Properties

Label 875.2.bb.a.82.7
Level $875$
Weight $2$
Character 875.82
Analytic conductor $6.987$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [875,2,Mod(82,875)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("875.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(875, base_ring=CyclotomicField(60)) chi = DirichletCharacter(H, H._module([27, 50])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.bb (of order \(60\), degree \(16\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [288,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: no (minimal twist has level 175)
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 82.7
Character \(\chi\) \(=\) 875.82
Dual form 875.2.bb.a.843.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.596349 - 0.228917i) q^{2} +(0.0491972 - 0.00257832i) q^{3} +(-1.18306 - 1.06523i) q^{4} +(-0.0299289 - 0.00972449i) q^{6} +(-1.82620 - 1.91442i) q^{7} +(1.04166 + 2.04438i) q^{8} +(-2.98115 + 0.313332i) q^{9} +(-0.367849 + 3.49985i) q^{11} +(-0.0609498 - 0.0493562i) q^{12} +(0.577852 + 0.0915228i) q^{13} +(0.650809 + 1.55971i) q^{14} +(0.179610 + 1.70887i) q^{16} +(0.00169324 - 0.00260736i) q^{17} +(1.84953 + 0.495581i) q^{18} +(4.41097 + 4.89888i) q^{19} +(-0.0947799 - 0.0894755i) q^{21} +(1.02054 - 2.00293i) q^{22} +(1.59759 - 4.16186i) q^{23} +(0.0565180 + 0.0978920i) q^{24} +(-0.323650 - 0.186860i) q^{26} +(-0.291831 + 0.0462215i) q^{27} +(0.121204 + 4.21020i) q^{28} +(7.69230 - 2.49938i) q^{29} +(0.916502 + 4.31180i) q^{31} +(1.47178 - 5.49276i) q^{32} +(-0.00907344 + 0.173131i) q^{33} +(-0.00160663 + 0.00116728i) q^{34} +(3.86066 + 2.80493i) q^{36} +(-0.765883 + 0.945787i) q^{37} +(-1.50904 - 3.93119i) q^{38} +(0.0286647 + 0.00301278i) q^{39} +(-2.00472 - 2.75926i) q^{41} +(0.0360394 + 0.0750553i) q^{42} +(6.51520 - 6.51520i) q^{43} +(4.16335 - 3.74869i) q^{44} +(-1.90544 + 2.11621i) q^{46} +(0.0629228 - 0.0408626i) q^{47} +(0.0132423 + 0.0836086i) q^{48} +(-0.329993 + 6.99222i) q^{49} +(7.65801e-5 - 0.000132641i) q^{51} +(-0.586142 - 0.723824i) q^{52} +(0.259564 + 4.95277i) q^{53} +(0.184614 + 0.0392409i) q^{54} +(2.01151 - 5.72762i) q^{56} +(0.229638 + 0.229638i) q^{57} +(-5.15944 - 0.270395i) q^{58} +(-0.931010 - 0.414512i) q^{59} +(3.41172 + 7.66284i) q^{61} +(0.440489 - 2.78114i) q^{62} +(6.04403 + 5.13497i) q^{63} +(-0.115113 + 0.158439i) q^{64} +(0.0450436 - 0.101170i) q^{66} +(1.65377 + 1.07397i) q^{67} +(-0.00478065 + 0.00128097i) q^{68} +(0.0678664 - 0.208871i) q^{69} +(2.56775 + 7.90273i) q^{71} +(-3.74593 - 5.76822i) q^{72} +(-5.67738 + 4.59745i) q^{73} +(0.673240 - 0.388695i) q^{74} -10.4944i q^{76} +(7.37195 - 5.68721i) q^{77} +(-0.0164045 - 0.00835850i) q^{78} +(-2.35530 + 11.0808i) q^{79} +(8.78197 - 1.86667i) q^{81} +(0.563871 + 2.10440i) q^{82} +(13.4652 - 6.86085i) q^{83} +(0.0168181 + 0.206818i) q^{84} +(-5.37677 + 2.39389i) q^{86} +(0.371995 - 0.142796i) q^{87} +(-7.53820 + 2.89365i) q^{88} +(-1.15239 + 0.513075i) q^{89} +(-0.880061 - 1.27339i) q^{91} +(-6.32340 + 3.22193i) q^{92} +(0.0562065 + 0.209766i) q^{93} +(-0.0468781 + 0.00996424i) q^{94} +(0.0582454 - 0.274023i) q^{96} +(12.6048 + 6.42245i) q^{97} +(1.79743 - 4.09426i) q^{98} -10.5489i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 2 q^{2} - 6 q^{3} + 10 q^{4} + 10 q^{7} - 64 q^{8} + 10 q^{9} - 6 q^{11} + 6 q^{12} + 20 q^{14} - 30 q^{16} + 12 q^{17} + 14 q^{18} + 30 q^{19} - 12 q^{21} + 8 q^{22} - 30 q^{23} - 48 q^{26} + 58 q^{28}+ \cdots - 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.596349 0.228917i −0.421682 0.161869i 0.138268 0.990395i \(-0.455846\pi\)
−0.559950 + 0.828526i \(0.689180\pi\)
\(3\) 0.0491972 0.00257832i 0.0284040 0.00148859i −0.0381287 0.999273i \(-0.512140\pi\)
0.0665327 + 0.997784i \(0.478806\pi\)
\(4\) −1.18306 1.06523i −0.591530 0.532616i
\(5\) 0 0
\(6\) −0.0299289 0.00972449i −0.0122184 0.00397001i
\(7\) −1.82620 1.91442i −0.690238 0.723582i
\(8\) 1.04166 + 2.04438i 0.368284 + 0.722797i
\(9\) −2.98115 + 0.313332i −0.993717 + 0.104444i
\(10\) 0 0
\(11\) −0.367849 + 3.49985i −0.110911 + 1.05525i 0.787568 + 0.616228i \(0.211340\pi\)
−0.898479 + 0.439017i \(0.855327\pi\)
\(12\) −0.0609498 0.0493562i −0.0175947 0.0142479i
\(13\) 0.577852 + 0.0915228i 0.160267 + 0.0253839i 0.236052 0.971740i \(-0.424146\pi\)
−0.0757850 + 0.997124i \(0.524146\pi\)
\(14\) 0.650809 + 1.55971i 0.173936 + 0.416850i
\(15\) 0 0
\(16\) 0.179610 + 1.70887i 0.0449024 + 0.427218i
\(17\) 0.00169324 0.00260736i 0.000410671 0.000632378i −0.838465 0.544955i \(-0.816547\pi\)
0.838876 + 0.544323i \(0.183213\pi\)
\(18\) 1.84953 + 0.495581i 0.435939 + 0.116810i
\(19\) 4.41097 + 4.89888i 1.01195 + 1.12388i 0.992273 + 0.124074i \(0.0395960\pi\)
0.0196734 + 0.999806i \(0.493737\pi\)
\(20\) 0 0
\(21\) −0.0947799 0.0894755i −0.0206827 0.0195252i
\(22\) 1.02054 2.00293i 0.217580 0.427025i
\(23\) 1.59759 4.16186i 0.333121 0.867809i −0.660059 0.751214i \(-0.729469\pi\)
0.993180 0.116595i \(-0.0371979\pi\)
\(24\) 0.0565180 + 0.0978920i 0.0115367 + 0.0199821i
\(25\) 0 0
\(26\) −0.323650 0.186860i −0.0634731 0.0366462i
\(27\) −0.291831 + 0.0462215i −0.0561629 + 0.00889533i
\(28\) 0.121204 + 4.21020i 0.0229054 + 0.795653i
\(29\) 7.69230 2.49938i 1.42842 0.464123i 0.510156 0.860082i \(-0.329588\pi\)
0.918268 + 0.395959i \(0.129588\pi\)
\(30\) 0 0
\(31\) 0.916502 + 4.31180i 0.164609 + 0.774423i 0.980547 + 0.196284i \(0.0628875\pi\)
−0.815938 + 0.578139i \(0.803779\pi\)
\(32\) 1.47178 5.49276i 0.260176 0.970991i
\(33\) −0.00907344 + 0.173131i −0.00157948 + 0.0301383i
\(34\) −0.00160663 + 0.00116728i −0.000275535 + 0.000200188i
\(35\) 0 0
\(36\) 3.86066 + 2.80493i 0.643443 + 0.467488i
\(37\) −0.765883 + 0.945787i −0.125910 + 0.155486i −0.836203 0.548420i \(-0.815229\pi\)
0.710292 + 0.703907i \(0.248563\pi\)
\(38\) −1.50904 3.93119i −0.244799 0.637723i
\(39\) 0.0286647 + 0.00301278i 0.00459003 + 0.000482431i
\(40\) 0 0
\(41\) −2.00472 2.75926i −0.313085 0.430924i 0.623255 0.782018i \(-0.285810\pi\)
−0.936340 + 0.351094i \(0.885810\pi\)
\(42\) 0.0360394 + 0.0750553i 0.00556100 + 0.0115813i
\(43\) 6.51520 6.51520i 0.993558 0.993558i −0.00642125 0.999979i \(-0.502044\pi\)
0.999979 + 0.00642125i \(0.00204396\pi\)
\(44\) 4.16335 3.74869i 0.627648 0.565137i
\(45\) 0 0
\(46\) −1.90544 + 2.11621i −0.280942 + 0.312018i
\(47\) 0.0629228 0.0408626i 0.00917824 0.00596042i −0.540042 0.841638i \(-0.681592\pi\)
0.549220 + 0.835678i \(0.314925\pi\)
\(48\) 0.0132423 + 0.0836086i 0.00191136 + 0.0120679i
\(49\) −0.329993 + 6.99222i −0.0471419 + 0.998888i
\(50\) 0 0
\(51\) 7.65801e−5 0 0.000132641i 1.07234e−5 0 1.85734e-5i
\(52\) −0.586142 0.723824i −0.0812832 0.100376i
\(53\) 0.259564 + 4.95277i 0.0356538 + 0.680315i 0.956738 + 0.290951i \(0.0939718\pi\)
−0.921084 + 0.389364i \(0.872695\pi\)
\(54\) 0.184614 + 0.0392409i 0.0251228 + 0.00534001i
\(55\) 0 0
\(56\) 2.01151 5.72762i 0.268800 0.765386i
\(57\) 0.229638 + 0.229638i 0.0304163 + 0.0304163i
\(58\) −5.15944 0.270395i −0.677468 0.0355046i
\(59\) −0.931010 0.414512i −0.121207 0.0539649i 0.345237 0.938515i \(-0.387798\pi\)
−0.466444 + 0.884551i \(0.654465\pi\)
\(60\) 0 0
\(61\) 3.41172 + 7.66284i 0.436826 + 0.981127i 0.989070 + 0.147445i \(0.0471048\pi\)
−0.552245 + 0.833682i \(0.686229\pi\)
\(62\) 0.440489 2.78114i 0.0559422 0.353205i
\(63\) 6.04403 + 5.13497i 0.761476 + 0.646945i
\(64\) −0.115113 + 0.158439i −0.0143891 + 0.0198048i
\(65\) 0 0
\(66\) 0.0450436 0.101170i 0.00554449 0.0124531i
\(67\) 1.65377 + 1.07397i 0.202040 + 0.131206i 0.641693 0.766961i \(-0.278232\pi\)
−0.439654 + 0.898167i \(0.644899\pi\)
\(68\) −0.00478065 + 0.00128097i −0.000579739 + 0.000155341i
\(69\) 0.0678664 0.208871i 0.00817015 0.0251451i
\(70\) 0 0
\(71\) 2.56775 + 7.90273i 0.304736 + 0.937882i 0.979776 + 0.200100i \(0.0641266\pi\)
−0.675039 + 0.737782i \(0.735873\pi\)
\(72\) −3.74593 5.76822i −0.441462 0.679791i
\(73\) −5.67738 + 4.59745i −0.664487 + 0.538091i −0.901154 0.433500i \(-0.857278\pi\)
0.236666 + 0.971591i \(0.423945\pi\)
\(74\) 0.673240 0.388695i 0.0782626 0.0451849i
\(75\) 0 0
\(76\) 10.4944i 1.20379i
\(77\) 7.37195 5.68721i 0.840112 0.648118i
\(78\) −0.0164045 0.00835850i −0.00185744 0.000946414i
\(79\) −2.35530 + 11.0808i −0.264992 + 1.24669i 0.621303 + 0.783570i \(0.286603\pi\)
−0.886296 + 0.463120i \(0.846730\pi\)
\(80\) 0 0
\(81\) 8.78197 1.86667i 0.975774 0.207407i
\(82\) 0.563871 + 2.10440i 0.0622692 + 0.232392i
\(83\) 13.4652 6.86085i 1.47800 0.753076i 0.485371 0.874308i \(-0.338684\pi\)
0.992624 + 0.121232i \(0.0386844\pi\)
\(84\) 0.0168181 + 0.206818i 0.00183501 + 0.0225657i
\(85\) 0 0
\(86\) −5.37677 + 2.39389i −0.579792 + 0.258140i
\(87\) 0.371995 0.142796i 0.0398821 0.0153093i
\(88\) −7.53820 + 2.89365i −0.803575 + 0.308464i
\(89\) −1.15239 + 0.513075i −0.122153 + 0.0543859i −0.466903 0.884309i \(-0.654630\pi\)
0.344750 + 0.938694i \(0.387964\pi\)
\(90\) 0 0
\(91\) −0.880061 1.27339i −0.0922554 0.133488i
\(92\) −6.32340 + 3.22193i −0.659260 + 0.335910i
\(93\) 0.0562065 + 0.209766i 0.00582835 + 0.0217517i
\(94\) −0.0468781 + 0.00996424i −0.00483510 + 0.00102773i
\(95\) 0 0
\(96\) 0.0582454 0.274023i 0.00594464 0.0279674i
\(97\) 12.6048 + 6.42245i 1.27982 + 0.652101i 0.955819 0.293955i \(-0.0949717\pi\)
0.324002 + 0.946057i \(0.394972\pi\)
\(98\) 1.79743 4.09426i 0.181568 0.413583i
\(99\) 10.5489i 1.06020i
\(100\) 0 0
\(101\) −9.59110 + 5.53743i −0.954351 + 0.550995i −0.894430 0.447209i \(-0.852418\pi\)
−0.0599208 + 0.998203i \(0.519085\pi\)
\(102\) −7.60321e−5 0 6.15695e-5i −7.52830e−6 0 6.09629e-6i
\(103\) 4.99114 + 7.68569i 0.491792 + 0.757293i 0.994224 0.107323i \(-0.0342280\pi\)
−0.502432 + 0.864617i \(0.667561\pi\)
\(104\) 0.414820 + 1.27669i 0.0406765 + 0.125189i
\(105\) 0 0
\(106\) 0.978982 3.01300i 0.0950871 0.292648i
\(107\) −16.7396 + 4.48536i −1.61828 + 0.433617i −0.950495 0.310739i \(-0.899424\pi\)
−0.667784 + 0.744355i \(0.732757\pi\)
\(108\) 0.394491 + 0.256185i 0.0379599 + 0.0246514i
\(109\) 1.10392 2.47944i 0.105736 0.237487i −0.852927 0.522030i \(-0.825175\pi\)
0.958663 + 0.284542i \(0.0918416\pi\)
\(110\) 0 0
\(111\) −0.0352408 + 0.0485048i −0.00334491 + 0.00460387i
\(112\) 2.94349 3.46459i 0.278134 0.327373i
\(113\) −2.16659 + 13.6793i −0.203815 + 1.28684i 0.647451 + 0.762107i \(0.275835\pi\)
−0.851267 + 0.524733i \(0.824165\pi\)
\(114\) −0.0843764 0.189513i −0.00790258 0.0177495i
\(115\) 0 0
\(116\) −11.7629 5.23717i −1.09216 0.486259i
\(117\) −1.75134 0.0917840i −0.161912 0.00848543i
\(118\) 0.460317 + 0.460317i 0.0423757 + 0.0423757i
\(119\) −0.00808377 + 0.00151999i −0.000741038 + 0.000139337i
\(120\) 0 0
\(121\) −1.35404 0.287810i −0.123094 0.0261645i
\(122\) −0.280420 5.35073i −0.0253880 0.484432i
\(123\) −0.105741 0.130579i −0.00953434 0.0117739i
\(124\) 3.50880 6.07742i 0.315099 0.545768i
\(125\) 0 0
\(126\) −2.42887 4.44581i −0.216381 0.396064i
\(127\) 0.945529 + 5.96983i 0.0839021 + 0.529737i 0.993462 + 0.114164i \(0.0364189\pi\)
−0.909560 + 0.415573i \(0.863581\pi\)
\(128\) −9.43332 + 6.12607i −0.833795 + 0.541473i
\(129\) 0.303731 0.337328i 0.0267420 0.0297000i
\(130\) 0 0
\(131\) 10.8977 9.81230i 0.952133 0.857304i −0.0377361 0.999288i \(-0.512015\pi\)
0.989869 + 0.141983i \(0.0453480\pi\)
\(132\) 0.195160 0.195160i 0.0169865 0.0169865i
\(133\) 1.32319 17.3908i 0.114735 1.50797i
\(134\) −0.740372 1.01903i −0.0639584 0.0880312i
\(135\) 0 0
\(136\) 0.00709422 0.000745632i 0.000608324 6.39375e-5i
\(137\) 3.54693 + 9.24006i 0.303034 + 0.789432i 0.997550 + 0.0699541i \(0.0222853\pi\)
−0.694516 + 0.719477i \(0.744381\pi\)
\(138\) −0.0882861 + 0.109024i −0.00751541 + 0.00928076i
\(139\) −14.6696 10.6581i −1.24426 0.904005i −0.246382 0.969173i \(-0.579242\pi\)
−0.997874 + 0.0651678i \(0.979242\pi\)
\(140\) 0 0
\(141\) 0.00299027 0.00217256i 0.000251826 0.000182962i
\(142\) 0.277792 5.30058i 0.0233118 0.444815i
\(143\) −0.532879 + 1.98873i −0.0445616 + 0.166306i
\(144\) −1.07089 5.03813i −0.0892406 0.419844i
\(145\) 0 0
\(146\) 4.43813 1.44204i 0.367302 0.119344i
\(147\) 0.00179341 + 0.344848i 0.000147918 + 0.0284426i
\(148\) 1.91357 0.303080i 0.157295 0.0249130i
\(149\) 5.99122 + 3.45903i 0.490820 + 0.283375i 0.724914 0.688839i \(-0.241879\pi\)
−0.234095 + 0.972214i \(0.575213\pi\)
\(150\) 0 0
\(151\) −3.27178 5.66690i −0.266254 0.461166i 0.701637 0.712534i \(-0.252453\pi\)
−0.967891 + 0.251369i \(0.919119\pi\)
\(152\) −5.42042 + 14.1207i −0.439654 + 1.14534i
\(153\) −0.00423084 + 0.00830348i −0.000342043 + 0.000671297i
\(154\) −5.69815 + 1.70400i −0.459170 + 0.137312i
\(155\) 0 0
\(156\) −0.0307028 0.0340989i −0.00245819 0.00273010i
\(157\) 23.0449 + 6.17486i 1.83918 + 0.492807i 0.998790 0.0491717i \(-0.0156581\pi\)
0.840392 + 0.541979i \(0.182325\pi\)
\(158\) 3.94117 6.06887i 0.313542 0.482813i
\(159\) 0.0255396 + 0.242993i 0.00202542 + 0.0192706i
\(160\) 0 0
\(161\) −10.8851 + 4.54194i −0.857863 + 0.357955i
\(162\) −5.66443 0.897157i −0.445039 0.0704873i
\(163\) −10.6566 8.62952i −0.834687 0.675916i 0.113532 0.993534i \(-0.463784\pi\)
−0.948219 + 0.317618i \(0.897117\pi\)
\(164\) −0.567549 + 5.39987i −0.0443181 + 0.421659i
\(165\) 0 0
\(166\) −9.60050 + 1.00905i −0.745144 + 0.0783178i
\(167\) 2.17131 + 4.26144i 0.168021 + 0.329760i 0.959629 0.281270i \(-0.0907556\pi\)
−0.791608 + 0.611030i \(0.790756\pi\)
\(168\) 0.0841932 0.286969i 0.00649564 0.0221402i
\(169\) −12.0382 3.91145i −0.926015 0.300881i
\(170\) 0 0
\(171\) −14.6848 13.2222i −1.12297 1.01113i
\(172\) −14.6481 + 0.767673i −1.11691 + 0.0585345i
\(173\) −16.5720 6.36138i −1.25994 0.483647i −0.365493 0.930814i \(-0.619100\pi\)
−0.894451 + 0.447167i \(0.852433\pi\)
\(174\) −0.254527 −0.0192957
\(175\) 0 0
\(176\) −6.04687 −0.455800
\(177\) −0.0468718 0.0179924i −0.00352310 0.00135239i
\(178\) 0.804675 0.0421712i 0.0603130 0.00316087i
\(179\) −3.49351 3.14557i −0.261117 0.235111i 0.528165 0.849142i \(-0.322880\pi\)
−0.789282 + 0.614031i \(0.789547\pi\)
\(180\) 0 0
\(181\) 23.4101 + 7.60642i 1.74006 + 0.565380i 0.994842 0.101438i \(-0.0323444\pi\)
0.745220 + 0.666818i \(0.232344\pi\)
\(182\) 0.233323 + 0.960845i 0.0172950 + 0.0712226i
\(183\) 0.187604 + 0.368194i 0.0138681 + 0.0272177i
\(184\) 10.1726 1.06918i 0.749933 0.0788211i
\(185\) 0 0
\(186\) 0.0145002 0.137960i 0.00106321 0.0101157i
\(187\) 0.00850252 + 0.00688521i 0.000621766 + 0.000503496i
\(188\) −0.117970 0.0186846i −0.00860382 0.00136271i
\(189\) 0.621429 + 0.474277i 0.0452023 + 0.0344986i
\(190\) 0 0
\(191\) 0.283233 + 2.69478i 0.0204940 + 0.194988i 0.999979 0.00653111i \(-0.00207893\pi\)
−0.979485 + 0.201519i \(0.935412\pi\)
\(192\) −0.00525471 + 0.00809154i −0.000379226 + 0.000583957i
\(193\) −7.27372 1.94899i −0.523574 0.140291i −0.0126547 0.999920i \(-0.504028\pi\)
−0.510919 + 0.859629i \(0.670695\pi\)
\(194\) −6.04663 6.71546i −0.434123 0.482142i
\(195\) 0 0
\(196\) 7.83874 7.92070i 0.559910 0.565764i
\(197\) −8.91567 + 17.4980i −0.635215 + 1.24668i 0.319056 + 0.947736i \(0.396634\pi\)
−0.954271 + 0.298944i \(0.903366\pi\)
\(198\) −2.41481 + 6.29079i −0.171613 + 0.447067i
\(199\) 6.20257 + 10.7432i 0.439689 + 0.761563i 0.997665 0.0682937i \(-0.0217555\pi\)
−0.557977 + 0.829857i \(0.688422\pi\)
\(200\) 0 0
\(201\) 0.0841298 + 0.0485723i 0.00593406 + 0.00342603i
\(202\) 6.98725 1.10667i 0.491621 0.0778652i
\(203\) −18.8325 10.1619i −1.32178 0.713226i
\(204\) −0.000231892 0 7.53463e-5i −1.62357e−5 0 5.27529e-6i
\(205\) 0 0
\(206\) −1.21708 5.72590i −0.0847979 0.398943i
\(207\) −3.45861 + 12.9077i −0.240390 + 0.897149i
\(208\) −0.0526129 + 1.00391i −0.00364805 + 0.0696089i
\(209\) −18.7679 + 13.6357i −1.29821 + 0.943202i
\(210\) 0 0
\(211\) 18.7799 + 13.6444i 1.29286 + 0.939319i 0.999859 0.0167927i \(-0.00534553\pi\)
0.293003 + 0.956112i \(0.405346\pi\)
\(212\) 4.96877 6.13593i 0.341257 0.421417i
\(213\) 0.146702 + 0.382172i 0.0100519 + 0.0261860i
\(214\) 11.0094 + 1.15714i 0.752588 + 0.0791002i
\(215\) 0 0
\(216\) −0.398484 0.548466i −0.0271134 0.0373184i
\(217\) 6.58088 9.62878i 0.446739 0.653644i
\(218\) −1.22591 + 1.22591i −0.0830288 + 0.0830288i
\(219\) −0.267458 + 0.240820i −0.0180731 + 0.0162731i
\(220\) 0 0
\(221\) 0.00121708 0.00135170i 8.18694e−5 9.09251e-5i
\(222\) 0.0321194 0.0208585i 0.00215571 0.00139993i
\(223\) −4.15501 26.2337i −0.278240 1.75674i −0.590779 0.806833i \(-0.701180\pi\)
0.312539 0.949905i \(-0.398820\pi\)
\(224\) −13.2032 + 7.21327i −0.882176 + 0.481957i
\(225\) 0 0
\(226\) 4.42346 7.66166i 0.294244 0.509646i
\(227\) −11.7451 14.5040i −0.779551 0.962665i 0.220368 0.975417i \(-0.429274\pi\)
−0.999919 + 0.0127517i \(0.995941\pi\)
\(228\) −0.0270578 0.516295i −0.00179195 0.0341924i
\(229\) −8.83466 1.87787i −0.583811 0.124093i −0.0934678 0.995622i \(-0.529795\pi\)
−0.490343 + 0.871529i \(0.663129\pi\)
\(230\) 0 0
\(231\) 0.348016 0.298802i 0.0228978 0.0196597i
\(232\) 13.1225 + 13.1225i 0.861532 + 0.861532i
\(233\) 0.127164 + 0.00666441i 0.00833082 + 0.000436600i 0.0565009 0.998403i \(-0.482006\pi\)
−0.0481701 + 0.998839i \(0.515339\pi\)
\(234\) 1.02340 + 0.455647i 0.0669017 + 0.0297866i
\(235\) 0 0
\(236\) 0.659889 + 1.48214i 0.0429551 + 0.0964788i
\(237\) −0.0873044 + 0.551218i −0.00567103 + 0.0358055i
\(238\) 0.00516870 0.000944066i 0.000335037 6.11947e-5i
\(239\) 10.3096 14.1899i 0.666871 0.917870i −0.332813 0.942993i \(-0.607998\pi\)
0.999684 + 0.0251232i \(0.00799782\pi\)
\(240\) 0 0
\(241\) 0.647399 1.45408i 0.0417026 0.0936657i −0.891493 0.453035i \(-0.850341\pi\)
0.933196 + 0.359369i \(0.117008\pi\)
\(242\) 0.741595 + 0.481597i 0.0476715 + 0.0309582i
\(243\) 1.28344 0.343896i 0.0823326 0.0220610i
\(244\) 4.12644 12.6999i 0.264168 0.813027i
\(245\) 0 0
\(246\) 0.0331667 + 0.102077i 0.00211463 + 0.00650816i
\(247\) 2.10053 + 3.23453i 0.133654 + 0.205809i
\(248\) −7.86028 + 6.36513i −0.499128 + 0.404186i
\(249\) 0.644760 0.372252i 0.0408600 0.0235905i
\(250\) 0 0
\(251\) 16.8292i 1.06225i −0.847294 0.531124i \(-0.821770\pi\)
0.847294 0.531124i \(-0.178230\pi\)
\(252\) −1.68052 12.5133i −0.105863 0.788262i
\(253\) 13.9782 + 7.12227i 0.878805 + 0.447773i
\(254\) 0.802730 3.77655i 0.0503678 0.236962i
\(255\) 0 0
\(256\) 7.41103 1.57526i 0.463189 0.0984539i
\(257\) −4.99329 18.6352i −0.311473 1.16243i −0.927229 0.374496i \(-0.877816\pi\)
0.615756 0.787937i \(-0.288851\pi\)
\(258\) −0.258350 + 0.131636i −0.0160841 + 0.00819528i
\(259\) 3.20929 0.260975i 0.199415 0.0162162i
\(260\) 0 0
\(261\) −22.1488 + 9.86127i −1.37097 + 0.610397i
\(262\) −8.74500 + 3.35689i −0.540268 + 0.207389i
\(263\) −15.7161 + 6.03286i −0.969098 + 0.372002i −0.790868 0.611987i \(-0.790371\pi\)
−0.178230 + 0.983989i \(0.557037\pi\)
\(264\) −0.363398 + 0.161795i −0.0223656 + 0.00995780i
\(265\) 0 0
\(266\) −4.77012 + 10.0681i −0.292475 + 0.617313i
\(267\) −0.0553713 + 0.0282131i −0.00338867 + 0.00172661i
\(268\) −0.812480 3.03222i −0.0496301 0.185222i
\(269\) −23.4861 + 4.99213i −1.43197 + 0.304376i −0.857642 0.514247i \(-0.828072\pi\)
−0.574332 + 0.818622i \(0.694738\pi\)
\(270\) 0 0
\(271\) −0.519589 + 2.44447i −0.0315628 + 0.148491i −0.991107 0.133066i \(-0.957518\pi\)
0.959544 + 0.281558i \(0.0908510\pi\)
\(272\) 0.00475977 + 0.00242522i 0.000288603 + 0.000147051i
\(273\) −0.0465797 0.0603782i −0.00281913 0.00365425i
\(274\) 6.32225i 0.381941i
\(275\) 0 0
\(276\) −0.302787 + 0.174814i −0.0182256 + 0.0105226i
\(277\) −21.4095 + 17.3370i −1.28637 + 1.04168i −0.289959 + 0.957039i \(0.593642\pi\)
−0.996411 + 0.0846428i \(0.973025\pi\)
\(278\) 6.30836 + 9.71403i 0.378351 + 0.582609i
\(279\) −4.08326 12.5670i −0.244458 0.752365i
\(280\) 0 0
\(281\) 2.24129 6.89798i 0.133704 0.411499i −0.861682 0.507449i \(-0.830589\pi\)
0.995386 + 0.0959494i \(0.0305887\pi\)
\(282\) −0.00228058 0.000611079i −0.000135806 3.63892e-5i
\(283\) 6.80370 + 4.41837i 0.404438 + 0.262645i 0.730789 0.682604i \(-0.239152\pi\)
−0.326351 + 0.945249i \(0.605819\pi\)
\(284\) 5.38044 12.0847i 0.319270 0.717093i
\(285\) 0 0
\(286\) 0.773036 1.06399i 0.0457106 0.0629152i
\(287\) −1.62136 + 8.87683i −0.0957059 + 0.523983i
\(288\) −2.66654 + 16.8359i −0.157128 + 0.992065i
\(289\) 6.91452 + 15.5303i 0.406736 + 0.913545i
\(290\) 0 0
\(291\) 0.636679 + 0.283468i 0.0373228 + 0.0166172i
\(292\) 11.6140 + 0.608666i 0.679661 + 0.0356195i
\(293\) 22.2968 + 22.2968i 1.30259 + 1.30259i 0.926638 + 0.375956i \(0.122686\pi\)
0.375956 + 0.926638i \(0.377314\pi\)
\(294\) 0.0778721 0.206060i 0.00454159 0.0120177i
\(295\) 0 0
\(296\) −2.73134 0.580564i −0.158756 0.0337446i
\(297\) −0.0544186 1.03837i −0.00315769 0.0602523i
\(298\) −2.78102 3.43428i −0.161100 0.198942i
\(299\) 1.30408 2.25873i 0.0754167 0.130626i
\(300\) 0 0
\(301\) −24.3709 0.574763i −1.40471 0.0331288i
\(302\) 0.653876 + 4.12841i 0.0376264 + 0.237563i
\(303\) −0.457578 + 0.297155i −0.0262872 + 0.0170711i
\(304\) −7.57931 + 8.41767i −0.434703 + 0.482787i
\(305\) 0 0
\(306\) 0.00442386 0.00398326i 0.000252895 0.000227708i
\(307\) 15.2811 15.2811i 0.872140 0.872140i −0.120566 0.992705i \(-0.538471\pi\)
0.992705 + 0.120566i \(0.0384708\pi\)
\(308\) −14.7797 1.12452i −0.842150 0.0640757i
\(309\) 0.265366 + 0.365246i 0.0150962 + 0.0207781i
\(310\) 0 0
\(311\) 9.75391 + 1.02518i 0.553093 + 0.0581325i 0.376953 0.926233i \(-0.376972\pi\)
0.176141 + 0.984365i \(0.443639\pi\)
\(312\) 0.0236997 + 0.0617398i 0.00134173 + 0.00349533i
\(313\) 11.1352 13.7509i 0.629400 0.777245i −0.358299 0.933607i \(-0.616643\pi\)
0.987700 + 0.156362i \(0.0499766\pi\)
\(314\) −12.3293 8.95773i −0.695780 0.505514i
\(315\) 0 0
\(316\) 14.5901 10.6003i 0.820759 0.596316i
\(317\) 1.11718 21.3171i 0.0627473 1.19729i −0.767929 0.640535i \(-0.778713\pi\)
0.830676 0.556755i \(-0.187954\pi\)
\(318\) 0.0403947 0.150755i 0.00226522 0.00845393i
\(319\) 5.91785 + 27.8413i 0.331336 + 1.55881i
\(320\) 0 0
\(321\) −0.811977 + 0.263827i −0.0453201 + 0.0147254i
\(322\) 7.53102 0.216804i 0.419687 0.0120820i
\(323\) 0.0202420 0.00320601i 0.00112629 0.000178387i
\(324\) −12.3780 7.14646i −0.687669 0.397026i
\(325\) 0 0
\(326\) 4.37959 + 7.58567i 0.242563 + 0.420131i
\(327\) 0.0479169 0.124828i 0.00264981 0.00690300i
\(328\) 3.55273 6.97263i 0.196167 0.384999i
\(329\) −0.193138 0.0458374i −0.0106480 0.00252710i
\(330\) 0 0
\(331\) −6.39481 7.10215i −0.351490 0.390370i 0.541309 0.840824i \(-0.317929\pi\)
−0.892800 + 0.450454i \(0.851262\pi\)
\(332\) −23.2385 6.22675i −1.27538 0.341737i
\(333\) 1.98687 3.05951i 0.108880 0.167660i
\(334\) −0.319344 3.03835i −0.0174737 0.166251i
\(335\) 0 0
\(336\) 0.135879 0.178037i 0.00741280 0.00971273i
\(337\) 7.46859 + 1.18291i 0.406840 + 0.0644372i 0.356501 0.934295i \(-0.383970\pi\)
0.0503394 + 0.998732i \(0.483970\pi\)
\(338\) 6.28357 + 5.08833i 0.341781 + 0.276769i
\(339\) −0.0713205 + 0.678569i −0.00387360 + 0.0368548i
\(340\) 0 0
\(341\) −15.4278 + 1.62153i −0.835463 + 0.0878107i
\(342\) 5.73045 + 11.2466i 0.309867 + 0.608148i
\(343\) 13.9887 12.1374i 0.755317 0.655360i
\(344\) 20.1062 + 6.53289i 1.08405 + 0.352230i
\(345\) 0 0
\(346\) 8.42645 + 7.58721i 0.453009 + 0.407891i
\(347\) 3.44467 0.180528i 0.184920 0.00969123i 0.0403487 0.999186i \(-0.487153\pi\)
0.144571 + 0.989494i \(0.453820\pi\)
\(348\) −0.592204 0.227326i −0.0317455 0.0121859i
\(349\) 5.03213 0.269364 0.134682 0.990889i \(-0.456999\pi\)
0.134682 + 0.990889i \(0.456999\pi\)
\(350\) 0 0
\(351\) −0.172866 −0.00922688
\(352\) 18.6825 + 7.17152i 0.995778 + 0.382243i
\(353\) 6.66875 0.349494i 0.354942 0.0186017i 0.125968 0.992034i \(-0.459796\pi\)
0.228974 + 0.973433i \(0.426463\pi\)
\(354\) 0.0238332 + 0.0214595i 0.00126672 + 0.00114056i
\(355\) 0 0
\(356\) 1.90989 + 0.620560i 0.101224 + 0.0328896i
\(357\) −0.000393780 0 9.56218e-5i −2.08410e−5 0 5.06084e-6i
\(358\) 1.36327 + 2.67558i 0.0720513 + 0.141409i
\(359\) 3.98990 0.419355i 0.210579 0.0221327i 0.00134837 0.999999i \(-0.499571\pi\)
0.209230 + 0.977866i \(0.432904\pi\)
\(360\) 0 0
\(361\) −2.55632 + 24.3217i −0.134543 + 1.28009i
\(362\) −12.2194 9.89505i −0.642236 0.520072i
\(363\) −0.0673570 0.0106683i −0.00353532 0.000559940i
\(364\) −0.315292 + 2.44397i −0.0165258 + 0.128099i
\(365\) 0 0
\(366\) −0.0275917 0.262518i −0.00144224 0.0137220i
\(367\) −11.8537 + 18.2531i −0.618758 + 0.952803i 0.380845 + 0.924639i \(0.375633\pi\)
−0.999603 + 0.0281648i \(0.991034\pi\)
\(368\) 7.39904 + 1.98257i 0.385701 + 0.103348i
\(369\) 6.84094 + 7.59764i 0.356125 + 0.395517i
\(370\) 0 0
\(371\) 9.00766 9.54166i 0.467654 0.495378i
\(372\) 0.156954 0.308039i 0.00813766 0.0159711i
\(373\) −1.32186 + 3.44356i −0.0684432 + 0.178301i −0.963536 0.267580i \(-0.913776\pi\)
0.895092 + 0.445881i \(0.147109\pi\)
\(374\) −0.00349433 0.00605235i −0.000180687 0.000312960i
\(375\) 0 0
\(376\) 0.149083 + 0.0860731i 0.00768837 + 0.00443888i
\(377\) 4.67376 0.740251i 0.240711 0.0381249i
\(378\) −0.262018 0.425090i −0.0134768 0.0218643i
\(379\) 4.03502 1.31106i 0.207265 0.0673446i −0.203544 0.979066i \(-0.565246\pi\)
0.410810 + 0.911721i \(0.365246\pi\)
\(380\) 0 0
\(381\) 0.0619095 + 0.291261i 0.00317172 + 0.0149218i
\(382\) 0.447976 1.67187i 0.0229204 0.0855402i
\(383\) −0.0476437 + 0.909095i −0.00243448 + 0.0464526i −0.999577 0.0290955i \(-0.990737\pi\)
0.997142 + 0.0755481i \(0.0240706\pi\)
\(384\) −0.448298 + 0.325708i −0.0228771 + 0.0166212i
\(385\) 0 0
\(386\) 3.89152 + 2.82735i 0.198073 + 0.143908i
\(387\) −17.3814 + 21.4642i −0.883545 + 1.09109i
\(388\) −8.07081 21.0252i −0.409733 1.06739i
\(389\) 9.71731 + 1.02133i 0.492687 + 0.0517835i 0.347615 0.937638i \(-0.386992\pi\)
0.145073 + 0.989421i \(0.453658\pi\)
\(390\) 0 0
\(391\) −0.00814638 0.0112125i −0.000411980 0.000567042i
\(392\) −14.6385 + 6.60891i −0.739355 + 0.333800i
\(393\) 0.510835 0.510835i 0.0257682 0.0257682i
\(394\) 9.32243 8.39395i 0.469657 0.422881i
\(395\) 0 0
\(396\) −11.2370 + 12.4799i −0.564680 + 0.627140i
\(397\) 5.29843 3.44084i 0.265921 0.172691i −0.404791 0.914409i \(-0.632656\pi\)
0.670711 + 0.741718i \(0.265989\pi\)
\(398\) −1.23960 7.82654i −0.0621357 0.392309i
\(399\) 0.0202584 0.858989i 0.00101419 0.0430033i
\(400\) 0 0
\(401\) −1.84234 + 3.19103i −0.0920023 + 0.159353i −0.908354 0.418203i \(-0.862660\pi\)
0.816351 + 0.577556i \(0.195993\pi\)
\(402\) −0.0390516 0.0482248i −0.00194772 0.00240523i
\(403\) 0.134975 + 2.57547i 0.00672356 + 0.128293i
\(404\) 17.2455 + 3.66565i 0.857996 + 0.182373i
\(405\) 0 0
\(406\) 8.90452 + 10.3711i 0.441924 + 0.514710i
\(407\) −3.02839 3.02839i −0.150112 0.150112i
\(408\) 0.000350938 0 1.83919e-5i 1.73740e−5 0 9.10534e-7i
\(409\) 28.0200 + 12.4753i 1.38550 + 0.616864i 0.957899 0.287104i \(-0.0926925\pi\)
0.427600 + 0.903968i \(0.359359\pi\)
\(410\) 0 0
\(411\) 0.198323 + 0.445440i 0.00978254 + 0.0219719i
\(412\) 2.28222 14.4094i 0.112437 0.709898i
\(413\) 0.906659 + 2.53932i 0.0446138 + 0.124952i
\(414\) 5.01733 6.90577i 0.246589 0.339400i
\(415\) 0 0
\(416\) 1.35318 3.03930i 0.0663453 0.149014i
\(417\) −0.749181 0.486524i −0.0366876 0.0238252i
\(418\) 14.3137 3.83534i 0.700105 0.187593i
\(419\) −1.92150 + 5.91378i −0.0938716 + 0.288907i −0.986958 0.160978i \(-0.948535\pi\)
0.893086 + 0.449885i \(0.148535\pi\)
\(420\) 0 0
\(421\) 8.85803 + 27.2622i 0.431714 + 1.32868i 0.896417 + 0.443212i \(0.146161\pi\)
−0.464703 + 0.885467i \(0.653839\pi\)
\(422\) −8.07594 12.4358i −0.393130 0.605368i
\(423\) −0.174779 + 0.141533i −0.00849804 + 0.00688158i
\(424\) −9.85496 + 5.68977i −0.478599 + 0.276319i
\(425\) 0 0
\(426\) 0.261490i 0.0126692i
\(427\) 8.43941 20.5253i 0.408412 0.993291i
\(428\) 24.5819 + 12.5251i 1.18821 + 0.605425i
\(429\) −0.0210886 + 0.0992140i −0.00101817 + 0.00479010i
\(430\) 0 0
\(431\) −6.49460 + 1.38047i −0.312834 + 0.0664949i −0.361653 0.932313i \(-0.617788\pi\)
0.0488191 + 0.998808i \(0.484454\pi\)
\(432\) −0.131402 0.490400i −0.00632210 0.0235944i
\(433\) −17.9987 + 9.17080i −0.864963 + 0.440721i −0.829406 0.558647i \(-0.811321\pi\)
−0.0355575 + 0.999368i \(0.511321\pi\)
\(434\) −6.12869 + 4.23564i −0.294186 + 0.203317i
\(435\) 0 0
\(436\) −3.94719 + 1.75740i −0.189036 + 0.0841642i
\(437\) 27.4354 10.5315i 1.31241 0.503788i
\(438\) 0.214626 0.0823871i 0.0102552 0.00393661i
\(439\) 9.03790 4.02393i 0.431356 0.192052i −0.179561 0.983747i \(-0.557468\pi\)
0.610917 + 0.791695i \(0.290801\pi\)
\(440\) 0 0
\(441\) −1.20712 20.9483i −0.0574821 0.997536i
\(442\) −0.00103523 0.000527475i −4.92408e−5 2.50894e-5i
\(443\) 2.07463 + 7.74261i 0.0985685 + 0.367863i 0.997536 0.0701521i \(-0.0223485\pi\)
−0.898968 + 0.438015i \(0.855682\pi\)
\(444\) 0.0933609 0.0198445i 0.00443071 0.000941777i
\(445\) 0 0
\(446\) −3.52750 + 16.5956i −0.167032 + 0.785823i
\(447\) 0.303670 + 0.154727i 0.0143631 + 0.00731835i
\(448\) 0.513536 0.0689673i 0.0242623 0.00325840i
\(449\) 3.52087i 0.166160i 0.996543 + 0.0830800i \(0.0264757\pi\)
−0.996543 + 0.0830800i \(0.973524\pi\)
\(450\) 0 0
\(451\) 10.3944 6.00124i 0.489455 0.282587i
\(452\) 17.1348 13.8755i 0.805955 0.652650i
\(453\) −0.175574 0.270360i −0.00824917 0.0127026i
\(454\) 3.68397 + 11.3381i 0.172897 + 0.532123i
\(455\) 0 0
\(456\) −0.230262 + 0.708674i −0.0107830 + 0.0331867i
\(457\) −2.99554 + 0.802653i −0.140125 + 0.0375465i −0.328200 0.944608i \(-0.606442\pi\)
0.188075 + 0.982155i \(0.439775\pi\)
\(458\) 4.83866 + 3.14226i 0.226096 + 0.146828i
\(459\) −0.000373624 0 0.000839173i −1.74393e−5 0 3.91692e-5i
\(460\) 0 0
\(461\) 14.6393 20.1493i 0.681821 0.938446i −0.318133 0.948046i \(-0.603056\pi\)
0.999954 + 0.00960024i \(0.00305590\pi\)
\(462\) −0.275940 + 0.0985236i −0.0128379 + 0.00458373i
\(463\) 1.63929 10.3501i 0.0761842 0.481008i −0.919867 0.392230i \(-0.871704\pi\)
0.996051 0.0887782i \(-0.0282962\pi\)
\(464\) 5.65273 + 12.6962i 0.262421 + 0.589408i
\(465\) 0 0
\(466\) −0.0743087 0.0330844i −0.00344229 0.00153260i
\(467\) 18.7791 + 0.984172i 0.868994 + 0.0455421i 0.481620 0.876380i \(-0.340049\pi\)
0.387375 + 0.921922i \(0.373382\pi\)
\(468\) 1.97417 + 1.97417i 0.0912562 + 0.0912562i
\(469\) −0.964083 5.12728i −0.0445172 0.236756i
\(470\) 0 0
\(471\) 1.14966 + 0.244369i 0.0529738 + 0.0112599i
\(472\) −0.122378 2.33512i −0.00563292 0.107483i
\(473\) 20.4056 + 25.1988i 0.938252 + 1.15864i
\(474\) 0.178247 0.308733i 0.00818715 0.0141806i
\(475\) 0 0
\(476\) 0.0111827 + 0.00681286i 0.000512560 + 0.000312267i
\(477\) −2.32566 14.6836i −0.106485 0.672317i
\(478\) −9.39641 + 6.10210i −0.429782 + 0.279104i
\(479\) 25.9607 28.8323i 1.18618 1.31738i 0.249010 0.968501i \(-0.419895\pi\)
0.937167 0.348881i \(-0.113438\pi\)
\(480\) 0 0
\(481\) −0.529129 + 0.476430i −0.0241262 + 0.0217233i
\(482\) −0.718939 + 0.718939i −0.0327468 + 0.0327468i
\(483\) −0.523804 + 0.251516i −0.0238339 + 0.0114444i
\(484\) 1.29533 + 1.78286i 0.0588784 + 0.0810392i
\(485\) 0 0
\(486\) −0.844100 0.0887185i −0.0382892 0.00402435i
\(487\) −12.0414 31.3690i −0.545649 1.42146i −0.878161 0.478366i \(-0.841229\pi\)
0.332512 0.943099i \(-0.392104\pi\)
\(488\) −12.1119 + 14.9570i −0.548280 + 0.677069i
\(489\) −0.546523 0.397072i −0.0247146 0.0179562i
\(490\) 0 0
\(491\) −2.90556 + 2.11101i −0.131126 + 0.0952686i −0.651415 0.758722i \(-0.725824\pi\)
0.520289 + 0.853990i \(0.325824\pi\)
\(492\) −0.0139993 + 0.267122i −0.000631135 + 0.0120428i
\(493\) 0.00650812 0.0242886i 0.000293111 0.00109391i
\(494\) −0.512210 2.40976i −0.0230454 0.108420i
\(495\) 0 0
\(496\) −7.20371 + 2.34063i −0.323456 + 0.105097i
\(497\) 10.4399 19.3477i 0.468294 0.867864i
\(498\) −0.469716 + 0.0743958i −0.0210485 + 0.00333375i
\(499\) 29.9009 + 17.2633i 1.33855 + 0.772812i 0.986592 0.163204i \(-0.0521828\pi\)
0.351958 + 0.936016i \(0.385516\pi\)
\(500\) 0 0
\(501\) 0.117810 + 0.204053i 0.00526335 + 0.00911640i
\(502\) −3.85248 + 10.0360i −0.171944 + 0.447931i
\(503\) −2.11060 + 4.14229i −0.0941072 + 0.184696i −0.933262 0.359198i \(-0.883050\pi\)
0.839154 + 0.543893i \(0.183050\pi\)
\(504\) −4.20198 + 17.7052i −0.187171 + 0.788652i
\(505\) 0 0
\(506\) −6.70550 7.44721i −0.298096 0.331069i
\(507\) −0.602331 0.161394i −0.0267504 0.00716776i
\(508\) 5.24064 8.06988i 0.232516 0.358043i
\(509\) −0.986814 9.38891i −0.0437398 0.416156i −0.994381 0.105863i \(-0.966240\pi\)
0.950641 0.310293i \(-0.100427\pi\)
\(510\) 0 0
\(511\) 19.1695 + 2.47302i 0.848008 + 0.109400i
\(512\) 17.4388 + 2.76203i 0.770692 + 0.122066i
\(513\) −1.51369 1.22576i −0.0668311 0.0541188i
\(514\) −1.28817 + 12.2561i −0.0568188 + 0.540595i
\(515\) 0 0
\(516\) −0.718665 + 0.0755347i −0.0316375 + 0.00332523i
\(517\) 0.119867 + 0.235252i 0.00527174 + 0.0103464i
\(518\) −1.97360 0.579028i −0.0867148 0.0254410i
\(519\) −0.831697 0.270235i −0.0365074 0.0118620i
\(520\) 0 0
\(521\) −13.5338 12.1859i −0.592926 0.533873i 0.317117 0.948386i \(-0.397285\pi\)
−0.910043 + 0.414514i \(0.863952\pi\)
\(522\) 15.4658 0.810528i 0.676920 0.0354759i
\(523\) 38.2614 + 14.6872i 1.67306 + 0.642226i 0.995632 0.0933662i \(-0.0297627\pi\)
0.677424 + 0.735592i \(0.263096\pi\)
\(524\) −23.3450 −1.01983
\(525\) 0 0
\(526\) 10.7533 0.468867
\(527\) 0.0127943 + 0.00491127i 0.000557328 + 0.000213938i
\(528\) −0.297489 + 0.0155907i −0.0129466 + 0.000678500i
\(529\) 2.32351 + 2.09210i 0.101022 + 0.0909608i
\(530\) 0 0
\(531\) 2.90536 + 0.944009i 0.126082 + 0.0409665i
\(532\) −20.0906 + 19.1648i −0.871040 + 0.830901i
\(533\) −0.905897 1.77792i −0.0392388 0.0770104i
\(534\) 0.0394790 0.00414941i 0.00170843 0.000179563i
\(535\) 0 0
\(536\) −0.472931 + 4.49964i −0.0204275 + 0.194355i
\(537\) −0.179981 0.145746i −0.00776675 0.00628939i
\(538\) 15.1487 + 2.39932i 0.653107 + 0.103442i
\(539\) −24.3503 3.72701i −1.04884 0.160534i
\(540\) 0 0
\(541\) 2.36398 + 22.4918i 0.101635 + 0.966996i 0.919900 + 0.392154i \(0.128270\pi\)
−0.818264 + 0.574842i \(0.805063\pi\)
\(542\) 0.869437 1.33882i 0.0373455 0.0575071i
\(543\) 1.17133 + 0.313856i 0.0502664 + 0.0134688i
\(544\) −0.0118295 0.0131380i −0.000507186 0.000563288i
\(545\) 0 0
\(546\) 0.0139562 + 0.0466693i 0.000597269 + 0.00199726i
\(547\) −0.875256 + 1.71779i −0.0374232 + 0.0734473i −0.908961 0.416881i \(-0.863123\pi\)
0.871538 + 0.490328i \(0.163123\pi\)
\(548\) 5.64658 14.7099i 0.241210 0.628374i
\(549\) −12.5719 21.7751i −0.536554 0.929339i
\(550\) 0 0
\(551\) 46.1747 + 26.6590i 1.96711 + 1.13571i
\(552\) 0.497706 0.0788289i 0.0211838 0.00335518i
\(553\) 25.5146 15.7268i 1.08499 0.668770i
\(554\) 16.7362 5.43794i 0.711055 0.231036i
\(555\) 0 0
\(556\) 6.00167 + 28.2356i 0.254528 + 1.19746i
\(557\) 1.52355 5.68596i 0.0645548 0.240922i −0.926108 0.377259i \(-0.876867\pi\)
0.990662 + 0.136338i \(0.0435332\pi\)
\(558\) −0.441746 + 8.42902i −0.0187006 + 0.356829i
\(559\) 4.36111 3.16853i 0.184455 0.134015i
\(560\) 0 0
\(561\) 0.000436053 0 0.000316811i 1.84102e−5 0 1.33758e-5i
\(562\) −2.91566 + 3.60053i −0.122989 + 0.151879i
\(563\) −5.70009 14.8493i −0.240230 0.625821i 0.759464 0.650549i \(-0.225461\pi\)
−0.999694 + 0.0247281i \(0.992128\pi\)
\(564\) −0.00585195 0.000615065i −0.000246412 2.58989e-5i
\(565\) 0 0
\(566\) −3.04594 4.19237i −0.128030 0.176219i
\(567\) −19.6112 13.4035i −0.823593 0.562892i
\(568\) −13.4814 + 13.4814i −0.565669 + 0.565669i
\(569\) −18.8462 + 16.9692i −0.790072 + 0.711384i −0.961798 0.273761i \(-0.911732\pi\)
0.171726 + 0.985145i \(0.445066\pi\)
\(570\) 0 0
\(571\) 18.0577 20.0552i 0.755693 0.839282i −0.235477 0.971880i \(-0.575665\pi\)
0.991170 + 0.132598i \(0.0423319\pi\)
\(572\) 2.74889 1.78515i 0.114937 0.0746409i
\(573\) 0.0208823 + 0.131846i 0.000872370 + 0.00550793i
\(574\) 2.99895 4.92253i 0.125174 0.205462i
\(575\) 0 0
\(576\) 0.293524 0.508398i 0.0122302 0.0211833i
\(577\) −11.1065 13.7154i −0.462370 0.570979i 0.491623 0.870808i \(-0.336404\pi\)
−0.953993 + 0.299829i \(0.903070\pi\)
\(578\) −0.568326 10.8443i −0.0236392 0.451063i
\(579\) −0.362872 0.0771308i −0.0150804 0.00320545i
\(580\) 0 0
\(581\) −37.7246 13.2487i −1.56508 0.549649i
\(582\) −0.314792 0.314792i −0.0130485 0.0130485i
\(583\) −17.4295 0.913439i −0.721854 0.0378308i
\(584\) −15.3129 6.81772i −0.633651 0.282119i
\(585\) 0 0
\(586\) −8.19256 18.4008i −0.338431 0.760129i
\(587\) −3.52976 + 22.2860i −0.145689 + 0.919842i 0.801227 + 0.598360i \(0.204181\pi\)
−0.946916 + 0.321482i \(0.895819\pi\)
\(588\) 0.365222 0.409887i 0.0150615 0.0169035i
\(589\) −17.0803 + 23.5091i −0.703784 + 0.968675i
\(590\) 0 0
\(591\) −0.393511 + 0.883839i −0.0161869 + 0.0363563i
\(592\) −1.75379 1.13892i −0.0720803 0.0468095i
\(593\) −28.9916 + 7.76827i −1.19054 + 0.319005i −0.799100 0.601199i \(-0.794690\pi\)
−0.391441 + 0.920203i \(0.628023\pi\)
\(594\) −0.205248 + 0.631687i −0.00842141 + 0.0259184i
\(595\) 0 0
\(596\) −3.40330 10.4743i −0.139405 0.429043i
\(597\) 0.332848 + 0.512542i 0.0136226 + 0.0209769i
\(598\) −1.29475 + 1.04846i −0.0529461 + 0.0428749i
\(599\) −0.212550 + 0.122716i −0.00868454 + 0.00501402i −0.504336 0.863508i \(-0.668263\pi\)
0.495651 + 0.868522i \(0.334929\pi\)
\(600\) 0 0
\(601\) 0.0516122i 0.00210530i 0.999999 + 0.00105265i \(0.000335070\pi\)
−0.999999 + 0.00105265i \(0.999665\pi\)
\(602\) 14.4020 + 5.92166i 0.586980 + 0.241349i
\(603\) −5.26664 2.68349i −0.214474 0.109280i
\(604\) −2.16584 + 10.1895i −0.0881270 + 0.414605i
\(605\) 0 0
\(606\) 0.340900 0.0724605i 0.0138481 0.00294351i
\(607\) −4.21905 15.7457i −0.171246 0.639099i −0.997161 0.0753037i \(-0.976007\pi\)
0.825915 0.563795i \(-0.190659\pi\)
\(608\) 33.4003 17.0183i 1.35456 0.690184i
\(609\) −0.952708 0.451381i −0.0386057 0.0182909i
\(610\) 0 0
\(611\) 0.0401000 0.0178537i 0.00162227 0.000722282i
\(612\) 0.0138505 0.00531670i 0.000559872 0.000214915i
\(613\) −21.9866 + 8.43988i −0.888032 + 0.340883i −0.759257 0.650791i \(-0.774438\pi\)
−0.128774 + 0.991674i \(0.541104\pi\)
\(614\) −12.6110 + 5.61477i −0.508938 + 0.226594i
\(615\) 0 0
\(616\) 19.3059 + 9.14690i 0.777857 + 0.368539i
\(617\) −36.9814 + 18.8430i −1.48882 + 0.758590i −0.993893 0.110347i \(-0.964804\pi\)
−0.494924 + 0.868937i \(0.664804\pi\)
\(618\) −0.0746401 0.278560i −0.00300246 0.0112053i
\(619\) 32.6605 6.94219i 1.31273 0.279030i 0.502216 0.864742i \(-0.332518\pi\)
0.810519 + 0.585712i \(0.199185\pi\)
\(620\) 0 0
\(621\) −0.273859 + 1.28840i −0.0109896 + 0.0517019i
\(622\) −5.58205 2.84420i −0.223820 0.114042i
\(623\) 3.08673 + 1.26917i 0.123667 + 0.0508482i
\(624\) 0.0495254i 0.00198260i
\(625\) 0 0
\(626\) −9.78828 + 5.65127i −0.391218 + 0.225870i
\(627\) −0.888173 + 0.719228i −0.0354702 + 0.0287232i
\(628\) −20.6858 31.8534i −0.825455 1.27109i
\(629\) 0.00116918 + 0.00359838i 4.66184e−5 + 0.000143477i
\(630\) 0 0
\(631\) −7.10523 + 21.8676i −0.282855 + 0.870537i 0.704179 + 0.710023i \(0.251315\pi\)
−0.987034 + 0.160514i \(0.948685\pi\)
\(632\) −25.1068 + 6.72736i −0.998696 + 0.267600i
\(633\) 0.959098 + 0.622846i 0.0381207 + 0.0247559i
\(634\) −5.54608 + 12.4567i −0.220263 + 0.494719i
\(635\) 0 0
\(636\) 0.228629 0.314681i 0.00906575 0.0124779i
\(637\) −0.830635 + 4.01027i −0.0329110 + 0.158893i
\(638\) 2.84424 17.9578i 0.112605 0.710957i
\(639\) −10.1310 22.7547i −0.400778 0.900161i
\(640\) 0 0
\(641\) 24.0230 + 10.6957i 0.948853 + 0.422456i 0.822014 0.569467i \(-0.192850\pi\)
0.126839 + 0.991923i \(0.459517\pi\)
\(642\) 0.544616 + 0.0285421i 0.0214943 + 0.00112647i
\(643\) −18.6442 18.6442i −0.735254 0.735254i 0.236402 0.971655i \(-0.424032\pi\)
−0.971655 + 0.236402i \(0.924032\pi\)
\(644\) 17.7159 + 6.22174i 0.698105 + 0.245171i
\(645\) 0 0
\(646\) −0.0128052 0.00272183i −0.000503813 0.000107089i
\(647\) 0.776781 + 14.8219i 0.0305384 + 0.582707i 0.970452 + 0.241295i \(0.0775720\pi\)
−0.939913 + 0.341413i \(0.889095\pi\)
\(648\) 12.9640 + 16.0092i 0.509275 + 0.628902i
\(649\) 1.79320 3.10592i 0.0703894 0.121918i
\(650\) 0 0
\(651\) 0.298935 0.490677i 0.0117162 0.0192311i
\(652\) 3.41492 + 21.5610i 0.133739 + 0.844393i
\(653\) 2.07418 1.34699i 0.0811689 0.0527117i −0.503416 0.864044i \(-0.667924\pi\)
0.584585 + 0.811332i \(0.301257\pi\)
\(654\) −0.0571504 + 0.0634719i −0.00223476 + 0.00248195i
\(655\) 0 0
\(656\) 4.35516 3.92140i 0.170040 0.153105i
\(657\) 15.4846 15.4846i 0.604112 0.604112i
\(658\) 0.104684 + 0.0715475i 0.00408102 + 0.00278921i
\(659\) −20.7720 28.5901i −0.809161 1.11371i −0.991452 0.130470i \(-0.958352\pi\)
0.182292 0.983245i \(-0.441648\pi\)
\(660\) 0 0
\(661\) −12.7496 1.34004i −0.495903 0.0521215i −0.146724 0.989178i \(-0.546873\pi\)
−0.349179 + 0.937056i \(0.613539\pi\)
\(662\) 2.18773 + 5.69924i 0.0850286 + 0.221507i
\(663\) 5.63916e−5 0 6.96378e-5i 2.19007e−6 0 2.70451e-6i
\(664\) 28.0524 + 20.3812i 1.08864 + 0.790945i
\(665\) 0 0
\(666\) −1.88524 + 1.36971i −0.0730516 + 0.0530751i
\(667\) 1.88706 36.0073i 0.0730673 1.39421i
\(668\) 1.97063 7.35449i 0.0762460 0.284554i
\(669\) −0.272054 1.27991i −0.0105182 0.0494842i
\(670\) 0 0
\(671\) −28.0738 + 9.12174i −1.08378 + 0.352141i
\(672\) −0.630962 + 0.388915i −0.0243399 + 0.0150027i
\(673\) −29.4878 + 4.67041i −1.13667 + 0.180031i −0.696277 0.717773i \(-0.745161\pi\)
−0.440394 + 0.897804i \(0.645161\pi\)
\(674\) −4.18310 2.41511i −0.161127 0.0930267i
\(675\) 0 0
\(676\) 10.0753 + 17.4510i 0.387512 + 0.671191i
\(677\) −16.3200 + 42.5152i −0.627230 + 1.63399i 0.138149 + 0.990411i \(0.455885\pi\)
−0.765379 + 0.643579i \(0.777449\pi\)
\(678\) 0.197868 0.388337i 0.00759907 0.0149140i
\(679\) −10.7236 35.8595i −0.411533 1.37616i
\(680\) 0 0
\(681\) −0.615223 0.683274i −0.0235754 0.0261831i
\(682\) 9.57155 + 2.56469i 0.366514 + 0.0982071i
\(683\) −18.7286 + 28.8396i −0.716631 + 1.10352i 0.273295 + 0.961930i \(0.411886\pi\)
−0.989926 + 0.141585i \(0.954780\pi\)
\(684\) 3.28822 + 31.2854i 0.125728 + 1.19623i
\(685\) 0 0
\(686\) −11.1206 + 4.03590i −0.424586 + 0.154092i
\(687\) −0.439482 0.0696072i −0.0167673 0.00265568i
\(688\) 12.3038 + 9.96345i 0.469079 + 0.379853i
\(689\) −0.303302 + 2.88573i −0.0115549 + 0.109937i
\(690\) 0 0
\(691\) −29.6140 + 3.11256i −1.12657 + 0.118407i −0.649432 0.760420i \(-0.724993\pi\)
−0.477140 + 0.878827i \(0.658326\pi\)
\(692\) 12.8293 + 25.1789i 0.487697 + 0.957159i
\(693\) −20.1949 + 19.2643i −0.767141 + 0.731791i
\(694\) −2.09555 0.680886i −0.0795460 0.0258461i
\(695\) 0 0
\(696\) 0.679422 + 0.611755i 0.0257534 + 0.0231885i
\(697\) −0.0105889 0.000554939i −0.000401082 2.10198e-5i
\(698\) −3.00090 1.15194i −0.113586 0.0436015i
\(699\) 0.00627332 0.000237279
\(700\) 0 0
\(701\) −45.8591 −1.73208 −0.866038 0.499979i \(-0.833341\pi\)
−0.866038 + 0.499979i \(0.833341\pi\)
\(702\) 0.103088 + 0.0395718i 0.00389081 + 0.00149354i
\(703\) −8.01159 + 0.419870i −0.302163 + 0.0158357i
\(704\) −0.512168 0.461159i −0.0193031 0.0173806i
\(705\) 0 0
\(706\) −4.05690 1.31817i −0.152684 0.0496099i
\(707\) 28.1162 + 8.24894i 1.05742 + 0.310233i
\(708\) 0.0362861 + 0.0712155i 0.00136372 + 0.00267644i
\(709\) −23.4280 + 2.46238i −0.879856 + 0.0924766i −0.533673 0.845691i \(-0.679189\pi\)
−0.346182 + 0.938167i \(0.612522\pi\)
\(710\) 0 0
\(711\) 3.54954 33.7716i 0.133118 1.26653i
\(712\) −2.24932 1.82146i −0.0842968 0.0682622i
\(713\) 19.4093 + 3.07414i 0.726885 + 0.115127i
\(714\) 0.000256720 0 3.31189e-5i 9.60749e−6 0 1.23944e-6i
\(715\) 0 0
\(716\) 0.782269 + 7.44279i 0.0292348 + 0.278150i
\(717\) 0.470616 0.724686i 0.0175755 0.0270639i
\(718\) −2.47537 0.663273i −0.0923799 0.0247531i
\(719\) −23.8551 26.4938i −0.889645 0.988051i 0.110338 0.993894i \(-0.464807\pi\)
−0.999983 + 0.00584290i \(0.998140\pi\)
\(720\) 0 0
\(721\) 5.59880 23.5907i 0.208510 0.878565i
\(722\) 7.09211 13.9191i 0.263941 0.518013i
\(723\) 0.0281011 0.0732060i 0.00104509 0.00272256i
\(724\) −19.5930 33.9361i −0.728169 1.26123i
\(725\) 0 0
\(726\) 0.0377261 + 0.0217812i 0.00140015 + 0.000808375i
\(727\) −33.9484 + 5.37689i −1.25907 + 0.199418i −0.750077 0.661350i \(-0.769984\pi\)
−0.508998 + 0.860768i \(0.669984\pi\)
\(728\) 1.68657 3.12562i 0.0625083 0.115843i
\(729\) −25.5540 + 8.30299i −0.946443 + 0.307518i
\(730\) 0 0
\(731\) −0.00595568 0.0280193i −0.000220279 0.00103633i
\(732\) 0.170265 0.635438i 0.00629318 0.0234865i
\(733\) −0.231075 + 4.40918i −0.00853496 + 0.162857i 0.991037 + 0.133590i \(0.0426505\pi\)
−0.999572 + 0.0292667i \(0.990683\pi\)
\(734\) 11.2474 8.17169i 0.415148 0.301623i
\(735\) 0 0
\(736\) −20.5088 14.9005i −0.755965 0.549240i
\(737\) −4.36707 + 5.39288i −0.160863 + 0.198649i
\(738\) −2.34036 6.09685i −0.0861498 0.224428i
\(739\) −9.96776 1.04765i −0.366670 0.0385386i −0.0805980 0.996747i \(-0.525683\pi\)
−0.286072 + 0.958208i \(0.592350\pi\)
\(740\) 0 0
\(741\) 0.111680 + 0.153714i 0.00410267 + 0.00564683i
\(742\) −7.55595 + 3.62815i −0.277388 + 0.133194i
\(743\) 6.77097 6.77097i 0.248403 0.248403i −0.571912 0.820315i \(-0.693798\pi\)
0.820315 + 0.571912i \(0.193798\pi\)
\(744\) −0.370292 + 0.333413i −0.0135756 + 0.0122235i
\(745\) 0 0
\(746\) 1.57658 1.75096i 0.0577225 0.0641074i
\(747\) −37.9920 + 24.6723i −1.39006 + 0.902713i
\(748\) −0.00272465 0.0172028i −9.96232e−5 0.000628996i
\(749\) 39.1567 + 23.8554i 1.43076 + 0.871659i
\(750\) 0 0
\(751\) 15.4883 26.8266i 0.565177 0.978916i −0.431856 0.901943i \(-0.642141\pi\)
0.997033 0.0769731i \(-0.0245255\pi\)
\(752\) 0.0811304 + 0.100188i 0.00295852 + 0.00365347i
\(753\) −0.0433909 0.827948i −0.00158125 0.0301721i
\(754\) −2.95665 0.628455i −0.107675 0.0228870i
\(755\) 0 0
\(756\) −0.229973 1.22307i −0.00836403 0.0444824i
\(757\) 4.48925 + 4.48925i 0.163164 + 0.163164i 0.783967 0.620803i \(-0.213193\pi\)
−0.620803 + 0.783967i \(0.713193\pi\)
\(758\) −2.70640 0.141837i −0.0983010 0.00515174i
\(759\) 0.706054 + 0.314355i 0.0256281 + 0.0114104i
\(760\) 0 0
\(761\) −18.9521 42.5670i −0.687012 1.54305i −0.832700 0.553724i \(-0.813206\pi\)
0.145688 0.989331i \(-0.453460\pi\)
\(762\) 0.0297549 0.187865i 0.00107791 0.00680564i
\(763\) −6.76266 + 2.41459i −0.244825 + 0.0874141i
\(764\) 2.53549 3.48980i 0.0917308 0.126257i
\(765\) 0 0
\(766\) 0.236519 0.531231i 0.00854579 0.0191942i
\(767\) −0.500049 0.324736i −0.0180557 0.0117255i
\(768\) 0.360540 0.0966065i 0.0130099 0.00348599i
\(769\) −3.45276 + 10.6265i −0.124510 + 0.383201i −0.993811 0.111081i \(-0.964569\pi\)
0.869302 + 0.494282i \(0.164569\pi\)
\(770\) 0 0
\(771\) −0.293704 0.903926i −0.0105775 0.0325541i
\(772\) 6.52913 + 10.0540i 0.234989 + 0.361851i
\(773\) 7.46682 6.04651i 0.268563 0.217478i −0.485573 0.874196i \(-0.661389\pi\)
0.754136 + 0.656718i \(0.228056\pi\)
\(774\) 15.2789 8.82126i 0.549188 0.317074i
\(775\) 0 0
\(776\) 32.4590i 1.16521i
\(777\) 0.157215 0.0211138i 0.00564006 0.000757453i
\(778\) −5.56110 2.83352i −0.199375 0.101587i
\(779\) 4.67453 21.9919i 0.167482 0.787942i
\(780\) 0 0
\(781\) −28.6029 + 6.07974i −1.02349 + 0.217550i
\(782\) 0.00229135 + 0.00855142i 8.19383e−5 + 0.000305798i
\(783\) −2.12933 + 1.08495i −0.0760959 + 0.0387728i
\(784\) −12.0081 + 0.691954i −0.428860 + 0.0247126i
\(785\) 0 0
\(786\) −0.421575 + 0.187697i −0.0150371 + 0.00669493i
\(787\) 17.2641 6.62709i 0.615400 0.236230i −0.0306434 0.999530i \(-0.509756\pi\)
0.646044 + 0.763300i \(0.276422\pi\)
\(788\) 29.1872 11.2039i 1.03975 0.399123i
\(789\) −0.757635 + 0.337321i −0.0269725 + 0.0120089i
\(790\) 0 0
\(791\) 30.1445 20.8334i 1.07182 0.740749i
\(792\) 21.5659 10.9884i 0.766309 0.390454i
\(793\) 1.27014 + 4.74024i 0.0451042 + 0.168331i
\(794\) −3.94738 + 0.839041i −0.140087 + 0.0297765i
\(795\) 0 0
\(796\) 4.10596 19.3170i 0.145532 0.684673i
\(797\) −20.8503 10.6238i −0.738556 0.376313i 0.0438861 0.999037i \(-0.486026\pi\)
−0.782442 + 0.622724i \(0.786026\pi\)
\(798\) −0.208718 + 0.507620i −0.00738854 + 0.0179695i
\(799\) 0 0.000233253i 0 8.25188e-6i
\(800\) 0 0
\(801\) 3.27467 1.89063i 0.115705 0.0668023i
\(802\) 1.82916 1.48122i 0.0645899 0.0523039i
\(803\) −14.0020 21.5612i −0.494119 0.760877i
\(804\) −0.0477898 0.147082i −0.00168542 0.00518718i
\(805\) 0 0
\(806\) 0.509076 1.56677i 0.0179314 0.0551873i
\(807\) −1.14258 + 0.306154i −0.0402207 + 0.0107771i
\(808\) −21.3113 13.8397i −0.749729 0.486880i
\(809\) 8.98201 20.1739i 0.315791 0.709277i −0.684005 0.729477i \(-0.739764\pi\)
0.999796 + 0.0201997i \(0.00643019\pi\)
\(810\) 0 0
\(811\) 11.7193 16.1302i 0.411519 0.566408i −0.552069 0.833799i \(-0.686161\pi\)
0.963588 + 0.267391i \(0.0861614\pi\)
\(812\) 11.4552 + 32.0832i 0.401999 + 1.12590i
\(813\) −0.0192597 + 0.121601i −0.000675467 + 0.00426473i
\(814\) 1.11273 + 2.49922i 0.0390010 + 0.0875977i
\(815\) 0 0
\(816\) 0.000240420 0 0.000107042i 8.41639e−6 0 3.74722e-6i
\(817\) 60.6555 + 3.17882i 2.12207 + 0.111213i
\(818\) −13.8539 13.8539i −0.484389 0.484389i
\(819\) 3.02259 + 3.52042i 0.105618 + 0.123013i
\(820\) 0 0
\(821\) 39.4208 + 8.37915i 1.37580 + 0.292434i 0.835708 0.549174i \(-0.185058\pi\)
0.540088 + 0.841609i \(0.318391\pi\)
\(822\) −0.0163008 0.311037i −0.000568554 0.0108487i
\(823\) −1.15373 1.42474i −0.0402165 0.0496633i 0.756641 0.653831i \(-0.226839\pi\)
−0.796857 + 0.604167i \(0.793506\pi\)
\(824\) −10.5134 + 18.2097i −0.366251 + 0.634365i
\(825\) 0 0
\(826\) 0.0406087 1.72187i 0.00141296 0.0599116i
\(827\) −3.13808 19.8131i −0.109122 0.688968i −0.980228 0.197873i \(-0.936597\pi\)
0.871106 0.491095i \(-0.163403\pi\)
\(828\) 17.8415 11.5864i 0.620034 0.402655i
\(829\) −7.42726 + 8.24881i −0.257959 + 0.286493i −0.858188 0.513336i \(-0.828410\pi\)
0.600229 + 0.799829i \(0.295076\pi\)
\(830\) 0 0
\(831\) −1.00859 + 0.908134i −0.0349874 + 0.0315028i
\(832\) −0.0810188 + 0.0810188i −0.00280882 + 0.00280882i
\(833\) 0.0176725 + 0.0126999i 0.000612315 + 0.000440026i
\(834\) 0.335400 + 0.461638i 0.0116139 + 0.0159852i
\(835\) 0 0
\(836\) 36.7288 + 3.86035i 1.27029 + 0.133513i
\(837\) −0.466762 1.21596i −0.0161337 0.0420296i
\(838\) 2.49965 3.08681i 0.0863490 0.106632i
\(839\) 14.2530 + 10.3554i 0.492069 + 0.357509i 0.805980 0.591943i \(-0.201639\pi\)
−0.313910 + 0.949453i \(0.601639\pi\)
\(840\) 0 0
\(841\) 29.4630 21.4062i 1.01597 0.738143i
\(842\) 0.958304 18.2855i 0.0330253 0.630161i
\(843\) 0.0924801 0.345140i 0.00318518 0.0118873i
\(844\) −7.68331 36.1471i −0.264470 1.24424i
\(845\) 0 0
\(846\) 0.136629 0.0443933i 0.00469739 0.00152627i
\(847\) 1.92176 + 3.11779i 0.0660323 + 0.107129i
\(848\) −8.41703 + 1.33313i −0.289042 + 0.0457798i
\(849\) 0.346115 + 0.199830i 0.0118786 + 0.00685813i
\(850\) 0 0
\(851\) 2.71267 + 4.69848i 0.0929891 + 0.161062i
\(852\) 0.233545 0.608404i 0.00800110 0.0208436i
\(853\) −13.8589 + 27.1996i −0.474519 + 0.931297i 0.522388 + 0.852708i \(0.325041\pi\)
−0.996907 + 0.0785886i \(0.974959\pi\)
\(854\) −9.73142 + 10.3083i −0.333002 + 0.352744i
\(855\) 0 0
\(856\) −26.6068 29.5499i −0.909402 1.00999i
\(857\) 26.1571 + 7.00877i 0.893509 + 0.239415i 0.676227 0.736694i \(-0.263614\pi\)
0.217283 + 0.976109i \(0.430281\pi\)
\(858\) 0.0352879 0.0543386i 0.00120471 0.00185509i
\(859\) −0.100406 0.955297i −0.00342580 0.0325943i 0.992675 0.120812i \(-0.0385497\pi\)
−0.996101 + 0.0882173i \(0.971883\pi\)
\(860\) 0 0
\(861\) −0.0568791 + 0.440896i −0.00193844 + 0.0150257i
\(862\) 4.18906 + 0.663482i 0.142680 + 0.0225983i
\(863\) −15.6555 12.6776i −0.532921 0.431551i 0.324712 0.945813i \(-0.394732\pi\)
−0.857633 + 0.514262i \(0.828066\pi\)
\(864\) −0.175628 + 1.67098i −0.00597497 + 0.0568481i
\(865\) 0 0
\(866\) 12.8329 1.34879i 0.436078 0.0458337i
\(867\) 0.380217 + 0.746218i 0.0129128 + 0.0253429i
\(868\) −18.0425 + 4.38127i −0.612402 + 0.148710i
\(869\) −37.9149 12.3193i −1.28617 0.417903i
\(870\) 0 0
\(871\) 0.857341 + 0.771953i 0.0290499 + 0.0261566i
\(872\) 6.21883 0.325915i 0.210596 0.0110369i
\(873\) −39.5891 15.1968i −1.33989 0.514335i
\(874\) −18.7719 −0.634969
\(875\) 0 0
\(876\) 0.572948 0.0193581
\(877\) 48.6569 + 18.6776i 1.64303 + 0.630699i 0.991755 0.128146i \(-0.0409027\pi\)
0.651271 + 0.758845i \(0.274236\pi\)
\(878\) −6.31089 + 0.330740i −0.212982 + 0.0111619i
\(879\) 1.15443 + 1.03945i 0.0389379 + 0.0350599i
\(880\) 0 0
\(881\) −1.59813 0.519265i −0.0538425 0.0174945i 0.281972 0.959423i \(-0.409012\pi\)
−0.335814 + 0.941928i \(0.609012\pi\)
\(882\) −4.07554 + 12.7688i −0.137231 + 0.429948i
\(883\) 5.52102 + 10.8356i 0.185797 + 0.364647i 0.965051 0.262061i \(-0.0844020\pi\)
−0.779254 + 0.626708i \(0.784402\pi\)
\(884\) −0.00287975 0.000302674i −9.68564e−5 1.01800e-5i
\(885\) 0 0
\(886\) 0.535213 5.09221i 0.0179808 0.171076i
\(887\) −12.8570 10.4114i −0.431696 0.349580i 0.388712 0.921359i \(-0.372920\pi\)
−0.820408 + 0.571779i \(0.806253\pi\)
\(888\) −0.135871 0.0215199i −0.00455954 0.000722160i
\(889\) 9.70203 12.7122i 0.325396 0.426355i
\(890\) 0 0
\(891\) 3.30261 + 31.4223i 0.110642 + 1.05269i
\(892\) −23.0294 + 35.4621i −0.771080 + 1.18736i
\(893\) 0.477732 + 0.128008i 0.0159867 + 0.00428362i
\(894\) −0.145673 0.161787i −0.00487204 0.00541095i
\(895\) 0 0
\(896\) 28.9550 + 6.87189i 0.967318 + 0.229574i
\(897\) 0.0583332 0.114485i 0.00194769 0.00382256i
\(898\) 0.805985 2.09966i 0.0268961 0.0700667i
\(899\) 17.8268 + 30.8770i 0.594558 + 1.02981i
\(900\) 0 0
\(901\) 0.0133532 + 0.00770945i 0.000444858 + 0.000256839i
\(902\) −7.57250 + 1.19937i −0.252137 + 0.0399345i
\(903\) −1.20046 + 0.0345590i −0.0399488 + 0.00115005i
\(904\) −30.2225 + 9.81989i −1.00519 + 0.326605i
\(905\) 0 0
\(906\) 0.0428132 + 0.201420i 0.00142237 + 0.00669175i
\(907\) 0.331257 1.23627i 0.0109992 0.0410496i −0.960208 0.279285i \(-0.909902\pi\)
0.971207 + 0.238236i \(0.0765691\pi\)
\(908\) −1.55496 + 29.6704i −0.0516032 + 0.984647i
\(909\) 26.8575 19.5131i 0.890807 0.647209i
\(910\) 0 0
\(911\) −31.4927 22.8808i −1.04340 0.758075i −0.0724537 0.997372i \(-0.523083\pi\)
−0.970946 + 0.239297i \(0.923083\pi\)
\(912\) −0.351177 + 0.433668i −0.0116286 + 0.0143602i
\(913\) 19.0588 + 49.6499i 0.630755 + 1.64317i
\(914\) 1.97013 + 0.207069i 0.0651660 + 0.00684922i
\(915\) 0 0
\(916\) 8.45158 + 11.6326i 0.279248 + 0.384352i
\(917\) −38.6861 2.94347i −1.27753 0.0972019i
\(918\) 0.000414911 0 0.000414911i 1.36941e−5 0 1.36941e-5i
\(919\) −11.4703 + 10.3279i −0.378372 + 0.340687i −0.836271 0.548317i \(-0.815269\pi\)
0.457899 + 0.889004i \(0.348602\pi\)
\(920\) 0 0
\(921\) 0.712389 0.791188i 0.0234740 0.0260705i
\(922\) −13.3426 + 8.66481i −0.439417 + 0.285360i
\(923\) 0.760502 + 4.80162i 0.0250322 + 0.158047i
\(924\) −0.730018 0.0172168i −0.0240158 0.000566390i
\(925\) 0 0
\(926\) −3.34689 + 5.79698i −0.109986 + 0.190501i
\(927\) −17.2875 21.3483i −0.567797 0.701171i
\(928\) −2.40711 45.9305i −0.0790174 1.50774i
\(929\) 11.5873 + 2.46296i 0.380168 + 0.0808072i 0.394032 0.919097i \(-0.371080\pi\)
−0.0138641 + 0.999904i \(0.504413\pi\)
\(930\) 0 0
\(931\) −35.7096 + 29.2259i −1.17034 + 0.957840i
\(932\) −0.143344 0.143344i −0.00469539 0.00469539i
\(933\) 0.482508 + 0.0252872i 0.0157966 + 0.000827865i
\(934\) −10.9736 4.88577i −0.359067 0.159867i
\(935\) 0 0
\(936\) −1.63667 3.67602i −0.0534962 0.120154i
\(937\) 2.80906 17.7357i 0.0917681 0.579401i −0.898363 0.439254i \(-0.855243\pi\)
0.990131 0.140146i \(-0.0447573\pi\)
\(938\) −0.598792 + 3.27834i −0.0195512 + 0.107042i
\(939\) 0.512368 0.705214i 0.0167205 0.0230138i
\(940\) 0 0
\(941\) 13.8674 31.1468i 0.452065 1.01536i −0.533460 0.845825i \(-0.679108\pi\)
0.985525 0.169530i \(-0.0542249\pi\)
\(942\) −0.629661 0.408907i −0.0205155 0.0133229i
\(943\) −14.6864 + 3.93521i −0.478255 + 0.128148i
\(944\) 0.541130 1.66543i 0.0176123 0.0542050i
\(945\) 0 0
\(946\) −6.40043 19.6985i −0.208096 0.640453i
\(947\) 15.2875 + 23.5407i 0.496777 + 0.764970i 0.994762 0.102216i \(-0.0325933\pi\)
−0.497985 + 0.867186i \(0.665927\pi\)
\(948\) 0.690462 0.559125i 0.0224252 0.0181595i
\(949\) −3.70146 + 2.13704i −0.120154 + 0.0693712i
\(950\) 0 0
\(951\) 1.05162i 0.0341013i
\(952\) −0.0115280 0.0149430i −0.000373625 0.000484305i
\(953\) −27.0986 13.8074i −0.877809 0.447266i −0.0438152 0.999040i \(-0.513951\pi\)
−0.833994 + 0.551774i \(0.813951\pi\)
\(954\) −1.97443 + 9.28895i −0.0639244 + 0.300741i
\(955\) 0 0
\(956\) −27.3124 + 5.80544i −0.883347 + 0.187761i
\(957\) 0.362926 + 1.35446i 0.0117317 + 0.0437834i
\(958\) −22.0819 + 11.2513i −0.713432 + 0.363512i
\(959\) 11.2119 23.6645i 0.362053 0.764166i
\(960\) 0 0
\(961\) 10.5682 4.70528i 0.340911 0.151783i
\(962\) 0.424608 0.162992i 0.0136899 0.00525506i
\(963\) 48.4979 18.6166i 1.56282 0.599912i
\(964\) −2.31485 + 1.03064i −0.0745563 + 0.0331946i
\(965\) 0 0
\(966\) 0.369946 0.0300835i 0.0119028 0.000967921i
\(967\) 17.7365 9.03721i 0.570368 0.290617i −0.144924 0.989443i \(-0.546294\pi\)
0.715292 + 0.698826i \(0.246294\pi\)
\(968\) −0.822060 3.06797i −0.0264220 0.0986083i
\(969\) 0.000987583 0 0.000209917i 3.17257e−5 0 6.74351e-6i
\(970\) 0 0
\(971\) 0.137281 0.645855i 0.00440555 0.0207265i −0.975890 0.218263i \(-0.929961\pi\)
0.980295 + 0.197537i \(0.0632942\pi\)
\(972\) −1.88472 0.960310i −0.0604523 0.0308020i
\(973\) 6.38556 + 47.5474i 0.204712 + 1.52430i
\(974\) 21.4633i 0.687730i
\(975\) 0 0
\(976\) −12.4820 + 7.20651i −0.399540 + 0.230675i
\(977\) −15.2947 + 12.3854i −0.489321 + 0.396244i −0.841981 0.539507i \(-0.818611\pi\)
0.352660 + 0.935751i \(0.385277\pi\)
\(978\) 0.235022 + 0.361902i 0.00751517 + 0.0115723i
\(979\) −1.37178 4.22192i −0.0438424 0.134933i
\(980\) 0 0
\(981\) −2.51406 + 7.73748i −0.0802678 + 0.247039i
\(982\) 2.21597 0.593768i 0.0707145 0.0189479i
\(983\) 13.1523 + 8.54122i 0.419494 + 0.272423i 0.737078 0.675807i \(-0.236205\pi\)
−0.317584 + 0.948230i \(0.602872\pi\)
\(984\) 0.156807 0.352194i 0.00499882 0.0112275i
\(985\) 0 0
\(986\) −0.00944118 + 0.0129947i −0.000300669 + 0.000413835i
\(987\) −0.00962002 0.00175710i −0.000306208 5.59292e-5i
\(988\) 0.960476 6.06421i 0.0305568 0.192928i
\(989\) −16.7068 37.5240i −0.531244 1.19319i
\(990\) 0 0
\(991\) −19.2192 8.55695i −0.610519 0.271821i 0.0780982 0.996946i \(-0.475115\pi\)
−0.688617 + 0.725125i \(0.741782\pi\)
\(992\) 25.0326 + 1.31190i 0.794785 + 0.0416529i
\(993\) −0.332918 0.332918i −0.0105648 0.0105648i
\(994\) −10.6548 + 9.14811i −0.337951 + 0.290160i
\(995\) 0 0
\(996\) −1.15933 0.246422i −0.0367346 0.00780819i
\(997\) 0.681112 + 12.9964i 0.0215710 + 0.411600i 0.987979 + 0.154587i \(0.0494048\pi\)
−0.966408 + 0.257012i \(0.917262\pi\)
\(998\) −13.8795 17.1398i −0.439349 0.542550i
\(999\) 0.179793 0.311410i 0.00568839 0.00985259i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.bb.a.82.7 288
5.2 odd 4 175.2.x.a.138.12 yes 288
5.3 odd 4 875.2.bb.c.418.7 288
5.4 even 2 875.2.bb.b.82.12 288
7.3 odd 6 inner 875.2.bb.a.332.12 288
25.2 odd 20 875.2.bb.b.593.7 288
25.11 even 5 875.2.bb.c.782.7 288
25.14 even 10 175.2.x.a.152.12 yes 288
25.23 odd 20 inner 875.2.bb.a.593.12 288
35.3 even 12 875.2.bb.c.668.7 288
35.17 even 12 175.2.x.a.38.12 288
35.24 odd 6 875.2.bb.b.332.7 288
175.52 even 60 875.2.bb.b.843.12 288
175.73 even 60 inner 875.2.bb.a.843.7 288
175.136 odd 30 875.2.bb.c.157.7 288
175.164 odd 30 175.2.x.a.52.12 yes 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.2.x.a.38.12 288 35.17 even 12
175.2.x.a.52.12 yes 288 175.164 odd 30
175.2.x.a.138.12 yes 288 5.2 odd 4
175.2.x.a.152.12 yes 288 25.14 even 10
875.2.bb.a.82.7 288 1.1 even 1 trivial
875.2.bb.a.332.12 288 7.3 odd 6 inner
875.2.bb.a.593.12 288 25.23 odd 20 inner
875.2.bb.a.843.7 288 175.73 even 60 inner
875.2.bb.b.82.12 288 5.4 even 2
875.2.bb.b.332.7 288 35.24 odd 6
875.2.bb.b.593.7 288 25.2 odd 20
875.2.bb.b.843.12 288 175.52 even 60
875.2.bb.c.157.7 288 175.136 odd 30
875.2.bb.c.418.7 288 5.3 odd 4
875.2.bb.c.668.7 288 35.3 even 12
875.2.bb.c.782.7 288 25.11 even 5