Newspace parameters
Level: | \( N \) | \(=\) | \( 87 = 3 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 87.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(20.0147052749\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
59.1 | − | 15.4133i | −7.71721 | − | 25.8736i | −173.570 | − | 221.187i | −398.798 | + | 118.948i | 394.709 | 1688.84i | −609.889 | + | 399.345i | −3409.22 | ||||||||||
59.2 | − | 15.1008i | 21.0756 | + | 16.8766i | −164.033 | − | 118.473i | 254.850 | − | 318.257i | −348.513 | 1510.57i | 159.358 | + | 711.369i | −1789.03 | ||||||||||
59.3 | − | 14.9948i | 26.9046 | − | 2.26729i | −160.844 | 110.651i | −33.9976 | − | 403.430i | 552.617 | 1452.16i | 718.719 | − | 122.001i | 1659.19 | |||||||||||
59.4 | − | 14.7970i | −25.2055 | + | 9.67893i | −154.951 | − | 25.9593i | 143.219 | + | 372.966i | −511.916 | 1345.81i | 541.637 | − | 487.925i | −384.120 | ||||||||||
59.5 | − | 14.2052i | 4.68709 | − | 26.5901i | −137.789 | 131.841i | −377.718 | − | 66.5813i | −416.698 | 1048.19i | −685.062 | − | 249.260i | 1872.83 | |||||||||||
59.6 | − | 13.5783i | 0.291464 | + | 26.9984i | −120.371 | 197.511i | 366.594 | − | 3.95760i | −18.6779 | 765.430i | −728.830 | + | 15.7381i | 2681.87 | |||||||||||
59.7 | − | 13.2552i | −25.3475 | − | 9.30085i | −111.699 | 106.724i | −123.284 | + | 335.985i | 284.634 | 632.265i | 555.988 | + | 471.506i | 1414.65 | |||||||||||
59.8 | − | 12.4411i | 1.67176 | + | 26.9482i | −90.7821 | − | 69.4567i | 335.266 | − | 20.7986i | 181.456 | 333.200i | −723.410 | + | 90.1019i | −864.121 | ||||||||||
59.9 | − | 12.3060i | −17.8037 | + | 20.2985i | −87.4378 | − | 148.813i | 249.793 | + | 219.093i | 382.073 | 288.426i | −95.0556 | − | 722.776i | −1831.30 | ||||||||||
59.10 | − | 11.6762i | 20.6297 | − | 17.4188i | −72.3347 | 17.6911i | −203.386 | − | 240.878i | 117.179 | 97.3182i | 122.172 | − | 718.690i | 206.566 | |||||||||||
59.11 | − | 11.3220i | 21.7587 | − | 15.9862i | −64.1869 | − | 190.317i | −180.996 | − | 246.351i | −248.040 | 2.11620i | 217.881 | − | 695.679i | −2154.77 | ||||||||||
59.12 | − | 9.96396i | 24.5636 | + | 11.2085i | −35.2806 | − | 27.8839i | 111.681 | − | 244.750i | 60.7681 | − | 286.159i | 477.737 | + | 550.643i | −277.834 | |||||||||
59.13 | − | 9.80663i | −13.8860 | − | 23.1556i | −32.1699 | − | 31.8600i | −227.078 | + | 136.175i | −247.832 | − | 312.146i | −343.359 | + | 643.075i | −312.439 | |||||||||
59.14 | − | 9.12250i | 26.3711 | + | 5.79335i | −19.2200 | 194.806i | 52.8499 | − | 240.571i | −587.861 | − | 408.506i | 661.874 | + | 305.555i | 1777.12 | ||||||||||
59.15 | − | 8.99068i | −26.6506 | − | 4.32950i | −16.8323 | − | 174.149i | −38.9251 | + | 239.607i | −298.105 | − | 424.069i | 691.511 | + | 230.768i | −1565.72 | |||||||||
59.16 | − | 8.21957i | 1.43004 | − | 26.9621i | −3.56134 | 27.4201i | −221.617 | − | 11.7543i | 526.273 | − | 496.780i | −724.910 | − | 77.1139i | 225.382 | ||||||||||
59.17 | − | 7.77900i | −23.4760 | + | 13.3371i | 3.48715 | 148.308i | 103.749 | + | 182.620i | 172.143 | − | 524.983i | 373.244 | − | 626.203i | 1153.69 | ||||||||||
59.18 | − | 7.42129i | −14.8480 | + | 22.5508i | 8.92448 | 51.0538i | 167.356 | + | 110.191i | −600.212 | − | 541.194i | −288.074 | − | 669.667i | 378.885 | ||||||||||
59.19 | − | 5.77572i | 6.84673 | + | 26.1175i | 30.6411 | − | 163.398i | 150.847 | − | 39.5448i | −327.324 | − | 546.620i | −635.245 | + | 357.638i | −943.742 | |||||||||
59.20 | − | 5.40547i | 14.0726 | + | 23.0426i | 34.7809 | 110.739i | 124.556 | − | 76.0688i | 411.141 | − | 533.957i | −332.926 | + | 648.538i | 598.599 | ||||||||||
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 87.7.b.a | ✓ | 56 |
3.b | odd | 2 | 1 | inner | 87.7.b.a | ✓ | 56 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
87.7.b.a | ✓ | 56 | 1.a | even | 1 | 1 | trivial |
87.7.b.a | ✓ | 56 | 3.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{7}^{\mathrm{new}}(87, [\chi])\).