958823 0.284003i \(-0.908337\pi\)
0.958823 0.284003i \(-0.0916626\pi\)
\(930\) −0.223444 + 8.99412i −0.00732703 + 0.294929i
\(931\) −0.135351 + 0.135351i −0.00443594 + 0.00443594i
\(932\) 23.0064 4.47674i 0.753599 0.146640i
\(933\) 74.3739 2.43489
\(934\) 5.93641 19.4240i 0.194245 0.635573i
\(935\) −4.72285 + 1.31608i −0.154454 + 0.0430405i
\(936\) 5.78900 4.69070i 0.189219 0.153320i
\(937\) −10.2211 10.2211i −0.333907 0.333907i 0.520161 0.854068i \(-0.325872\pi\)
−0.854068 + 0.520161i \(0.825872\pi\)
\(938\) 0.151897 + 0.285607i 0.00495960 + 0.00932541i
\(939\) −30.4784 + 30.4784i −0.994624 + 0.994624i
\(940\) −18.9452 37.8614i −0.617923 1.23490i
\(941\) 16.7496 + 16.7496i 0.546021 + 0.546021i 0.925288 0.379266i \(-0.123824\pi\)
−0.379266 + 0.925288i \(0.623824\pi\)
\(942\) 29.9567 + 9.15542i 0.976041 + 0.298300i
\(943\) 3.97676 3.97676i 0.129501 0.129501i
\(944\) 4.23247 + 1.79459i 0.137755 + 0.0584089i
\(945\) −0.971218 + 1.72161i −0.0315937 + 0.0560039i
\(946\) 10.2678 5.46080i 0.333835 0.177546i
\(947\) 37.1258i 1.20643i 0.797579 + 0.603214i \(0.206114\pi\)
−0.797579 + 0.603214i \(0.793886\pi\)
\(948\) −65.3366 44.0512i −2.12203 1.43072i
\(949\) −3.43261 3.43261i −0.111427 0.111427i
\(950\) −0.166932 0.0997167i −0.00541599 0.00323524i
\(951\) −71.1312 −2.30659
\(952\) −0.954100 + 0.773087i −0.0309226 + 0.0250559i
\(953\) −4.52997 + 4.52997i −0.146740 + 0.146740i −0.776660 0.629920i \(-0.783088\pi\)
0.629920 + 0.776660i \(0.283088\pi\)
\(954\) 28.1926 + 8.61627i 0.912768 + 0.278962i
\(955\) 4.99221 + 17.9149i 0.161544 + 0.579712i
\(956\) −21.5650 14.5395i −0.697462 0.470242i
\(957\) 16.1194 0.521066
\(958\) 20.0183 + 6.11803i 0.646762 + 0.197665i
\(959\) 3.07427 0.0992732
\(960\) 3.10472 + 49.2744i 0.100204 + 1.59032i
\(961\) 29.9374 0.965722
\(962\) −1.23434 0.377242i −0.0397968 0.0121628i
\(963\) 76.2156 2.45601
\(964\) 1.70086 + 1.14675i 0.0547811 + 0.0369345i
\(965\) −17.0563 9.62205i −0.549062 0.309745i
\(966\) 1.51772 + 0.463849i 0.0488319 + 0.0149241i
\(967\) 43.3440 43.3440i 1.39385 1.39385i 0.577354 0.816494i \(-0.304085\pi\)
0.816494 0.577354i \(-0.195915\pi\)
\(968\) 2.19757 1.78064i 0.0706326 0.0572320i
\(969\) −0.166411 −0.00534589
\(970\) 23.5352 22.3942i 0.755670 0.719033i
\(971\) −5.32899 5.32899i −0.171016 0.171016i 0.616410 0.787425i \(-0.288586\pi\)
−0.787425 + 0.616410i \(0.788586\pi\)
\(972\) −29.2172 19.6988i −0.937141 0.631839i
\(973\) 2.00043i 0.0641308i
\(974\) −12.0751 + 6.42200i −0.386912 + 0.205774i
\(975\) 4.07155 + 6.73821i 0.130394 + 0.215796i
\(976\) 12.0812 28.4930i 0.386709 0.912038i
\(977\) 12.0760 12.0760i 0.386344 0.386344i −0.487037 0.873381i \(-0.661922\pi\)
0.873381 + 0.487037i \(0.161922\pi\)
\(978\) 74.7778 + 22.8537i 2.39113 + 0.730782i
\(979\) 9.69639 + 9.69639i 0.309898 + 0.309898i
\(980\) −9.83501 + 29.5351i −0.314168 + 0.943466i
\(981\) 41.0586 41.0586i 1.31090 1.31090i
\(982\) 3.36066 + 6.31897i 0.107243 + 0.201647i
\(983\) −0.832518 0.832518i −0.0265532 0.0265532i 0.693706 0.720259i \(-0.255977\pi\)
−0.720259 + 0.693706i \(0.755977\pi\)
\(984\) −16.6122 + 13.4605i −0.529577 + 0.429105i
\(985\) −12.8322 46.0491i −0.408867 1.46725i
\(986\) 5.29309 17.3191i 0.168566 0.551551i
\(987\) 5.17372 0.164681
\(988\) −0.0307985 + 0.00599298i −0.000979830 + 0.000190662i
\(989\) −11.9400 + 11.9400i −0.379669 + 0.379669i
\(990\) −10.0655 10.5783i −0.319901 0.336201i
\(991\) 21.9258i 0.696497i −0.937402 0.348249i \(-0.886776\pi\)
0.937402 0.348249i \(-0.113224\pi\)
\(992\) −5.80880 + 0.511116i −0.184430 + 0.0162280i
\(993\) 62.7971 + 62.7971i 1.99281 + 1.99281i
\(994\) −0.315624 + 0.167861i −0.0100110 + 0.00532422i
\(995\) 15.5397 + 55.7651i 0.492641 + 1.76787i
\(996\) 20.3924 + 13.7489i 0.646156 + 0.435651i
\(997\) 43.6596i 1.38271i −0.722514 0.691357i \(-0.757013\pi\)
0.722514 0.691357i \(-0.242987\pi\)
\(998\) 14.8731 + 27.9655i 0.470799 + 0.885232i
\(999\) 7.14189i 0.225959i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.bk.b.243.11 yes 236
5.2 odd 4 880.2.s.b.67.70 236
16.11 odd 4 880.2.s.b.683.70 yes 236
80.27 even 4 inner 880.2.bk.b.507.11 yes 236
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
880.2.s.b.67.70 236 5.2 odd 4
880.2.s.b.683.70 yes 236 16.11 odd 4
880.2.bk.b.243.11 yes 236 1.1 even 1 trivial
880.2.bk.b.507.11 yes 236 80.27 even 4 inner