Properties

Label 87.7.b.a.59.20
Level $87$
Weight $7$
Character 87.59
Analytic conductor $20.015$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [87,7,Mod(59,87)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(87, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("87.59"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 87.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.0147052749\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 59.20
Character \(\chi\) \(=\) 87.59
Dual form 87.7.b.a.59.37

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.40547i q^{2} +(14.0726 + 23.0426i) q^{3} +34.7809 q^{4} +110.739i q^{5} +(124.556 - 76.0688i) q^{6} +411.141 q^{7} -533.957i q^{8} +(-332.926 + 648.538i) q^{9} +598.599 q^{10} -606.117i q^{11} +(489.456 + 801.443i) q^{12} +1441.19 q^{13} -2222.41i q^{14} +(-2551.73 + 1558.39i) q^{15} -660.314 q^{16} +4583.06i q^{17} +(3505.65 + 1799.62i) q^{18} -4731.81 q^{19} +3851.62i q^{20} +(5785.81 + 9473.78i) q^{21} -3276.35 q^{22} +10056.6i q^{23} +(12303.8 - 7514.14i) q^{24} +3361.77 q^{25} -7790.33i q^{26} +(-19629.1 + 1455.09i) q^{27} +14299.9 q^{28} +4528.92i q^{29} +(8423.82 + 13793.3i) q^{30} -10674.4 q^{31} -30604.0i q^{32} +(13966.5 - 8529.61i) q^{33} +24773.6 q^{34} +45529.6i q^{35} +(-11579.5 + 22556.7i) q^{36} +63422.5 q^{37} +25577.6i q^{38} +(20281.3 + 33208.9i) q^{39} +59130.1 q^{40} +13030.7i q^{41} +(51210.2 - 31275.0i) q^{42} +86610.9 q^{43} -21081.3i q^{44} +(-71818.7 - 36868.1i) q^{45} +54360.6 q^{46} -38515.5i q^{47} +(-9292.30 - 15215.4i) q^{48} +51388.2 q^{49} -18171.9i q^{50} +(-105606. + 64495.4i) q^{51} +50126.0 q^{52} -107324. i q^{53} +(7865.44 + 106105. i) q^{54} +67121.1 q^{55} -219532. i q^{56} +(-66588.6 - 109033. i) q^{57} +24481.0 q^{58} +128345. i q^{59} +(-88751.4 + 54202.1i) q^{60} -171773. q^{61} +57700.0i q^{62} +(-136880. + 266641. i) q^{63} -207689. q^{64} +159597. i q^{65} +(-46106.6 - 75495.7i) q^{66} +43758.7 q^{67} +159403. i q^{68} +(-231730. + 141522. i) q^{69} +246109. q^{70} -22981.7i q^{71} +(346291. + 177768. i) q^{72} -549858. q^{73} -342828. i q^{74} +(47308.7 + 77464.0i) q^{75} -164576. q^{76} -249200. i q^{77} +(179510. - 109630. i) q^{78} -781292. q^{79} -73122.8i q^{80} +(-309761. - 431830. i) q^{81} +70437.1 q^{82} -155460. i q^{83} +(201236. + 329506. i) q^{84} -507526. q^{85} -468173. i q^{86} +(-104358. + 63733.5i) q^{87} -323640. q^{88} -782740. i q^{89} +(-199289. + 388214. i) q^{90} +592534. q^{91} +349777. i q^{92} +(-150216. - 245966. i) q^{93} -208194. q^{94} -523998. i q^{95} +(705196. - 430676. i) q^{96} +1.39477e6 q^{97} -277777. i q^{98} +(393090. + 201792. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 52 q^{3} - 1924 q^{4} - 160 q^{6} + 160 q^{7} - 1060 q^{9} - 3588 q^{10} - 2166 q^{12} - 1400 q^{13} - 6240 q^{15} + 56588 q^{16} - 5978 q^{18} + 25000 q^{19} + 7520 q^{21} + 20970 q^{22} + 1238 q^{24}+ \cdots + 4793544 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.40547i 0.675684i −0.941203 0.337842i \(-0.890303\pi\)
0.941203 0.337842i \(-0.109697\pi\)
\(3\) 14.0726 + 23.0426i 0.521206 + 0.853431i
\(4\) 34.7809 0.543451
\(5\) 110.739i 0.885916i 0.896542 + 0.442958i \(0.146071\pi\)
−0.896542 + 0.442958i \(0.853929\pi\)
\(6\) 124.556 76.0688i 0.576650 0.352170i
\(7\) 411.141 1.19866 0.599331 0.800501i \(-0.295433\pi\)
0.599331 + 0.800501i \(0.295433\pi\)
\(8\) 533.957i 1.04289i
\(9\) −332.926 + 648.538i −0.456689 + 0.889626i
\(10\) 598.599 0.598599
\(11\) 606.117i 0.455385i −0.973733 0.227692i \(-0.926882\pi\)
0.973733 0.227692i \(-0.0731180\pi\)
\(12\) 489.456 + 801.443i 0.283250 + 0.463798i
\(13\) 1441.19 0.655983 0.327991 0.944681i \(-0.393628\pi\)
0.327991 + 0.944681i \(0.393628\pi\)
\(14\) 2222.41i 0.809917i
\(15\) −2551.73 + 1558.39i −0.756068 + 0.461745i
\(16\) −660.314 −0.161209
\(17\) 4583.06i 0.932844i 0.884562 + 0.466422i \(0.154457\pi\)
−0.884562 + 0.466422i \(0.845543\pi\)
\(18\) 3505.65 + 1799.62i 0.601106 + 0.308577i
\(19\) −4731.81 −0.689868 −0.344934 0.938627i \(-0.612099\pi\)
−0.344934 + 0.938627i \(0.612099\pi\)
\(20\) 3851.62i 0.481452i
\(21\) 5785.81 + 9473.78i 0.624750 + 1.02298i
\(22\) −3276.35 −0.307696
\(23\) 10056.6i 0.826547i 0.910607 + 0.413273i \(0.135615\pi\)
−0.910607 + 0.413273i \(0.864385\pi\)
\(24\) 12303.8 7514.14i 0.890030 0.543558i
\(25\) 3361.77 0.215153
\(26\) 7790.33i 0.443237i
\(27\) −19629.1 + 1455.09i −0.997264 + 0.0739262i
\(28\) 14299.9 0.651415
\(29\) 4528.92i 0.185695i
\(30\) 8423.82 + 13793.3i 0.311993 + 0.510863i
\(31\) −10674.4 −0.358309 −0.179154 0.983821i \(-0.557336\pi\)
−0.179154 + 0.983821i \(0.557336\pi\)
\(32\) 30604.0i 0.933959i
\(33\) 13966.5 8529.61i 0.388639 0.237349i
\(34\) 24773.6 0.630307
\(35\) 45529.6i 1.06191i
\(36\) −11579.5 + 22556.7i −0.248188 + 0.483469i
\(37\) 63422.5 1.25210 0.626049 0.779784i \(-0.284671\pi\)
0.626049 + 0.779784i \(0.284671\pi\)
\(38\) 25577.6i 0.466133i
\(39\) 20281.3 + 33208.9i 0.341902 + 0.559836i
\(40\) 59130.1 0.923908
\(41\) 13030.7i 0.189067i 0.995522 + 0.0945336i \(0.0301360\pi\)
−0.995522 + 0.0945336i \(0.969864\pi\)
\(42\) 51210.2 31275.0i 0.691208 0.422134i
\(43\) 86610.9 1.08935 0.544675 0.838647i \(-0.316653\pi\)
0.544675 + 0.838647i \(0.316653\pi\)
\(44\) 21081.3i 0.247479i
\(45\) −71818.7 36868.1i −0.788134 0.404588i
\(46\) 54360.6 0.558484
\(47\) 38515.5i 0.370972i −0.982647 0.185486i \(-0.940614\pi\)
0.982647 0.185486i \(-0.0593860\pi\)
\(48\) −9292.30 15215.4i −0.0840233 0.137581i
\(49\) 51388.2 0.436792
\(50\) 18171.9i 0.145376i
\(51\) −105606. + 64495.4i −0.796118 + 0.486204i
\(52\) 50126.0 0.356495
\(53\) 107324.i 0.720889i −0.932781 0.360445i \(-0.882625\pi\)
0.932781 0.360445i \(-0.117375\pi\)
\(54\) 7865.44 + 106105.i 0.0499507 + 0.673835i
\(55\) 67121.1 0.403432
\(56\) 219532.i 1.25007i
\(57\) −66588.6 109033.i −0.359564 0.588755i
\(58\) 24481.0 0.125471
\(59\) 128345.i 0.624919i 0.949931 + 0.312459i \(0.101153\pi\)
−0.949931 + 0.312459i \(0.898847\pi\)
\(60\) −88751.4 + 54202.1i −0.410886 + 0.250936i
\(61\) −171773. −0.756774 −0.378387 0.925648i \(-0.623521\pi\)
−0.378387 + 0.925648i \(0.623521\pi\)
\(62\) 57700.0i 0.242103i
\(63\) −136880. + 266641.i −0.547416 + 1.06636i
\(64\) −207689. −0.792270
\(65\) 159597.i 0.581146i
\(66\) −46106.6 75495.7i −0.160373 0.262597i
\(67\) 43758.7 0.145492 0.0727462 0.997350i \(-0.476824\pi\)
0.0727462 + 0.997350i \(0.476824\pi\)
\(68\) 159403.i 0.506955i
\(69\) −231730. + 141522.i −0.705401 + 0.430801i
\(70\) 246109. 0.717518
\(71\) 22981.7i 0.0642105i −0.999484 0.0321053i \(-0.989779\pi\)
0.999484 0.0321053i \(-0.0102212\pi\)
\(72\) 346291. + 177768.i 0.927778 + 0.476274i
\(73\) −549858. −1.41346 −0.706728 0.707486i \(-0.749829\pi\)
−0.706728 + 0.707486i \(0.749829\pi\)
\(74\) 342828.i 0.846022i
\(75\) 47308.7 + 77464.0i 0.112139 + 0.183618i
\(76\) −164576. −0.374910
\(77\) 249200.i 0.545852i
\(78\) 179510. 109630.i 0.378272 0.231018i
\(79\) −781292. −1.58465 −0.792323 0.610102i \(-0.791129\pi\)
−0.792323 + 0.610102i \(0.791129\pi\)
\(80\) 73122.8i 0.142818i
\(81\) −309761. 431830.i −0.582871 0.812565i
\(82\) 70437.1 0.127750
\(83\) 155460.i 0.271885i −0.990717 0.135942i \(-0.956594\pi\)
0.990717 0.135942i \(-0.0434062\pi\)
\(84\) 201236. + 329506.i 0.339521 + 0.555938i
\(85\) −507526. −0.826421
\(86\) 468173.i 0.736056i
\(87\) −104358. + 63733.5i −0.158478 + 0.0967855i
\(88\) −323640. −0.474914
\(89\) 782740.i 1.11032i −0.831744 0.555159i \(-0.812657\pi\)
0.831744 0.555159i \(-0.187343\pi\)
\(90\) −199289. + 388214.i −0.273373 + 0.532530i
\(91\) 592534. 0.786302
\(92\) 349777.i 0.449188i
\(93\) −150216. 245966.i −0.186753 0.305792i
\(94\) −208194. −0.250660
\(95\) 523998.i 0.611165i
\(96\) 705196. 430676.i 0.797069 0.486785i
\(97\) 1.39477e6 1.52822 0.764110 0.645086i \(-0.223178\pi\)
0.764110 + 0.645086i \(0.223178\pi\)
\(98\) 277777.i 0.295133i
\(99\) 393090. + 201792.i 0.405122 + 0.207969i
\(100\) 116925. 0.116925
\(101\) 1.97695e6i 1.91881i −0.282032 0.959405i \(-0.591008\pi\)
0.282032 0.959405i \(-0.408992\pi\)
\(102\) 348628. + 570849.i 0.328520 + 0.537924i
\(103\) 1.16265e6 1.06399 0.531993 0.846749i \(-0.321443\pi\)
0.531993 + 0.846749i \(0.321443\pi\)
\(104\) 769536.i 0.684115i
\(105\) −1.04912e6 + 640718.i −0.906270 + 0.553476i
\(106\) −580136. −0.487093
\(107\) 5836.50i 0.00476432i 0.999997 + 0.00238216i \(0.000758266\pi\)
−0.999997 + 0.00238216i \(0.999242\pi\)
\(108\) −682719. + 50609.3i −0.541964 + 0.0401753i
\(109\) −844806. −0.652345 −0.326173 0.945310i \(-0.605759\pi\)
−0.326173 + 0.945310i \(0.605759\pi\)
\(110\) 362821.i 0.272593i
\(111\) 892517. + 1.46142e6i 0.652600 + 1.06858i
\(112\) −271482. −0.193236
\(113\) 115920.i 0.0803383i 0.999193 + 0.0401692i \(0.0127897\pi\)
−0.999193 + 0.0401692i \(0.987210\pi\)
\(114\) −589376. + 359943.i −0.397812 + 0.242951i
\(115\) −1.11366e6 −0.732251
\(116\) 157520.i 0.100916i
\(117\) −479811. + 934669.i −0.299580 + 0.583580i
\(118\) 693766. 0.422248
\(119\) 1.88429e6i 1.11816i
\(120\) 832112. + 1.36251e6i 0.481547 + 0.788492i
\(121\) 1.40418e6 0.792625
\(122\) 928515.i 0.511340i
\(123\) −300262. + 183375.i −0.161356 + 0.0985429i
\(124\) −371264. −0.194723
\(125\) 2.10258e6i 1.07652i
\(126\) 1.44132e6 + 739899.i 0.720524 + 0.369880i
\(127\) −2.38417e6 −1.16393 −0.581964 0.813215i \(-0.697716\pi\)
−0.581964 + 0.813215i \(0.697716\pi\)
\(128\) 835997.i 0.398634i
\(129\) 1.21884e6 + 1.99574e6i 0.567775 + 0.929685i
\(130\) 862697. 0.392671
\(131\) 4.37080e6i 1.94423i −0.234513 0.972113i \(-0.575349\pi\)
0.234513 0.972113i \(-0.424651\pi\)
\(132\) 485768. 296668.i 0.211207 0.128988i
\(133\) −1.94544e6 −0.826920
\(134\) 236536.i 0.0983068i
\(135\) −161136. 2.17372e6i −0.0654924 0.883492i
\(136\) 2.44716e6 0.972849
\(137\) 902098.i 0.350826i −0.984495 0.175413i \(-0.943874\pi\)
0.984495 0.175413i \(-0.0561261\pi\)
\(138\) 764993. + 1.25261e6i 0.291085 + 0.476628i
\(139\) 4.40643e6 1.64075 0.820375 0.571826i \(-0.193765\pi\)
0.820375 + 0.571826i \(0.193765\pi\)
\(140\) 1.58356e6i 0.577099i
\(141\) 887498. 542011.i 0.316599 0.193353i
\(142\) −124227. −0.0433860
\(143\) 873532.i 0.298724i
\(144\) 219836. 428238.i 0.0736225 0.143416i
\(145\) −501531. −0.164510
\(146\) 2.97224e6i 0.955049i
\(147\) 723163. + 1.18412e6i 0.227659 + 0.372772i
\(148\) 2.20589e6 0.680454
\(149\) 1.95066e6i 0.589690i −0.955545 0.294845i \(-0.904732\pi\)
0.955545 0.294845i \(-0.0952680\pi\)
\(150\) 418729. 255726.i 0.124068 0.0757706i
\(151\) −6.07887e6 −1.76560 −0.882799 0.469751i \(-0.844344\pi\)
−0.882799 + 0.469751i \(0.844344\pi\)
\(152\) 2.52658e6i 0.719454i
\(153\) −2.97229e6 1.52582e6i −0.829882 0.426019i
\(154\) −1.34704e6 −0.368824
\(155\) 1.18207e6i 0.317431i
\(156\) 705401. + 1.15504e6i 0.185807 + 0.304244i
\(157\) 5.18617e6 1.34013 0.670067 0.742301i \(-0.266265\pi\)
0.670067 + 0.742301i \(0.266265\pi\)
\(158\) 4.22325e6i 1.07072i
\(159\) 2.47302e6 1.51032e6i 0.615229 0.375732i
\(160\) 3.38907e6 0.827409
\(161\) 4.13468e6i 0.990751i
\(162\) −2.33425e6 + 1.67441e6i −0.549037 + 0.393836i
\(163\) −3.25647e6 −0.751943 −0.375971 0.926631i \(-0.622691\pi\)
−0.375971 + 0.926631i \(0.622691\pi\)
\(164\) 453219.i 0.102749i
\(165\) 944565. + 1.54665e6i 0.210271 + 0.344302i
\(166\) −840336. −0.183708
\(167\) 1.51890e6i 0.326122i −0.986616 0.163061i \(-0.947863\pi\)
0.986616 0.163061i \(-0.0521368\pi\)
\(168\) 5.05859e6 3.08938e6i 1.06685 0.651543i
\(169\) −2.74977e6 −0.569687
\(170\) 2.74342e6i 0.558399i
\(171\) 1.57534e6 3.06876e6i 0.315055 0.613725i
\(172\) 3.01240e6 0.592008
\(173\) 1.00818e7i 1.94715i −0.228369 0.973575i \(-0.573339\pi\)
0.228369 0.973575i \(-0.426661\pi\)
\(174\) 344510. + 564106.i 0.0653964 + 0.107081i
\(175\) 1.38216e6 0.257896
\(176\) 400227.i 0.0734123i
\(177\) −2.95741e6 + 1.80615e6i −0.533325 + 0.325711i
\(178\) −4.23108e6 −0.750224
\(179\) 4.08978e6i 0.713084i −0.934279 0.356542i \(-0.883956\pi\)
0.934279 0.356542i \(-0.116044\pi\)
\(180\) −2.49792e6 1.28230e6i −0.428313 0.219874i
\(181\) −4.70671e6 −0.793747 −0.396873 0.917873i \(-0.629905\pi\)
−0.396873 + 0.917873i \(0.629905\pi\)
\(182\) 3.20293e6i 0.531292i
\(183\) −2.41729e6 3.95811e6i −0.394435 0.645854i
\(184\) 5.36979e6 0.861994
\(185\) 7.02337e6i 1.10925i
\(186\) −1.32956e6 + 811987.i −0.206619 + 0.126186i
\(187\) 2.77787e6 0.424803
\(188\) 1.33960e6i 0.201605i
\(189\) −8.07035e6 + 598247.i −1.19538 + 0.0886125i
\(190\) −2.83246e6 −0.412955
\(191\) 3.73212e6i 0.535619i −0.963472 0.267809i \(-0.913700\pi\)
0.963472 0.267809i \(-0.0862998\pi\)
\(192\) −2.92271e6 4.78570e6i −0.412936 0.676148i
\(193\) 3.61636e6 0.503037 0.251518 0.967853i \(-0.419070\pi\)
0.251518 + 0.967853i \(0.419070\pi\)
\(194\) 7.53936e6i 1.03259i
\(195\) −3.67754e6 + 2.24594e6i −0.495968 + 0.302896i
\(196\) 1.78733e6 0.237375
\(197\) 3.77076e6i 0.493208i 0.969116 + 0.246604i \(0.0793147\pi\)
−0.969116 + 0.246604i \(0.920685\pi\)
\(198\) 1.09078e6 2.12483e6i 0.140521 0.273735i
\(199\) 532296. 0.0675451 0.0337725 0.999430i \(-0.489248\pi\)
0.0337725 + 0.999430i \(0.489248\pi\)
\(200\) 1.79504e6i 0.224380i
\(201\) 615797. + 1.00832e6i 0.0758315 + 0.124168i
\(202\) −1.06864e7 −1.29651
\(203\) 1.86203e6i 0.222586i
\(204\) −3.67306e6 + 2.24321e6i −0.432651 + 0.264228i
\(205\) −1.44301e6 −0.167498
\(206\) 6.28465e6i 0.718918i
\(207\) −6.52208e6 3.34810e6i −0.735318 0.377475i
\(208\) −951640. −0.105751
\(209\) 2.86803e6i 0.314155i
\(210\) 3.46338e6 + 5.67100e6i 0.373975 + 0.612352i
\(211\) −1.46909e7 −1.56388 −0.781938 0.623356i \(-0.785769\pi\)
−0.781938 + 0.623356i \(0.785769\pi\)
\(212\) 3.73282e6i 0.391768i
\(213\) 529558. 323411.i 0.0547992 0.0334669i
\(214\) 31549.0 0.00321917
\(215\) 9.59125e6i 0.965072i
\(216\) 776955. + 1.04811e7i 0.0770965 + 1.04003i
\(217\) −4.38868e6 −0.429491
\(218\) 4.56657e6i 0.440779i
\(219\) −7.73791e6 1.26702e7i −0.736701 1.20629i
\(220\) 2.33453e6 0.219246
\(221\) 6.60508e6i 0.611929i
\(222\) 7.89967e6 4.82447e6i 0.722021 0.440952i
\(223\) 1.72965e7 1.55971 0.779855 0.625960i \(-0.215293\pi\)
0.779855 + 0.625960i \(0.215293\pi\)
\(224\) 1.25825e7i 1.11950i
\(225\) −1.11922e6 + 2.18023e6i −0.0982581 + 0.191406i
\(226\) 626602. 0.0542833
\(227\) 6.67519e6i 0.570671i 0.958428 + 0.285336i \(0.0921051\pi\)
−0.958428 + 0.285336i \(0.907895\pi\)
\(228\) −2.31601e6 3.79228e6i −0.195405 0.319960i
\(229\) 4.19604e6 0.349408 0.174704 0.984621i \(-0.444103\pi\)
0.174704 + 0.984621i \(0.444103\pi\)
\(230\) 6.01987e6i 0.494770i
\(231\) 5.74222e6 3.50688e6i 0.465847 0.284502i
\(232\) 2.41825e6 0.193659
\(233\) 4.92660e6i 0.389475i −0.980855 0.194737i \(-0.937615\pi\)
0.980855 0.194737i \(-0.0623855\pi\)
\(234\) 5.05233e6 + 2.59361e6i 0.394315 + 0.202421i
\(235\) 4.26518e6 0.328650
\(236\) 4.46396e6i 0.339613i
\(237\) −1.09948e7 1.80030e7i −0.825927 1.35239i
\(238\) 1.01855e7 0.755526
\(239\) 2.32737e7i 1.70479i 0.522897 + 0.852396i \(0.324851\pi\)
−0.522897 + 0.852396i \(0.675149\pi\)
\(240\) 1.68494e6 1.02902e6i 0.121885 0.0744375i
\(241\) 1.74137e6 0.124406 0.0622028 0.998064i \(-0.480187\pi\)
0.0622028 + 0.998064i \(0.480187\pi\)
\(242\) 7.59027e6i 0.535564i
\(243\) 5.59137e6 1.32147e7i 0.389673 0.920953i
\(244\) −5.97443e6 −0.411270
\(245\) 5.69070e6i 0.386961i
\(246\) 991230. + 1.62306e6i 0.0665839 + 0.109025i
\(247\) −6.81945e6 −0.452542
\(248\) 5.69966e6i 0.373675i
\(249\) 3.58221e6 2.18772e6i 0.232035 0.141708i
\(250\) 1.13655e7 0.727390
\(251\) 2.93560e7i 1.85642i 0.372061 + 0.928208i \(0.378651\pi\)
−0.372061 + 0.928208i \(0.621349\pi\)
\(252\) −4.76080e6 + 9.27400e6i −0.297494 + 0.579516i
\(253\) 6.09547e6 0.376397
\(254\) 1.28876e7i 0.786447i
\(255\) −7.14219e6 1.16947e7i −0.430735 0.705293i
\(256\) −1.78110e7 −1.06162
\(257\) 4.11410e6i 0.242368i 0.992630 + 0.121184i \(0.0386691\pi\)
−0.992630 + 0.121184i \(0.961331\pi\)
\(258\) 1.07879e7 6.58839e6i 0.628173 0.383637i
\(259\) 2.60756e7 1.50084
\(260\) 5.55093e6i 0.315824i
\(261\) −2.93718e6 1.50780e6i −0.165199 0.0848050i
\(262\) −2.36262e7 −1.31368
\(263\) 1.80841e7i 0.994097i −0.867723 0.497049i \(-0.834417\pi\)
0.867723 0.497049i \(-0.165583\pi\)
\(264\) −4.55445e6 7.45753e6i −0.247528 0.405306i
\(265\) 1.18850e7 0.638647
\(266\) 1.05160e7i 0.558736i
\(267\) 1.80364e7 1.10152e7i 0.947580 0.578704i
\(268\) 1.52197e6 0.0790680
\(269\) 1.03874e6i 0.0533640i 0.999644 + 0.0266820i \(0.00849415\pi\)
−0.999644 + 0.0266820i \(0.991506\pi\)
\(270\) −1.17500e7 + 871015.i −0.596961 + 0.0442521i
\(271\) −4.05967e6 −0.203978 −0.101989 0.994786i \(-0.532521\pi\)
−0.101989 + 0.994786i \(0.532521\pi\)
\(272\) 3.02626e6i 0.150383i
\(273\) 8.33848e6 + 1.36536e7i 0.409825 + 0.671055i
\(274\) −4.87627e6 −0.237048
\(275\) 2.03762e6i 0.0979774i
\(276\) −8.05979e6 + 4.92226e6i −0.383351 + 0.234119i
\(277\) −2.26727e7 −1.06675 −0.533376 0.845878i \(-0.679077\pi\)
−0.533376 + 0.845878i \(0.679077\pi\)
\(278\) 2.38188e7i 1.10863i
\(279\) 3.55378e6 6.92274e6i 0.163636 0.318761i
\(280\) 2.43108e7 1.10745
\(281\) 2.33305e7i 1.05149i 0.850642 + 0.525745i \(0.176213\pi\)
−0.850642 + 0.525745i \(0.823787\pi\)
\(282\) −2.92983e6 4.79735e6i −0.130646 0.213921i
\(283\) 2.46029e7 1.08549 0.542746 0.839897i \(-0.317384\pi\)
0.542746 + 0.839897i \(0.317384\pi\)
\(284\) 799322.i 0.0348953i
\(285\) 1.20743e7 7.37399e6i 0.521587 0.318543i
\(286\) −4.72185e6 −0.201843
\(287\) 5.35746e6i 0.226628i
\(288\) 1.98478e7 + 1.01889e7i 0.830874 + 0.426528i
\(289\) 3.13312e6 0.129803
\(290\) 2.71101e6i 0.111157i
\(291\) 1.96279e7 + 3.21391e7i 0.796517 + 1.30423i
\(292\) −1.91245e7 −0.768144
\(293\) 1.24717e7i 0.495820i 0.968783 + 0.247910i \(0.0797437\pi\)
−0.968783 + 0.247910i \(0.920256\pi\)
\(294\) 6.40072e6 3.90904e6i 0.251876 0.153825i
\(295\) −1.42129e7 −0.553625
\(296\) 3.38649e7i 1.30579i
\(297\) 881954. + 1.18976e7i 0.0336648 + 0.454138i
\(298\) −1.05443e7 −0.398444
\(299\) 1.44935e7i 0.542201i
\(300\) 1.64544e6 + 2.69427e6i 0.0609421 + 0.0997877i
\(301\) 3.56093e7 1.30576
\(302\) 3.28591e7i 1.19299i
\(303\) 4.55542e7 2.78208e7i 1.63757 1.00010i
\(304\) 3.12448e6 0.111213
\(305\) 1.90221e7i 0.670438i
\(306\) −8.24778e6 + 1.60666e7i −0.287854 + 0.560738i
\(307\) −3.38989e7 −1.17158 −0.585788 0.810465i \(-0.699215\pi\)
−0.585788 + 0.810465i \(0.699215\pi\)
\(308\) 8.66738e6i 0.296644i
\(309\) 1.63614e7 + 2.67904e7i 0.554556 + 0.908039i
\(310\) −6.38967e6 −0.214483
\(311\) 2.40534e7i 0.799641i −0.916594 0.399820i \(-0.869073\pi\)
0.916594 0.399820i \(-0.130927\pi\)
\(312\) 1.77321e7 1.08293e7i 0.583845 0.356565i
\(313\) −1.24234e7 −0.405144 −0.202572 0.979267i \(-0.564930\pi\)
−0.202572 + 0.979267i \(0.564930\pi\)
\(314\) 2.80337e7i 0.905507i
\(315\) −2.95276e7 1.51580e7i −0.944707 0.484964i
\(316\) −2.71740e7 −0.861178
\(317\) 4.60354e7i 1.44515i 0.691290 + 0.722577i \(0.257043\pi\)
−0.691290 + 0.722577i \(0.742957\pi\)
\(318\) −8.16400e6 1.33679e7i −0.253876 0.415700i
\(319\) 2.74506e6 0.0845628
\(320\) 2.29994e7i 0.701885i
\(321\) −134488. + 82134.4i −0.00406602 + 0.00248319i
\(322\) 2.23499e7 0.669434
\(323\) 2.16862e7i 0.643539i
\(324\) −1.07738e7 1.50194e7i −0.316762 0.441590i
\(325\) 4.84496e6 0.141137
\(326\) 1.76028e7i 0.508075i
\(327\) −1.18886e7 1.94666e7i −0.340006 0.556732i
\(328\) 6.95783e6 0.197175
\(329\) 1.58353e7i 0.444671i
\(330\) 8.36035e6 5.10582e6i 0.232639 0.142077i
\(331\) 5.93267e7 1.63594 0.817968 0.575263i \(-0.195100\pi\)
0.817968 + 0.575263i \(0.195100\pi\)
\(332\) 5.40704e6i 0.147756i
\(333\) −2.11150e7 + 4.11319e7i −0.571819 + 1.11390i
\(334\) −8.21038e6 −0.220356
\(335\) 4.84582e6i 0.128894i
\(336\) −3.82045e6 6.25567e6i −0.100716 0.164913i
\(337\) 3.08452e7 0.805931 0.402965 0.915215i \(-0.367979\pi\)
0.402965 + 0.915215i \(0.367979\pi\)
\(338\) 1.48638e7i 0.384928i
\(339\) −2.67110e6 + 1.63129e6i −0.0685632 + 0.0418728i
\(340\) −1.76522e7 −0.449120
\(341\) 6.46992e6i 0.163168i
\(342\) −1.65881e7 8.51547e6i −0.414684 0.212878i
\(343\) −2.72426e7 −0.675096
\(344\) 4.62465e7i 1.13607i
\(345\) −1.56721e7 2.56617e7i −0.381654 0.624926i
\(346\) −5.44968e7 −1.31566
\(347\) 6.59809e7i 1.57917i 0.613639 + 0.789586i \(0.289705\pi\)
−0.613639 + 0.789586i \(0.710295\pi\)
\(348\) −3.62968e6 + 2.21671e6i −0.0861252 + 0.0525982i
\(349\) 5.60177e7 1.31780 0.658900 0.752231i \(-0.271022\pi\)
0.658900 + 0.752231i \(0.271022\pi\)
\(350\) 7.47124e6i 0.174256i
\(351\) −2.82894e7 + 2.09707e6i −0.654188 + 0.0484943i
\(352\) −1.85496e7 −0.425310
\(353\) 1.90588e6i 0.0433283i −0.999765 0.0216642i \(-0.993104\pi\)
0.999765 0.0216642i \(-0.00689646\pi\)
\(354\) 9.76307e6 + 1.59862e7i 0.220078 + 0.360359i
\(355\) 2.54498e6 0.0568851
\(356\) 2.72244e7i 0.603404i
\(357\) −4.34189e7 + 2.65167e7i −0.954277 + 0.582794i
\(358\) −2.21072e7 −0.481819
\(359\) 3.33216e7i 0.720183i 0.932917 + 0.360092i \(0.117255\pi\)
−0.932917 + 0.360092i \(0.882745\pi\)
\(360\) −1.96860e7 + 3.83481e7i −0.421939 + 0.821933i
\(361\) −2.46559e7 −0.524082
\(362\) 2.54420e7i 0.536322i
\(363\) 1.97605e7 + 3.23561e7i 0.413121 + 0.676451i
\(364\) 2.06089e7 0.427317
\(365\) 6.08910e7i 1.25220i
\(366\) −2.13954e7 + 1.30666e7i −0.436393 + 0.266513i
\(367\) −8.55252e7 −1.73020 −0.865099 0.501602i \(-0.832744\pi\)
−0.865099 + 0.501602i \(0.832744\pi\)
\(368\) 6.64051e6i 0.133247i
\(369\) −8.45090e6 4.33826e6i −0.168199 0.0863449i
\(370\) 3.79646e7 0.749504
\(371\) 4.41253e7i 0.864103i
\(372\) −5.22464e6 8.55491e6i −0.101491 0.166183i
\(373\) −5.89028e7 −1.13504 −0.567518 0.823361i \(-0.692096\pi\)
−0.567518 + 0.823361i \(0.692096\pi\)
\(374\) 1.50157e7i 0.287032i
\(375\) −4.84491e7 + 2.95887e7i −0.918738 + 0.561090i
\(376\) −2.05656e7 −0.386882
\(377\) 6.52706e6i 0.121813i
\(378\) 3.23381e6 + 4.36240e7i 0.0598741 + 0.807701i
\(379\) −8.48316e7 −1.55826 −0.779131 0.626862i \(-0.784339\pi\)
−0.779131 + 0.626862i \(0.784339\pi\)
\(380\) 1.82251e7i 0.332139i
\(381\) −3.35514e7 5.49376e7i −0.606646 0.993332i
\(382\) −2.01739e7 −0.361909
\(383\) 7.09006e7i 1.26198i −0.775790 0.630991i \(-0.782648\pi\)
0.775790 0.630991i \(-0.217352\pi\)
\(384\) 1.92636e7 1.17646e7i 0.340207 0.207771i
\(385\) 2.75962e7 0.483579
\(386\) 1.95481e7i 0.339894i
\(387\) −2.88350e7 + 5.61704e7i −0.497494 + 0.969114i
\(388\) 4.85112e7 0.830513
\(389\) 7.37316e7i 1.25258i 0.779591 + 0.626289i \(0.215427\pi\)
−0.779591 + 0.626289i \(0.784573\pi\)
\(390\) 1.21404e7 + 1.98788e7i 0.204662 + 0.335117i
\(391\) −4.60900e7 −0.771039
\(392\) 2.74391e7i 0.455524i
\(393\) 1.00715e8 6.15083e7i 1.65926 1.01334i
\(394\) 2.03827e7 0.333253
\(395\) 8.65199e7i 1.40386i
\(396\) 1.36720e7 + 7.01851e6i 0.220164 + 0.113021i
\(397\) 8.23252e7 1.31571 0.657857 0.753143i \(-0.271463\pi\)
0.657857 + 0.753143i \(0.271463\pi\)
\(398\) 2.87731e6i 0.0456391i
\(399\) −2.73773e7 4.48281e7i −0.430995 0.705719i
\(400\) −2.21982e6 −0.0346847
\(401\) 8.66361e7i 1.34359i −0.740739 0.671793i \(-0.765524\pi\)
0.740739 0.671793i \(-0.234476\pi\)
\(402\) 5.45042e6 3.32867e6i 0.0838981 0.0512381i
\(403\) −1.53838e7 −0.235044
\(404\) 6.87601e7i 1.04278i
\(405\) 4.78207e7 3.43028e7i 0.719864 0.516374i
\(406\) 1.00651e7 0.150398
\(407\) 3.84414e7i 0.570186i
\(408\) 3.44378e7 + 5.63890e7i 0.507055 + 0.830259i
\(409\) 1.14283e8 1.67037 0.835186 0.549968i \(-0.185360\pi\)
0.835186 + 0.549968i \(0.185360\pi\)
\(410\) 7.80016e6i 0.113175i
\(411\) 2.07867e7 1.26948e7i 0.299406 0.182853i
\(412\) 4.04379e7 0.578225
\(413\) 5.27680e7i 0.749067i
\(414\) −1.80981e7 + 3.52549e7i −0.255054 + 0.496843i
\(415\) 1.72156e7 0.240867
\(416\) 4.41062e7i 0.612661i
\(417\) 6.20098e7 + 1.01536e8i 0.855169 + 1.40027i
\(418\) 1.55030e7 0.212270
\(419\) 1.01970e8i 1.38621i 0.720836 + 0.693106i \(0.243758\pi\)
−0.720836 + 0.693106i \(0.756242\pi\)
\(420\) −3.64894e7 + 2.22847e7i −0.492514 + 0.300787i
\(421\) 1.21575e8 1.62929 0.814646 0.579958i \(-0.196931\pi\)
0.814646 + 0.579958i \(0.196931\pi\)
\(422\) 7.94115e7i 1.05669i
\(423\) 2.49787e7 + 1.28228e7i 0.330027 + 0.169419i
\(424\) −5.73063e7 −0.751805
\(425\) 1.54072e7i 0.200704i
\(426\) −1.74819e6 2.86251e6i −0.0226130 0.0370270i
\(427\) −7.06231e7 −0.907117
\(428\) 202999.i 0.00258918i
\(429\) 2.01285e7 1.22928e7i 0.254941 0.155697i
\(430\) 5.18452e7 0.652084
\(431\) 1.60824e7i 0.200871i 0.994944 + 0.100436i \(0.0320237\pi\)
−0.994944 + 0.100436i \(0.967976\pi\)
\(432\) 1.29614e7 960815.i 0.160768 0.0119176i
\(433\) −1.58213e7 −0.194885 −0.0974425 0.995241i \(-0.531066\pi\)
−0.0974425 + 0.995241i \(0.531066\pi\)
\(434\) 2.37229e7i 0.290200i
\(435\) −7.05782e6 1.15566e7i −0.0857438 0.140398i
\(436\) −2.93831e7 −0.354518
\(437\) 4.75859e7i 0.570209i
\(438\) −6.84883e7 + 4.18270e7i −0.815068 + 0.497777i
\(439\) 2.69744e7 0.318829 0.159415 0.987212i \(-0.449039\pi\)
0.159415 + 0.987212i \(0.449039\pi\)
\(440\) 3.58398e7i 0.420734i
\(441\) −1.71085e7 + 3.33272e7i −0.199478 + 0.388582i
\(442\) 3.57036e7 0.413471
\(443\) 5.90195e6i 0.0678866i 0.999424 + 0.0339433i \(0.0108066\pi\)
−0.999424 + 0.0339433i \(0.989193\pi\)
\(444\) 3.10425e7 + 5.08295e7i 0.354657 + 0.580720i
\(445\) 8.66802e7 0.983649
\(446\) 9.34958e7i 1.05387i
\(447\) 4.49485e7 2.74508e7i 0.503260 0.307350i
\(448\) −8.53895e7 −0.949665
\(449\) 7.31592e7i 0.808221i −0.914710 0.404110i \(-0.867581\pi\)
0.914710 0.404110i \(-0.132419\pi\)
\(450\) 1.17852e7 + 6.04991e6i 0.129330 + 0.0663914i
\(451\) 7.89813e6 0.0860983
\(452\) 4.03180e6i 0.0436600i
\(453\) −8.55452e7 1.40073e8i −0.920240 1.50682i
\(454\) 3.60825e7 0.385593
\(455\) 6.56170e7i 0.696597i
\(456\) −5.82191e7 + 3.55555e7i −0.614004 + 0.374983i
\(457\) −2.06356e7 −0.216206 −0.108103 0.994140i \(-0.534478\pi\)
−0.108103 + 0.994140i \(0.534478\pi\)
\(458\) 2.26816e7i 0.236090i
\(459\) −6.66876e6 8.99615e7i −0.0689616 0.930291i
\(460\) −3.87342e7 −0.397943
\(461\) 1.93944e8i 1.97958i 0.142529 + 0.989791i \(0.454476\pi\)
−0.142529 + 0.989791i \(0.545524\pi\)
\(462\) −1.89563e7 3.10394e7i −0.192233 0.314766i
\(463\) −3.32063e7 −0.334563 −0.167281 0.985909i \(-0.553499\pi\)
−0.167281 + 0.985909i \(0.553499\pi\)
\(464\) 2.99051e6i 0.0299358i
\(465\) 2.72381e7 1.66348e7i 0.270906 0.165447i
\(466\) −2.66306e7 −0.263162
\(467\) 1.51133e8i 1.48391i 0.670449 + 0.741955i \(0.266101\pi\)
−0.670449 + 0.741955i \(0.733899\pi\)
\(468\) −1.66883e7 + 3.25086e7i −0.162807 + 0.317147i
\(469\) 1.79910e7 0.174396
\(470\) 2.30553e7i 0.222064i
\(471\) 7.29827e7 + 1.19503e8i 0.698486 + 1.14371i
\(472\) 6.85308e7 0.651718
\(473\) 5.24963e7i 0.496073i
\(474\) −9.73149e7 + 5.94320e7i −0.913786 + 0.558066i
\(475\) −1.59072e7 −0.148427
\(476\) 6.55371e7i 0.607668i
\(477\) 6.96036e7 + 3.57309e7i 0.641322 + 0.329222i
\(478\) 1.25805e8 1.15190
\(479\) 7.76341e7i 0.706392i −0.935549 0.353196i \(-0.885095\pi\)
0.935549 0.353196i \(-0.114905\pi\)
\(480\) 4.76928e7 + 7.80930e7i 0.431250 + 0.706136i
\(481\) 9.14041e7 0.821354
\(482\) 9.41292e6i 0.0840588i
\(483\) −9.52740e7 + 5.81856e7i −0.845538 + 0.516385i
\(484\) 4.88387e7 0.430753
\(485\) 1.54456e8i 1.35387i
\(486\) −7.14315e7 3.02240e7i −0.622273 0.263295i
\(487\) −1.60691e8 −1.39125 −0.695623 0.718407i \(-0.744872\pi\)
−0.695623 + 0.718407i \(0.744872\pi\)
\(488\) 9.17196e7i 0.789228i
\(489\) −4.58269e7 7.50377e7i −0.391917 0.641731i
\(490\) 3.07609e7 0.261463
\(491\) 1.04606e8i 0.883715i −0.897085 0.441858i \(-0.854320\pi\)
0.897085 0.441858i \(-0.145680\pi\)
\(492\) −1.04434e7 + 6.37795e6i −0.0876890 + 0.0535533i
\(493\) −2.07563e7 −0.173225
\(494\) 3.68624e7i 0.305775i
\(495\) −2.23464e7 + 4.35305e7i −0.184243 + 0.358904i
\(496\) 7.04844e6 0.0577627
\(497\) 9.44871e6i 0.0769668i
\(498\) −1.18257e7 1.93636e7i −0.0957498 0.156782i
\(499\) −7.83811e7 −0.630826 −0.315413 0.948954i \(-0.602143\pi\)
−0.315413 + 0.948954i \(0.602143\pi\)
\(500\) 7.31298e7i 0.585038i
\(501\) 3.49995e7 2.13748e7i 0.278323 0.169977i
\(502\) 1.58683e8 1.25435
\(503\) 1.40702e8i 1.10560i −0.833315 0.552799i \(-0.813560\pi\)
0.833315 0.552799i \(-0.186440\pi\)
\(504\) 1.42375e8 + 7.30879e7i 1.11209 + 0.570892i
\(505\) 2.18927e8 1.69990
\(506\) 3.29489e7i 0.254325i
\(507\) −3.86963e7 6.33619e7i −0.296924 0.486188i
\(508\) −8.29235e7 −0.632538
\(509\) 4.88289e7i 0.370274i 0.982713 + 0.185137i \(0.0592729\pi\)
−0.982713 + 0.185137i \(0.940727\pi\)
\(510\) −6.32155e7 + 3.86069e7i −0.476555 + 0.291041i
\(511\) −2.26069e8 −1.69426
\(512\) 4.27733e7i 0.318686i
\(513\) 9.28813e7 6.88520e6i 0.687981 0.0509993i
\(514\) 2.22386e7 0.163764
\(515\) 1.28751e8i 0.942602i
\(516\) 4.23922e7 + 6.94137e7i 0.308558 + 0.505238i
\(517\) −2.33449e7 −0.168935
\(518\) 1.40951e8i 1.01409i
\(519\) 2.32311e8 1.41877e8i 1.66176 1.01487i
\(520\) 8.52180e7 0.606068
\(521\) 2.89559e6i 0.0204750i −0.999948 0.0102375i \(-0.996741\pi\)
0.999948 0.0102375i \(-0.00325875\pi\)
\(522\) −8.15035e6 + 1.58768e7i −0.0573014 + 0.111623i
\(523\) −1.55624e8 −1.08785 −0.543927 0.839133i \(-0.683063\pi\)
−0.543927 + 0.839133i \(0.683063\pi\)
\(524\) 1.52020e8i 1.05659i
\(525\) 1.94506e7 + 3.18487e7i 0.134417 + 0.220097i
\(526\) −9.77529e7 −0.671695
\(527\) 4.89213e7i 0.334246i
\(528\) −9.22229e6 + 5.63222e6i −0.0626523 + 0.0382629i
\(529\) 4.69008e7 0.316820
\(530\) 6.42439e7i 0.431524i
\(531\) −8.32367e7 4.27295e7i −0.555944 0.285393i
\(532\) −6.76642e7 −0.449391
\(533\) 1.87798e7i 0.124025i
\(534\) −5.95421e7 9.74952e7i −0.391021 0.640265i
\(535\) −646331. −0.00422079
\(536\) 2.33653e7i 0.151732i
\(537\) 9.42393e7 5.75537e7i 0.608568 0.371664i
\(538\) 5.61486e6 0.0360572
\(539\) 3.11472e7i 0.198908i
\(540\) −5.60444e6 7.56039e7i −0.0355919 0.480135i
\(541\) −2.67737e8 −1.69089 −0.845446 0.534060i \(-0.820665\pi\)
−0.845446 + 0.534060i \(0.820665\pi\)
\(542\) 2.19444e7i 0.137824i
\(543\) −6.62355e7 1.08455e8i −0.413706 0.677408i
\(544\) 1.40260e8 0.871237
\(545\) 9.35534e7i 0.577923i
\(546\) 7.38039e7 4.50734e7i 0.453421 0.276912i
\(547\) −1.59781e8 −0.976256 −0.488128 0.872772i \(-0.662320\pi\)
−0.488128 + 0.872772i \(0.662320\pi\)
\(548\) 3.13758e7i 0.190657i
\(549\) 5.71878e7 1.11401e8i 0.345610 0.673246i
\(550\) −1.10143e7 −0.0662018
\(551\) 2.14300e7i 0.128105i
\(552\) 7.55667e7 + 1.23734e8i 0.449276 + 0.735652i
\(553\) −3.21222e8 −1.89946
\(554\) 1.22557e8i 0.720787i
\(555\) −1.61837e8 + 9.88368e7i −0.946671 + 0.578149i
\(556\) 1.53260e8 0.891668
\(557\) 1.89403e8i 1.09603i 0.836469 + 0.548014i \(0.184616\pi\)
−0.836469 + 0.548014i \(0.815384\pi\)
\(558\) −3.74206e7 1.92098e7i −0.215382 0.110566i
\(559\) 1.24823e8 0.714595
\(560\) 3.00638e7i 0.171191i
\(561\) 3.90917e7 + 6.40095e7i 0.221410 + 0.362540i
\(562\) 1.26112e8 0.710474
\(563\) 2.86962e8i 1.60805i −0.594595 0.804026i \(-0.702688\pi\)
0.594595 0.804026i \(-0.297312\pi\)
\(564\) 3.08680e7 1.88516e7i 0.172056 0.105078i
\(565\) −1.28369e7 −0.0711730
\(566\) 1.32990e8i 0.733450i
\(567\) −1.27356e8 1.77543e8i −0.698665 0.973991i
\(568\) −1.22712e7 −0.0669642
\(569\) 2.51884e7i 0.136730i 0.997660 + 0.0683650i \(0.0217782\pi\)
−0.997660 + 0.0683650i \(0.978222\pi\)
\(570\) −3.98599e7 6.52672e7i −0.215234 0.352428i
\(571\) −1.90245e8 −1.02189 −0.510946 0.859613i \(-0.670705\pi\)
−0.510946 + 0.859613i \(0.670705\pi\)
\(572\) 3.03822e7i 0.162342i
\(573\) 8.59980e7 5.25205e7i 0.457114 0.279168i
\(574\) 2.89596e7 0.153129
\(575\) 3.38079e7i 0.177834i
\(576\) 6.91451e7 1.34694e8i 0.361821 0.704824i
\(577\) −9.15925e7 −0.476796 −0.238398 0.971168i \(-0.576622\pi\)
−0.238398 + 0.971168i \(0.576622\pi\)
\(578\) 1.69360e7i 0.0877056i
\(579\) 5.08914e7 + 8.33305e7i 0.262186 + 0.429307i
\(580\) −1.74437e7 −0.0894034
\(581\) 6.39161e7i 0.325898i
\(582\) 1.73727e8 1.06098e8i 0.881247 0.538194i
\(583\) −6.50508e7 −0.328282
\(584\) 2.93601e8i 1.47407i
\(585\) −1.03505e8 5.31340e7i −0.517002 0.265403i
\(586\) 6.74156e7 0.335017
\(587\) 1.03240e8i 0.510427i 0.966885 + 0.255213i \(0.0821457\pi\)
−0.966885 + 0.255213i \(0.917854\pi\)
\(588\) 2.51523e7 + 4.11847e7i 0.123721 + 0.202583i
\(589\) 5.05091e7 0.247186
\(590\) 7.68273e7i 0.374076i
\(591\) −8.68882e7 + 5.30642e7i −0.420919 + 0.257063i
\(592\) −4.18787e7 −0.201850
\(593\) 2.99476e8i 1.43615i 0.695968 + 0.718073i \(0.254975\pi\)
−0.695968 + 0.718073i \(0.745025\pi\)
\(594\) 6.43119e7 4.76738e6i 0.306854 0.0227468i
\(595\) −2.08665e8 −0.990600
\(596\) 6.78458e7i 0.320468i
\(597\) 7.49076e6 + 1.22655e7i 0.0352049 + 0.0576450i
\(598\) 7.83442e7 0.366356
\(599\) 8.51341e6i 0.0396117i 0.999804 + 0.0198058i \(0.00630480\pi\)
−0.999804 + 0.0198058i \(0.993695\pi\)
\(600\) 4.13625e7 2.52608e7i 0.191493 0.116948i
\(601\) −8.75497e7 −0.403303 −0.201651 0.979457i \(-0.564631\pi\)
−0.201651 + 0.979457i \(0.564631\pi\)
\(602\) 1.92485e8i 0.882283i
\(603\) −1.45684e7 + 2.83792e7i −0.0664447 + 0.129434i
\(604\) −2.11428e8 −0.959516
\(605\) 1.55499e8i 0.702199i
\(606\) −1.50384e8 2.46242e8i −0.675748 1.10648i
\(607\) 2.52937e8 1.13096 0.565479 0.824763i \(-0.308691\pi\)
0.565479 + 0.824763i \(0.308691\pi\)
\(608\) 1.44812e8i 0.644309i
\(609\) −4.29060e7 + 2.62035e7i −0.189962 + 0.116013i
\(610\) −1.02823e8 −0.453004
\(611\) 5.55083e7i 0.243352i
\(612\) −1.03379e8 5.30694e7i −0.451001 0.231521i
\(613\) −1.80203e8 −0.782311 −0.391155 0.920325i \(-0.627925\pi\)
−0.391155 + 0.920325i \(0.627925\pi\)
\(614\) 1.83239e8i 0.791615i
\(615\) −2.03069e7 3.32508e7i −0.0873007 0.142948i
\(616\) −1.33062e8 −0.569261
\(617\) 1.57922e8i 0.672337i 0.941802 + 0.336168i \(0.109131\pi\)
−0.941802 + 0.336168i \(0.890869\pi\)
\(618\) 1.44815e8 8.84411e7i 0.613547 0.374704i
\(619\) 7.33915e7 0.309438 0.154719 0.987959i \(-0.450553\pi\)
0.154719 + 0.987959i \(0.450553\pi\)
\(620\) 4.11136e7i 0.172509i
\(621\) −1.46332e7 1.97402e8i −0.0611035 0.824285i
\(622\) −1.30020e8 −0.540304
\(623\) 3.21817e8i 1.33090i
\(624\) −1.33920e7 2.19283e7i −0.0551178 0.0902508i
\(625\) −1.80312e8 −0.738556
\(626\) 6.71546e7i 0.273749i
\(627\) −6.60869e7 + 4.03605e7i −0.268110 + 0.163740i
\(628\) 1.80380e8 0.728297
\(629\) 2.90669e8i 1.16801i
\(630\) −8.19361e7 + 1.59611e8i −0.327683 + 0.638323i
\(631\) 3.73260e8 1.48567 0.742836 0.669473i \(-0.233480\pi\)
0.742836 + 0.669473i \(0.233480\pi\)
\(632\) 4.17177e8i 1.65260i
\(633\) −2.06739e8 3.38518e8i −0.815101 1.33466i
\(634\) 2.48843e8 0.976467
\(635\) 2.64022e8i 1.03114i
\(636\) 8.60140e7 5.25303e7i 0.334347 0.204192i
\(637\) 7.40603e7 0.286528
\(638\) 1.48383e7i 0.0571377i
\(639\) 1.49045e7 + 7.65119e6i 0.0571234 + 0.0293242i
\(640\) 9.25779e7 0.353157
\(641\) 4.17603e8i 1.58559i 0.609491 + 0.792793i \(0.291374\pi\)
−0.609491 + 0.792793i \(0.708626\pi\)
\(642\) 443975. + 726972.i 0.00167785 + 0.00274734i
\(643\) −2.22049e7 −0.0835248 −0.0417624 0.999128i \(-0.513297\pi\)
−0.0417624 + 0.999128i \(0.513297\pi\)
\(644\) 1.43808e8i 0.538425i
\(645\) −2.21008e8 + 1.34973e8i −0.823622 + 0.503001i
\(646\) −1.17224e8 −0.434829
\(647\) 2.62438e8i 0.968978i 0.874797 + 0.484489i \(0.160994\pi\)
−0.874797 + 0.484489i \(0.839006\pi\)
\(648\) −2.30579e8 + 1.65399e8i −0.847412 + 0.607867i
\(649\) 7.77922e7 0.284578
\(650\) 2.61893e7i 0.0953639i
\(651\) −6.17599e7 1.01127e8i −0.223853 0.366541i
\(652\) −1.13263e8 −0.408644
\(653\) 2.48516e8i 0.892513i 0.894905 + 0.446257i \(0.147243\pi\)
−0.894905 + 0.446257i \(0.852757\pi\)
\(654\) −1.05226e8 + 6.42634e7i −0.376175 + 0.229737i
\(655\) 4.84020e8 1.72242
\(656\) 8.60435e6i 0.0304794i
\(657\) 1.83062e8 3.56604e8i 0.645509 1.25745i
\(658\) −8.55973e7 −0.300457
\(659\) 2.06875e8i 0.722856i 0.932400 + 0.361428i \(0.117711\pi\)
−0.932400 + 0.361428i \(0.882289\pi\)
\(660\) 3.28528e7 + 5.37937e7i 0.114272 + 0.187111i
\(661\) 4.85124e8 1.67976 0.839882 0.542769i \(-0.182624\pi\)
0.839882 + 0.542769i \(0.182624\pi\)
\(662\) 3.20689e8i 1.10538i
\(663\) −1.52198e8 + 9.29504e7i −0.522239 + 0.318941i
\(664\) −8.30091e7 −0.283545
\(665\) 2.15437e8i 0.732581i
\(666\) 2.22337e8 + 1.14137e8i 0.752644 + 0.386369i
\(667\) −4.55456e7 −0.153486
\(668\) 5.28288e7i 0.177232i
\(669\) 2.43406e8 + 3.98557e8i 0.812931 + 1.33111i
\(670\) 2.61939e7 0.0870916
\(671\) 1.04115e8i 0.344623i
\(672\) 2.89935e8 1.77069e8i 0.955417 0.583491i
\(673\) 1.58232e8 0.519096 0.259548 0.965730i \(-0.416426\pi\)
0.259548 + 0.965730i \(0.416426\pi\)
\(674\) 1.66733e8i 0.544554i
\(675\) −6.59886e7 + 4.89167e6i −0.214564 + 0.0159055i
\(676\) −9.56394e7 −0.309597
\(677\) 3.87813e7i 0.124985i 0.998045 + 0.0624923i \(0.0199049\pi\)
−0.998045 + 0.0624923i \(0.980095\pi\)
\(678\) 8.81789e6 + 1.44386e7i 0.0282928 + 0.0463271i
\(679\) 5.73446e8 1.83182
\(680\) 2.70997e8i 0.861862i
\(681\) −1.53814e8 + 9.39370e7i −0.487029 + 0.297437i
\(682\) 3.49730e7 0.110250
\(683\) 3.73234e8i 1.17144i −0.810514 0.585719i \(-0.800812\pi\)
0.810514 0.585719i \(-0.199188\pi\)
\(684\) 5.47918e7 1.06734e8i 0.171217 0.333530i
\(685\) 9.98979e7 0.310803
\(686\) 1.47259e8i 0.456152i
\(687\) 5.90490e7 + 9.66879e7i 0.182114 + 0.298196i
\(688\) −5.71904e7 −0.175613
\(689\) 1.54674e8i 0.472891i
\(690\) −1.38714e8 + 8.47150e7i −0.422252 + 0.257877i
\(691\) 1.63986e8 0.497019 0.248510 0.968629i \(-0.420059\pi\)
0.248510 + 0.968629i \(0.420059\pi\)
\(692\) 3.50653e8i 1.05818i
\(693\) 1.61615e8 + 8.29651e7i 0.485605 + 0.249285i
\(694\) 3.56658e8 1.06702
\(695\) 4.87966e8i 1.45357i
\(696\) 3.40310e7 + 5.57229e7i 0.100936 + 0.165275i
\(697\) −5.97205e7 −0.176370
\(698\) 3.02802e8i 0.890416i
\(699\) 1.13522e8 6.93298e7i 0.332390 0.202997i
\(700\) 4.80728e7 0.140154
\(701\) 2.58341e8i 0.749963i −0.927032 0.374981i \(-0.877649\pi\)
0.927032 0.374981i \(-0.122351\pi\)
\(702\) 1.13356e7 + 1.52918e8i 0.0327668 + 0.442024i
\(703\) −3.00103e8 −0.863782
\(704\) 1.25884e8i 0.360788i
\(705\) 6.00220e7 + 9.82811e7i 0.171295 + 0.280480i
\(706\) −1.03022e7 −0.0292763
\(707\) 8.12807e8i 2.30001i
\(708\) −1.02861e8 + 6.28193e7i −0.289836 + 0.177008i
\(709\) 3.35366e7 0.0940980 0.0470490 0.998893i \(-0.485018\pi\)
0.0470490 + 0.998893i \(0.485018\pi\)
\(710\) 1.37568e7i 0.0384364i
\(711\) 2.60113e8 5.06698e8i 0.723690 1.40974i
\(712\) −4.17950e8 −1.15793
\(713\) 1.07348e8i 0.296159i
\(714\) 1.43335e8 + 2.34700e8i 0.393785 + 0.644789i
\(715\) 9.67345e7 0.264645
\(716\) 1.42246e8i 0.387526i
\(717\) −5.36287e8 + 3.27520e8i −1.45492 + 0.888547i
\(718\) 1.80119e8 0.486616
\(719\) 1.53668e8i 0.413424i −0.978402 0.206712i \(-0.933724\pi\)
0.978402 0.206712i \(-0.0662764\pi\)
\(720\) 4.74229e7 + 2.43445e7i 0.127055 + 0.0652234i
\(721\) 4.78012e8 1.27536
\(722\) 1.33277e8i 0.354113i
\(723\) 2.45055e7 + 4.01257e7i 0.0648409 + 0.106172i
\(724\) −1.63704e8 −0.431363
\(725\) 1.52252e7i 0.0399529i
\(726\) 1.74900e8 1.06815e8i 0.457067 0.279139i
\(727\) 1.60024e8 0.416468 0.208234 0.978079i \(-0.433228\pi\)
0.208234 + 0.978079i \(0.433228\pi\)
\(728\) 3.16388e8i 0.820023i
\(729\) 3.83186e8 5.71243e7i 0.989070 0.147448i
\(730\) −3.29145e8 −0.846093
\(731\) 3.96943e8i 1.01619i
\(732\) −8.40755e7 1.37667e8i −0.214356 0.350990i
\(733\) −1.11592e8 −0.283348 −0.141674 0.989913i \(-0.545248\pi\)
−0.141674 + 0.989913i \(0.545248\pi\)
\(734\) 4.62304e8i 1.16907i
\(735\) −1.31129e8 + 8.00827e7i −0.330245 + 0.201686i
\(736\) 3.07772e8 0.771961
\(737\) 2.65229e7i 0.0662550i
\(738\) −2.34503e7 + 4.56811e7i −0.0583418 + 0.113649i
\(739\) −6.24800e8 −1.54813 −0.774066 0.633105i \(-0.781780\pi\)
−0.774066 + 0.633105i \(0.781780\pi\)
\(740\) 2.44279e8i 0.602825i
\(741\) −9.59672e7 1.57138e8i −0.235867 0.386213i
\(742\) −2.38518e8 −0.583860
\(743\) 3.52156e8i 0.858557i −0.903172 0.429279i \(-0.858768\pi\)
0.903172 0.429279i \(-0.141232\pi\)
\(744\) −1.31335e8 + 8.02088e7i −0.318906 + 0.194762i
\(745\) 2.16016e8 0.522416
\(746\) 3.18397e8i 0.766925i
\(747\) 1.00822e8 + 5.17568e7i 0.241876 + 0.124167i
\(748\) 9.66168e7 0.230860
\(749\) 2.39962e6i 0.00571081i
\(750\) 1.59941e8 + 2.61890e8i 0.379120 + 0.620777i
\(751\) 1.80788e8 0.426826 0.213413 0.976962i \(-0.431542\pi\)
0.213413 + 0.976962i \(0.431542\pi\)
\(752\) 2.54323e7i 0.0598042i
\(753\) −6.76439e8 + 4.13114e8i −1.58432 + 0.967575i
\(754\) 3.52818e7 0.0823070
\(755\) 6.73171e8i 1.56417i
\(756\) −2.80694e8 + 2.08076e7i −0.649632 + 0.0481566i
\(757\) −1.67808e8 −0.386834 −0.193417 0.981117i \(-0.561957\pi\)
−0.193417 + 0.981117i \(0.561957\pi\)
\(758\) 4.58555e8i 1.05289i
\(759\) 8.57789e7 + 1.40456e8i 0.196180 + 0.321229i
\(760\) −2.79792e8 −0.637375
\(761\) 1.22351e8i 0.277621i −0.990319 0.138810i \(-0.955672\pi\)
0.990319 0.138810i \(-0.0443279\pi\)
\(762\) −2.96963e8 + 1.81361e8i −0.671179 + 0.409901i
\(763\) −3.47335e8 −0.781942
\(764\) 1.29807e8i 0.291083i
\(765\) 1.68969e8 3.29150e8i 0.377417 0.735206i
\(766\) −3.83251e8 −0.852701
\(767\) 1.84970e8i 0.409936i
\(768\) −2.50647e8 4.10413e8i −0.553323 0.906020i
\(769\) 6.44941e8 1.41821 0.709106 0.705102i \(-0.249099\pi\)
0.709106 + 0.705102i \(0.249099\pi\)
\(770\) 1.49171e8i 0.326747i
\(771\) −9.47996e7 + 5.78959e7i −0.206844 + 0.126324i
\(772\) 1.25780e8 0.273376
\(773\) 7.89133e8i 1.70849i 0.519873 + 0.854243i \(0.325979\pi\)
−0.519873 + 0.854243i \(0.674021\pi\)
\(774\) 3.03628e8 + 1.55867e8i 0.654815 + 0.336148i
\(775\) −3.58848e7 −0.0770913
\(776\) 7.44745e8i 1.59376i
\(777\) 3.66950e8 + 6.00851e8i 0.782248 + 1.28087i
\(778\) 3.98554e8 0.846347
\(779\) 6.16588e7i 0.130431i
\(780\) −1.27908e8 + 7.81158e7i −0.269534 + 0.164609i
\(781\) −1.39296e7 −0.0292405
\(782\) 2.49138e8i 0.520979i
\(783\) −6.58999e6 8.88989e7i −0.0137277 0.185187i
\(784\) −3.39323e7 −0.0704150
\(785\) 5.74314e8i 1.18725i
\(786\) −3.32481e8 5.44410e8i −0.684699 1.12114i
\(787\) 1.42367e8 0.292068 0.146034 0.989280i \(-0.453349\pi\)
0.146034 + 0.989280i \(0.453349\pi\)
\(788\) 1.31150e8i 0.268035i
\(789\) 4.16705e8 2.54489e8i 0.848393 0.518129i
\(790\) −4.67681e8 −0.948568
\(791\) 4.76595e7i 0.0962986i
\(792\) 1.07748e8 2.09893e8i 0.216888 0.422496i
\(793\) −2.47559e8 −0.496431
\(794\) 4.45006e8i 0.889006i
\(795\) 1.67252e8 + 2.73861e8i 0.332867 + 0.545041i
\(796\) 1.85137e7 0.0367075
\(797\) 8.62596e8i 1.70385i −0.523661 0.851927i \(-0.675434\pi\)
0.523661 0.851927i \(-0.324566\pi\)
\(798\) −2.42317e8 + 1.47987e8i −0.476843 + 0.291217i
\(799\) 1.76519e8 0.346059
\(800\) 1.02883e8i 0.200944i
\(801\) 5.07636e8 + 2.60595e8i 0.987769 + 0.507070i
\(802\) −4.68309e8 −0.907840
\(803\) 3.33278e8i 0.643666i
\(804\) 2.14180e7 + 3.50701e7i 0.0412107 + 0.0674791i
\(805\) −4.57873e8 −0.877722
\(806\) 8.31570e7i 0.158816i
\(807\) −2.39352e7 + 1.46177e7i −0.0455425 + 0.0278136i
\(808\) −1.05561e9 −2.00110
\(809\) 9.90552e8i 1.87082i −0.353567 0.935409i \(-0.615031\pi\)
0.353567 0.935409i \(-0.384969\pi\)
\(810\) −1.85423e8 2.58493e8i −0.348906 0.486401i
\(811\) −5.18957e8 −0.972902 −0.486451 0.873708i \(-0.661709\pi\)
−0.486451 + 0.873708i \(0.661709\pi\)
\(812\) 6.47630e7i 0.120965i
\(813\) −5.71299e7 9.35454e7i −0.106314 0.174081i
\(814\) −2.07794e8 −0.385265
\(815\) 3.60620e8i 0.666158i
\(816\) 6.97329e7 4.25872e7i 0.128342 0.0783806i
\(817\) −4.09826e8 −0.751508
\(818\) 6.17755e8i 1.12864i
\(819\) −1.97270e8 + 3.84281e8i −0.359095 + 0.699515i
\(820\) −5.01893e7 −0.0910268
\(821\) 5.88367e8i 1.06321i 0.846993 + 0.531605i \(0.178411\pi\)
−0.846993 + 0.531605i \(0.821589\pi\)
\(822\) −6.86215e7 1.12362e8i −0.123551 0.202304i
\(823\) −3.38718e8 −0.607630 −0.303815 0.952731i \(-0.598260\pi\)
−0.303815 + 0.952731i \(0.598260\pi\)
\(824\) 6.20803e8i 1.10962i
\(825\) 4.69522e7 2.86746e7i 0.0836170 0.0510664i
\(826\) 2.85236e8 0.506132
\(827\) 4.72136e8i 0.834739i −0.908737 0.417370i \(-0.862952\pi\)
0.908737 0.417370i \(-0.137048\pi\)
\(828\) −2.26844e8 1.16450e8i −0.399610 0.205139i
\(829\) 7.96835e8 1.39864 0.699318 0.714811i \(-0.253487\pi\)
0.699318 + 0.714811i \(0.253487\pi\)
\(830\) 9.30583e7i 0.162750i
\(831\) −3.19063e8 5.22438e8i −0.555998 0.910400i
\(832\) −2.99320e8 −0.519716
\(833\) 2.35515e8i 0.407459i
\(834\) 5.48849e8 3.35192e8i 0.946138 0.577824i
\(835\) 1.68202e8 0.288917
\(836\) 9.97526e7i 0.170728i
\(837\) 2.09529e8 1.55322e7i 0.357328 0.0264884i
\(838\) 5.51195e8 0.936641
\(839\) 9.69710e7i 0.164194i 0.996624 + 0.0820968i \(0.0261617\pi\)
−0.996624 + 0.0820968i \(0.973838\pi\)
\(840\) 3.42116e8 + 5.60186e8i 0.577212 + 0.945136i
\(841\) −2.05111e7 −0.0344828
\(842\) 6.57172e8i 1.10089i
\(843\) −5.37596e8 + 3.28320e8i −0.897374 + 0.548042i
\(844\) −5.10964e8 −0.849891
\(845\) 3.04508e8i 0.504694i
\(846\) 6.93133e7 1.35022e8i 0.114474 0.222994i
\(847\) 5.77318e8 0.950090
\(848\) 7.08674e7i 0.116214i
\(849\) 3.46226e8 + 5.66916e8i 0.565765 + 0.926393i
\(850\) 8.32831e7 0.135613
\(851\) 6.37814e8i 1.03492i
\(852\) 1.84185e7 1.12485e7i 0.0297807 0.0181876i
\(853\) −6.22970e8 −1.00374 −0.501868 0.864944i \(-0.667354\pi\)
−0.501868 + 0.864944i \(0.667354\pi\)
\(854\) 3.81751e8i 0.612924i
\(855\) 3.39832e8 + 1.74453e8i 0.543709 + 0.279112i
\(856\) 3.11644e6 0.00496864
\(857\) 2.79046e8i 0.443337i −0.975122 0.221669i \(-0.928850\pi\)
0.975122 0.221669i \(-0.0711503\pi\)
\(858\) −6.64485e7 1.08804e8i −0.105202 0.172259i
\(859\) −6.71460e7 −0.105935 −0.0529676 0.998596i \(-0.516868\pi\)
−0.0529676 + 0.998596i \(0.516868\pi\)
\(860\) 3.33592e8i 0.524470i
\(861\) −1.23450e8 + 7.53931e7i −0.193411 + 0.118120i
\(862\) 8.69328e7 0.135726
\(863\) 5.16619e8i 0.803782i −0.915688 0.401891i \(-0.868353\pi\)
0.915688 0.401891i \(-0.131647\pi\)
\(864\) 4.45315e7 + 6.00729e8i 0.0690440 + 0.931403i
\(865\) 1.11645e9 1.72501
\(866\) 8.55216e7i 0.131681i
\(867\) 4.40911e7 + 7.21954e7i 0.0676540 + 0.110778i
\(868\) −1.52642e8 −0.233408
\(869\) 4.73554e8i 0.721623i
\(870\) −6.24688e7 + 3.81508e7i −0.0948649 + 0.0579357i
\(871\) 6.30648e7 0.0954405
\(872\) 4.51090e8i 0.680321i
\(873\) −4.64354e8 + 9.04558e8i −0.697921 + 1.35955i
\(874\) −2.57224e8 −0.385281
\(875\) 8.64459e8i 1.29039i
\(876\) −2.69131e8 4.40680e8i −0.400361 0.655558i
\(877\) −1.43572e8 −0.212848 −0.106424 0.994321i \(-0.533940\pi\)
−0.106424 + 0.994321i \(0.533940\pi\)
\(878\) 1.45809e8i 0.215428i
\(879\) −2.87381e8 + 1.75509e8i −0.423148 + 0.258424i
\(880\) −4.43209e7 −0.0650371
\(881\) 1.24774e9i 1.82472i −0.409393 0.912358i \(-0.634260\pi\)
0.409393 0.912358i \(-0.365740\pi\)
\(882\) 1.80149e8 + 9.24793e7i 0.262559 + 0.134784i
\(883\) −9.65905e7 −0.140298 −0.0701492 0.997537i \(-0.522348\pi\)
−0.0701492 + 0.997537i \(0.522348\pi\)
\(884\) 2.29731e8i 0.332554i
\(885\) −2.00012e8 3.27502e8i −0.288553 0.472481i
\(886\) 3.19028e7 0.0458699
\(887\) 2.90029e8i 0.415596i 0.978172 + 0.207798i \(0.0666296\pi\)
−0.978172 + 0.207798i \(0.933370\pi\)
\(888\) 7.80336e8 4.76566e8i 1.11440 0.680587i
\(889\) −9.80231e8 −1.39516
\(890\) 4.68547e8i 0.664635i
\(891\) −2.61740e8 + 1.87752e8i −0.370030 + 0.265430i
\(892\) 6.01588e8 0.847627
\(893\) 1.82248e8i 0.255922i
\(894\) −1.48385e8 2.42968e8i −0.207671 0.340044i
\(895\) 4.52900e8 0.631732
\(896\) 3.43713e8i 0.477828i
\(897\) −3.33969e8 + 2.03961e8i −0.462731 + 0.282598i
\(898\) −3.95460e8 −0.546102
\(899\) 4.83434e7i 0.0665363i
\(900\) −3.89275e7 + 7.58305e7i −0.0533985 + 0.104020i
\(901\) 4.91872e8 0.672477
\(902\) 4.26931e7i 0.0581752i
\(903\) 5.01114e8 + 8.20533e8i 0.680571 + 1.11438i
\(904\) 6.18963e7 0.0837837
\(905\) 5.21219e8i 0.703193i
\(906\) −7.57161e8 + 4.62412e8i −1.01813 + 0.621791i
\(907\) −7.19914e8 −0.964848 −0.482424 0.875938i \(-0.660244\pi\)
−0.482424 + 0.875938i \(0.660244\pi\)
\(908\) 2.32169e8i 0.310132i
\(909\) 1.28213e9 + 6.58179e8i 1.70702 + 0.876299i
\(910\) 3.54691e8 0.470680
\(911\) 1.28992e9i 1.70611i −0.521824 0.853053i \(-0.674748\pi\)
0.521824 0.853053i \(-0.325252\pi\)
\(912\) 4.39694e7 + 7.19962e7i 0.0579650 + 0.0949128i
\(913\) −9.42271e7 −0.123812
\(914\) 1.11545e8i 0.146087i
\(915\) 4.38319e8 2.67689e8i 0.572172 0.349436i
\(916\) 1.45942e8 0.189886
\(917\) 1.79702e9i 2.33047i
\(918\) −4.86285e8 + 3.60478e7i −0.628583 + 0.0465962i
\(919\) 9.33470e7 0.120269 0.0601345 0.998190i \(-0.480847\pi\)
0.0601345 + 0.998190i \(0.480847\pi\)
\(920\) 5.94648e8i 0.763654i
\(921\) −4.77044e8 7.81120e8i −0.610632 0.999859i
\(922\) 1.04836e9 1.33757
\(923\) 3.31210e7i 0.0421210i
\(924\) 1.99719e8 1.21972e8i 0.253165 0.154613i
\(925\) 2.13212e8 0.269393
\(926\) 1.79496e8i 0.226059i
\(927\) −3.87075e8 + 7.54020e8i −0.485910 + 0.946550i
\(928\) 1.38603e8 0.173432
\(929\) 1.12424e9i 1.40221i 0.713060 + 0.701103i \(0.247309\pi\)
−0.713060 + 0.701103i \(0.752691\pi\)
\(930\) −8.99190e7 1.47235e8i −0.111790 0.183047i
\(931\) −2.43159e8 −0.301329
\(932\) 1.71351e8i 0.211661i
\(933\) 5.54253e8 3.38493e8i 0.682438 0.416777i
\(934\) 8.16943e8 1.00265
\(935\) 3.07620e8i 0.376339i
\(936\) 4.99073e8 + 2.56199e8i 0.608607 + 0.312428i
\(937\) −4.35346e8 −0.529195 −0.264598 0.964359i \(-0.585239\pi\)
−0.264598 + 0.964359i \(0.585239\pi\)
\(938\) 9.72499e7i 0.117837i
\(939\) −1.74830e8 2.86269e8i −0.211163 0.345762i
\(940\) 1.48347e8 0.178605
\(941\) 4.80148e8i 0.576244i 0.957594 + 0.288122i \(0.0930309\pi\)
−0.957594 + 0.288122i \(0.906969\pi\)
\(942\) 6.45971e8 3.94506e8i 0.772788 0.471955i
\(943\) −1.31044e8 −0.156273
\(944\) 8.47481e7i 0.100743i
\(945\) −6.62496e7 8.93706e8i −0.0785033 1.05901i
\(946\) −2.83767e8 −0.335188
\(947\) 2.10412e7i 0.0247754i −0.999923 0.0123877i \(-0.996057\pi\)
0.999923 0.0123877i \(-0.00394322\pi\)
\(948\) −3.82408e8 6.26162e8i −0.448851 0.734956i
\(949\) −7.92452e8 −0.927202
\(950\) 8.59861e7i 0.100290i
\(951\) −1.06078e9 + 6.47836e8i −1.23334 + 0.753223i
\(952\) 1.00613e9 1.16612
\(953\) 8.25428e8i 0.953675i 0.878991 + 0.476838i \(0.158217\pi\)
−0.878991 + 0.476838i \(0.841783\pi\)
\(954\) 1.93142e8 3.76240e8i 0.222450 0.433331i
\(955\) 4.13293e8 0.474513
\(956\) 8.09479e8i 0.926471i
\(957\) 3.86300e7 + 6.32533e7i 0.0440746 + 0.0721685i
\(958\) −4.19649e8 −0.477298
\(959\) 3.70890e8i 0.420522i
\(960\) 5.29966e8 3.23660e8i 0.599010 0.365826i
\(961\) −7.73561e8 −0.871615
\(962\) 4.94082e8i 0.554976i
\(963\) −3.78519e6 1.94312e6i −0.00423847 0.00217581i
\(964\) 6.05664e7 0.0676083
\(965\) 4.00474e8i 0.445648i
\(966\) 3.14520e8 + 5.15001e8i 0.348913 + 0.571316i
\(967\) 7.12481e8 0.787941 0.393971 0.919123i \(-0.371101\pi\)
0.393971 + 0.919123i \(0.371101\pi\)
\(968\) 7.49774e8i 0.826617i
\(969\) 4.99706e8 3.05180e8i 0.549216 0.335417i
\(970\) 8.34905e8 0.914791
\(971\) 1.44153e9i 1.57459i 0.616578 + 0.787293i \(0.288518\pi\)
−0.616578 + 0.787293i \(0.711482\pi\)
\(972\) 1.94473e8 4.59618e8i 0.211768 0.500493i
\(973\) 1.81167e9 1.96671
\(974\) 8.68609e8i 0.940043i
\(975\) 6.81810e7 + 1.11641e8i 0.0735613 + 0.120451i
\(976\) 1.13424e8 0.121999
\(977\) 1.58483e8i 0.169941i 0.996383 + 0.0849707i \(0.0270797\pi\)
−0.996383 + 0.0849707i \(0.972920\pi\)
\(978\) −4.05614e8 + 2.47716e8i −0.433607 + 0.264812i
\(979\) −4.74432e8 −0.505622
\(980\) 1.97928e8i 0.210295i
\(981\) 2.81258e8 5.47889e8i 0.297919 0.580344i
\(982\) −5.65445e8 −0.597112
\(983\) 1.03811e9i 1.09290i −0.837491 0.546450i \(-0.815979\pi\)
0.837491 0.546450i \(-0.184021\pi\)
\(984\) 9.79145e7 + 1.60327e8i 0.102769 + 0.168276i
\(985\) −4.17572e8 −0.436941
\(986\) 1.12198e8i 0.117045i
\(987\) 3.64887e8 2.22843e8i 0.379496 0.231765i
\(988\) −2.37187e8 −0.245934
\(989\) 8.71011e8i 0.900398i
\(990\) 2.35303e8 + 1.20793e8i 0.242506 + 0.124490i
\(991\) 1.75227e9 1.80044 0.900222 0.435432i \(-0.143404\pi\)
0.900222 + 0.435432i \(0.143404\pi\)
\(992\) 3.26678e8i 0.334646i
\(993\) 8.34879e8 + 1.36704e9i 0.852660 + 1.39616i
\(994\) −5.10747e7 −0.0520052
\(995\) 5.89461e7i 0.0598392i
\(996\) 1.24593e8 7.60910e7i 0.126100 0.0770114i
\(997\) 8.39850e8 0.847454 0.423727 0.905790i \(-0.360722\pi\)
0.423727 + 0.905790i \(0.360722\pi\)
\(998\) 4.23687e8i 0.426239i
\(999\) −1.24493e9 + 9.22854e7i −1.24867 + 0.0925628i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.7.b.a.59.20 56
3.2 odd 2 inner 87.7.b.a.59.37 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.7.b.a.59.20 56 1.1 even 1 trivial
87.7.b.a.59.37 yes 56 3.2 odd 2 inner