L(s) = 1 | − 2i·3-s + (1 + 2i)5-s − 9-s − 11-s − 2i·13-s + (4 − 2i)15-s − 6i·17-s + 4·19-s + 2i·23-s + (−3 + 4i)25-s − 4i·27-s + 10·29-s + 8·31-s + 2i·33-s − 8i·37-s + ⋯ |
L(s) = 1 | − 1.15i·3-s + (0.447 + 0.894i)5-s − 0.333·9-s − 0.301·11-s − 0.554i·13-s + (1.03 − 0.516i)15-s − 1.45i·17-s + 0.917·19-s + 0.417i·23-s + (−0.600 + 0.800i)25-s − 0.769i·27-s + 1.85·29-s + 1.43·31-s + 0.348i·33-s − 1.31i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.47015 - 0.908606i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.47015 - 0.908606i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1 - 2i)T \) |
| 11 | \( 1 + T \) |
good | 3 | \( 1 + 2iT - 3T^{2} \) |
| 7 | \( 1 - 7T^{2} \) |
| 13 | \( 1 + 2iT - 13T^{2} \) |
| 17 | \( 1 + 6iT - 17T^{2} \) |
| 19 | \( 1 - 4T + 19T^{2} \) |
| 23 | \( 1 - 2iT - 23T^{2} \) |
| 29 | \( 1 - 10T + 29T^{2} \) |
| 31 | \( 1 - 8T + 31T^{2} \) |
| 37 | \( 1 + 8iT - 37T^{2} \) |
| 41 | \( 1 + 2T + 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 - 2iT - 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + 12T + 59T^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 + 6iT - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 6iT - 73T^{2} \) |
| 79 | \( 1 - 12T + 79T^{2} \) |
| 83 | \( 1 + 16iT - 83T^{2} \) |
| 89 | \( 1 + 18T + 89T^{2} \) |
| 97 | \( 1 - 12iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04872535952889784135943192477, −9.221054819882628306815200663172, −7.938341896180966238230761038117, −7.41059750890826702927488953032, −6.67014910592668976950920544130, −5.87880722865103928890246395907, −4.80714170667068985949446140034, −3.12417489853236463576232772935, −2.42143222918674025364408856994, −0.968851563305921845223404335686,
1.38999656468989766897772259345, 2.98591313598953536954388675937, 4.29615214904181892139254574304, 4.73080260807084545080423119924, 5.75397678963261367959444872637, 6.67827126616354226654120085948, 8.139149063667877527083079251091, 8.665857900705018395500473567388, 9.637033391259177570664430833094, 10.12158826123051551981185885567