Properties

Label 87.7.b.a.59.8
Level $87$
Weight $7$
Character 87.59
Analytic conductor $20.015$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [87,7,Mod(59,87)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(87, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("87.59"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 87.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.0147052749\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 59.8
Character \(\chi\) \(=\) 87.59
Dual form 87.7.b.a.59.49

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-12.4411i q^{2} +(1.67176 + 26.9482i) q^{3} -90.7821 q^{4} -69.4567i q^{5} +(335.266 - 20.7986i) q^{6} +181.456 q^{7} +333.200i q^{8} +(-723.410 + 90.1019i) q^{9} -864.121 q^{10} +2518.11i q^{11} +(-151.766 - 2446.41i) q^{12} -1777.19 q^{13} -2257.52i q^{14} +(1871.73 - 116.115i) q^{15} -1664.67 q^{16} +1548.23i q^{17} +(1120.97 + 9000.05i) q^{18} +12597.7 q^{19} +6305.43i q^{20} +(303.351 + 4889.91i) q^{21} +31328.2 q^{22} +13378.3i q^{23} +(-8979.13 + 557.031i) q^{24} +10800.8 q^{25} +22110.3i q^{26} +(-3637.45 - 19344.0i) q^{27} -16473.0 q^{28} +4528.92i q^{29} +(-1444.61 - 23286.5i) q^{30} +16974.1 q^{31} +42035.1i q^{32} +(-67858.6 + 4209.69i) q^{33} +19261.7 q^{34} -12603.3i q^{35} +(65672.7 - 8179.64i) q^{36} +95.9247 q^{37} -156730. i q^{38} +(-2971.04 - 47892.1i) q^{39} +23143.0 q^{40} +44000.1i q^{41} +(60836.1 - 3774.04i) q^{42} +122875. q^{43} -228600. i q^{44} +(6258.19 + 50245.7i) q^{45} +166441. q^{46} +138705. i q^{47} +(-2782.93 - 44859.8i) q^{48} -84722.7 q^{49} -134374. i q^{50} +(-41721.9 + 2588.27i) q^{51} +161337. q^{52} +87390.6i q^{53} +(-240661. + 45254.1i) q^{54} +174900. q^{55} +60461.1i q^{56} +(21060.4 + 339486. i) q^{57} +56345.0 q^{58} -134377. i q^{59} +(-169920. + 10541.2i) q^{60} -408931. q^{61} -211177. i q^{62} +(-131267. + 16349.5i) q^{63} +416427. q^{64} +123438. i q^{65} +(52373.3 + 844239. i) q^{66} -377861. q^{67} -140551. i q^{68} +(-360520. + 22365.3i) q^{69} -156800. q^{70} +283247. i q^{71} +(-30021.9 - 241040. i) q^{72} +232402. q^{73} -1193.41i q^{74} +(18056.3 + 291061. i) q^{75} -1.14365e6 q^{76} +456927. i q^{77} +(-595832. + 36963.1i) q^{78} +496261. q^{79} +115622. i q^{80} +(515204. - 130361. i) q^{81} +547412. q^{82} -69521.1i q^{83} +(-27538.9 - 443916. i) q^{84} +107535. q^{85} -1.52870e6i q^{86} +(-122046. + 7571.28i) q^{87} -839035. q^{88} +115565. i q^{89} +(625114. - 77859.0i) q^{90} -322482. q^{91} -1.21451e6i q^{92} +(28376.6 + 457420. i) q^{93} +1.72565e6 q^{94} -874998. i q^{95} +(-1.13277e6 + 70272.8i) q^{96} -928194. q^{97} +1.05405e6i q^{98} +(-226887. - 1.82163e6i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 52 q^{3} - 1924 q^{4} - 160 q^{6} + 160 q^{7} - 1060 q^{9} - 3588 q^{10} - 2166 q^{12} - 1400 q^{13} - 6240 q^{15} + 56588 q^{16} - 5978 q^{18} + 25000 q^{19} + 7520 q^{21} + 20970 q^{22} + 1238 q^{24}+ \cdots + 4793544 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 12.4411i 1.55514i −0.628794 0.777572i \(-0.716451\pi\)
0.628794 0.777572i \(-0.283549\pi\)
\(3\) 1.67176 + 26.9482i 0.0619171 + 0.998081i
\(4\) −90.7821 −1.41847
\(5\) 69.4567i 0.555654i −0.960631 0.277827i \(-0.910386\pi\)
0.960631 0.277827i \(-0.0896142\pi\)
\(6\) 335.266 20.7986i 1.55216 0.0962900i
\(7\) 181.456 0.529026 0.264513 0.964382i \(-0.414789\pi\)
0.264513 + 0.964382i \(0.414789\pi\)
\(8\) 333.200i 0.650781i
\(9\) −723.410 + 90.1019i −0.992333 + 0.123597i
\(10\) −864.121 −0.864121
\(11\) 2518.11i 1.89190i 0.324318 + 0.945948i \(0.394865\pi\)
−0.324318 + 0.945948i \(0.605135\pi\)
\(12\) −151.766 2446.41i −0.0878276 1.41575i
\(13\) −1777.19 −0.808917 −0.404459 0.914556i \(-0.632540\pi\)
−0.404459 + 0.914556i \(0.632540\pi\)
\(14\) 2257.52i 0.822711i
\(15\) 1871.73 116.115i 0.554588 0.0344045i
\(16\) −1664.67 −0.406413
\(17\) 1548.23i 0.315129i 0.987509 + 0.157564i \(0.0503642\pi\)
−0.987509 + 0.157564i \(0.949636\pi\)
\(18\) 1120.97 + 9000.05i 0.192210 + 1.54322i
\(19\) 12597.7 1.83667 0.918336 0.395801i \(-0.129533\pi\)
0.918336 + 0.395801i \(0.129533\pi\)
\(20\) 6305.43i 0.788178i
\(21\) 303.351 + 4889.91i 0.0327558 + 0.528011i
\(22\) 31328.2 2.94217
\(23\) 13378.3i 1.09955i 0.835311 + 0.549777i \(0.185287\pi\)
−0.835311 + 0.549777i \(0.814713\pi\)
\(24\) −8979.13 + 557.031i −0.649532 + 0.0402945i
\(25\) 10800.8 0.691249
\(26\) 22110.3i 1.25798i
\(27\) −3637.45 19344.0i −0.184802 0.982776i
\(28\) −16473.0 −0.750408
\(29\) 4528.92i 0.185695i
\(30\) −1444.61 23286.5i −0.0535039 0.862463i
\(31\) 16974.1 0.569771 0.284886 0.958561i \(-0.408044\pi\)
0.284886 + 0.958561i \(0.408044\pi\)
\(32\) 42035.1i 1.28281i
\(33\) −67858.6 + 4209.69i −1.88827 + 0.117141i
\(34\) 19261.7 0.490070
\(35\) 12603.3i 0.293955i
\(36\) 65672.7 8179.64i 1.40759 0.175318i
\(37\) 95.9247 0.00189376 0.000946880 1.00000i \(-0.499699\pi\)
0.000946880 1.00000i \(0.499699\pi\)
\(38\) 156730.i 2.85629i
\(39\) −2971.04 47892.1i −0.0500858 0.807365i
\(40\) 23143.0 0.361609
\(41\) 44000.1i 0.638414i 0.947685 + 0.319207i \(0.103417\pi\)
−0.947685 + 0.319207i \(0.896583\pi\)
\(42\) 60836.1 3774.04i 0.821133 0.0509399i
\(43\) 122875. 1.54546 0.772729 0.634737i \(-0.218891\pi\)
0.772729 + 0.634737i \(0.218891\pi\)
\(44\) 228600.i 2.68360i
\(45\) 6258.19 + 50245.7i 0.0686769 + 0.551393i
\(46\) 166441. 1.70996
\(47\) 138705.i 1.33597i 0.744173 + 0.667987i \(0.232844\pi\)
−0.744173 + 0.667987i \(0.767156\pi\)
\(48\) −2782.93 44859.8i −0.0251639 0.405633i
\(49\) −84722.7 −0.720131
\(50\) 134374.i 1.07499i
\(51\) −41721.9 + 2588.27i −0.314524 + 0.0195119i
\(52\) 161337. 1.14742
\(53\) 87390.6i 0.586998i 0.955959 + 0.293499i \(0.0948198\pi\)
−0.955959 + 0.293499i \(0.905180\pi\)
\(54\) −240661. + 45254.1i −1.52836 + 0.287393i
\(55\) 174900. 1.05124
\(56\) 60461.1i 0.344280i
\(57\) 21060.4 + 339486.i 0.113721 + 1.83315i
\(58\) 56345.0 0.288783
\(59\) 134377.i 0.654287i −0.944975 0.327144i \(-0.893914\pi\)
0.944975 0.327144i \(-0.106086\pi\)
\(60\) −169920. + 10541.2i −0.786666 + 0.0488017i
\(61\) −408931. −1.80161 −0.900805 0.434224i \(-0.857023\pi\)
−0.900805 + 0.434224i \(0.857023\pi\)
\(62\) 211177.i 0.886076i
\(63\) −131267. + 16349.5i −0.524970 + 0.0653858i
\(64\) 416427. 1.58854
\(65\) 123438.i 0.449478i
\(66\) 52373.3 + 844239.i 0.182171 + 2.93652i
\(67\) −377861. −1.25634 −0.628170 0.778076i \(-0.716196\pi\)
−0.628170 + 0.778076i \(0.716196\pi\)
\(68\) 140551.i 0.447001i
\(69\) −360520. + 22365.3i −1.09744 + 0.0680812i
\(70\) −156800. −0.457143
\(71\) 283247.i 0.791389i 0.918382 + 0.395694i \(0.129496\pi\)
−0.918382 + 0.395694i \(0.870504\pi\)
\(72\) −30021.9 241040.i −0.0804343 0.645791i
\(73\) 232402. 0.597408 0.298704 0.954346i \(-0.403446\pi\)
0.298704 + 0.954346i \(0.403446\pi\)
\(74\) 1193.41i 0.00294507i
\(75\) 18056.3 + 291061.i 0.0428001 + 0.689922i
\(76\) −1.14365e6 −2.60526
\(77\) 456927.i 1.00086i
\(78\) −595832. + 36963.1i −1.25557 + 0.0778906i
\(79\) 496261. 1.00653 0.503267 0.864131i \(-0.332131\pi\)
0.503267 + 0.864131i \(0.332131\pi\)
\(80\) 115622.i 0.225825i
\(81\) 515204. 130361.i 0.969448 0.245298i
\(82\) 547412. 0.992825
\(83\) 69521.1i 0.121586i −0.998150 0.0607928i \(-0.980637\pi\)
0.998150 0.0607928i \(-0.0193629\pi\)
\(84\) −27538.9 443916.i −0.0464631 0.748968i
\(85\) 107535. 0.175102
\(86\) 1.52870e6i 2.40341i
\(87\) −122046. + 7571.28i −0.185339 + 0.0114977i
\(88\) −839035. −1.23121
\(89\) 115565.i 0.163929i 0.996635 + 0.0819646i \(0.0261195\pi\)
−0.996635 + 0.0819646i \(0.973881\pi\)
\(90\) 625114. 77859.0i 0.857496 0.106802i
\(91\) −322482. −0.427938
\(92\) 1.21451e6i 1.55969i
\(93\) 28376.6 + 457420.i 0.0352786 + 0.568678i
\(94\) 1.72565e6 2.07763
\(95\) 874998.i 1.02055i
\(96\) −1.13277e6 + 70272.8i −1.28035 + 0.0794279i
\(97\) −928194. −1.01701 −0.508503 0.861060i \(-0.669801\pi\)
−0.508503 + 0.861060i \(0.669801\pi\)
\(98\) 1.05405e6i 1.11991i
\(99\) −226887. 1.82163e6i −0.233832 1.87739i
\(100\) −980516. −0.980516
\(101\) 246027.i 0.238791i 0.992847 + 0.119396i \(0.0380957\pi\)
−0.992847 + 0.119396i \(0.961904\pi\)
\(102\) 32201.0 + 519069.i 0.0303437 + 0.489130i
\(103\) −1.07519e6 −0.983954 −0.491977 0.870608i \(-0.663726\pi\)
−0.491977 + 0.870608i \(0.663726\pi\)
\(104\) 592160.i 0.526428i
\(105\) 339637. 21069.8i 0.293391 0.0182009i
\(106\) 1.08724e6 0.912867
\(107\) 1.21030e6i 0.987966i 0.869472 + 0.493983i \(0.164459\pi\)
−0.869472 + 0.493983i \(0.835541\pi\)
\(108\) 330216. + 1.75609e6i 0.262136 + 1.39404i
\(109\) −156918. −0.121170 −0.0605849 0.998163i \(-0.519297\pi\)
−0.0605849 + 0.998163i \(0.519297\pi\)
\(110\) 2.17596e6i 1.63483i
\(111\) 160.363 + 2585.00i 0.000117256 + 0.00189013i
\(112\) −302064. −0.215003
\(113\) 2.76551e6i 1.91663i −0.285705 0.958317i \(-0.592228\pi\)
0.285705 0.958317i \(-0.407772\pi\)
\(114\) 4.22360e6 262016.i 2.85081 0.176853i
\(115\) 929212. 0.610972
\(116\) 411145.i 0.263403i
\(117\) 1.28564e6 160128.i 0.802715 0.0999794i
\(118\) −1.67180e6 −1.01751
\(119\) 280935.i 0.166711i
\(120\) 38689.5 + 623661.i 0.0223898 + 0.360915i
\(121\) −4.56934e6 −2.57927
\(122\) 5.08757e6i 2.80176i
\(123\) −1.18572e6 + 73557.7i −0.637189 + 0.0395287i
\(124\) −1.54094e6 −0.808204
\(125\) 1.83545e6i 0.939749i
\(126\) 203407. + 1.63311e6i 0.101684 + 0.816403i
\(127\) 2.20316e6 1.07556 0.537781 0.843085i \(-0.319263\pi\)
0.537781 + 0.843085i \(0.319263\pi\)
\(128\) 2.49058e6i 1.18760i
\(129\) 205417. + 3.31125e6i 0.0956902 + 1.54249i
\(130\) 1.53571e6 0.699002
\(131\) 1.27552e6i 0.567380i 0.958916 + 0.283690i \(0.0915586\pi\)
−0.958916 + 0.283690i \(0.908441\pi\)
\(132\) 6.16035e6 382164.i 2.67845 0.166161i
\(133\) 2.28593e6 0.971648
\(134\) 4.70102e6i 1.95379i
\(135\) −1.34357e6 + 252646.i −0.546083 + 0.102686i
\(136\) −515869. −0.205080
\(137\) 1.54899e6i 0.602401i 0.953561 + 0.301201i \(0.0973874\pi\)
−0.953561 + 0.301201i \(0.902613\pi\)
\(138\) 278250. + 4.48529e6i 0.105876 + 1.70668i
\(139\) 14076.8 0.00524154 0.00262077 0.999997i \(-0.499166\pi\)
0.00262077 + 0.999997i \(0.499166\pi\)
\(140\) 1.14416e6i 0.416967i
\(141\) −3.73785e6 + 231881.i −1.33341 + 0.0827197i
\(142\) 3.52391e6 1.23072
\(143\) 4.47517e6i 1.53039i
\(144\) 1.20424e6 149990.i 0.403297 0.0502312i
\(145\) 314564. 0.103182
\(146\) 2.89134e6i 0.929055i
\(147\) −141636. 2.28312e6i −0.0445884 0.718750i
\(148\) −8708.24 −0.00268624
\(149\) 3.08067e6i 0.931292i −0.884971 0.465646i \(-0.845822\pi\)
0.884971 0.465646i \(-0.154178\pi\)
\(150\) 3.62113e6 224641.i 1.07293 0.0665603i
\(151\) −2.96200e6 −0.860308 −0.430154 0.902756i \(-0.641541\pi\)
−0.430154 + 0.902756i \(0.641541\pi\)
\(152\) 4.19756e6i 1.19527i
\(153\) −139498. 1.12000e6i −0.0389488 0.312712i
\(154\) 5.68469e6 1.55648
\(155\) 1.17896e6i 0.316596i
\(156\) 269717. + 4.34774e6i 0.0710452 + 1.14522i
\(157\) 3.51787e6 0.909035 0.454517 0.890738i \(-0.349812\pi\)
0.454517 + 0.890738i \(0.349812\pi\)
\(158\) 6.17405e6i 1.56530i
\(159\) −2.35502e6 + 146096.i −0.585872 + 0.0363452i
\(160\) 2.91962e6 0.712799
\(161\) 2.42757e6i 0.581693i
\(162\) −1.62184e6 6.40973e6i −0.381473 1.50763i
\(163\) 579605. 0.133835 0.0669174 0.997759i \(-0.478684\pi\)
0.0669174 + 0.997759i \(0.478684\pi\)
\(164\) 3.99442e6i 0.905571i
\(165\) 292391. + 4.71324e6i 0.0650897 + 1.04922i
\(166\) −864922. −0.189083
\(167\) 4.56476e6i 0.980095i −0.871696 0.490048i \(-0.836979\pi\)
0.871696 0.490048i \(-0.163021\pi\)
\(168\) −1.62932e6 + 101077.i −0.343620 + 0.0213168i
\(169\) −1.66840e6 −0.345653
\(170\) 1.33786e6i 0.272309i
\(171\) −9.11333e6 + 1.13508e6i −1.82259 + 0.227006i
\(172\) −1.11548e7 −2.19218
\(173\) 7.46793e6i 1.44232i 0.692768 + 0.721160i \(0.256391\pi\)
−0.692768 + 0.721160i \(0.743609\pi\)
\(174\) 94195.4 + 1.51840e6i 0.0178806 + 0.288229i
\(175\) 1.95986e6 0.365689
\(176\) 4.19182e6i 0.768891i
\(177\) 3.62121e6 224646.i 0.653032 0.0405116i
\(178\) 1.43776e6 0.254933
\(179\) 1.99657e6i 0.348118i 0.984735 + 0.174059i \(0.0556883\pi\)
−0.984735 + 0.174059i \(0.944312\pi\)
\(180\) −568131. 4.56141e6i −0.0974162 0.782135i
\(181\) −3.64456e6 −0.614624 −0.307312 0.951609i \(-0.599429\pi\)
−0.307312 + 0.951609i \(0.599429\pi\)
\(182\) 4.01204e6i 0.665505i
\(183\) −683636. 1.10200e7i −0.111550 1.79815i
\(184\) −4.45764e6 −0.715569
\(185\) 6662.61i 0.00105228i
\(186\) 5.69083e6 353037.i 0.884376 0.0548633i
\(187\) −3.89861e6 −0.596191
\(188\) 1.25919e7i 1.89504i
\(189\) −660038. 3.51008e6i −0.0977650 0.519914i
\(190\) −1.08860e7 −1.58711
\(191\) 2.13196e6i 0.305970i −0.988229 0.152985i \(-0.951111\pi\)
0.988229 0.152985i \(-0.0488886\pi\)
\(192\) 696166. + 1.12219e7i 0.0983579 + 1.58549i
\(193\) 7.79139e6 1.08378 0.541892 0.840448i \(-0.317708\pi\)
0.541892 + 0.840448i \(0.317708\pi\)
\(194\) 1.15478e7i 1.58159i
\(195\) −3.32643e6 + 206359.i −0.448616 + 0.0278304i
\(196\) 7.69131e6 1.02148
\(197\) 2.76698e6i 0.361916i −0.983491 0.180958i \(-0.942080\pi\)
0.983491 0.180958i \(-0.0579198\pi\)
\(198\) −2.26632e7 + 2.82273e6i −2.91961 + 0.363642i
\(199\) 2.85878e6 0.362762 0.181381 0.983413i \(-0.441943\pi\)
0.181381 + 0.983413i \(0.441943\pi\)
\(200\) 3.59881e6i 0.449851i
\(201\) −631693. 1.01827e7i −0.0777890 1.25393i
\(202\) 3.06086e6 0.371355
\(203\) 821800.i 0.0982377i
\(204\) 3.78760e6 234968.i 0.446143 0.0276770i
\(205\) 3.05611e6 0.354737
\(206\) 1.33766e7i 1.53019i
\(207\) −1.20541e6 9.67799e6i −0.135901 1.09112i
\(208\) 2.95843e6 0.328754
\(209\) 3.17225e7i 3.47479i
\(210\) −262132. 4.22548e6i −0.0283050 0.456266i
\(211\) 1.23229e7 1.31179 0.655897 0.754850i \(-0.272291\pi\)
0.655897 + 0.754850i \(0.272291\pi\)
\(212\) 7.93350e6i 0.832640i
\(213\) −7.63299e6 + 473521.i −0.789870 + 0.0490005i
\(214\) 1.50575e7 1.53643
\(215\) 8.53447e6i 0.858739i
\(216\) 6.44541e6 1.21200e6i 0.639572 0.120265i
\(217\) 3.08004e6 0.301424
\(218\) 1.95225e6i 0.188436i
\(219\) 388521. + 6.26281e6i 0.0369898 + 0.596262i
\(220\) −1.58778e7 −1.49115
\(221\) 2.75150e6i 0.254913i
\(222\) 32160.3 1995.10i 0.00293942 0.000182350i
\(223\) 9.62889e6 0.868284 0.434142 0.900845i \(-0.357052\pi\)
0.434142 + 0.900845i \(0.357052\pi\)
\(224\) 7.62753e6i 0.678640i
\(225\) −7.81338e6 + 973170.i −0.685949 + 0.0854360i
\(226\) −3.44061e7 −2.98064
\(227\) 4.76958e6i 0.407758i 0.978996 + 0.203879i \(0.0653549\pi\)
−0.978996 + 0.203879i \(0.934645\pi\)
\(228\) −1.91191e6 3.08193e7i −0.161310 2.60027i
\(229\) −4.50772e6 −0.375362 −0.187681 0.982230i \(-0.560097\pi\)
−0.187681 + 0.982230i \(0.560097\pi\)
\(230\) 1.15605e7i 0.950148i
\(231\) −1.23134e7 + 763873.i −0.998942 + 0.0619705i
\(232\) −1.50904e6 −0.120847
\(233\) 857505.i 0.0677905i 0.999425 + 0.0338952i \(0.0107913\pi\)
−0.999425 + 0.0338952i \(0.989209\pi\)
\(234\) −1.99218e6 1.59948e7i −0.155482 1.24834i
\(235\) 9.63399e6 0.742339
\(236\) 1.21990e7i 0.928087i
\(237\) 829629. + 1.33733e7i 0.0623217 + 1.00460i
\(238\) 3.49515e6 0.259260
\(239\) 2.47698e7i 1.81439i −0.420715 0.907193i \(-0.638221\pi\)
0.420715 0.907193i \(-0.361779\pi\)
\(240\) −3.11581e6 + 193293.i −0.225392 + 0.0139824i
\(241\) 2.79142e6 0.199423 0.0997114 0.995016i \(-0.468208\pi\)
0.0997114 + 0.995016i \(0.468208\pi\)
\(242\) 5.68478e7i 4.01114i
\(243\) 4.37430e6 + 1.36659e7i 0.304853 + 0.952400i
\(244\) 3.71236e7 2.55553
\(245\) 5.88456e6i 0.400144i
\(246\) 915142. + 1.47518e7i 0.0614729 + 0.990920i
\(247\) −2.23886e7 −1.48572
\(248\) 5.65575e6i 0.370796i
\(249\) 1.87347e6 116223.i 0.121352 0.00752823i
\(250\) −2.28351e7 −1.46144
\(251\) 2.61685e7i 1.65484i 0.561580 + 0.827422i \(0.310194\pi\)
−0.561580 + 0.827422i \(0.689806\pi\)
\(252\) 1.19167e7 1.48424e6i 0.744654 0.0927479i
\(253\) −3.36880e7 −2.08024
\(254\) 2.74098e7i 1.67265i
\(255\) 179773. + 2.89787e6i 0.0108418 + 0.174766i
\(256\) −4.33430e6 −0.258344
\(257\) 2.32276e7i 1.36838i −0.729305 0.684188i \(-0.760157\pi\)
0.729305 0.684188i \(-0.239843\pi\)
\(258\) 4.11957e7 2.55563e6i 2.39880 0.148812i
\(259\) 17406.1 0.00100185
\(260\) 1.12059e7i 0.637571i
\(261\) −408065. 3.27627e6i −0.0229513 0.184272i
\(262\) 1.58689e7 0.882357
\(263\) 2.02481e7i 1.11305i 0.830830 + 0.556527i \(0.187866\pi\)
−0.830830 + 0.556527i \(0.812134\pi\)
\(264\) −1.40267e6 2.26105e7i −0.0762330 1.22885i
\(265\) 6.06986e6 0.326168
\(266\) 2.84396e7i 1.51105i
\(267\) −3.11427e6 + 193197.i −0.163615 + 0.0101500i
\(268\) 3.43030e7 1.78208
\(269\) 3.66111e7i 1.88086i −0.339990 0.940429i \(-0.610424\pi\)
0.339990 0.940429i \(-0.389576\pi\)
\(270\) 3.14320e6 + 1.67155e7i 0.159691 + 0.849237i
\(271\) 1.04674e7 0.525935 0.262968 0.964805i \(-0.415299\pi\)
0.262968 + 0.964805i \(0.415299\pi\)
\(272\) 2.57728e6i 0.128072i
\(273\) −539113. 8.69031e6i −0.0264967 0.427117i
\(274\) 1.92712e7 0.936820
\(275\) 2.71976e7i 1.30777i
\(276\) 3.27288e7 2.03037e6i 1.55669 0.0965712i
\(277\) 3.17187e7 1.49237 0.746184 0.665740i \(-0.231884\pi\)
0.746184 + 0.665740i \(0.231884\pi\)
\(278\) 175131.i 0.00815135i
\(279\) −1.22792e7 + 1.52940e6i −0.565403 + 0.0704218i
\(280\) 4.19943e6 0.191301
\(281\) 2.60108e7i 1.17229i 0.810206 + 0.586145i \(0.199355\pi\)
−0.810206 + 0.586145i \(0.800645\pi\)
\(282\) 2.88487e6 + 4.65031e7i 0.128641 + 2.07364i
\(283\) 2.71504e7 1.19789 0.598945 0.800790i \(-0.295587\pi\)
0.598945 + 0.800790i \(0.295587\pi\)
\(284\) 2.57137e7i 1.12256i
\(285\) 2.35796e7 1.46279e6i 1.01860 0.0631898i
\(286\) −5.56762e7 −2.37997
\(287\) 7.98409e6i 0.337738i
\(288\) −3.78745e6 3.04087e7i −0.158551 1.27297i
\(289\) 2.17406e7 0.900694
\(290\) 3.91354e6i 0.160463i
\(291\) −1.55172e6 2.50131e7i −0.0629701 1.01505i
\(292\) −2.10979e7 −0.847405
\(293\) 1.61364e6i 0.0641511i −0.999485 0.0320755i \(-0.989788\pi\)
0.999485 0.0320755i \(-0.0102117\pi\)
\(294\) −2.84047e7 + 1.76212e6i −1.11776 + 0.0693414i
\(295\) −9.33338e6 −0.363557
\(296\) 31962.1i 0.00123242i
\(297\) 4.87103e7 9.15953e6i 1.85931 0.349626i
\(298\) −3.83270e7 −1.44829
\(299\) 2.37758e7i 0.889448i
\(300\) −1.63919e6 2.64231e7i −0.0607107 0.978634i
\(301\) 2.22963e7 0.817587
\(302\) 3.68506e7i 1.33790i
\(303\) −6.62998e6 + 411299.i −0.238333 + 0.0147853i
\(304\) −2.09710e7 −0.746447
\(305\) 2.84030e7i 1.00107i
\(306\) −1.39341e7 + 1.73552e6i −0.486313 + 0.0605710i
\(307\) 1.09561e7 0.378652 0.189326 0.981914i \(-0.439370\pi\)
0.189326 + 0.981914i \(0.439370\pi\)
\(308\) 4.14808e7i 1.41969i
\(309\) −1.79747e6 2.89745e7i −0.0609236 0.982066i
\(310\) −1.46676e7 −0.492352
\(311\) 1.03736e7i 0.344865i −0.985021 0.172432i \(-0.944837\pi\)
0.985021 0.172432i \(-0.0551626\pi\)
\(312\) 1.59576e7 989950.i 0.525418 0.0325949i
\(313\) 2.42037e7 0.789313 0.394656 0.918829i \(-0.370864\pi\)
0.394656 + 0.918829i \(0.370864\pi\)
\(314\) 4.37663e7i 1.41368i
\(315\) 1.13559e6 + 9.11739e6i 0.0363319 + 0.291702i
\(316\) −4.50516e7 −1.42774
\(317\) 1.10132e7i 0.345728i 0.984946 + 0.172864i \(0.0553021\pi\)
−0.984946 + 0.172864i \(0.944698\pi\)
\(318\) 1.81760e6 + 2.92991e7i 0.0565221 + 0.911115i
\(319\) −1.14043e7 −0.351316
\(320\) 2.89236e7i 0.882679i
\(321\) −3.26154e7 + 2.02333e6i −0.986070 + 0.0611720i
\(322\) 3.02017e7 0.904616
\(323\) 1.95042e7i 0.578788i
\(324\) −4.67713e7 + 1.18345e7i −1.37513 + 0.347948i
\(325\) −1.91950e7 −0.559163
\(326\) 7.21095e6i 0.208132i
\(327\) −262330. 4.22867e6i −0.00750249 0.120937i
\(328\) −1.46608e7 −0.415468
\(329\) 2.51688e7i 0.706765i
\(330\) 5.86381e7 3.63768e6i 1.63169 0.101224i
\(331\) −1.27658e7 −0.352018 −0.176009 0.984389i \(-0.556319\pi\)
−0.176009 + 0.984389i \(0.556319\pi\)
\(332\) 6.31127e6i 0.172466i
\(333\) −69392.9 + 8643.00i −0.00187924 + 0.000234062i
\(334\) −5.67908e7 −1.52419
\(335\) 2.62450e7i 0.698090i
\(336\) −504979. 8.14007e6i −0.0133124 0.214590i
\(337\) −3.78399e7 −0.988691 −0.494346 0.869265i \(-0.664592\pi\)
−0.494346 + 0.869265i \(0.664592\pi\)
\(338\) 2.07568e7i 0.537540i
\(339\) 7.45254e7 4.62327e6i 1.91296 0.118672i
\(340\) −9.76223e6 −0.248378
\(341\) 4.27426e7i 1.07795i
\(342\) 1.41217e7 + 1.13380e8i 0.353028 + 2.83439i
\(343\) −3.67216e7 −0.909994
\(344\) 4.09418e7i 1.00575i
\(345\) 1.55342e6 + 2.50406e7i 0.0378296 + 0.609799i
\(346\) 9.29096e7 2.24302
\(347\) 5.07869e7i 1.21552i 0.794120 + 0.607761i \(0.207932\pi\)
−0.794120 + 0.607761i \(0.792068\pi\)
\(348\) 1.10796e7 687337.i 0.262898 0.0163092i
\(349\) −4.56293e6 −0.107342 −0.0536708 0.998559i \(-0.517092\pi\)
−0.0536708 + 0.998559i \(0.517092\pi\)
\(350\) 2.43829e7i 0.568698i
\(351\) 6.46445e6 + 3.43779e7i 0.149489 + 0.794984i
\(352\) −1.05849e8 −2.42695
\(353\) 4.89641e7i 1.11315i −0.830798 0.556575i \(-0.812115\pi\)
0.830798 0.556575i \(-0.187885\pi\)
\(354\) −2.79485e6 4.50520e7i −0.0630013 1.01556i
\(355\) 1.96734e7 0.439738
\(356\) 1.04912e7i 0.232529i
\(357\) −7.57069e6 + 469657.i −0.166391 + 0.0103223i
\(358\) 2.48397e7 0.541373
\(359\) 1.12217e7i 0.242536i 0.992620 + 0.121268i \(0.0386961\pi\)
−0.992620 + 0.121268i \(0.961304\pi\)
\(360\) −1.67419e7 + 2.08523e6i −0.358836 + 0.0446936i
\(361\) 1.11657e8 2.37337
\(362\) 4.53425e7i 0.955828i
\(363\) −7.63885e6 1.23135e8i −0.159701 2.57432i
\(364\) 2.92756e7 0.607018
\(365\) 1.61419e7i 0.331952i
\(366\) −1.37101e8 + 8.50521e6i −2.79639 + 0.173477i
\(367\) −1.95464e7 −0.395428 −0.197714 0.980260i \(-0.563352\pi\)
−0.197714 + 0.980260i \(0.563352\pi\)
\(368\) 2.22704e7i 0.446873i
\(369\) −3.96450e6 3.18302e7i −0.0789058 0.633519i
\(370\) −82890.5 −0.00163644
\(371\) 1.58575e7i 0.310537i
\(372\) −2.57609e6 4.15256e7i −0.0500416 0.806653i
\(373\) −4.51381e7 −0.869794 −0.434897 0.900480i \(-0.643215\pi\)
−0.434897 + 0.900480i \(0.643215\pi\)
\(374\) 4.85032e7i 0.927162i
\(375\) 4.94620e7 3.06843e6i 0.937946 0.0581865i
\(376\) −4.62164e7 −0.869426
\(377\) 8.04876e6i 0.150212i
\(378\) −4.36694e7 + 8.21163e6i −0.808541 + 0.152039i
\(379\) −8.91289e7 −1.63720 −0.818598 0.574367i \(-0.805248\pi\)
−0.818598 + 0.574367i \(0.805248\pi\)
\(380\) 7.94341e7i 1.44763i
\(381\) 3.68316e6 + 5.93712e7i 0.0665956 + 1.07350i
\(382\) −2.65240e7 −0.475827
\(383\) 3.37292e7i 0.600357i −0.953883 0.300179i \(-0.902954\pi\)
0.953883 0.300179i \(-0.0970463\pi\)
\(384\) 6.71165e7 4.16365e6i 1.18532 0.0735327i
\(385\) 3.17366e7 0.556133
\(386\) 9.69338e7i 1.68544i
\(387\) −8.88888e7 + 1.10712e7i −1.53361 + 0.191013i
\(388\) 8.42634e7 1.44259
\(389\) 7.00448e7i 1.18995i −0.803746 0.594973i \(-0.797163\pi\)
0.803746 0.594973i \(-0.202837\pi\)
\(390\) 2.56734e6 + 4.13846e7i 0.0432802 + 0.697661i
\(391\) −2.07126e7 −0.346501
\(392\) 2.82296e7i 0.468648i
\(393\) −3.43730e7 + 2.13237e6i −0.566291 + 0.0351305i
\(394\) −3.44245e7 −0.562832
\(395\) 3.44686e7i 0.559285i
\(396\) 2.05973e7 + 1.65371e8i 0.331684 + 2.66302i
\(397\) 6.64593e7 1.06215 0.531073 0.847326i \(-0.321789\pi\)
0.531073 + 0.847326i \(0.321789\pi\)
\(398\) 3.55665e7i 0.564146i
\(399\) 3.82154e6 + 6.16018e7i 0.0601616 + 0.969783i
\(400\) −1.79797e7 −0.280932
\(401\) 6.89250e7i 1.06892i −0.845195 0.534458i \(-0.820516\pi\)
0.845195 0.534458i \(-0.179484\pi\)
\(402\) −1.26684e8 + 7.85899e6i −1.95004 + 0.120973i
\(403\) −3.01661e7 −0.460898
\(404\) 2.23348e7i 0.338718i
\(405\) −9.05447e6 3.57844e7i −0.136301 0.538677i
\(406\) 1.02241e7 0.152774
\(407\) 241549.i 0.00358280i
\(408\) −862410. 1.39017e7i −0.0126979 0.204686i
\(409\) 1.09209e7 0.159620 0.0798099 0.996810i \(-0.474569\pi\)
0.0798099 + 0.996810i \(0.474569\pi\)
\(410\) 3.80214e7i 0.551667i
\(411\) −4.17424e7 + 2.58954e6i −0.601245 + 0.0372989i
\(412\) 9.76083e7 1.39571
\(413\) 2.43835e7i 0.346135i
\(414\) −1.20405e8 + 1.49967e7i −1.69685 + 0.211346i
\(415\) −4.82871e6 −0.0675595
\(416\) 7.47045e7i 1.03769i
\(417\) 23533.0 + 379344.i 0.000324541 + 0.00523149i
\(418\) 3.94665e8 5.40380
\(419\) 1.22554e8i 1.66604i −0.553239 0.833022i \(-0.686609\pi\)
0.553239 0.833022i \(-0.313391\pi\)
\(420\) −3.08330e7 + 1.91276e6i −0.416167 + 0.0258174i
\(421\) 1.43997e8 1.92978 0.964890 0.262654i \(-0.0845977\pi\)
0.964890 + 0.262654i \(0.0845977\pi\)
\(422\) 1.53311e8i 2.04003i
\(423\) −1.24976e7 1.00341e8i −0.165122 1.32573i
\(424\) −2.91185e7 −0.382007
\(425\) 1.67220e7i 0.217832i
\(426\) 5.89115e6 + 9.49631e7i 0.0762028 + 1.22836i
\(427\) −7.42030e7 −0.953099
\(428\) 1.09874e8i 1.40140i
\(429\) 1.20598e8 7.48142e6i 1.52745 0.0947572i
\(430\) −1.06179e8 −1.33546
\(431\) 2.77292e7i 0.346343i −0.984892 0.173171i \(-0.944599\pi\)
0.984892 0.173171i \(-0.0554015\pi\)
\(432\) 6.05515e6 + 3.22013e7i 0.0751058 + 0.399413i
\(433\) −1.18052e8 −1.45416 −0.727078 0.686555i \(-0.759122\pi\)
−0.727078 + 0.686555i \(0.759122\pi\)
\(434\) 3.83193e7i 0.468757i
\(435\) 525876. + 8.47694e6i 0.00638875 + 0.102984i
\(436\) 1.42454e7 0.171876
\(437\) 1.68536e8i 2.01952i
\(438\) 7.79165e7 4.83364e6i 0.927272 0.0575244i
\(439\) 8.42198e7 0.995452 0.497726 0.867334i \(-0.334168\pi\)
0.497726 + 0.867334i \(0.334168\pi\)
\(440\) 5.82766e7i 0.684127i
\(441\) 6.12893e7 7.63368e6i 0.714610 0.0890058i
\(442\) −3.42318e7 −0.396426
\(443\) 4.29148e7i 0.493624i 0.969063 + 0.246812i \(0.0793830\pi\)
−0.969063 + 0.246812i \(0.920617\pi\)
\(444\) −14558.1 234671.i −0.000166324 0.00268109i
\(445\) 8.02677e6 0.0910879
\(446\) 1.19794e8i 1.35031i
\(447\) 8.30184e7 5.15014e6i 0.929505 0.0576629i
\(448\) 7.55631e7 0.840380
\(449\) 9.39085e6i 0.103745i 0.998654 + 0.0518724i \(0.0165189\pi\)
−0.998654 + 0.0518724i \(0.983481\pi\)
\(450\) 1.21073e7 + 9.72074e7i 0.132865 + 1.06675i
\(451\) −1.10797e8 −1.20781
\(452\) 2.51058e8i 2.71869i
\(453\) −4.95175e6 7.98205e7i −0.0532678 0.858657i
\(454\) 5.93390e7 0.634122
\(455\) 2.23985e7i 0.237786i
\(456\) −1.13117e8 + 7.01733e6i −1.19298 + 0.0740077i
\(457\) 1.53491e8 1.60818 0.804089 0.594509i \(-0.202654\pi\)
0.804089 + 0.594509i \(0.202654\pi\)
\(458\) 5.60812e7i 0.583742i
\(459\) 2.99489e7 5.63161e6i 0.309701 0.0582364i
\(460\) −8.43558e7 −0.866645
\(461\) 1.89066e8i 1.92979i −0.262628 0.964897i \(-0.584589\pi\)
0.262628 0.964897i \(-0.415411\pi\)
\(462\) 9.50345e6 + 1.53192e8i 0.0963730 + 1.55350i
\(463\) −2.81801e7 −0.283923 −0.141961 0.989872i \(-0.545341\pi\)
−0.141961 + 0.989872i \(0.545341\pi\)
\(464\) 7.53915e6i 0.0754689i
\(465\) 3.17709e7 1.97095e6i 0.315988 0.0196027i
\(466\) 1.06683e7 0.105424
\(467\) 8.85333e7i 0.869273i 0.900606 + 0.434636i \(0.143123\pi\)
−0.900606 + 0.434636i \(0.856877\pi\)
\(468\) −1.16713e8 + 1.45368e7i −1.13863 + 0.141818i
\(469\) −6.85651e7 −0.664637
\(470\) 1.19858e8i 1.15444i
\(471\) 5.88104e6 + 9.48002e7i 0.0562848 + 0.907290i
\(472\) 4.47743e7 0.425798
\(473\) 3.09412e8i 2.92385i
\(474\) 1.66379e8 1.03215e7i 1.56230 0.0969191i
\(475\) 1.36065e8 1.26960
\(476\) 2.55039e7i 0.236475i
\(477\) −7.87406e6 6.32192e7i −0.0725510 0.582498i
\(478\) −3.08165e8 −2.82163
\(479\) 2.48095e7i 0.225741i 0.993610 + 0.112871i \(0.0360045\pi\)
−0.993610 + 0.112871i \(0.963995\pi\)
\(480\) 4.88092e6 + 7.86786e7i 0.0441344 + 0.711431i
\(481\) −170476. −0.00153190
\(482\) 3.47285e7i 0.310131i
\(483\) −6.54186e7 + 4.05832e6i −0.580577 + 0.0360168i
\(484\) 4.14814e8 3.65862
\(485\) 6.44693e7i 0.565103i
\(486\) 1.70019e8 5.44213e7i 1.48112 0.474089i
\(487\) −1.39665e8 −1.20920 −0.604602 0.796527i \(-0.706668\pi\)
−0.604602 + 0.796527i \(0.706668\pi\)
\(488\) 1.36256e8i 1.17245i
\(489\) 968961. + 1.56193e7i 0.00828667 + 0.133578i
\(490\) 7.32107e7 0.622281
\(491\) 1.49811e8i 1.26561i 0.774312 + 0.632804i \(0.218096\pi\)
−0.774312 + 0.632804i \(0.781904\pi\)
\(492\) 1.07643e8 6.67772e6i 0.903834 0.0560703i
\(493\) −7.01180e6 −0.0585179
\(494\) 2.78540e8i 2.31050i
\(495\) −1.26524e8 + 1.57588e7i −1.04318 + 0.129930i
\(496\) −2.82562e7 −0.231562
\(497\) 5.13968e7i 0.418665i
\(498\) −1.44594e6 2.33081e7i −0.0117075 0.188720i
\(499\) −9.40390e7 −0.756844 −0.378422 0.925633i \(-0.623533\pi\)
−0.378422 + 0.925633i \(0.623533\pi\)
\(500\) 1.66626e8i 1.33301i
\(501\) 1.23012e8 7.63119e6i 0.978215 0.0606846i
\(502\) 3.25566e8 2.57352
\(503\) 9.09331e7i 0.714526i −0.934004 0.357263i \(-0.883710\pi\)
0.934004 0.357263i \(-0.116290\pi\)
\(504\) −5.44766e6 4.37382e7i −0.0425519 0.341640i
\(505\) 1.70882e7 0.132685
\(506\) 4.19118e8i 3.23508i
\(507\) −2.78917e6 4.49604e7i −0.0214018 0.344990i
\(508\) −2.00008e8 −1.52565
\(509\) 1.93046e8i 1.46389i −0.681366 0.731943i \(-0.738614\pi\)
0.681366 0.731943i \(-0.261386\pi\)
\(510\) 3.60528e7 2.23658e6i 0.271787 0.0168606i
\(511\) 4.21707e7 0.316044
\(512\) 1.05473e8i 0.785836i
\(513\) −4.58237e7 2.43690e8i −0.339420 1.80504i
\(514\) −2.88978e8 −2.12802
\(515\) 7.46794e7i 0.546738i
\(516\) −1.86482e7 3.00602e8i −0.135734 2.18798i
\(517\) −3.49275e8 −2.52752
\(518\) 216552.i 0.00155802i
\(519\) −2.01247e8 + 1.24846e7i −1.43955 + 0.0893043i
\(520\) −4.11295e7 −0.292512
\(521\) 6.40335e7i 0.452787i −0.974036 0.226394i \(-0.927306\pi\)
0.974036 0.226394i \(-0.0726935\pi\)
\(522\) −4.07606e7 + 5.07679e6i −0.286569 + 0.0356926i
\(523\) −1.19881e8 −0.838004 −0.419002 0.907985i \(-0.637620\pi\)
−0.419002 + 0.907985i \(0.637620\pi\)
\(524\) 1.15794e8i 0.804811i
\(525\) 3.27642e6 + 5.28148e7i 0.0226424 + 0.364987i
\(526\) 2.51909e8 1.73096
\(527\) 2.62797e7i 0.179551i
\(528\) 1.12962e8 7.00773e6i 0.767416 0.0476075i
\(529\) −3.09425e7 −0.209020
\(530\) 7.55160e7i 0.507238i
\(531\) 1.21076e7 + 9.72096e7i 0.0808677 + 0.649270i
\(532\) −2.07522e8 −1.37825
\(533\) 7.81966e7i 0.516424i
\(534\) 2.40359e6 + 3.87451e7i 0.0157847 + 0.254444i
\(535\) 8.40635e7 0.548967
\(536\) 1.25903e8i 0.817602i
\(537\) −5.38041e7 + 3.33780e6i −0.347450 + 0.0215545i
\(538\) −4.55484e8 −2.92500
\(539\) 2.13342e8i 1.36241i
\(540\) 1.21972e8 2.29357e7i 0.774603 0.145657i
\(541\) 5.07848e7 0.320732 0.160366 0.987058i \(-0.448733\pi\)
0.160366 + 0.987058i \(0.448733\pi\)
\(542\) 1.30227e8i 0.817905i
\(543\) −6.09284e6 9.82143e7i −0.0380557 0.613444i
\(544\) −6.50800e7 −0.404250
\(545\) 1.08990e7i 0.0673285i
\(546\) −1.08117e8 + 6.70718e6i −0.664228 + 0.0412062i
\(547\) −2.11421e8 −1.29177 −0.645886 0.763434i \(-0.723512\pi\)
−0.645886 + 0.763434i \(0.723512\pi\)
\(548\) 1.40620e8i 0.854488i
\(549\) 2.95825e8 3.68455e7i 1.78780 0.222673i
\(550\) 3.38369e8 2.03377
\(551\) 5.70542e7i 0.341061i
\(552\) −7.45211e6 1.20125e8i −0.0443060 0.714196i
\(553\) 9.00494e7 0.532483
\(554\) 3.94617e8i 2.32085i
\(555\) 179545. 11138.3i 0.00105026 6.51538e-5i
\(556\) −1.27792e6 −0.00743497
\(557\) 1.12071e8i 0.648529i 0.945967 + 0.324264i \(0.105117\pi\)
−0.945967 + 0.324264i \(0.894883\pi\)
\(558\) 1.90274e7 + 1.52767e8i 0.109516 + 0.879282i
\(559\) −2.18372e8 −1.25015
\(560\) 2.09804e7i 0.119467i
\(561\) −6.51755e6 1.05061e8i −0.0369144 0.595047i
\(562\) 3.23605e8 1.82308
\(563\) 2.15957e8i 1.21016i 0.796166 + 0.605079i \(0.206858\pi\)
−0.796166 + 0.605079i \(0.793142\pi\)
\(564\) 3.39329e8 2.10507e7i 1.89140 0.117335i
\(565\) −1.92083e8 −1.06499
\(566\) 3.37782e8i 1.86289i
\(567\) 9.34869e7 2.36548e7i 0.512863 0.129769i
\(568\) −9.43778e7 −0.515021
\(569\) 3.33571e7i 0.181072i 0.995893 + 0.0905360i \(0.0288580\pi\)
−0.995893 + 0.0905360i \(0.971142\pi\)
\(570\) −1.81988e7 2.93357e8i −0.0982691 1.58406i
\(571\) 2.38581e8 1.28153 0.640764 0.767738i \(-0.278618\pi\)
0.640764 + 0.767738i \(0.278618\pi\)
\(572\) 4.06265e8i 2.17081i
\(573\) 5.74525e7 3.56413e6i 0.305383 0.0189448i
\(574\) 9.93312e7 0.525230
\(575\) 1.44496e8i 0.760066i
\(576\) −3.01247e8 + 3.75208e7i −1.57636 + 0.196338i
\(577\) −9.08855e6 −0.0473116 −0.0236558 0.999720i \(-0.507531\pi\)
−0.0236558 + 0.999720i \(0.507531\pi\)
\(578\) 2.70477e8i 1.40071i
\(579\) 1.30253e7 + 2.09964e8i 0.0671048 + 1.08170i
\(580\) −2.85568e7 −0.146361
\(581\) 1.26150e7i 0.0643220i
\(582\) −3.11192e8 + 1.93052e7i −1.57856 + 0.0979275i
\(583\) −2.20059e8 −1.11054
\(584\) 7.74362e7i 0.388782i
\(585\) −1.11220e7 8.92962e7i −0.0555539 0.446032i
\(586\) −2.00755e7 −0.0997641
\(587\) 3.22743e8i 1.59567i 0.602876 + 0.797835i \(0.294021\pi\)
−0.602876 + 0.797835i \(0.705979\pi\)
\(588\) 1.28580e7 + 2.07267e8i 0.0632474 + 1.01952i
\(589\) 2.13835e8 1.04648
\(590\) 1.16118e8i 0.565383i
\(591\) 7.45652e7 4.62574e6i 0.361222 0.0224088i
\(592\) −159683. −0.000769648
\(593\) 1.74681e8i 0.837687i 0.908058 + 0.418844i \(0.137564\pi\)
−0.908058 + 0.418844i \(0.862436\pi\)
\(594\) −1.13955e8 6.06012e8i −0.543718 2.89149i
\(595\) 1.95128e7 0.0926338
\(596\) 2.79669e8i 1.32101i
\(597\) 4.77920e6 + 7.70389e7i 0.0224612 + 0.362066i
\(598\) −2.95798e8 −1.38322
\(599\) 1.00065e8i 0.465590i −0.972526 0.232795i \(-0.925213\pi\)
0.972526 0.232795i \(-0.0747871\pi\)
\(600\) −9.69815e7 + 6.01636e6i −0.448988 + 0.0278535i
\(601\) −3.30731e8 −1.52353 −0.761766 0.647852i \(-0.775667\pi\)
−0.761766 + 0.647852i \(0.775667\pi\)
\(602\) 2.77392e8i 1.27147i
\(603\) 2.73348e8 3.40460e7i 1.24671 0.155279i
\(604\) 2.68896e8 1.22032
\(605\) 3.17371e8i 1.43318i
\(606\) 5.11703e6 + 8.24846e7i 0.0229932 + 0.370642i
\(607\) −4.30119e8 −1.92319 −0.961597 0.274466i \(-0.911499\pi\)
−0.961597 + 0.274466i \(0.911499\pi\)
\(608\) 5.29548e8i 2.35610i
\(609\) −2.21460e7 + 1.37385e6i −0.0980492 + 0.00608259i
\(610\) 3.53366e8 1.55681
\(611\) 2.46505e8i 1.08069i
\(612\) 1.26639e7 + 1.01676e8i 0.0552478 + 0.443573i
\(613\) −2.57719e8 −1.11883 −0.559415 0.828887i \(-0.688974\pi\)
−0.559415 + 0.828887i \(0.688974\pi\)
\(614\) 1.36306e8i 0.588859i
\(615\) 5.10908e6 + 8.23565e7i 0.0219643 + 0.354057i
\(616\) −1.52248e8 −0.651342
\(617\) 1.30121e8i 0.553976i 0.960873 + 0.276988i \(0.0893363\pi\)
−0.960873 + 0.276988i \(0.910664\pi\)
\(618\) −3.60476e8 + 2.23625e7i −1.52725 + 0.0947449i
\(619\) 1.65054e8 0.695912 0.347956 0.937511i \(-0.386876\pi\)
0.347956 + 0.937511i \(0.386876\pi\)
\(620\) 1.07029e8i 0.449082i
\(621\) 2.58789e8 4.86629e7i 1.08062 0.203200i
\(622\) −1.29060e8 −0.536314
\(623\) 2.09700e7i 0.0867229i
\(624\) 4.94579e6 + 7.97244e7i 0.0203555 + 0.328123i
\(625\) 4.12778e7 0.169074
\(626\) 3.01122e8i 1.22749i
\(627\) −8.54865e8 + 5.30325e7i −3.46813 + 0.215149i
\(628\) −3.19359e8 −1.28944
\(629\) 148513.i 0.000596778i
\(630\) 1.13431e8 1.41280e7i 0.453638 0.0565013i
\(631\) 8.17589e7 0.325422 0.162711 0.986674i \(-0.447976\pi\)
0.162711 + 0.986674i \(0.447976\pi\)
\(632\) 1.65354e8i 0.655033i
\(633\) 2.06010e7 + 3.32080e8i 0.0812225 + 1.30928i
\(634\) 1.37016e8 0.537656
\(635\) 1.53024e8i 0.597640i
\(636\) 2.13793e8 1.32629e7i 0.831042 0.0515546i
\(637\) 1.50568e8 0.582527
\(638\) 1.41883e8i 0.546347i
\(639\) −2.55211e7 2.04904e8i −0.0978130 0.785321i
\(640\) −1.72987e8 −0.659894
\(641\) 1.23360e8i 0.468384i 0.972190 + 0.234192i \(0.0752444\pi\)
−0.972190 + 0.234192i \(0.924756\pi\)
\(642\) 2.51726e7 + 4.05773e8i 0.0951312 + 1.53348i
\(643\) 2.69271e8 1.01288 0.506439 0.862276i \(-0.330962\pi\)
0.506439 + 0.862276i \(0.330962\pi\)
\(644\) 2.20380e8i 0.825114i
\(645\) 2.29989e8 1.42676e7i 0.857092 0.0531707i
\(646\) 2.42654e8 0.900098
\(647\) 2.24427e8i 0.828635i 0.910133 + 0.414317i \(0.135980\pi\)
−0.910133 + 0.414317i \(0.864020\pi\)
\(648\) 4.34364e7 + 1.71666e8i 0.159635 + 0.630898i
\(649\) 3.38376e8 1.23784
\(650\) 2.38808e8i 0.869578i
\(651\) 5.14910e6 + 8.30016e7i 0.0186633 + 0.300846i
\(652\) −5.26177e7 −0.189841
\(653\) 2.40027e8i 0.862027i 0.902345 + 0.431014i \(0.141844\pi\)
−0.902345 + 0.431014i \(0.858156\pi\)
\(654\) −5.26095e7 + 3.26369e6i −0.188075 + 0.0116674i
\(655\) 8.85935e7 0.315267
\(656\) 7.32455e7i 0.259460i
\(657\) −1.68122e8 + 2.09399e7i −0.592827 + 0.0738376i
\(658\) 3.13129e8 1.09912
\(659\) 3.65877e8i 1.27843i −0.769026 0.639217i \(-0.779258\pi\)
0.769026 0.639217i \(-0.220742\pi\)
\(660\) −2.65439e7 4.27878e8i −0.0923278 1.48829i
\(661\) 2.63071e8 0.910895 0.455448 0.890263i \(-0.349479\pi\)
0.455448 + 0.890263i \(0.349479\pi\)
\(662\) 1.58821e8i 0.547438i
\(663\) 7.41478e7 4.59985e6i 0.254424 0.0157835i
\(664\) 2.31644e7 0.0791256
\(665\) 1.58774e8i 0.539900i
\(666\) 107529. + 863327.i 0.000364001 + 0.00292249i
\(667\) −6.05892e7 −0.204182
\(668\) 4.14398e8i 1.39024i
\(669\) 1.60972e7 + 2.59481e8i 0.0537616 + 0.866618i
\(670\) 3.26517e8 1.08563
\(671\) 1.02974e9i 3.40846i
\(672\) −2.05548e8 + 1.27514e7i −0.677338 + 0.0420195i
\(673\) 4.21032e8 1.38124 0.690621 0.723217i \(-0.257337\pi\)
0.690621 + 0.723217i \(0.257337\pi\)
\(674\) 4.70772e8i 1.53756i
\(675\) −3.92873e7 2.08930e8i −0.127744 0.679343i
\(676\) 1.51461e8 0.490299
\(677\) 3.54830e8i 1.14355i −0.820412 0.571773i \(-0.806256\pi\)
0.820412 0.571773i \(-0.193744\pi\)
\(678\) −5.75188e7 9.27182e8i −0.184553 2.97492i
\(679\) −1.68426e8 −0.538023
\(680\) 3.58306e7i 0.113953i
\(681\) −1.28532e8 + 7.97360e6i −0.406976 + 0.0252472i
\(682\) 5.31767e8 1.67636
\(683\) 2.32799e8i 0.730666i 0.930877 + 0.365333i \(0.119045\pi\)
−0.930877 + 0.365333i \(0.880955\pi\)
\(684\) 8.27327e8 1.03045e8i 2.58529 0.322002i
\(685\) 1.07587e8 0.334726
\(686\) 4.56858e8i 1.41517i
\(687\) −7.53583e6 1.21475e8i −0.0232413 0.374642i
\(688\) −2.04545e8 −0.628093
\(689\) 1.55310e8i 0.474833i
\(690\) 3.11533e8 1.93263e7i 0.948325 0.0588304i
\(691\) −1.84243e8 −0.558414 −0.279207 0.960231i \(-0.590072\pi\)
−0.279207 + 0.960231i \(0.590072\pi\)
\(692\) 6.77954e8i 2.04589i
\(693\) −4.11700e7 3.30546e8i −0.123703 0.993189i
\(694\) 6.31847e8 1.89031
\(695\) 977728.i 0.00291248i
\(696\) −2.52275e6 4.06658e7i −0.00748249 0.120615i
\(697\) −6.81222e7 −0.201183
\(698\) 5.67681e7i 0.166931i
\(699\) −2.31082e7 + 1.43354e6i −0.0676604 + 0.00419739i
\(700\) −1.77920e8 −0.518718
\(701\) 4.14586e8i 1.20354i 0.798669 + 0.601770i \(0.205538\pi\)
−0.798669 + 0.601770i \(0.794462\pi\)
\(702\) 4.27701e8 8.04252e7i 1.23631 0.232477i
\(703\) 1.20843e6 0.00347822
\(704\) 1.04861e9i 3.00536i
\(705\) 1.61057e7 + 2.59619e8i 0.0459635 + 0.740915i
\(706\) −6.09169e8 −1.73111
\(707\) 4.46431e7i 0.126327i
\(708\) −3.28741e8 + 2.03938e7i −0.926306 + 0.0574644i
\(709\) 6.25237e8 1.75431 0.877154 0.480210i \(-0.159439\pi\)
0.877154 + 0.480210i \(0.159439\pi\)
\(710\) 2.44760e8i 0.683856i
\(711\) −3.59000e8 + 4.47140e7i −0.998817 + 0.124404i
\(712\) −3.85062e7 −0.106682
\(713\) 2.27084e8i 0.626495i
\(714\) 5.84306e6 + 9.41881e7i 0.0160526 + 0.258762i
\(715\) −3.10831e8 −0.850366
\(716\) 1.81253e8i 0.493795i
\(717\) 6.67503e8 4.14093e7i 1.81090 0.112342i
\(718\) 1.39611e8 0.377178
\(719\) 3.34031e8i 0.898669i −0.893364 0.449335i \(-0.851661\pi\)
0.893364 0.449335i \(-0.148339\pi\)
\(720\) −1.04178e7 8.36424e7i −0.0279112 0.224093i
\(721\) −1.95100e8 −0.520537
\(722\) 1.38914e9i 3.69092i
\(723\) 4.66660e6 + 7.52239e7i 0.0123477 + 0.199040i
\(724\) 3.30861e8 0.871825
\(725\) 4.89158e7i 0.128362i
\(726\) −1.53195e9 + 9.50360e7i −4.00344 + 0.248358i
\(727\) 3.34132e8 0.869590 0.434795 0.900529i \(-0.356821\pi\)
0.434795 + 0.900529i \(0.356821\pi\)
\(728\) 1.07451e8i 0.278494i
\(729\) −3.60958e8 + 1.40726e8i −0.931697 + 0.363238i
\(730\) −2.00823e8 −0.516233
\(731\) 1.90238e8i 0.487018i
\(732\) 6.20619e7 + 1.00041e9i 0.158231 + 2.55063i
\(733\) 3.95042e8 1.00307 0.501535 0.865137i \(-0.332769\pi\)
0.501535 + 0.865137i \(0.332769\pi\)
\(734\) 2.43179e8i 0.614948i
\(735\) −1.58578e8 + 9.83759e6i −0.399376 + 0.0247757i
\(736\) −5.62358e8 −1.41052
\(737\) 9.51496e8i 2.37687i
\(738\) −3.96004e8 + 4.93229e7i −0.985213 + 0.122710i
\(739\) −4.55994e8 −1.12986 −0.564931 0.825138i \(-0.691097\pi\)
−0.564931 + 0.825138i \(0.691097\pi\)
\(740\) 604846.i 0.00149262i
\(741\) −3.74284e7 6.03332e8i −0.0919912 1.48287i
\(742\) 1.97286e8 0.482930
\(743\) 5.92896e8i 1.44548i −0.691120 0.722740i \(-0.742883\pi\)
0.691120 0.722740i \(-0.257117\pi\)
\(744\) −1.52412e8 + 9.45507e6i −0.370085 + 0.0229586i
\(745\) −2.13973e8 −0.517476
\(746\) 5.61569e8i 1.35265i
\(747\) 6.26398e6 + 5.02923e7i 0.0150276 + 0.120653i
\(748\) 3.53924e8 0.845679
\(749\) 2.19616e8i 0.522660i
\(750\) −3.81748e7 6.15364e8i −0.0904884 1.45864i
\(751\) 6.62342e8 1.56373 0.781867 0.623446i \(-0.214268\pi\)
0.781867 + 0.623446i \(0.214268\pi\)
\(752\) 2.30897e8i 0.542957i
\(753\) −7.05193e8 + 4.37475e7i −1.65167 + 0.102463i
\(754\) −1.00136e8 −0.233601
\(755\) 2.05731e8i 0.478033i
\(756\) 5.99196e7 + 3.18652e8i 0.138677 + 0.737483i
\(757\) 5.72807e8 1.32045 0.660223 0.751069i \(-0.270462\pi\)
0.660223 + 0.751069i \(0.270462\pi\)
\(758\) 1.10887e9i 2.54607i
\(759\) −5.63184e7 9.07832e8i −0.128803 2.07625i
\(760\) 2.91549e8 0.664157
\(761\) 2.30418e8i 0.522833i −0.965226 0.261417i \(-0.915810\pi\)
0.965226 0.261417i \(-0.0841896\pi\)
\(762\) 7.38646e8 4.58227e7i 1.66944 0.103566i
\(763\) −2.84738e7 −0.0641020
\(764\) 1.93544e8i 0.434009i
\(765\) −7.77918e7 + 9.68909e6i −0.173760 + 0.0216421i
\(766\) −4.19630e8 −0.933641
\(767\) 2.38813e8i 0.529264i
\(768\) −7.24592e6 1.16802e8i −0.0159959 0.257849i
\(769\) −8.48282e7 −0.186535 −0.0932677 0.995641i \(-0.529731\pi\)
−0.0932677 + 0.995641i \(0.529731\pi\)
\(770\) 3.94840e8i 0.864867i
\(771\) 6.25943e8 3.88311e7i 1.36575 0.0847259i
\(772\) −7.07318e8 −1.53732
\(773\) 3.16831e8i 0.685945i −0.939345 0.342973i \(-0.888566\pi\)
0.939345 0.342973i \(-0.111434\pi\)
\(774\) 1.37739e8 + 1.10588e9i 0.297053 + 2.38498i
\(775\) 1.83333e8 0.393854
\(776\) 3.09274e8i 0.661848i
\(777\) 29098.9 + 469063.i 6.20316e−5 + 0.000999927i
\(778\) −8.71437e8 −1.85053
\(779\) 5.54302e8i 1.17256i
\(780\) 3.01980e8 1.87337e7i 0.636348 0.0394766i
\(781\) −7.13248e8 −1.49723
\(782\) 2.57689e8i 0.538859i
\(783\) 8.76074e7 1.64738e7i 0.182497 0.0343168i
\(784\) 1.41035e8 0.292671
\(785\) 2.44340e8i 0.505109i
\(786\) 2.65291e7 + 4.27639e8i 0.0546330 + 0.880664i
\(787\) −9.13763e7 −0.187460 −0.0937302 0.995598i \(-0.529879\pi\)
−0.0937302 + 0.995598i \(0.529879\pi\)
\(788\) 2.51193e8i 0.513367i
\(789\) −5.45649e8 + 3.38499e7i −1.11092 + 0.0689171i
\(790\) −4.28829e8 −0.869768
\(791\) 5.01818e8i 1.01395i
\(792\) 6.06967e8 7.55987e7i 1.22177 0.152173i
\(793\) 7.26749e8 1.45735
\(794\) 8.26830e8i 1.65179i
\(795\) 1.01474e7 + 1.63572e8i 0.0201954 + 0.325542i
\(796\) −2.59526e8 −0.514567
\(797\) 3.72562e8i 0.735907i 0.929844 + 0.367954i \(0.119941\pi\)
−0.929844 + 0.367954i \(0.880059\pi\)
\(798\) 7.66397e8 4.75443e7i 1.50815 0.0935599i
\(799\) −2.14747e8 −0.421004
\(800\) 4.54012e8i 0.886741i
\(801\) −1.04126e7 8.36009e7i −0.0202611 0.162672i
\(802\) −8.57505e8 −1.66232
\(803\) 5.85214e8i 1.13023i
\(804\) 5.73464e7 + 9.24403e8i 0.110341 + 1.77866i
\(805\) 1.68611e8 0.323220
\(806\) 3.75301e8i 0.716762i
\(807\) 9.86603e8 6.12050e7i 1.87725 0.116457i
\(808\) −8.19762e7 −0.155401
\(809\) 6.86413e8i 1.29640i 0.761469 + 0.648201i \(0.224478\pi\)
−0.761469 + 0.648201i \(0.775522\pi\)
\(810\) −4.45199e8 + 1.12648e8i −0.837720 + 0.211967i
\(811\) 5.05310e8 0.947317 0.473659 0.880709i \(-0.342933\pi\)
0.473659 + 0.880709i \(0.342933\pi\)
\(812\) 7.46047e7i 0.139347i
\(813\) 1.74991e7 + 2.82078e8i 0.0325644 + 0.524926i
\(814\) 3.00515e6 0.00557177
\(815\) 4.02575e7i 0.0743659i
\(816\) 6.94531e7 4.30860e6i 0.127827 0.00792987i
\(817\) 1.54794e9 2.83850
\(818\) 1.35868e8i 0.248232i
\(819\) 2.33287e8 2.90562e7i 0.424657 0.0528917i
\(820\) −2.77440e8 −0.503184
\(821\) 4.49841e8i 0.812885i −0.913676 0.406443i \(-0.866769\pi\)
0.913676 0.406443i \(-0.133231\pi\)
\(822\) 3.22168e7 + 5.19323e8i 0.0580052 + 0.935022i
\(823\) −3.26006e8 −0.584825 −0.292412 0.956292i \(-0.594458\pi\)
−0.292412 + 0.956292i \(0.594458\pi\)
\(824\) 3.58254e8i 0.640338i
\(825\) −7.32925e8 + 4.54678e7i −1.30526 + 0.0809734i
\(826\) −3.03358e8 −0.538289
\(827\) 3.87873e7i 0.0685761i −0.999412 0.0342881i \(-0.989084\pi\)
0.999412 0.0342881i \(-0.0109164\pi\)
\(828\) 1.09430e8 + 8.78588e8i 0.192772 + 1.54773i
\(829\) −7.61916e8 −1.33735 −0.668673 0.743557i \(-0.733137\pi\)
−0.668673 + 0.743557i \(0.733137\pi\)
\(830\) 6.00747e7i 0.105065i
\(831\) 5.30261e7 + 8.54762e8i 0.0924031 + 1.48950i
\(832\) −7.40070e8 −1.28500
\(833\) 1.31170e8i 0.226934i
\(834\) 4.71947e6 292778.i 0.00813571 0.000504708i
\(835\) −3.17053e8 −0.544594
\(836\) 2.87984e9i 4.92889i
\(837\) −6.17424e7 3.28346e8i −0.105295 0.559958i
\(838\) −1.52472e9 −2.59094
\(839\) 7.10119e8i 1.20239i −0.799102 0.601195i \(-0.794692\pi\)
0.799102 0.601195i \(-0.205308\pi\)
\(840\) 7.02045e6 + 1.13167e8i 0.0118448 + 0.190934i
\(841\) −2.05111e7 −0.0344828
\(842\) 1.79149e9i 3.00108i
\(843\) −7.00945e8 + 4.34839e7i −1.17004 + 0.0725848i
\(844\) −1.11870e9 −1.86074
\(845\) 1.15882e8i 0.192063i
\(846\) −1.24835e9 + 1.55484e8i −2.06170 + 0.256788i
\(847\) −8.29134e8 −1.36450
\(848\) 1.45476e8i 0.238564i
\(849\) 4.53890e7 + 7.31655e8i 0.0741699 + 1.19559i
\(850\) 2.08041e8 0.338760
\(851\) 1.28331e6i 0.00208229i
\(852\) 6.92939e8 4.29872e7i 1.12041 0.0695058i
\(853\) 5.67642e8 0.914592 0.457296 0.889315i \(-0.348818\pi\)
0.457296 + 0.889315i \(0.348818\pi\)
\(854\) 9.23170e8i 1.48220i
\(855\) 7.88390e7 + 6.32982e8i 0.126137 + 1.01273i
\(856\) −4.03272e8 −0.642949
\(857\) 3.46035e8i 0.549766i −0.961478 0.274883i \(-0.911361\pi\)
0.961478 0.274883i \(-0.0886391\pi\)
\(858\) −9.30774e7 1.50037e9i −0.147361 2.37541i
\(859\) 6.92055e8 1.09185 0.545923 0.837835i \(-0.316179\pi\)
0.545923 + 0.837835i \(0.316179\pi\)
\(860\) 7.74777e8i 1.21810i
\(861\) −2.15157e8 + 1.33475e7i −0.337090 + 0.0209117i
\(862\) −3.44984e8 −0.538613
\(863\) 2.52626e8i 0.393048i −0.980499 0.196524i \(-0.937035\pi\)
0.980499 0.196524i \(-0.0629654\pi\)
\(864\) 8.13127e8 1.52901e8i 1.26072 0.237066i
\(865\) 5.18698e8 0.801431
\(866\) 1.46871e9i 2.26142i
\(867\) 3.63450e7 + 5.85869e8i 0.0557684 + 0.898966i
\(868\) −2.79613e8 −0.427561
\(869\) 1.24964e9i 1.90426i
\(870\) 1.05463e8 6.54251e6i 0.160155 0.00993542i
\(871\) 6.71531e8 1.01628
\(872\) 5.22852e7i 0.0788550i
\(873\) 6.71465e8 8.36321e7i 1.00921 0.125698i
\(874\) 2.09678e9 3.14064
\(875\) 3.33053e8i 0.497152i
\(876\) −3.52707e7 5.68551e8i −0.0524689 0.845779i
\(877\) −8.49449e8 −1.25933 −0.629663 0.776868i \(-0.716807\pi\)
−0.629663 + 0.776868i \(0.716807\pi\)
\(878\) 1.04779e9i 1.54807i
\(879\) 4.34847e7 2.69762e6i 0.0640280 0.00397205i
\(880\) −2.91150e8 −0.427237
\(881\) 1.67121e8i 0.244402i −0.992505 0.122201i \(-0.961005\pi\)
0.992505 0.122201i \(-0.0389952\pi\)
\(882\) −9.49717e7 7.62509e8i −0.138417 1.11132i
\(883\) −8.20935e8 −1.19241 −0.596206 0.802831i \(-0.703326\pi\)
−0.596206 + 0.802831i \(0.703326\pi\)
\(884\) 2.49786e8i 0.361586i
\(885\) −1.56032e7 2.51518e8i −0.0225104 0.362860i
\(886\) 5.33909e8 0.767656
\(887\) 1.25905e9i 1.80414i −0.431588 0.902071i \(-0.642046\pi\)
0.431588 0.902071i \(-0.357954\pi\)
\(888\) −861320. + 53433.0i −0.00123006 + 7.63081e-5i
\(889\) 3.99777e8 0.569000
\(890\) 9.98622e7i 0.141655i
\(891\) 3.28265e8 + 1.29734e9i 0.464078 + 1.83409i
\(892\) −8.74131e8 −1.23163
\(893\) 1.74737e9i 2.45375i
\(894\) −6.40736e7 1.03284e9i −0.0896741 1.44551i
\(895\) 1.38676e8 0.193433
\(896\) 4.51930e8i 0.628271i
\(897\) 6.40714e8 3.97474e7i 0.887742 0.0550721i
\(898\) 1.16833e8 0.161338
\(899\) 7.68742e7i 0.105804i
\(900\) 7.09315e8 8.83464e7i 0.972998 0.121188i
\(901\) −1.35300e8 −0.184980
\(902\) 1.37845e9i 1.87832i
\(903\) 3.72742e7 + 6.00846e8i 0.0506226 + 0.816019i
\(904\) 9.21466e8 1.24731
\(905\) 2.53139e8i 0.341518i
\(906\) −9.93058e8 + 6.16055e7i −1.33533 + 0.0828390i
\(907\) 3.02587e8 0.405535 0.202767 0.979227i \(-0.435006\pi\)
0.202767 + 0.979227i \(0.435006\pi\)
\(908\) 4.32992e8i 0.578393i
\(909\) −2.21675e7 1.77979e8i −0.0295138 0.236960i
\(910\) 2.78663e8 0.369791
\(911\) 5.71426e8i 0.755796i −0.925847 0.377898i \(-0.876647\pi\)
0.925847 0.377898i \(-0.123353\pi\)
\(912\) −3.50586e7 5.65131e8i −0.0462178 0.745015i
\(913\) 1.75062e8 0.230027
\(914\) 1.90960e9i 2.50095i
\(915\) −7.65410e8 + 4.74831e7i −0.999151 + 0.0619835i
\(916\) 4.09220e8 0.532440
\(917\) 2.31451e8i 0.300159i
\(918\) −7.00636e7 3.72598e8i −0.0905659 0.481629i
\(919\) 6.47368e8 0.834075 0.417037 0.908889i \(-0.363068\pi\)
0.417037 + 0.908889i \(0.363068\pi\)
\(920\) 3.09613e8i 0.397609i
\(921\) 1.83160e7 + 2.95247e8i 0.0234451 + 0.377926i
\(922\) −2.35220e9 −3.00111
\(923\) 5.03384e8i 0.640168i
\(924\) 1.11783e9 6.93460e7i 1.41697 0.0879033i
\(925\) 1.03606e6 0.00130906
\(926\) 3.50593e8i 0.441540i
\(927\) 7.77806e8 9.68770e7i 0.976410 0.121613i
\(928\) −1.90374e8 −0.238212
\(929\) 7.92864e8i 0.988898i −0.869207 0.494449i \(-0.835370\pi\)
0.869207 0.494449i \(-0.164630\pi\)
\(930\) −2.45208e7 3.95267e8i −0.0304850 0.491407i
\(931\) −1.06731e9 −1.32265
\(932\) 7.78461e7i 0.0961588i
\(933\) 2.79550e8 1.73422e7i 0.344203 0.0213530i
\(934\) 1.10146e9 1.35184
\(935\) 2.70785e8i 0.331276i
\(936\) 5.33547e7 + 4.28374e8i 0.0650647 + 0.522391i
\(937\) 4.96170e8 0.603131 0.301566 0.953445i \(-0.402491\pi\)
0.301566 + 0.953445i \(0.402491\pi\)
\(938\) 8.53028e8i 1.03361i
\(939\) 4.04629e7 + 6.52247e8i 0.0488720 + 0.787798i
\(940\) −8.74593e8 −1.05299
\(941\) 6.23846e7i 0.0748701i −0.999299 0.0374351i \(-0.988081\pi\)
0.999299 0.0374351i \(-0.0119187\pi\)
\(942\) 1.17942e9 7.31668e7i 1.41097 0.0875309i
\(943\) −5.88646e8 −0.701971
\(944\) 2.23693e8i 0.265911i
\(945\) −2.43799e8 + 4.58441e7i −0.288892 + 0.0543235i
\(946\) 3.84945e9 4.54700
\(947\) 9.89708e8i 1.16535i 0.812705 + 0.582676i \(0.197994\pi\)
−0.812705 + 0.582676i \(0.802006\pi\)
\(948\) −7.53155e7 1.21406e9i −0.0884014 1.42500i
\(949\) −4.13022e8 −0.483254
\(950\) 1.69281e9i 1.97441i
\(951\) −2.96785e8 + 1.84114e7i −0.345064 + 0.0214065i
\(952\) −9.36075e7 −0.108493
\(953\) 5.56553e8i 0.643025i −0.946905 0.321512i \(-0.895809\pi\)
0.946905 0.321512i \(-0.104191\pi\)
\(954\) −7.86520e8 + 9.79623e7i −0.905867 + 0.112827i
\(955\) −1.48079e8 −0.170013
\(956\) 2.24866e9i 2.57365i
\(957\) −1.90654e7 3.07327e8i −0.0217525 0.350642i
\(958\) 3.08658e8 0.351060
\(959\) 2.81073e8i 0.318686i
\(960\) 7.79440e8 4.83534e7i 0.880986 0.0546529i
\(961\) −5.99385e8 −0.675360
\(962\) 2.12092e6i 0.00238232i
\(963\) −1.09050e8 8.75544e8i −0.122109 0.980390i
\(964\) −2.53411e8 −0.282875
\(965\) 5.41164e8i 0.602209i
\(966\) 5.04901e7 + 8.13882e8i 0.0560112 + 0.902880i
\(967\) 2.49433e7 0.0275851 0.0137925 0.999905i \(-0.495610\pi\)
0.0137925 + 0.999905i \(0.495610\pi\)
\(968\) 1.52250e9i 1.67854i
\(969\) −5.25602e8 + 3.26063e7i −0.577678 + 0.0358369i
\(970\) 8.02072e8 0.878816
\(971\) 3.92813e8i 0.429070i 0.976716 + 0.214535i \(0.0688236\pi\)
−0.976716 + 0.214535i \(0.931176\pi\)
\(972\) −3.97108e8 1.24062e9i −0.432424 1.35095i
\(973\) 2.55432e6 0.00277291
\(974\) 1.73759e9i 1.88049i
\(975\) −3.20895e7 5.17271e8i −0.0346218 0.558090i
\(976\) 6.80734e8 0.732197
\(977\) 5.78361e8i 0.620177i 0.950708 + 0.310088i \(0.100359\pi\)
−0.950708 + 0.310088i \(0.899641\pi\)
\(978\) 1.94322e8 1.20550e7i 0.207733 0.0128870i
\(979\) −2.91006e8 −0.310137
\(980\) 5.34213e8i 0.567592i
\(981\) 1.13516e8 1.41387e7i 0.120241 0.0149762i
\(982\) 1.86382e9 1.96820
\(983\) 9.74961e8i 1.02642i 0.858262 + 0.513212i \(0.171545\pi\)
−0.858262 + 0.513212i \(0.828455\pi\)
\(984\) −2.45094e7 3.95083e8i −0.0257246 0.414670i
\(985\) −1.92186e8 −0.201100
\(986\) 8.72349e7i 0.0910037i
\(987\) −6.78254e8 + 4.20763e7i −0.705409 + 0.0437609i
\(988\) 2.03248e9 2.10744
\(989\) 1.64385e9i 1.69931i
\(990\) 1.96058e8 + 1.57411e9i 0.202059 + 1.62229i
\(991\) 7.41030e8 0.761404 0.380702 0.924698i \(-0.375682\pi\)
0.380702 + 0.924698i \(0.375682\pi\)
\(992\) 7.13507e8i 0.730909i
\(993\) −2.13414e7 3.44016e8i −0.0217959 0.351342i
\(994\) 6.39435e8 0.651085
\(995\) 1.98561e8i 0.201570i
\(996\) −1.70077e8 + 1.05509e7i −0.172135 + 0.0106786i
\(997\) −6.52687e8 −0.658596 −0.329298 0.944226i \(-0.606812\pi\)
−0.329298 + 0.944226i \(0.606812\pi\)
\(998\) 1.16995e9i 1.17700i
\(999\) −348922. 1.85556e6i −0.000349970 0.00186114i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.7.b.a.59.8 56
3.2 odd 2 inner 87.7.b.a.59.49 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.7.b.a.59.8 56 1.1 even 1 trivial
87.7.b.a.59.49 yes 56 3.2 odd 2 inner