Properties

Label 880.2.b.e.529.1
Level $880$
Weight $2$
Character 880.529
Analytic conductor $7.027$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(529,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,2,0,0,0,-2,0,-2,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 529.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 880.529
Dual form 880.2.b.e.529.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{3} +(1.00000 + 2.00000i) q^{5} -1.00000 q^{9} -1.00000 q^{11} -2.00000i q^{13} +(4.00000 - 2.00000i) q^{15} -6.00000i q^{17} +4.00000 q^{19} +2.00000i q^{23} +(-3.00000 + 4.00000i) q^{25} -4.00000i q^{27} +10.0000 q^{29} +8.00000 q^{31} +2.00000i q^{33} -8.00000i q^{37} -4.00000 q^{39} -2.00000 q^{41} +(-1.00000 - 2.00000i) q^{45} +2.00000i q^{47} +7.00000 q^{49} -12.0000 q^{51} +(-1.00000 - 2.00000i) q^{55} -8.00000i q^{57} -12.0000 q^{59} -10.0000 q^{61} +(4.00000 - 2.00000i) q^{65} -6.00000i q^{67} +4.00000 q^{69} +6.00000i q^{73} +(8.00000 + 6.00000i) q^{75} +12.0000 q^{79} -11.0000 q^{81} -16.0000i q^{83} +(12.0000 - 6.00000i) q^{85} -20.0000i q^{87} -18.0000 q^{89} -16.0000i q^{93} +(4.00000 + 8.00000i) q^{95} +12.0000i q^{97} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 2 q^{9} - 2 q^{11} + 8 q^{15} + 8 q^{19} - 6 q^{25} + 20 q^{29} + 16 q^{31} - 8 q^{39} - 4 q^{41} - 2 q^{45} + 14 q^{49} - 24 q^{51} - 2 q^{55} - 24 q^{59} - 20 q^{61} + 8 q^{65} + 8 q^{69}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000i 1.15470i −0.816497 0.577350i \(-0.804087\pi\)
0.816497 0.577350i \(-0.195913\pi\)
\(4\) 0 0
\(5\) 1.00000 + 2.00000i 0.447214 + 0.894427i
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 2.00000i 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 0 0
\(15\) 4.00000 2.00000i 1.03280 0.516398i
\(16\) 0 0
\(17\) 6.00000i 1.45521i −0.685994 0.727607i \(-0.740633\pi\)
0.685994 0.727607i \(-0.259367\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.00000i 0.417029i 0.978019 + 0.208514i \(0.0668628\pi\)
−0.978019 + 0.208514i \(0.933137\pi\)
\(24\) 0 0
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) 10.0000 1.85695 0.928477 0.371391i \(-0.121119\pi\)
0.928477 + 0.371391i \(0.121119\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000i 1.31519i −0.753371 0.657596i \(-0.771573\pi\)
0.753371 0.657596i \(-0.228427\pi\)
\(38\) 0 0
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) −1.00000 2.00000i −0.149071 0.298142i
\(46\) 0 0
\(47\) 2.00000i 0.291730i 0.989305 + 0.145865i \(0.0465965\pi\)
−0.989305 + 0.145865i \(0.953403\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) −12.0000 −1.68034
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) −1.00000 2.00000i −0.134840 0.269680i
\(56\) 0 0
\(57\) 8.00000i 1.05963i
\(58\) 0 0
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.00000 2.00000i 0.496139 0.248069i
\(66\) 0 0
\(67\) 6.00000i 0.733017i −0.930415 0.366508i \(-0.880553\pi\)
0.930415 0.366508i \(-0.119447\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i 0.936329 + 0.351123i \(0.114200\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 0 0
\(75\) 8.00000 + 6.00000i 0.923760 + 0.692820i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 16.0000i 1.75623i −0.478451 0.878114i \(-0.658802\pi\)
0.478451 0.878114i \(-0.341198\pi\)
\(84\) 0 0
\(85\) 12.0000 6.00000i 1.30158 0.650791i
\(86\) 0 0
\(87\) 20.0000i 2.14423i
\(88\) 0 0
\(89\) −18.0000 −1.90800 −0.953998 0.299813i \(-0.903076\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 16.0000i 1.65912i
\(94\) 0 0
\(95\) 4.00000 + 8.00000i 0.410391 + 0.820783i
\(96\) 0 0
\(97\) 12.0000i 1.21842i 0.793011 + 0.609208i \(0.208512\pi\)
−0.793011 + 0.609208i \(0.791488\pi\)
\(98\) 0 0
\(99\) 1.00000 0.100504
\(100\) 0 0
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 0 0
\(103\) 14.0000i 1.37946i 0.724066 + 0.689730i \(0.242271\pi\)
−0.724066 + 0.689730i \(0.757729\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000i 1.16008i 0.814587 + 0.580042i \(0.196964\pi\)
−0.814587 + 0.580042i \(0.803036\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) −16.0000 −1.51865
\(112\) 0 0
\(113\) 12.0000i 1.12887i 0.825479 + 0.564433i \(0.190905\pi\)
−0.825479 + 0.564433i \(0.809095\pi\)
\(114\) 0 0
\(115\) −4.00000 + 2.00000i −0.373002 + 0.186501i
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 4.00000i 0.360668i
\(124\) 0 0
\(125\) −11.0000 2.00000i −0.983870 0.178885i
\(126\) 0 0
\(127\) 4.00000i 0.354943i −0.984126 0.177471i \(-0.943208\pi\)
0.984126 0.177471i \(-0.0567917\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 8.00000 4.00000i 0.688530 0.344265i
\(136\) 0 0
\(137\) 12.0000i 1.02523i 0.858619 + 0.512615i \(0.171323\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(138\) 0 0
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 0 0
\(141\) 4.00000 0.336861
\(142\) 0 0
\(143\) 2.00000i 0.167248i
\(144\) 0 0
\(145\) 10.0000 + 20.0000i 0.830455 + 1.66091i
\(146\) 0 0
\(147\) 14.0000i 1.15470i
\(148\) 0 0
\(149\) 14.0000 1.14692 0.573462 0.819232i \(-0.305600\pi\)
0.573462 + 0.819232i \(0.305600\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) 6.00000i 0.485071i
\(154\) 0 0
\(155\) 8.00000 + 16.0000i 0.642575 + 1.28515i
\(156\) 0 0
\(157\) 4.00000i 0.319235i −0.987179 0.159617i \(-0.948974\pi\)
0.987179 0.159617i \(-0.0510260\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 6.00000i 0.469956i 0.972001 + 0.234978i \(0.0755019\pi\)
−0.972001 + 0.234978i \(0.924498\pi\)
\(164\) 0 0
\(165\) −4.00000 + 2.00000i −0.311400 + 0.155700i
\(166\) 0 0
\(167\) 20.0000i 1.54765i 0.633402 + 0.773823i \(0.281658\pi\)
−0.633402 + 0.773823i \(0.718342\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) 2.00000i 0.152057i 0.997106 + 0.0760286i \(0.0242240\pi\)
−0.997106 + 0.0760286i \(0.975776\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 24.0000i 1.80395i
\(178\) 0 0
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0 0
\(183\) 20.0000i 1.47844i
\(184\) 0 0
\(185\) 16.0000 8.00000i 1.17634 0.588172i
\(186\) 0 0
\(187\) 6.00000i 0.438763i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −16.0000 −1.15772 −0.578860 0.815427i \(-0.696502\pi\)
−0.578860 + 0.815427i \(0.696502\pi\)
\(192\) 0 0
\(193\) 10.0000i 0.719816i −0.932988 0.359908i \(-0.882808\pi\)
0.932988 0.359908i \(-0.117192\pi\)
\(194\) 0 0
\(195\) −4.00000 8.00000i −0.286446 0.572892i
\(196\) 0 0
\(197\) 2.00000i 0.142494i −0.997459 0.0712470i \(-0.977302\pi\)
0.997459 0.0712470i \(-0.0226979\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) −12.0000 −0.846415
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.00000 4.00000i −0.139686 0.279372i
\(206\) 0 0
\(207\) 2.00000i 0.139010i
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 12.0000 0.810885
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) 14.0000i 0.937509i −0.883328 0.468755i \(-0.844703\pi\)
0.883328 0.468755i \(-0.155297\pi\)
\(224\) 0 0
\(225\) 3.00000 4.00000i 0.200000 0.266667i
\(226\) 0 0
\(227\) 24.0000i 1.59294i 0.604681 + 0.796468i \(0.293301\pi\)
−0.604681 + 0.796468i \(0.706699\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.0000i 0.655122i 0.944830 + 0.327561i \(0.106227\pi\)
−0.944830 + 0.327561i \(0.893773\pi\)
\(234\) 0 0
\(235\) −4.00000 + 2.00000i −0.260931 + 0.130466i
\(236\) 0 0
\(237\) 24.0000i 1.55897i
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 0 0
\(243\) 10.0000i 0.641500i
\(244\) 0 0
\(245\) 7.00000 + 14.0000i 0.447214 + 0.894427i
\(246\) 0 0
\(247\) 8.00000i 0.509028i
\(248\) 0 0
\(249\) −32.0000 −2.02792
\(250\) 0 0
\(251\) −20.0000 −1.26239 −0.631194 0.775625i \(-0.717435\pi\)
−0.631194 + 0.775625i \(0.717435\pi\)
\(252\) 0 0
\(253\) 2.00000i 0.125739i
\(254\) 0 0
\(255\) −12.0000 24.0000i −0.751469 1.50294i
\(256\) 0 0
\(257\) 8.00000i 0.499026i 0.968371 + 0.249513i \(0.0802706\pi\)
−0.968371 + 0.249513i \(0.919729\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −10.0000 −0.618984
\(262\) 0 0
\(263\) 12.0000i 0.739952i 0.929041 + 0.369976i \(0.120634\pi\)
−0.929041 + 0.369976i \(0.879366\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 36.0000i 2.20316i
\(268\) 0 0
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.00000 4.00000i 0.180907 0.241209i
\(276\) 0 0
\(277\) 22.0000i 1.32185i −0.750451 0.660926i \(-0.770164\pi\)
0.750451 0.660926i \(-0.229836\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 32.0000i 1.90220i −0.308879 0.951101i \(-0.599954\pi\)
0.308879 0.951101i \(-0.400046\pi\)
\(284\) 0 0
\(285\) 16.0000 8.00000i 0.947758 0.473879i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 24.0000 1.40690
\(292\) 0 0
\(293\) 14.0000i 0.817889i 0.912559 + 0.408944i \(0.134103\pi\)
−0.912559 + 0.408944i \(0.865897\pi\)
\(294\) 0 0
\(295\) −12.0000 24.0000i −0.698667 1.39733i
\(296\) 0 0
\(297\) 4.00000i 0.232104i
\(298\) 0 0
\(299\) 4.00000 0.231326
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 4.00000i 0.229794i
\(304\) 0 0
\(305\) −10.0000 20.0000i −0.572598 1.14520i
\(306\) 0 0
\(307\) 4.00000i 0.228292i −0.993464 0.114146i \(-0.963587\pi\)
0.993464 0.114146i \(-0.0364132\pi\)
\(308\) 0 0
\(309\) 28.0000 1.59286
\(310\) 0 0
\(311\) −32.0000 −1.81455 −0.907277 0.420534i \(-0.861843\pi\)
−0.907277 + 0.420534i \(0.861843\pi\)
\(312\) 0 0
\(313\) 16.0000i 0.904373i −0.891923 0.452187i \(-0.850644\pi\)
0.891923 0.452187i \(-0.149356\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 28.0000i 1.57264i 0.617822 + 0.786318i \(0.288015\pi\)
−0.617822 + 0.786318i \(0.711985\pi\)
\(318\) 0 0
\(319\) −10.0000 −0.559893
\(320\) 0 0
\(321\) 24.0000 1.33955
\(322\) 0 0
\(323\) 24.0000i 1.33540i
\(324\) 0 0
\(325\) 8.00000 + 6.00000i 0.443760 + 0.332820i
\(326\) 0 0
\(327\) 4.00000i 0.221201i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 0 0
\(333\) 8.00000i 0.438397i
\(334\) 0 0
\(335\) 12.0000 6.00000i 0.655630 0.327815i
\(336\) 0 0
\(337\) 10.0000i 0.544735i 0.962193 + 0.272367i \(0.0878066\pi\)
−0.962193 + 0.272367i \(0.912193\pi\)
\(338\) 0 0
\(339\) 24.0000 1.30350
\(340\) 0 0
\(341\) −8.00000 −0.433224
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 4.00000 + 8.00000i 0.215353 + 0.430706i
\(346\) 0 0
\(347\) 12.0000i 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) 34.0000 1.81998 0.909989 0.414632i \(-0.136090\pi\)
0.909989 + 0.414632i \(0.136090\pi\)
\(350\) 0 0
\(351\) −8.00000 −0.427008
\(352\) 0 0
\(353\) 8.00000i 0.425797i 0.977074 + 0.212899i \(0.0682904\pi\)
−0.977074 + 0.212899i \(0.931710\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 2.00000i 0.104973i
\(364\) 0 0
\(365\) −12.0000 + 6.00000i −0.628109 + 0.314054i
\(366\) 0 0
\(367\) 26.0000i 1.35719i 0.734513 + 0.678594i \(0.237411\pi\)
−0.734513 + 0.678594i \(0.762589\pi\)
\(368\) 0 0
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 14.0000i 0.724893i −0.932005 0.362446i \(-0.881942\pi\)
0.932005 0.362446i \(-0.118058\pi\)
\(374\) 0 0
\(375\) −4.00000 + 22.0000i −0.206559 + 1.13608i
\(376\) 0 0
\(377\) 20.0000i 1.03005i
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 0 0
\(383\) 18.0000i 0.919757i −0.887982 0.459879i \(-0.847893\pi\)
0.887982 0.459879i \(-0.152107\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) 16.0000i 0.807093i
\(394\) 0 0
\(395\) 12.0000 + 24.0000i 0.603786 + 1.20757i
\(396\) 0 0
\(397\) 28.0000i 1.40528i 0.711546 + 0.702640i \(0.247995\pi\)
−0.711546 + 0.702640i \(0.752005\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) 16.0000i 0.797017i
\(404\) 0 0
\(405\) −11.0000 22.0000i −0.546594 1.09319i
\(406\) 0 0
\(407\) 8.00000i 0.396545i
\(408\) 0 0
\(409\) −2.00000 −0.0988936 −0.0494468 0.998777i \(-0.515746\pi\)
−0.0494468 + 0.998777i \(0.515746\pi\)
\(410\) 0 0
\(411\) 24.0000 1.18383
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 32.0000 16.0000i 1.57082 0.785409i
\(416\) 0 0
\(417\) 16.0000i 0.783523i
\(418\) 0 0
\(419\) −20.0000 −0.977064 −0.488532 0.872546i \(-0.662467\pi\)
−0.488532 + 0.872546i \(0.662467\pi\)
\(420\) 0 0
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) 0 0
\(423\) 2.00000i 0.0972433i
\(424\) 0 0
\(425\) 24.0000 + 18.0000i 1.16417 + 0.873128i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 4.00000 0.193122
\(430\) 0 0
\(431\) 28.0000 1.34871 0.674356 0.738406i \(-0.264421\pi\)
0.674356 + 0.738406i \(0.264421\pi\)
\(432\) 0 0
\(433\) 4.00000i 0.192228i −0.995370 0.0961139i \(-0.969359\pi\)
0.995370 0.0961139i \(-0.0306413\pi\)
\(434\) 0 0
\(435\) 40.0000 20.0000i 1.91785 0.958927i
\(436\) 0 0
\(437\) 8.00000i 0.382692i
\(438\) 0 0
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 0 0
\(443\) 14.0000i 0.665160i 0.943075 + 0.332580i \(0.107919\pi\)
−0.943075 + 0.332580i \(0.892081\pi\)
\(444\) 0 0
\(445\) −18.0000 36.0000i −0.853282 1.70656i
\(446\) 0 0
\(447\) 28.0000i 1.32435i
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 2.00000 0.0941763
\(452\) 0 0
\(453\) 16.0000i 0.751746i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 18.0000i 0.842004i −0.907060 0.421002i \(-0.861678\pi\)
0.907060 0.421002i \(-0.138322\pi\)
\(458\) 0 0
\(459\) −24.0000 −1.12022
\(460\) 0 0
\(461\) 2.00000 0.0931493 0.0465746 0.998915i \(-0.485169\pi\)
0.0465746 + 0.998915i \(0.485169\pi\)
\(462\) 0 0
\(463\) 34.0000i 1.58011i 0.613033 + 0.790057i \(0.289949\pi\)
−0.613033 + 0.790057i \(0.710051\pi\)
\(464\) 0 0
\(465\) 32.0000 16.0000i 1.48396 0.741982i
\(466\) 0 0
\(467\) 6.00000i 0.277647i −0.990317 0.138823i \(-0.955668\pi\)
0.990317 0.138823i \(-0.0443321\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −8.00000 −0.368621
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −12.0000 + 16.0000i −0.550598 + 0.734130i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.00000 −0.182765 −0.0913823 0.995816i \(-0.529129\pi\)
−0.0913823 + 0.995816i \(0.529129\pi\)
\(480\) 0 0
\(481\) −16.0000 −0.729537
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −24.0000 + 12.0000i −1.08978 + 0.544892i
\(486\) 0 0
\(487\) 2.00000i 0.0906287i 0.998973 + 0.0453143i \(0.0144289\pi\)
−0.998973 + 0.0453143i \(0.985571\pi\)
\(488\) 0 0
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) −36.0000 −1.62466 −0.812329 0.583200i \(-0.801800\pi\)
−0.812329 + 0.583200i \(0.801800\pi\)
\(492\) 0 0
\(493\) 60.0000i 2.70226i
\(494\) 0 0
\(495\) 1.00000 + 2.00000i 0.0449467 + 0.0898933i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) 40.0000 1.78707
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 2.00000 + 4.00000i 0.0889988 + 0.177998i
\(506\) 0 0
\(507\) 18.0000i 0.799408i
\(508\) 0 0
\(509\) 14.0000 0.620539 0.310270 0.950649i \(-0.399581\pi\)
0.310270 + 0.950649i \(0.399581\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 16.0000i 0.706417i
\(514\) 0 0
\(515\) −28.0000 + 14.0000i −1.23383 + 0.616914i
\(516\) 0 0
\(517\) 2.00000i 0.0879599i
\(518\) 0 0
\(519\) 4.00000 0.175581
\(520\) 0 0
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 0 0
\(523\) 4.00000i 0.174908i 0.996169 + 0.0874539i \(0.0278730\pi\)
−0.996169 + 0.0874539i \(0.972127\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 48.0000i 2.09091i
\(528\) 0 0
\(529\) 19.0000 0.826087
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) 0 0
\(533\) 4.00000i 0.173259i
\(534\) 0 0
\(535\) −24.0000 + 12.0000i −1.03761 + 0.518805i
\(536\) 0 0
\(537\) 8.00000i 0.345225i
\(538\) 0 0
\(539\) −7.00000 −0.301511
\(540\) 0 0
\(541\) −22.0000 −0.945854 −0.472927 0.881102i \(-0.656803\pi\)
−0.472927 + 0.881102i \(0.656803\pi\)
\(542\) 0 0
\(543\) 12.0000i 0.514969i
\(544\) 0 0
\(545\) −2.00000 4.00000i −0.0856706 0.171341i
\(546\) 0 0
\(547\) 16.0000i 0.684111i −0.939680 0.342055i \(-0.888877\pi\)
0.939680 0.342055i \(-0.111123\pi\)
\(548\) 0 0
\(549\) 10.0000 0.426790
\(550\) 0 0
\(551\) 40.0000 1.70406
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −16.0000 32.0000i −0.679162 1.35832i
\(556\) 0 0
\(557\) 38.0000i 1.61011i 0.593199 + 0.805056i \(0.297865\pi\)
−0.593199 + 0.805056i \(0.702135\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 12.0000 0.506640
\(562\) 0 0
\(563\) 4.00000i 0.168580i −0.996441 0.0842900i \(-0.973138\pi\)
0.996441 0.0842900i \(-0.0268622\pi\)
\(564\) 0 0
\(565\) −24.0000 + 12.0000i −1.00969 + 0.504844i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 0 0
\(573\) 32.0000i 1.33682i
\(574\) 0 0
\(575\) −8.00000 6.00000i −0.333623 0.250217i
\(576\) 0 0
\(577\) 4.00000i 0.166522i 0.996528 + 0.0832611i \(0.0265335\pi\)
−0.996528 + 0.0832611i \(0.973466\pi\)
\(578\) 0 0
\(579\) −20.0000 −0.831172
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −4.00000 + 2.00000i −0.165380 + 0.0826898i
\(586\) 0 0
\(587\) 22.0000i 0.908037i −0.890992 0.454019i \(-0.849990\pi\)
0.890992 0.454019i \(-0.150010\pi\)
\(588\) 0 0
\(589\) 32.0000 1.31854
\(590\) 0 0
\(591\) −4.00000 −0.164538
\(592\) 0 0
\(593\) 18.0000i 0.739171i −0.929197 0.369586i \(-0.879500\pi\)
0.929197 0.369586i \(-0.120500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 16.0000i 0.654836i
\(598\) 0 0
\(599\) −8.00000 −0.326871 −0.163436 0.986554i \(-0.552258\pi\)
−0.163436 + 0.986554i \(0.552258\pi\)
\(600\) 0 0
\(601\) −34.0000 −1.38689 −0.693444 0.720510i \(-0.743908\pi\)
−0.693444 + 0.720510i \(0.743908\pi\)
\(602\) 0 0
\(603\) 6.00000i 0.244339i
\(604\) 0 0
\(605\) 1.00000 + 2.00000i 0.0406558 + 0.0813116i
\(606\) 0 0
\(607\) 28.0000i 1.13648i −0.822861 0.568242i \(-0.807624\pi\)
0.822861 0.568242i \(-0.192376\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.00000 0.161823
\(612\) 0 0
\(613\) 6.00000i 0.242338i −0.992632 0.121169i \(-0.961336\pi\)
0.992632 0.121169i \(-0.0386643\pi\)
\(614\) 0 0
\(615\) −8.00000 + 4.00000i −0.322591 + 0.161296i
\(616\) 0 0
\(617\) 36.0000i 1.44931i −0.689114 0.724653i \(-0.742000\pi\)
0.689114 0.724653i \(-0.258000\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) 8.00000 0.321029
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 8.00000i 0.319489i
\(628\) 0 0
\(629\) −48.0000 −1.91389
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) 0 0
\(633\) 16.0000i 0.635943i
\(634\) 0 0
\(635\) 8.00000 4.00000i 0.317470 0.158735i
\(636\) 0 0
\(637\) 14.0000i 0.554700i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) 26.0000i 1.02534i −0.858586 0.512670i \(-0.828656\pi\)
0.858586 0.512670i \(-0.171344\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 30.0000i 1.17942i 0.807614 + 0.589711i \(0.200758\pi\)
−0.807614 + 0.589711i \(0.799242\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 24.0000i 0.939193i 0.882881 + 0.469596i \(0.155601\pi\)
−0.882881 + 0.469596i \(0.844399\pi\)
\(654\) 0 0
\(655\) 8.00000 + 16.0000i 0.312586 + 0.625172i
\(656\) 0 0
\(657\) 6.00000i 0.234082i
\(658\) 0 0
\(659\) −32.0000 −1.24654 −0.623272 0.782006i \(-0.714197\pi\)
−0.623272 + 0.782006i \(0.714197\pi\)
\(660\) 0 0
\(661\) −42.0000 −1.63361 −0.816805 0.576913i \(-0.804257\pi\)
−0.816805 + 0.576913i \(0.804257\pi\)
\(662\) 0 0
\(663\) 24.0000i 0.932083i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 20.0000i 0.774403i
\(668\) 0 0
\(669\) −28.0000 −1.08254
\(670\) 0 0
\(671\) 10.0000 0.386046
\(672\) 0 0
\(673\) 10.0000i 0.385472i −0.981251 0.192736i \(-0.938264\pi\)
0.981251 0.192736i \(-0.0617360\pi\)
\(674\) 0 0
\(675\) 16.0000 + 12.0000i 0.615840 + 0.461880i
\(676\) 0 0
\(677\) 14.0000i 0.538064i −0.963131 0.269032i \(-0.913296\pi\)
0.963131 0.269032i \(-0.0867037\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 48.0000 1.83936
\(682\) 0 0
\(683\) 26.0000i 0.994862i 0.867503 + 0.497431i \(0.165723\pi\)
−0.867503 + 0.497431i \(0.834277\pi\)
\(684\) 0 0
\(685\) −24.0000 + 12.0000i −0.916993 + 0.458496i
\(686\) 0 0
\(687\) 12.0000i 0.457829i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.00000 + 16.0000i 0.303457 + 0.606915i
\(696\) 0 0
\(697\) 12.0000i 0.454532i
\(698\) 0 0
\(699\) 20.0000 0.756469
\(700\) 0 0
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) 32.0000i 1.20690i
\(704\) 0 0
\(705\) 4.00000 + 8.00000i 0.150649 + 0.301297i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 26.0000 0.976450 0.488225 0.872718i \(-0.337644\pi\)
0.488225 + 0.872718i \(0.337644\pi\)
\(710\) 0 0
\(711\) −12.0000 −0.450035
\(712\) 0 0
\(713\) 16.0000i 0.599205i
\(714\) 0 0
\(715\) −4.00000 + 2.00000i −0.149592 + 0.0747958i
\(716\) 0 0
\(717\) 24.0000i 0.896296i
\(718\) 0 0
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 4.00000i 0.148762i
\(724\) 0 0
\(725\) −30.0000 + 40.0000i −1.11417 + 1.48556i
\(726\) 0 0
\(727\) 30.0000i 1.11264i 0.830969 + 0.556319i \(0.187787\pi\)
−0.830969 + 0.556319i \(0.812213\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 50.0000i 1.84679i 0.383849 + 0.923396i \(0.374598\pi\)
−0.383849 + 0.923396i \(0.625402\pi\)
\(734\) 0 0
\(735\) 28.0000 14.0000i 1.03280 0.516398i
\(736\) 0 0
\(737\) 6.00000i 0.221013i
\(738\) 0 0
\(739\) −32.0000 −1.17714 −0.588570 0.808447i \(-0.700309\pi\)
−0.588570 + 0.808447i \(0.700309\pi\)
\(740\) 0 0
\(741\) −16.0000 −0.587775
\(742\) 0 0
\(743\) 28.0000i 1.02722i 0.858024 + 0.513610i \(0.171692\pi\)
−0.858024 + 0.513610i \(0.828308\pi\)
\(744\) 0 0
\(745\) 14.0000 + 28.0000i 0.512920 + 1.02584i
\(746\) 0 0
\(747\) 16.0000i 0.585409i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 40.0000i 1.45768i
\(754\) 0 0
\(755\) −8.00000 16.0000i −0.291150 0.582300i
\(756\) 0 0
\(757\) 12.0000i 0.436147i 0.975932 + 0.218074i \(0.0699773\pi\)
−0.975932 + 0.218074i \(0.930023\pi\)
\(758\) 0 0
\(759\) −4.00000 −0.145191
\(760\) 0 0
\(761\) 42.0000 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −12.0000 + 6.00000i −0.433861 + 0.216930i
\(766\) 0 0
\(767\) 24.0000i 0.866590i
\(768\) 0 0
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 0 0
\(771\) 16.0000 0.576226
\(772\) 0 0
\(773\) 32.0000i 1.15096i −0.817816 0.575480i \(-0.804815\pi\)
0.817816 0.575480i \(-0.195185\pi\)
\(774\) 0 0
\(775\) −24.0000 + 32.0000i −0.862105 + 1.14947i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.00000 −0.286630
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 40.0000i 1.42948i
\(784\) 0 0
\(785\) 8.00000 4.00000i 0.285532 0.142766i
\(786\) 0 0
\(787\) 52.0000i 1.85360i −0.375555 0.926800i \(-0.622548\pi\)
0.375555 0.926800i \(-0.377452\pi\)
\(788\) 0 0
\(789\) 24.0000 0.854423
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 20.0000i 0.710221i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12.0000i 0.425062i −0.977154 0.212531i \(-0.931829\pi\)
0.977154 0.212531i \(-0.0681706\pi\)
\(798\) 0 0
\(799\) 12.0000 0.424529
\(800\) 0 0
\(801\) 18.0000 0.635999
\(802\) 0 0
\(803\) 6.00000i 0.211735i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 36.0000i 1.26726i
\(808\) 0 0
\(809\) 26.0000 0.914111 0.457056 0.889438i \(-0.348904\pi\)
0.457056 + 0.889438i \(0.348904\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) 16.0000i 0.561144i
\(814\) 0 0
\(815\) −12.0000 + 6.00000i −0.420342 + 0.210171i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.00000 −0.0698005 −0.0349002 0.999391i \(-0.511111\pi\)
−0.0349002 + 0.999391i \(0.511111\pi\)
\(822\) 0 0
\(823\) 34.0000i 1.18517i −0.805510 0.592583i \(-0.798108\pi\)
0.805510 0.592583i \(-0.201892\pi\)
\(824\) 0 0
\(825\) −8.00000 6.00000i −0.278524 0.208893i
\(826\) 0 0
\(827\) 4.00000i 0.139094i −0.997579 0.0695468i \(-0.977845\pi\)
0.997579 0.0695468i \(-0.0221553\pi\)
\(828\) 0 0
\(829\) 26.0000 0.903017 0.451509 0.892267i \(-0.350886\pi\)
0.451509 + 0.892267i \(0.350886\pi\)
\(830\) 0 0
\(831\) −44.0000 −1.52634
\(832\) 0 0
\(833\) 42.0000i 1.45521i
\(834\) 0 0
\(835\) −40.0000 + 20.0000i −1.38426 + 0.692129i
\(836\) 0 0
\(837\) 32.0000i 1.10608i
\(838\) 0 0
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) 0 0
\(843\) 36.0000i 1.23991i
\(844\) 0 0
\(845\) 9.00000 + 18.0000i 0.309609 + 0.619219i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −64.0000 −2.19647
\(850\) 0 0
\(851\) 16.0000 0.548473
\(852\) 0 0
\(853\) 26.0000i 0.890223i 0.895475 + 0.445112i \(0.146836\pi\)
−0.895475 + 0.445112i \(0.853164\pi\)
\(854\) 0 0
\(855\) −4.00000 8.00000i −0.136797 0.273594i
\(856\) 0 0
\(857\) 46.0000i 1.57133i −0.618652 0.785665i \(-0.712321\pi\)
0.618652 0.785665i \(-0.287679\pi\)
\(858\) 0 0
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.00000i 0.204242i 0.994772 + 0.102121i \(0.0325630\pi\)
−0.994772 + 0.102121i \(0.967437\pi\)
\(864\) 0 0
\(865\) −4.00000 + 2.00000i −0.136004 + 0.0680020i
\(866\) 0 0
\(867\) 38.0000i 1.29055i
\(868\) 0 0
\(869\) −12.0000 −0.407072
\(870\) 0 0
\(871\) −12.0000 −0.406604
\(872\) 0 0
\(873\) 12.0000i 0.406138i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 38.0000i 1.28317i 0.767052 + 0.641584i \(0.221723\pi\)
−0.767052 + 0.641584i \(0.778277\pi\)
\(878\) 0 0
\(879\) 28.0000 0.944417
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) 30.0000i 1.00958i 0.863242 + 0.504790i \(0.168430\pi\)
−0.863242 + 0.504790i \(0.831570\pi\)
\(884\) 0 0
\(885\) −48.0000 + 24.0000i −1.61350 + 0.806751i
\(886\) 0 0
\(887\) 4.00000i 0.134307i 0.997743 + 0.0671534i \(0.0213917\pi\)
−0.997743 + 0.0671534i \(0.978608\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 11.0000 0.368514
\(892\) 0 0
\(893\) 8.00000i 0.267710i
\(894\) 0 0
\(895\) 4.00000 + 8.00000i 0.133705 + 0.267411i
\(896\) 0 0
\(897\) 8.00000i 0.267112i
\(898\) 0 0
\(899\) 80.0000 2.66815
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6.00000 12.0000i −0.199447 0.398893i
\(906\) 0 0
\(907\) 50.0000i 1.66022i 0.557598 + 0.830111i \(0.311723\pi\)
−0.557598 + 0.830111i \(0.688277\pi\)
\(908\) 0 0
\(909\) −2.00000 −0.0663358
\(910\) 0 0
\(911\) 32.0000 1.06021 0.530104 0.847933i \(-0.322153\pi\)
0.530104 + 0.847933i \(0.322153\pi\)
\(912\) 0 0
\(913\) 16.0000i 0.529523i
\(914\) 0 0
\(915\) −40.0000 + 20.0000i −1.32236 + 0.661180i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 8.00000 0.263896 0.131948 0.991257i \(-0.457877\pi\)
0.131948 + 0.991257i \(0.457877\pi\)
\(920\) 0 0
\(921\) −8.00000 −0.263609
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 32.0000 + 24.0000i 1.05215 + 0.789115i
\(926\) 0 0
\(927\) 14.0000i 0.459820i
\(928\) 0 0
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) 28.0000 0.917663
\(932\) 0 0
\(933\) 64.0000i 2.09527i
\(934\) 0 0
\(935\) −12.0000 + 6.00000i −0.392442 + 0.196221i
\(936\) 0 0
\(937\) 18.0000i 0.588034i −0.955800 0.294017i \(-0.905008\pi\)
0.955800 0.294017i \(-0.0949923\pi\)
\(938\) 0 0
\(939\) −32.0000 −1.04428
\(940\) 0 0
\(941\) −22.0000 −0.717180 −0.358590 0.933495i \(-0.616742\pi\)
−0.358590 + 0.933495i \(0.616742\pi\)
\(942\) 0 0
\(943\) 4.00000i 0.130258i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 22.0000i 0.714904i −0.933932 0.357452i \(-0.883646\pi\)
0.933932 0.357452i \(-0.116354\pi\)
\(948\) 0 0
\(949\) 12.0000 0.389536
\(950\) 0 0
\(951\) 56.0000 1.81592
\(952\) 0 0
\(953\) 46.0000i 1.49009i −0.667016 0.745043i \(-0.732429\pi\)
0.667016 0.745043i \(-0.267571\pi\)
\(954\) 0 0
\(955\) −16.0000 32.0000i −0.517748 1.03550i
\(956\) 0 0
\(957\) 20.0000i 0.646508i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 12.0000i 0.386695i
\(964\) 0 0
\(965\) 20.0000 10.0000i 0.643823 0.321911i
\(966\) 0 0
\(967\) 4.00000i 0.128631i 0.997930 + 0.0643157i \(0.0204865\pi\)
−0.997930 + 0.0643157i \(0.979514\pi\)
\(968\) 0 0
\(969\) −48.0000 −1.54198
\(970\) 0 0
\(971\) −20.0000 −0.641831 −0.320915 0.947108i \(-0.603990\pi\)
−0.320915 + 0.947108i \(0.603990\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 12.0000 16.0000i 0.384308 0.512410i
\(976\) 0 0
\(977\) 20.0000i 0.639857i 0.947442 + 0.319928i \(0.103659\pi\)
−0.947442 + 0.319928i \(0.896341\pi\)
\(978\) 0 0
\(979\) 18.0000 0.575282
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 0 0
\(983\) 22.0000i 0.701691i 0.936433 + 0.350846i \(0.114106\pi\)
−0.936433 + 0.350846i \(0.885894\pi\)
\(984\) 0 0
\(985\) 4.00000 2.00000i 0.127451 0.0637253i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 0 0
\(993\) 24.0000i 0.761617i
\(994\) 0 0
\(995\) −8.00000 16.0000i −0.253617 0.507234i
\(996\) 0 0
\(997\) 58.0000i 1.83688i −0.395562 0.918439i \(-0.629450\pi\)
0.395562 0.918439i \(-0.370550\pi\)
\(998\) 0 0
\(999\) −32.0000 −1.01244
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.b.e.529.1 2
4.3 odd 2 110.2.b.b.89.1 2
5.2 odd 4 4400.2.a.f.1.1 1
5.3 odd 4 4400.2.a.ba.1.1 1
5.4 even 2 inner 880.2.b.e.529.2 2
12.11 even 2 990.2.c.c.199.2 2
20.3 even 4 550.2.a.c.1.1 1
20.7 even 4 550.2.a.k.1.1 1
20.19 odd 2 110.2.b.b.89.2 yes 2
44.43 even 2 1210.2.b.d.969.2 2
60.23 odd 4 4950.2.a.bj.1.1 1
60.47 odd 4 4950.2.a.j.1.1 1
60.59 even 2 990.2.c.c.199.1 2
220.43 odd 4 6050.2.a.x.1.1 1
220.87 odd 4 6050.2.a.q.1.1 1
220.219 even 2 1210.2.b.d.969.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.b.b.89.1 2 4.3 odd 2
110.2.b.b.89.2 yes 2 20.19 odd 2
550.2.a.c.1.1 1 20.3 even 4
550.2.a.k.1.1 1 20.7 even 4
880.2.b.e.529.1 2 1.1 even 1 trivial
880.2.b.e.529.2 2 5.4 even 2 inner
990.2.c.c.199.1 2 60.59 even 2
990.2.c.c.199.2 2 12.11 even 2
1210.2.b.d.969.1 2 220.219 even 2
1210.2.b.d.969.2 2 44.43 even 2
4400.2.a.f.1.1 1 5.2 odd 4
4400.2.a.ba.1.1 1 5.3 odd 4
4950.2.a.j.1.1 1 60.47 odd 4
4950.2.a.bj.1.1 1 60.23 odd 4
6050.2.a.q.1.1 1 220.87 odd 4
6050.2.a.x.1.1 1 220.43 odd 4