Properties

Label 87.7.b.a.59.19
Level $87$
Weight $7$
Character 87.59
Analytic conductor $20.015$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [87,7,Mod(59,87)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(87, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("87.59"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 87.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.0147052749\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 59.19
Character \(\chi\) \(=\) 87.59
Dual form 87.7.b.a.59.38

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.77572i q^{2} +(6.84673 + 26.1175i) q^{3} +30.6411 q^{4} -163.398i q^{5} +(150.847 - 39.5448i) q^{6} -327.324 q^{7} -546.620i q^{8} +(-635.245 + 357.638i) q^{9} -943.742 q^{10} +366.446i q^{11} +(209.791 + 800.268i) q^{12} -595.662 q^{13} +1890.53i q^{14} +(4267.55 - 1118.74i) q^{15} -1196.10 q^{16} -2829.17i q^{17} +(2065.62 + 3668.99i) q^{18} -11684.7 q^{19} -5006.70i q^{20} +(-2241.10 - 8548.89i) q^{21} +2116.49 q^{22} -5812.35i q^{23} +(14276.3 - 3742.56i) q^{24} -11074.0 q^{25} +3440.38i q^{26} +(-13690.0 - 14142.3i) q^{27} -10029.6 q^{28} -4528.92i q^{29} +(-6461.54 - 24648.2i) q^{30} -4759.27 q^{31} -28075.4i q^{32} +(-9570.65 + 2508.96i) q^{33} -16340.5 q^{34} +53484.2i q^{35} +(-19464.6 + 10958.4i) q^{36} +6824.94 q^{37} +67487.5i q^{38} +(-4078.34 - 15557.2i) q^{39} -89316.8 q^{40} +623.002i q^{41} +(-49376.0 + 12944.0i) q^{42} -99104.4 q^{43} +11228.3i q^{44} +(58437.5 + 103798. i) q^{45} -33570.5 q^{46} +33504.4i q^{47} +(-8189.33 - 31239.0i) q^{48} -10507.7 q^{49} +63960.1i q^{50} +(73890.8 - 19370.6i) q^{51} -18251.7 q^{52} -207466. i q^{53} +(-81682.1 + 79069.3i) q^{54} +59876.6 q^{55} +178922. i q^{56} +(-80001.9 - 305175. i) q^{57} -26157.8 q^{58} -342009. i q^{59} +(130762. - 34279.5i) q^{60} +340446. q^{61} +27488.2i q^{62} +(207931. - 117064. i) q^{63} -238706. q^{64} +97330.1i q^{65} +(14491.0 + 55277.4i) q^{66} -48564.1 q^{67} -86688.8i q^{68} +(151804. - 39795.5i) q^{69} +308910. q^{70} +372179. i q^{71} +(195492. + 347238. i) q^{72} +228755. q^{73} -39418.9i q^{74} +(-75820.4 - 289224. i) q^{75} -358032. q^{76} -119947. i q^{77} +(-89854.0 + 23555.3i) q^{78} +324977. q^{79} +195440. i q^{80} +(275631. - 454376. i) q^{81} +3598.29 q^{82} +280673. i q^{83} +(-68669.7 - 261947. i) q^{84} -462281. q^{85} +572399. i q^{86} +(118284. - 31008.3i) q^{87} +200307. q^{88} +277494. i q^{89} +(599507. - 337518. i) q^{90} +194975. q^{91} -178097. i q^{92} +(-32585.4 - 124300. i) q^{93} +193512. q^{94} +1.90926e6i q^{95} +(733258. - 192224. i) q^{96} +828855. q^{97} +60689.7i q^{98} +(-131055. - 232783. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 52 q^{3} - 1924 q^{4} - 160 q^{6} + 160 q^{7} - 1060 q^{9} - 3588 q^{10} - 2166 q^{12} - 1400 q^{13} - 6240 q^{15} + 56588 q^{16} - 5978 q^{18} + 25000 q^{19} + 7520 q^{21} + 20970 q^{22} + 1238 q^{24}+ \cdots + 4793544 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.77572i 0.721965i −0.932573 0.360982i \(-0.882441\pi\)
0.932573 0.360982i \(-0.117559\pi\)
\(3\) 6.84673 + 26.1175i 0.253582 + 0.967314i
\(4\) 30.6411 0.478767
\(5\) 163.398i 1.30719i −0.756846 0.653593i \(-0.773261\pi\)
0.756846 0.653593i \(-0.226739\pi\)
\(6\) 150.847 39.5448i 0.698366 0.183078i
\(7\) −327.324 −0.954299 −0.477149 0.878822i \(-0.658330\pi\)
−0.477149 + 0.878822i \(0.658330\pi\)
\(8\) 546.620i 1.06762i
\(9\) −635.245 + 357.638i −0.871392 + 0.490588i
\(10\) −943.742 −0.943742
\(11\) 366.446i 0.275316i 0.990480 + 0.137658i \(0.0439575\pi\)
−0.990480 + 0.137658i \(0.956042\pi\)
\(12\) 209.791 + 800.268i 0.121407 + 0.463118i
\(13\) −595.662 −0.271125 −0.135563 0.990769i \(-0.543284\pi\)
−0.135563 + 0.990769i \(0.543284\pi\)
\(14\) 1890.53i 0.688970i
\(15\) 4267.55 1118.74i 1.26446 0.331479i
\(16\) −1196.10 −0.292015
\(17\) 2829.17i 0.575854i −0.957652 0.287927i \(-0.907034\pi\)
0.957652 0.287927i \(-0.0929660\pi\)
\(18\) 2065.62 + 3668.99i 0.354187 + 0.629114i
\(19\) −11684.7 −1.70356 −0.851779 0.523902i \(-0.824476\pi\)
−0.851779 + 0.523902i \(0.824476\pi\)
\(20\) 5006.70i 0.625837i
\(21\) −2241.10 8548.89i −0.241993 0.923106i
\(22\) 2116.49 0.198769
\(23\) 5812.35i 0.477714i −0.971055 0.238857i \(-0.923227\pi\)
0.971055 0.238857i \(-0.0767727\pi\)
\(24\) 14276.3 3742.56i 1.03272 0.270729i
\(25\) −11074.0 −0.708734
\(26\) 3440.38i 0.195743i
\(27\) −13690.0 14142.3i −0.695522 0.718505i
\(28\) −10029.6 −0.456887
\(29\) 4528.92i 0.185695i
\(30\) −6461.54 24648.2i −0.239316 0.912895i
\(31\) −4759.27 −0.159755 −0.0798777 0.996805i \(-0.525453\pi\)
−0.0798777 + 0.996805i \(0.525453\pi\)
\(32\) 28075.4i 0.856793i
\(33\) −9570.65 + 2508.96i −0.266317 + 0.0698154i
\(34\) −16340.5 −0.415746
\(35\) 53484.2i 1.24745i
\(36\) −19464.6 + 10958.4i −0.417194 + 0.234877i
\(37\) 6824.94 0.134739 0.0673695 0.997728i \(-0.478539\pi\)
0.0673695 + 0.997728i \(0.478539\pi\)
\(38\) 67487.5i 1.22991i
\(39\) −4078.34 15557.2i −0.0687526 0.262263i
\(40\) −89316.8 −1.39557
\(41\) 623.002i 0.00903937i 0.999990 + 0.00451968i \(0.00143867\pi\)
−0.999990 + 0.00451968i \(0.998561\pi\)
\(42\) −49376.0 + 12944.0i −0.666450 + 0.174711i
\(43\) −99104.4 −1.24649 −0.623244 0.782028i \(-0.714185\pi\)
−0.623244 + 0.782028i \(0.714185\pi\)
\(44\) 11228.3i 0.131812i
\(45\) 58437.5 + 103798.i 0.641289 + 1.13907i
\(46\) −33570.5 −0.344893
\(47\) 33504.4i 0.322707i 0.986897 + 0.161353i \(0.0515859\pi\)
−0.986897 + 0.161353i \(0.948414\pi\)
\(48\) −8189.33 31239.0i −0.0740500 0.282471i
\(49\) −10507.7 −0.0893143
\(50\) 63960.1i 0.511681i
\(51\) 73890.8 19370.6i 0.557031 0.146026i
\(52\) −18251.7 −0.129806
\(53\) 207466.i 1.39354i −0.717294 0.696771i \(-0.754619\pi\)
0.717294 0.696771i \(-0.245381\pi\)
\(54\) −81682.1 + 79069.3i −0.518735 + 0.502142i
\(55\) 59876.6 0.359890
\(56\) 178922.i 1.01883i
\(57\) −80001.9 305175.i −0.431992 1.64787i
\(58\) −26157.8 −0.134065
\(59\) 342009.i 1.66526i −0.553831 0.832629i \(-0.686835\pi\)
0.553831 0.832629i \(-0.313165\pi\)
\(60\) 130762. 34279.5i 0.605381 0.158701i
\(61\) 340446. 1.49989 0.749944 0.661501i \(-0.230080\pi\)
0.749944 + 0.661501i \(0.230080\pi\)
\(62\) 27488.2i 0.115338i
\(63\) 207931. 117064.i 0.831568 0.468167i
\(64\) −238706. −0.910590
\(65\) 97330.1i 0.354411i
\(66\) 14491.0 + 55277.4i 0.0504043 + 0.192272i
\(67\) −48564.1 −0.161470 −0.0807349 0.996736i \(-0.525727\pi\)
−0.0807349 + 0.996736i \(0.525727\pi\)
\(68\) 86688.8i 0.275700i
\(69\) 151804. 39795.5i 0.462099 0.121140i
\(70\) 308910. 0.900612
\(71\) 372179.i 1.03986i 0.854208 + 0.519932i \(0.174043\pi\)
−0.854208 + 0.519932i \(0.825957\pi\)
\(72\) 195492. + 347238.i 0.523760 + 0.930313i
\(73\) 228755. 0.588034 0.294017 0.955800i \(-0.405008\pi\)
0.294017 + 0.955800i \(0.405008\pi\)
\(74\) 39418.9i 0.0972768i
\(75\) −75820.4 289224.i −0.179723 0.685568i
\(76\) −358032. −0.815607
\(77\) 119947.i 0.262734i
\(78\) −89854.0 + 23555.3i −0.189345 + 0.0496370i
\(79\) 324977. 0.659130 0.329565 0.944133i \(-0.393098\pi\)
0.329565 + 0.944133i \(0.393098\pi\)
\(80\) 195440.i 0.381718i
\(81\) 275631. 454376.i 0.518648 0.854988i
\(82\) 3598.29 0.00652611
\(83\) 280673.i 0.490869i 0.969413 + 0.245435i \(0.0789307\pi\)
−0.969413 + 0.245435i \(0.921069\pi\)
\(84\) −68669.7 261947.i −0.115858 0.441953i
\(85\) −462281. −0.752748
\(86\) 572399.i 0.899920i
\(87\) 118284. 31008.3i 0.179626 0.0470891i
\(88\) 200307. 0.293933
\(89\) 277494.i 0.393626i 0.980441 + 0.196813i \(0.0630592\pi\)
−0.980441 + 0.196813i \(0.936941\pi\)
\(90\) 599507. 337518.i 0.822369 0.462988i
\(91\) 194975. 0.258734
\(92\) 178097.i 0.228714i
\(93\) −32585.4 124300.i −0.0405112 0.154534i
\(94\) 193512. 0.232983
\(95\) 1.90926e6i 2.22687i
\(96\) 733258. 192224.i 0.828787 0.217268i
\(97\) 828855. 0.908162 0.454081 0.890960i \(-0.349968\pi\)
0.454081 + 0.890960i \(0.349968\pi\)
\(98\) 60689.7i 0.0644817i
\(99\) −131055. 232783.i −0.135067 0.239908i
\(100\) −339318. −0.339318
\(101\) 706565.i 0.685785i 0.939375 + 0.342892i \(0.111407\pi\)
−0.939375 + 0.342892i \(0.888593\pi\)
\(102\) −111879. 426772.i −0.105426 0.402157i
\(103\) 1.90844e6 1.74649 0.873247 0.487278i \(-0.162010\pi\)
0.873247 + 0.487278i \(0.162010\pi\)
\(104\) 325601.i 0.289458i
\(105\) −1.39687e6 + 366192.i −1.20667 + 0.316330i
\(106\) −1.19827e6 −1.00609
\(107\) 2.14579e6i 1.75161i 0.482668 + 0.875803i \(0.339668\pi\)
−0.482668 + 0.875803i \(0.660332\pi\)
\(108\) −419475. 433336.i −0.332993 0.343996i
\(109\) −1.19074e6 −0.919467 −0.459733 0.888057i \(-0.652055\pi\)
−0.459733 + 0.888057i \(0.652055\pi\)
\(110\) 345831.i 0.259828i
\(111\) 46728.5 + 178250.i 0.0341675 + 0.130335i
\(112\) 391511. 0.278670
\(113\) 2.04012e6i 1.41390i −0.707262 0.706951i \(-0.750070\pi\)
0.707262 0.706951i \(-0.249930\pi\)
\(114\) −1.76260e6 + 462069.i −1.18971 + 0.311883i
\(115\) −949727. −0.624461
\(116\) 138771.i 0.0889048i
\(117\) 378391. 213032.i 0.236256 0.133011i
\(118\) −1.97535e6 −1.20226
\(119\) 926056.i 0.549537i
\(120\) −611527. 2.33273e6i −0.353893 1.34996i
\(121\) 1.63728e6 0.924201
\(122\) 1.96632e6i 1.08287i
\(123\) −16271.2 + 4265.53i −0.00874391 + 0.00229222i
\(124\) −145829. −0.0764856
\(125\) 743630.i 0.380738i
\(126\) −676127. 1.20095e6i −0.338000 0.600363i
\(127\) 2.43218e6 1.18737 0.593683 0.804699i \(-0.297673\pi\)
0.593683 + 0.804699i \(0.297673\pi\)
\(128\) 418128.i 0.199379i
\(129\) −678541. 2.58836e6i −0.316087 1.20574i
\(130\) 562151. 0.255872
\(131\) 1.54541e6i 0.687432i 0.939074 + 0.343716i \(0.111686\pi\)
−0.939074 + 0.343716i \(0.888314\pi\)
\(132\) −293255. + 76877.1i −0.127504 + 0.0334253i
\(133\) 3.82469e6 1.62570
\(134\) 280493.i 0.116576i
\(135\) −2.31083e6 + 2.23691e6i −0.939219 + 0.909176i
\(136\) −1.54648e6 −0.614792
\(137\) 1.58473e6i 0.616301i −0.951338 0.308150i \(-0.900290\pi\)
0.951338 0.308150i \(-0.0997100\pi\)
\(138\) −229848. 876776.i −0.0874587 0.333619i
\(139\) −3.19065e6 −1.18805 −0.594025 0.804447i \(-0.702462\pi\)
−0.594025 + 0.804447i \(0.702462\pi\)
\(140\) 1.63881e6i 0.597235i
\(141\) −875050. + 229395.i −0.312159 + 0.0818328i
\(142\) 2.14960e6 0.750745
\(143\) 218278.i 0.0746452i
\(144\) 759813. 427769.i 0.254460 0.143259i
\(145\) −740018. −0.242738
\(146\) 1.32123e6i 0.424540i
\(147\) −71943.6 274435.i −0.0226485 0.0863949i
\(148\) 209123. 0.0645086
\(149\) 4.59890e6i 1.39026i −0.718886 0.695128i \(-0.755348\pi\)
0.718886 0.695128i \(-0.244652\pi\)
\(150\) −1.67048e6 + 437918.i −0.494956 + 0.129753i
\(151\) −3.62814e6 −1.05379 −0.526894 0.849931i \(-0.676644\pi\)
−0.526894 + 0.849931i \(0.676644\pi\)
\(152\) 6.38709e6i 1.81875i
\(153\) 1.01182e6 + 1.79722e6i 0.282507 + 0.501794i
\(154\) −692779. −0.189685
\(155\) 777657.i 0.208830i
\(156\) −124965. 476689.i −0.0329165 0.125563i
\(157\) 695382. 0.179690 0.0898451 0.995956i \(-0.471363\pi\)
0.0898451 + 0.995956i \(0.471363\pi\)
\(158\) 1.87697e6i 0.475869i
\(159\) 5.41850e6 1.42046e6i 1.34799 0.353378i
\(160\) −4.58747e6 −1.11999
\(161\) 1.90252e6i 0.455882i
\(162\) −2.62435e6 1.59197e6i −0.617271 0.374445i
\(163\) −7.20308e6 −1.66324 −0.831621 0.555343i \(-0.812587\pi\)
−0.831621 + 0.555343i \(0.812587\pi\)
\(164\) 19089.5i 0.00432775i
\(165\) 409959. + 1.56383e6i 0.0912617 + 0.348126i
\(166\) 1.62109e6 0.354390
\(167\) 2.08186e6i 0.446994i 0.974705 + 0.223497i \(0.0717473\pi\)
−0.974705 + 0.223497i \(0.928253\pi\)
\(168\) −4.67299e6 + 1.22503e6i −0.985524 + 0.258356i
\(169\) −4.47200e6 −0.926491
\(170\) 2.67001e6i 0.543457i
\(171\) 7.42264e6 4.17890e6i 1.48447 0.835744i
\(172\) −3.03667e6 −0.596777
\(173\) 5.57736e6i 1.07719i 0.842566 + 0.538593i \(0.181044\pi\)
−0.842566 + 0.538593i \(0.818956\pi\)
\(174\) −179095. 683175.i −0.0339967 0.129683i
\(175\) 3.62478e6 0.676344
\(176\) 438304.i 0.0803966i
\(177\) 8.93241e6 2.34164e6i 1.61083 0.422280i
\(178\) 1.60273e6 0.284184
\(179\) 2.87802e6i 0.501804i 0.968012 + 0.250902i \(0.0807272\pi\)
−0.968012 + 0.250902i \(0.919273\pi\)
\(180\) 1.79059e6 + 3.18048e6i 0.307028 + 0.545349i
\(181\) 7.68611e6 1.29620 0.648099 0.761556i \(-0.275564\pi\)
0.648099 + 0.761556i \(0.275564\pi\)
\(182\) 1.12612e6i 0.186797i
\(183\) 2.33094e6 + 8.89159e6i 0.380345 + 1.45086i
\(184\) −3.17715e6 −0.510016
\(185\) 1.11518e6i 0.176129i
\(186\) −717923. + 188204.i −0.111568 + 0.0292476i
\(187\) 1.03674e6 0.158542
\(188\) 1.02661e6i 0.154501i
\(189\) 4.48106e6 + 4.62913e6i 0.663735 + 0.685668i
\(190\) 1.10273e7 1.60772
\(191\) 9.31435e6i 1.33676i −0.743821 0.668379i \(-0.766989\pi\)
0.743821 0.668379i \(-0.233011\pi\)
\(192\) −1.63435e6 6.23439e6i −0.230910 0.880826i
\(193\) 8.21586e6 1.14283 0.571415 0.820662i \(-0.306395\pi\)
0.571415 + 0.820662i \(0.306395\pi\)
\(194\) 4.78723e6i 0.655661i
\(195\) −2.54202e6 + 666393.i −0.342827 + 0.0898724i
\(196\) −321968. −0.0427607
\(197\) 1.37662e7i 1.80059i −0.435284 0.900293i \(-0.643352\pi\)
0.435284 0.900293i \(-0.356648\pi\)
\(198\) −1.34449e6 + 756938.i −0.173205 + 0.0975135i
\(199\) −1.16409e7 −1.47716 −0.738581 0.674165i \(-0.764504\pi\)
−0.738581 + 0.674165i \(0.764504\pi\)
\(200\) 6.05326e6i 0.756657i
\(201\) −332505. 1.26837e6i −0.0409459 0.156192i
\(202\) 4.08092e6 0.495112
\(203\) 1.48243e6i 0.177209i
\(204\) 2.26409e6 593535.i 0.266688 0.0699126i
\(205\) 101797. 0.0118161
\(206\) 1.10226e7i 1.26091i
\(207\) 2.07872e6 + 3.69226e6i 0.234361 + 0.416276i
\(208\) 712469. 0.0791728
\(209\) 4.28181e6i 0.469017i
\(210\) 2.11502e6 + 8.06794e6i 0.228379 + 0.871174i
\(211\) 1.24464e7 1.32494 0.662470 0.749088i \(-0.269508\pi\)
0.662470 + 0.749088i \(0.269508\pi\)
\(212\) 6.35699e6i 0.667182i
\(213\) −9.72037e6 + 2.54821e6i −1.00587 + 0.263691i
\(214\) 1.23935e7 1.26460
\(215\) 1.61935e7i 1.62939i
\(216\) −7.73049e6 + 7.48321e6i −0.767089 + 0.742551i
\(217\) 1.55783e6 0.152454
\(218\) 6.87735e6i 0.663822i
\(219\) 1.56622e6 + 5.97451e6i 0.149115 + 0.568813i
\(220\) 1.83468e6 0.172303
\(221\) 1.68523e6i 0.156129i
\(222\) 1.02952e6 269890.i 0.0940972 0.0246677i
\(223\) −1.10197e7 −0.993697 −0.496848 0.867837i \(-0.665509\pi\)
−0.496848 + 0.867837i \(0.665509\pi\)
\(224\) 9.18976e6i 0.817636i
\(225\) 7.03468e6 3.96048e6i 0.617585 0.347696i
\(226\) −1.17831e7 −1.02079
\(227\) 6.87026e6i 0.587348i −0.955906 0.293674i \(-0.905122\pi\)
0.955906 0.293674i \(-0.0948780\pi\)
\(228\) −2.45135e6 9.35088e6i −0.206824 0.788948i
\(229\) −1.51626e6 −0.126260 −0.0631301 0.998005i \(-0.520108\pi\)
−0.0631301 + 0.998005i \(0.520108\pi\)
\(230\) 5.48536e6i 0.450839i
\(231\) 3.13271e6 821242.i 0.254146 0.0666247i
\(232\) −2.47560e6 −0.198252
\(233\) 6.67736e6i 0.527883i 0.964539 + 0.263941i \(0.0850225\pi\)
−0.964539 + 0.263941i \(0.914977\pi\)
\(234\) −1.23041e6 2.18548e6i −0.0960290 0.170569i
\(235\) 5.47456e6 0.421838
\(236\) 1.04795e7i 0.797271i
\(237\) 2.22503e6 + 8.48757e6i 0.167144 + 0.637586i
\(238\) 5.34864e6 0.396746
\(239\) 1.20075e6i 0.0879545i −0.999033 0.0439772i \(-0.985997\pi\)
0.999033 0.0439772i \(-0.0140029\pi\)
\(240\) −5.10439e6 + 1.33812e6i −0.369241 + 0.0967971i
\(241\) −2.04992e7 −1.46449 −0.732244 0.681042i \(-0.761527\pi\)
−0.732244 + 0.681042i \(0.761527\pi\)
\(242\) 9.45646e6i 0.667240i
\(243\) 1.37543e7 + 4.08779e6i 0.958562 + 0.284885i
\(244\) 1.04316e7 0.718097
\(245\) 1.71694e6i 0.116750i
\(246\) 24636.5 + 93978.1i 0.00165491 + 0.00631279i
\(247\) 6.96013e6 0.461877
\(248\) 2.60151e6i 0.170558i
\(249\) −7.33046e6 + 1.92169e6i −0.474825 + 0.124476i
\(250\) −4.29500e6 −0.274880
\(251\) 2.68741e7i 1.69947i −0.527213 0.849733i \(-0.676763\pi\)
0.527213 0.849733i \(-0.323237\pi\)
\(252\) 6.37123e6 3.58696e6i 0.398127 0.224143i
\(253\) 2.12991e6 0.131523
\(254\) 1.40476e7i 0.857236i
\(255\) −3.16511e6 1.20736e7i −0.190884 0.728143i
\(256\) −1.76921e7 −1.05453
\(257\) 1.20305e7i 0.708738i −0.935106 0.354369i \(-0.884696\pi\)
0.935106 0.354369i \(-0.115304\pi\)
\(258\) −1.49496e7 + 3.91906e6i −0.870505 + 0.228204i
\(259\) −2.23397e6 −0.128581
\(260\) 2.98230e6i 0.169680i
\(261\) 1.61972e6 + 2.87697e6i 0.0910998 + 0.161813i
\(262\) 8.92585e6 0.496302
\(263\) 6.87462e6i 0.377904i −0.981986 0.188952i \(-0.939491\pi\)
0.981986 0.188952i \(-0.0605091\pi\)
\(264\) 1.37145e6 + 5.23151e6i 0.0745361 + 0.284325i
\(265\) −3.38996e7 −1.82162
\(266\) 2.20903e7i 1.17370i
\(267\) −7.24745e6 + 1.89993e6i −0.380760 + 0.0998166i
\(268\) −1.48806e6 −0.0773064
\(269\) 1.83681e6i 0.0943644i 0.998886 + 0.0471822i \(0.0150241\pi\)
−0.998886 + 0.0471822i \(0.984976\pi\)
\(270\) 1.29198e7 + 1.33467e7i 0.656393 + 0.678083i
\(271\) −2.91582e7 −1.46505 −0.732527 0.680738i \(-0.761659\pi\)
−0.732527 + 0.680738i \(0.761659\pi\)
\(272\) 3.38396e6i 0.168158i
\(273\) 1.33494e6 + 5.09225e6i 0.0656105 + 0.250277i
\(274\) −9.15293e6 −0.444947
\(275\) 4.05801e6i 0.195126i
\(276\) 4.65143e6 1.21938e6i 0.221238 0.0579978i
\(277\) −3.19877e6 −0.150503 −0.0752513 0.997165i \(-0.523976\pi\)
−0.0752513 + 0.997165i \(0.523976\pi\)
\(278\) 1.84283e7i 0.857730i
\(279\) 3.02330e6 1.70210e6i 0.139210 0.0783740i
\(280\) 2.92356e7 1.33179
\(281\) 1.39225e7i 0.627475i −0.949510 0.313738i \(-0.898419\pi\)
0.949510 0.313738i \(-0.101581\pi\)
\(282\) 1.32492e6 + 5.05404e6i 0.0590804 + 0.225368i
\(283\) 2.62950e7 1.16015 0.580075 0.814563i \(-0.303023\pi\)
0.580075 + 0.814563i \(0.303023\pi\)
\(284\) 1.14040e7i 0.497852i
\(285\) −4.98650e7 + 1.30722e7i −2.15408 + 0.564694i
\(286\) −1.26071e6 −0.0538912
\(287\) 203924.i 0.00862626i
\(288\) 1.00408e7 + 1.78347e7i 0.420332 + 0.746602i
\(289\) 1.61334e7 0.668392
\(290\) 4.27414e6i 0.175248i
\(291\) 5.67494e6 + 2.16476e7i 0.230294 + 0.878477i
\(292\) 7.00931e6 0.281531
\(293\) 2.99252e7i 1.18969i 0.803840 + 0.594846i \(0.202787\pi\)
−0.803840 + 0.594846i \(0.797213\pi\)
\(294\) −1.58506e6 + 415526.i −0.0623741 + 0.0163514i
\(295\) −5.58837e7 −2.17680
\(296\) 3.73065e6i 0.143850i
\(297\) 5.18240e6 5.01663e6i 0.197816 0.191489i
\(298\) −2.65619e7 −1.00372
\(299\) 3.46220e6i 0.129520i
\(300\) −2.32322e6 8.86214e6i −0.0860452 0.328227i
\(301\) 3.24393e7 1.18952
\(302\) 2.09551e7i 0.760798i
\(303\) −1.84537e7 + 4.83765e6i −0.663369 + 0.173903i
\(304\) 1.39760e7 0.497465
\(305\) 5.56283e7i 1.96063i
\(306\) 1.03802e7 5.84399e6i 0.362278 0.203960i
\(307\) −7.60733e6 −0.262916 −0.131458 0.991322i \(-0.541966\pi\)
−0.131458 + 0.991322i \(0.541966\pi\)
\(308\) 3.67530e6i 0.125788i
\(309\) 1.30666e7 + 4.98437e7i 0.442880 + 1.68941i
\(310\) 4.49153e6 0.150768
\(311\) 5.56350e7i 1.84956i −0.380508 0.924778i \(-0.624251\pi\)
0.380508 0.924778i \(-0.375749\pi\)
\(312\) −8.50388e6 + 2.22930e6i −0.279997 + 0.0734015i
\(313\) −1.58519e7 −0.516950 −0.258475 0.966018i \(-0.583220\pi\)
−0.258475 + 0.966018i \(0.583220\pi\)
\(314\) 4.01633e6i 0.129730i
\(315\) −1.91280e7 3.39756e7i −0.611981 1.08701i
\(316\) 9.95764e6 0.315570
\(317\) 2.67508e7i 0.839768i −0.907578 0.419884i \(-0.862071\pi\)
0.907578 0.419884i \(-0.137929\pi\)
\(318\) −8.20420e6 3.12957e7i −0.255126 0.973203i
\(319\) 1.65961e6 0.0511250
\(320\) 3.90041e7i 1.19031i
\(321\) −5.60427e7 + 1.46917e7i −1.69435 + 0.444177i
\(322\) 1.09884e7 0.329131
\(323\) 3.30580e7i 0.981000i
\(324\) 8.44562e6 1.39226e7i 0.248311 0.409340i
\(325\) 6.59635e6 0.192156
\(326\) 4.16030e7i 1.20080i
\(327\) −8.15264e6 3.10990e7i −0.233161 0.889413i
\(328\) 340546. 0.00965059
\(329\) 1.09668e7i 0.307959i
\(330\) 9.03222e6 2.36781e6i 0.251335 0.0658877i
\(331\) 6.44078e7 1.77605 0.888023 0.459799i \(-0.152079\pi\)
0.888023 + 0.459799i \(0.152079\pi\)
\(332\) 8.60011e6i 0.235012i
\(333\) −4.33550e6 + 2.44086e6i −0.117411 + 0.0661013i
\(334\) 1.20242e7 0.322714
\(335\) 7.93529e6i 0.211071i
\(336\) 2.68057e6 + 1.02253e7i 0.0706658 + 0.269561i
\(337\) −2.78171e7 −0.726812 −0.363406 0.931631i \(-0.618386\pi\)
−0.363406 + 0.931631i \(0.618386\pi\)
\(338\) 2.58290e7i 0.668894i
\(339\) 5.32827e7 1.39681e7i 1.36769 0.358541i
\(340\) −1.41648e7 −0.360391
\(341\) 1.74402e6i 0.0439833i
\(342\) −2.41361e7 4.28711e7i −0.603378 1.07173i
\(343\) 4.19488e7 1.03953
\(344\) 5.41725e7i 1.33077i
\(345\) −6.50252e6 2.48045e7i −0.158352 0.604050i
\(346\) 3.22133e7 0.777690
\(347\) 1.66864e7i 0.399368i 0.979860 + 0.199684i \(0.0639916\pi\)
−0.979860 + 0.199684i \(0.936008\pi\)
\(348\) 3.62435e6 950128.i 0.0859988 0.0225447i
\(349\) −3.23851e7 −0.761848 −0.380924 0.924606i \(-0.624394\pi\)
−0.380924 + 0.924606i \(0.624394\pi\)
\(350\) 2.09357e7i 0.488297i
\(351\) 8.15459e6 + 8.42405e6i 0.188574 + 0.194805i
\(352\) 1.02881e7 0.235889
\(353\) 2.00305e7i 0.455373i −0.973734 0.227687i \(-0.926884\pi\)
0.973734 0.227687i \(-0.0731161\pi\)
\(354\) −1.35247e7 5.15911e7i −0.304871 1.16296i
\(355\) 6.08133e7 1.35930
\(356\) 8.50272e6i 0.188455i
\(357\) −2.41863e7 + 6.34045e6i −0.531574 + 0.139353i
\(358\) 1.66226e7 0.362285
\(359\) 3.49792e7i 0.756008i 0.925804 + 0.378004i \(0.123389\pi\)
−0.925804 + 0.378004i \(0.876611\pi\)
\(360\) 5.67380e7 3.19431e7i 1.21609 0.684651i
\(361\) 8.94863e7 1.90211
\(362\) 4.43928e7i 0.935809i
\(363\) 1.12100e7 + 4.27616e7i 0.234361 + 0.893992i
\(364\) 5.97424e6 0.123873
\(365\) 3.73782e7i 0.768670i
\(366\) 5.13553e7 1.34629e7i 1.04747 0.274596i
\(367\) 1.64558e7 0.332906 0.166453 0.986049i \(-0.446769\pi\)
0.166453 + 0.986049i \(0.446769\pi\)
\(368\) 6.95212e6i 0.139500i
\(369\) −222809. 395759.i −0.00443460 0.00787683i
\(370\) −6.44098e6 −0.127159
\(371\) 6.79088e7i 1.32985i
\(372\) −998453. 3.80869e6i −0.0193954 0.0739856i
\(373\) −9.44240e7 −1.81952 −0.909758 0.415140i \(-0.863733\pi\)
−0.909758 + 0.415140i \(0.863733\pi\)
\(374\) 5.98791e6i 0.114462i
\(375\) 1.94217e7 5.09143e6i 0.368294 0.0965486i
\(376\) 1.83142e7 0.344528
\(377\) 2.69771e6i 0.0503467i
\(378\) 2.67366e7 2.58813e7i 0.495028 0.479194i
\(379\) −2.86638e7 −0.526521 −0.263261 0.964725i \(-0.584798\pi\)
−0.263261 + 0.964725i \(0.584798\pi\)
\(380\) 5.85017e7i 1.06615i
\(381\) 1.66525e7 + 6.35224e7i 0.301095 + 1.14855i
\(382\) −5.37971e7 −0.965092
\(383\) 1.57910e7i 0.281070i 0.990076 + 0.140535i \(0.0448823\pi\)
−0.990076 + 0.140535i \(0.955118\pi\)
\(384\) 1.09205e7 2.86281e6i 0.192862 0.0505590i
\(385\) −1.95991e7 −0.343442
\(386\) 4.74525e7i 0.825082i
\(387\) 6.29556e7 3.54435e7i 1.08618 0.611511i
\(388\) 2.53970e7 0.434798
\(389\) 2.24187e7i 0.380857i 0.981701 + 0.190428i \(0.0609877\pi\)
−0.981701 + 0.190428i \(0.939012\pi\)
\(390\) 3.84890e6 + 1.46820e7i 0.0648847 + 0.247509i
\(391\) −1.64441e7 −0.275094
\(392\) 5.74374e6i 0.0953535i
\(393\) −4.03622e7 + 1.05810e7i −0.664962 + 0.174321i
\(394\) −7.95094e7 −1.29996
\(395\) 5.31006e7i 0.861605i
\(396\) −4.01567e6 7.13272e6i −0.0646655 0.114860i
\(397\) 6.43548e7 1.02851 0.514256 0.857637i \(-0.328068\pi\)
0.514256 + 0.857637i \(0.328068\pi\)
\(398\) 6.72347e7i 1.06646i
\(399\) 2.61866e7 + 9.98912e7i 0.412249 + 1.57256i
\(400\) 1.32455e7 0.206961
\(401\) 1.12518e8i 1.74497i −0.488637 0.872487i \(-0.662506\pi\)
0.488637 0.872487i \(-0.337494\pi\)
\(402\) −7.32576e6 + 1.92046e6i −0.112765 + 0.0295615i
\(403\) 2.83492e6 0.0433137
\(404\) 2.16499e7i 0.328331i
\(405\) −7.42442e7 4.50376e7i −1.11763 0.677969i
\(406\) 8.56208e6 0.127939
\(407\) 2.50097e6i 0.0370959i
\(408\) −1.05883e7 4.03902e7i −0.155900 0.594697i
\(409\) −8.11748e7 −1.18646 −0.593228 0.805035i \(-0.702147\pi\)
−0.593228 + 0.805035i \(0.702147\pi\)
\(410\) 587953.i 0.00853083i
\(411\) 4.13891e7 1.08502e7i 0.596156 0.156283i
\(412\) 5.84767e7 0.836164
\(413\) 1.11948e8i 1.58915i
\(414\) 2.13255e7 1.20061e7i 0.300537 0.169200i
\(415\) 4.58614e7 0.641657
\(416\) 1.67234e7i 0.232298i
\(417\) −2.18455e7 8.33317e7i −0.301269 1.14922i
\(418\) −2.47305e7 −0.338614
\(419\) 4.67954e7i 0.636152i 0.948065 + 0.318076i \(0.103037\pi\)
−0.948065 + 0.318076i \(0.896963\pi\)
\(420\) −4.28017e7 + 1.12205e7i −0.577714 + 0.151448i
\(421\) −1.09749e8 −1.47080 −0.735400 0.677633i \(-0.763006\pi\)
−0.735400 + 0.677633i \(0.763006\pi\)
\(422\) 7.18869e7i 0.956560i
\(423\) −1.19825e7 2.12835e7i −0.158316 0.281204i
\(424\) −1.13405e8 −1.48777
\(425\) 3.13302e7i 0.408127i
\(426\) 1.47177e7 + 5.61421e7i 0.190376 + 0.726206i
\(427\) −1.11436e8 −1.43134
\(428\) 6.57494e7i 0.838611i
\(429\) 5.70087e6 1.49449e6i 0.0722054 0.0189287i
\(430\) 9.35290e7 1.17636
\(431\) 7.63616e7i 0.953768i 0.878966 + 0.476884i \(0.158234\pi\)
−0.878966 + 0.476884i \(0.841766\pi\)
\(432\) 1.63745e7 + 1.69156e7i 0.203103 + 0.209815i
\(433\) 7.94153e6 0.0978229 0.0489114 0.998803i \(-0.484425\pi\)
0.0489114 + 0.998803i \(0.484425\pi\)
\(434\) 8.99757e6i 0.110067i
\(435\) −5.06670e6 1.93274e7i −0.0615542 0.234804i
\(436\) −3.64854e7 −0.440210
\(437\) 6.79155e7i 0.813813i
\(438\) 3.45071e7 9.04607e6i 0.410663 0.107656i
\(439\) −1.25964e8 −1.48886 −0.744431 0.667700i \(-0.767279\pi\)
−0.744431 + 0.667700i \(0.767279\pi\)
\(440\) 3.27298e7i 0.384224i
\(441\) 6.67498e6 3.75797e6i 0.0778277 0.0438165i
\(442\) 9.73341e6 0.112719
\(443\) 9.95345e7i 1.14489i −0.819944 0.572443i \(-0.805996\pi\)
0.819944 0.572443i \(-0.194004\pi\)
\(444\) 1.43181e6 + 5.46178e6i 0.0163582 + 0.0624000i
\(445\) 4.53420e7 0.514542
\(446\) 6.36465e7i 0.717414i
\(447\) 1.20112e8 3.14874e7i 1.34481 0.352544i
\(448\) 7.81342e7 0.868974
\(449\) 1.26558e8i 1.39813i 0.715056 + 0.699067i \(0.246401\pi\)
−0.715056 + 0.699067i \(0.753599\pi\)
\(450\) −2.28746e7 4.06303e7i −0.251024 0.445875i
\(451\) −228297. −0.00248869
\(452\) 6.25113e7i 0.676930i
\(453\) −2.48409e7 9.47579e7i −0.267222 1.01934i
\(454\) −3.96807e7 −0.424045
\(455\) 3.18585e7i 0.338214i
\(456\) −1.66815e8 + 4.37307e7i −1.75930 + 0.461202i
\(457\) 7.15421e7 0.749571 0.374786 0.927112i \(-0.377716\pi\)
0.374786 + 0.927112i \(0.377716\pi\)
\(458\) 8.75747e6i 0.0911554i
\(459\) −4.00111e7 + 3.87312e7i −0.413754 + 0.400519i
\(460\) −2.91007e7 −0.298971
\(461\) 3.62696e7i 0.370203i −0.982719 0.185102i \(-0.940739\pi\)
0.982719 0.185102i \(-0.0592614\pi\)
\(462\) −4.74326e6 1.80936e7i −0.0481007 0.183485i
\(463\) −1.30652e8 −1.31636 −0.658178 0.752862i \(-0.728673\pi\)
−0.658178 + 0.752862i \(0.728673\pi\)
\(464\) 5.41702e6i 0.0542259i
\(465\) −2.03104e7 + 5.32440e6i −0.202004 + 0.0529556i
\(466\) 3.85666e7 0.381113
\(467\) 3.88989e7i 0.381933i −0.981597 0.190966i \(-0.938838\pi\)
0.981597 0.190966i \(-0.0611621\pi\)
\(468\) 1.15943e7 6.52752e6i 0.113112 0.0636811i
\(469\) 1.58962e7 0.154090
\(470\) 3.16195e7i 0.304552i
\(471\) 4.76109e6 + 1.81616e7i 0.0455663 + 0.173817i
\(472\) −1.86949e8 −1.77786
\(473\) 3.63164e7i 0.343178i
\(474\) 4.90218e7 1.28511e7i 0.460314 0.120672i
\(475\) 1.29396e8 1.20737
\(476\) 2.83754e7i 0.263100i
\(477\) 7.41979e7 + 1.31792e8i 0.683654 + 1.21432i
\(478\) −6.93518e6 −0.0635000
\(479\) 1.23602e8i 1.12465i −0.826916 0.562325i \(-0.809907\pi\)
0.826916 0.562325i \(-0.190093\pi\)
\(480\) −3.14091e7 1.19813e8i −0.284009 1.08338i
\(481\) −4.06536e6 −0.0365312
\(482\) 1.18398e8i 1.05731i
\(483\) −4.96891e7 + 1.30261e7i −0.440981 + 0.115604i
\(484\) 5.01680e7 0.442477
\(485\) 1.35433e8i 1.18714i
\(486\) 2.36099e7 7.94410e7i 0.205677 0.692048i
\(487\) 2.15452e8 1.86537 0.932683 0.360696i \(-0.117461\pi\)
0.932683 + 0.360696i \(0.117461\pi\)
\(488\) 1.86095e8i 1.60131i
\(489\) −4.93175e7 1.88126e8i −0.421769 1.60888i
\(490\) 9.91659e6 0.0842896
\(491\) 4.93099e6i 0.0416572i 0.999783 + 0.0208286i \(0.00663042\pi\)
−0.999783 + 0.0208286i \(0.993370\pi\)
\(492\) −498569. + 130700.i −0.00418629 + 0.00109744i
\(493\) −1.28131e7 −0.106933
\(494\) 4.01998e7i 0.333459i
\(495\) −3.80363e7 + 2.14142e7i −0.313605 + 0.176557i
\(496\) 5.69254e6 0.0466510
\(497\) 1.21823e8i 0.992341i
\(498\) 1.10991e7 + 4.23387e7i 0.0898671 + 0.342807i
\(499\) −1.22156e8 −0.983139 −0.491570 0.870838i \(-0.663577\pi\)
−0.491570 + 0.870838i \(0.663577\pi\)
\(500\) 2.27856e7i 0.182285i
\(501\) −5.43729e7 + 1.42539e7i −0.432384 + 0.113350i
\(502\) −1.55217e8 −1.22696
\(503\) 1.55994e8i 1.22576i 0.790177 + 0.612879i \(0.209989\pi\)
−0.790177 + 0.612879i \(0.790011\pi\)
\(504\) −6.39894e7 1.13659e8i −0.499823 0.887797i
\(505\) 1.15451e8 0.896448
\(506\) 1.23018e7i 0.0949546i
\(507\) −3.06185e7 1.16797e8i −0.234942 0.896208i
\(508\) 7.45246e7 0.568471
\(509\) 1.31192e8i 0.994840i 0.867510 + 0.497420i \(0.165719\pi\)
−0.867510 + 0.497420i \(0.834281\pi\)
\(510\) −6.97338e7 + 1.82808e7i −0.525694 + 0.137811i
\(511\) −7.48772e7 −0.561160
\(512\) 7.54247e7i 0.561957i
\(513\) 1.59963e8 + 1.65249e8i 1.18486 + 1.22401i
\(514\) −6.94850e7 −0.511684
\(515\) 3.11836e8i 2.28299i
\(516\) −2.07912e7 7.93101e7i −0.151332 0.577270i
\(517\) −1.22776e7 −0.0888465
\(518\) 1.29028e7i 0.0928311i
\(519\) −1.45667e8 + 3.81867e7i −1.04198 + 0.273155i
\(520\) 5.32026e7 0.378375
\(521\) 1.67968e8i 1.18772i 0.804568 + 0.593860i \(0.202397\pi\)
−0.804568 + 0.593860i \(0.797603\pi\)
\(522\) 1.66166e7 9.35503e6i 0.116824 0.0657709i
\(523\) 2.03638e8 1.42349 0.711745 0.702438i \(-0.247905\pi\)
0.711745 + 0.702438i \(0.247905\pi\)
\(524\) 4.73530e7i 0.329120i
\(525\) 2.48179e7 + 9.46701e7i 0.171509 + 0.654237i
\(526\) −3.97059e7 −0.272833
\(527\) 1.34648e7i 0.0919958i
\(528\) 1.14474e7 3.00095e6i 0.0777688 0.0203872i
\(529\) 1.14253e8 0.771789
\(530\) 1.95795e8i 1.31514i
\(531\) 1.22316e8 + 2.17259e8i 0.816955 + 1.45109i
\(532\) 1.17193e8 0.778332
\(533\) 371099.i 0.00245080i
\(534\) 1.09734e7 + 4.18592e7i 0.0720641 + 0.274895i
\(535\) 3.50619e8 2.28967
\(536\) 2.65461e7i 0.172388i
\(537\) −7.51666e7 + 1.97050e7i −0.485402 + 0.127249i
\(538\) 1.06089e7 0.0681278
\(539\) 3.85052e6i 0.0245897i
\(540\) −7.08064e7 + 6.85415e7i −0.449667 + 0.435283i
\(541\) −1.46567e8 −0.925644 −0.462822 0.886451i \(-0.653163\pi\)
−0.462822 + 0.886451i \(0.653163\pi\)
\(542\) 1.68410e8i 1.05772i
\(543\) 5.26247e7 + 2.00742e8i 0.328693 + 1.25383i
\(544\) −7.94300e7 −0.493387
\(545\) 1.94564e8i 1.20191i
\(546\) 2.94114e7 7.71023e6i 0.180691 0.0473685i
\(547\) 1.23166e8 0.752541 0.376271 0.926510i \(-0.377206\pi\)
0.376271 + 0.926510i \(0.377206\pi\)
\(548\) 4.85577e7i 0.295064i
\(549\) −2.16267e8 + 1.21757e8i −1.30699 + 0.735827i
\(550\) −2.34379e7 −0.140874
\(551\) 5.29191e7i 0.316343i
\(552\) −2.17530e7 8.29790e7i −0.129331 0.493345i
\(553\) −1.06373e8 −0.629007
\(554\) 1.84752e7i 0.108658i
\(555\) 2.91257e7 7.63535e6i 0.170372 0.0446632i
\(556\) −9.77649e7 −0.568799
\(557\) 3.73880e7i 0.216355i 0.994132 + 0.108177i \(0.0345014\pi\)
−0.994132 + 0.108177i \(0.965499\pi\)
\(558\) −9.83084e6 1.74617e7i −0.0565833 0.100504i
\(559\) 5.90328e7 0.337954
\(560\) 6.39722e7i 0.364273i
\(561\) 7.09826e6 + 2.70770e7i 0.0402035 + 0.153360i
\(562\) −8.04122e7 −0.453015
\(563\) 1.05723e8i 0.592439i −0.955120 0.296220i \(-0.904274\pi\)
0.955120 0.296220i \(-0.0957260\pi\)
\(564\) −2.68125e7 + 7.02892e6i −0.149451 + 0.0391788i
\(565\) −3.33351e8 −1.84823
\(566\) 1.51873e8i 0.837588i
\(567\) −9.02206e7 + 1.48728e8i −0.494945 + 0.815914i
\(568\) 2.03440e8 1.11018
\(569\) 3.07047e8i 1.66674i −0.552716 0.833370i \(-0.686409\pi\)
0.552716 0.833370i \(-0.313591\pi\)
\(570\) 7.55012e7 + 2.88006e8i 0.407689 + 1.55517i
\(571\) 2.83737e8 1.52408 0.762039 0.647532i \(-0.224199\pi\)
0.762039 + 0.647532i \(0.224199\pi\)
\(572\) 6.68828e6i 0.0357377i
\(573\) 2.43267e8 6.37728e7i 1.29306 0.338978i
\(574\) −1.17781e6 −0.00622785
\(575\) 6.43658e7i 0.338572i
\(576\) 1.51636e8 8.53703e7i 0.793480 0.446724i
\(577\) 5.34014e7 0.277987 0.138994 0.990293i \(-0.455613\pi\)
0.138994 + 0.990293i \(0.455613\pi\)
\(578\) 9.31818e7i 0.482556i
\(579\) 5.62518e7 + 2.14578e8i 0.289801 + 1.10547i
\(580\) −2.26749e7 −0.116215
\(581\) 9.18710e7i 0.468436i
\(582\) 1.25030e8 3.27769e7i 0.634230 0.166264i
\(583\) 7.60252e7 0.383665
\(584\) 1.25042e8i 0.627795i
\(585\) −3.48090e7 6.18285e7i −0.173870 0.308831i
\(586\) 1.72840e8 0.858916
\(587\) 6.07355e7i 0.300281i −0.988665 0.150141i \(-0.952027\pi\)
0.988665 0.150141i \(-0.0479727\pi\)
\(588\) −2.20443e6 8.40900e6i −0.0108434 0.0413630i
\(589\) 5.56107e7 0.272152
\(590\) 3.22768e8i 1.57157i
\(591\) 3.59537e8 9.42531e7i 1.74173 0.456597i
\(592\) −8.16327e6 −0.0393459
\(593\) 4.94899e7i 0.237330i −0.992934 0.118665i \(-0.962139\pi\)
0.992934 0.118665i \(-0.0378615\pi\)
\(594\) −2.89746e7 2.99321e7i −0.138248 0.142816i
\(595\) 1.51316e8 0.718346
\(596\) 1.40915e8i 0.665609i
\(597\) −7.97022e7 3.04032e8i −0.374582 1.42888i
\(598\) 1.99967e7 0.0935091
\(599\) 2.30866e8i 1.07418i −0.843524 0.537092i \(-0.819523\pi\)
0.843524 0.537092i \(-0.180477\pi\)
\(600\) −1.58096e8 + 4.14450e7i −0.731925 + 0.191875i
\(601\) 3.25174e6 0.0149793 0.00748967 0.999972i \(-0.497616\pi\)
0.00748967 + 0.999972i \(0.497616\pi\)
\(602\) 1.87360e8i 0.858792i
\(603\) 3.08501e7 1.73684e7i 0.140703 0.0792151i
\(604\) −1.11170e8 −0.504519
\(605\) 2.67528e8i 1.20810i
\(606\) 2.79409e7 + 1.06583e8i 0.125552 + 0.478929i
\(607\) 3.72624e8 1.66612 0.833058 0.553186i \(-0.186588\pi\)
0.833058 + 0.553186i \(0.186588\pi\)
\(608\) 3.28052e8i 1.45960i
\(609\) −3.87173e7 + 1.01498e7i −0.171417 + 0.0449370i
\(610\) −3.21293e8 −1.41551
\(611\) 1.99573e7i 0.0874940i
\(612\) 3.10032e7 + 5.50686e7i 0.135255 + 0.240243i
\(613\) 1.40087e7 0.0608159 0.0304080 0.999538i \(-0.490319\pi\)
0.0304080 + 0.999538i \(0.490319\pi\)
\(614\) 4.39378e7i 0.189816i
\(615\) 696979. + 2.65869e6i 0.00299636 + 0.0114299i
\(616\) −6.55653e7 −0.280499
\(617\) 8.97046e7i 0.381909i −0.981599 0.190954i \(-0.938842\pi\)
0.981599 0.190954i \(-0.0611582\pi\)
\(618\) 2.87883e8 7.54688e7i 1.21969 0.319744i
\(619\) −3.52389e8 −1.48577 −0.742883 0.669421i \(-0.766542\pi\)
−0.742883 + 0.669421i \(0.766542\pi\)
\(620\) 2.38282e7i 0.0999809i
\(621\) −8.22002e7 + 7.95708e7i −0.343240 + 0.332261i
\(622\) −3.21332e8 −1.33531
\(623\) 9.08306e7i 0.375637i
\(624\) 4.87808e6 + 1.86079e7i 0.0200768 + 0.0765849i
\(625\) −2.94539e8 −1.20643
\(626\) 9.15562e7i 0.373220i
\(627\) 1.11830e8 2.93164e7i 0.453687 0.118935i
\(628\) 2.13073e7 0.0860298
\(629\) 1.93089e7i 0.0775900i
\(630\) −1.96233e8 + 1.10478e8i −0.784786 + 0.441829i
\(631\) 8.18274e7 0.325695 0.162847 0.986651i \(-0.447932\pi\)
0.162847 + 0.986651i \(0.447932\pi\)
\(632\) 1.77639e8i 0.703699i
\(633\) 8.52171e7 + 3.25068e8i 0.335982 + 1.28163i
\(634\) −1.54505e8 −0.606283
\(635\) 3.97414e8i 1.55211i
\(636\) 1.66029e8 4.35246e7i 0.645374 0.169186i
\(637\) 6.25906e6 0.0242154
\(638\) 9.58542e6i 0.0369104i
\(639\) −1.33105e8 2.36425e8i −0.510144 0.906129i
\(640\) −6.83214e7 −0.260626
\(641\) 1.50979e8i 0.573246i −0.958043 0.286623i \(-0.907467\pi\)
0.958043 0.286623i \(-0.0925328\pi\)
\(642\) 8.48549e7 + 3.23687e8i 0.320680 + 1.22326i
\(643\) 3.48554e8 1.31111 0.655553 0.755150i \(-0.272436\pi\)
0.655553 + 0.755150i \(0.272436\pi\)
\(644\) 5.82954e7i 0.218261i
\(645\) −4.22933e8 + 1.10872e8i −1.57613 + 0.413185i
\(646\) 1.90934e8 0.708247
\(647\) 1.97403e8i 0.728856i 0.931232 + 0.364428i \(0.118735\pi\)
−0.931232 + 0.364428i \(0.881265\pi\)
\(648\) −2.48371e8 1.50665e8i −0.912800 0.553717i
\(649\) 1.25328e8 0.458473
\(650\) 3.80986e7i 0.138730i
\(651\) 1.06660e7 + 4.06865e7i 0.0386597 + 0.147471i
\(652\) −2.20710e8 −0.796305
\(653\) 2.27833e8i 0.818232i 0.912482 + 0.409116i \(0.134163\pi\)
−0.912482 + 0.409116i \(0.865837\pi\)
\(654\) −1.79619e8 + 4.70874e7i −0.642125 + 0.168334i
\(655\) 2.52517e8 0.898601
\(656\) 745170.i 0.00263963i
\(657\) −1.45316e8 + 8.18116e7i −0.512408 + 0.288482i
\(658\) −6.33412e7 −0.222335
\(659\) 4.93079e8i 1.72290i 0.507842 + 0.861450i \(0.330443\pi\)
−0.507842 + 0.861450i \(0.669557\pi\)
\(660\) 1.25616e7 + 4.79173e7i 0.0436931 + 0.166671i
\(661\) 2.08745e8 0.722790 0.361395 0.932413i \(-0.382301\pi\)
0.361395 + 0.932413i \(0.382301\pi\)
\(662\) 3.72001e8i 1.28224i
\(663\) −4.40139e7 + 1.15383e7i −0.151025 + 0.0395915i
\(664\) 1.53421e8 0.524061
\(665\) 6.24947e8i 2.12509i
\(666\) 1.40977e7 + 2.50407e7i 0.0477228 + 0.0847663i
\(667\) −2.63237e7 −0.0887093
\(668\) 6.37904e7i 0.214006i
\(669\) −7.54486e7 2.87806e8i −0.251984 0.961216i
\(670\) 4.58320e7 0.152386
\(671\) 1.24755e8i 0.412944i
\(672\) −2.40013e8 + 6.29198e7i −0.790911 + 0.207338i
\(673\) −1.32382e8 −0.434295 −0.217148 0.976139i \(-0.569675\pi\)
−0.217148 + 0.976139i \(0.569675\pi\)
\(674\) 1.60664e8i 0.524733i
\(675\) 1.51602e8 + 1.56612e8i 0.492940 + 0.509229i
\(676\) −1.37027e8 −0.443573
\(677\) 1.96331e8i 0.632735i 0.948637 + 0.316368i \(0.102463\pi\)
−0.948637 + 0.316368i \(0.897537\pi\)
\(678\) −8.06759e7 3.07746e8i −0.258854 0.987422i
\(679\) −2.71304e8 −0.866657
\(680\) 2.52692e8i 0.803647i
\(681\) 1.79434e8 4.70388e7i 0.568150 0.148941i
\(682\) −1.00730e7 −0.0317544
\(683\) 2.95106e8i 0.926225i −0.886300 0.463113i \(-0.846733\pi\)
0.886300 0.463113i \(-0.153267\pi\)
\(684\) 2.27438e8 1.28046e8i 0.710713 0.400126i
\(685\) −2.58941e8 −0.805619
\(686\) 2.42285e8i 0.750505i
\(687\) −1.03814e7 3.96008e7i −0.0320174 0.122133i
\(688\) 1.18538e8 0.363993
\(689\) 1.23580e8i 0.377824i
\(690\) −1.43264e8 + 3.75567e7i −0.436103 + 0.114325i
\(691\) −5.66600e8 −1.71729 −0.858643 0.512574i \(-0.828692\pi\)
−0.858643 + 0.512574i \(0.828692\pi\)
\(692\) 1.70896e8i 0.515721i
\(693\) 4.28976e7 + 7.61955e7i 0.128894 + 0.228944i
\(694\) 9.63757e7 0.288330
\(695\) 5.21346e8i 1.55300i
\(696\) −1.69498e7 6.46564e7i −0.0502731 0.191772i
\(697\) 1.76258e6 0.00520536
\(698\) 1.87047e8i 0.550027i
\(699\) −1.74396e8 + 4.57181e7i −0.510628 + 0.133862i
\(700\) 1.11067e8 0.323811
\(701\) 2.59989e8i 0.754745i −0.926061 0.377373i \(-0.876828\pi\)
0.926061 0.377373i \(-0.123172\pi\)
\(702\) 4.86550e7 4.70986e7i 0.140642 0.136143i
\(703\) −7.97473e7 −0.229536
\(704\) 8.74727e7i 0.250700i
\(705\) 3.74828e7 + 1.42982e8i 0.106971 + 0.408050i
\(706\) −1.15690e8 −0.328763
\(707\) 2.31276e8i 0.654443i
\(708\) 2.73699e8 7.17505e7i 0.771211 0.202174i
\(709\) −6.05427e8 −1.69872 −0.849362 0.527810i \(-0.823013\pi\)
−0.849362 + 0.527810i \(0.823013\pi\)
\(710\) 3.51241e8i 0.981363i
\(711\) −2.06440e8 + 1.16224e8i −0.574361 + 0.323361i
\(712\) 1.51684e8 0.420242
\(713\) 2.76625e7i 0.0763174i
\(714\) 3.66207e7 + 1.39693e8i 0.100608 + 0.383778i
\(715\) −3.56662e7 −0.0975752
\(716\) 8.81856e7i 0.240247i
\(717\) 3.13605e7 8.22119e6i 0.0850796 0.0223037i
\(718\) 2.02030e8 0.545811
\(719\) 6.06595e8i 1.63197i 0.578072 + 0.815986i \(0.303805\pi\)
−0.578072 + 0.815986i \(0.696195\pi\)
\(720\) −6.98968e7 1.24152e8i −0.187266 0.332626i
\(721\) −6.24679e8 −1.66668
\(722\) 5.16848e8i 1.37325i
\(723\) −1.40352e8 5.35387e8i −0.371368 1.41662i
\(724\) 2.35511e8 0.620576
\(725\) 5.01532e7i 0.131609i
\(726\) 2.46979e8 6.47458e7i 0.645431 0.169200i
\(727\) −3.32454e8 −0.865222 −0.432611 0.901581i \(-0.642408\pi\)
−0.432611 + 0.901581i \(0.642408\pi\)
\(728\) 1.06577e8i 0.276229i
\(729\) −1.25908e7 + 3.87216e8i −0.0324990 + 0.999472i
\(730\) −2.15886e8 −0.554952
\(731\) 2.80383e8i 0.717794i
\(732\) 7.14226e7 + 2.72448e8i 0.182097 + 0.694625i
\(733\) 4.11192e8 1.04408 0.522039 0.852922i \(-0.325171\pi\)
0.522039 + 0.852922i \(0.325171\pi\)
\(734\) 9.50443e7i 0.240347i
\(735\) −4.48423e7 + 1.17554e7i −0.112934 + 0.0296058i
\(736\) −1.63184e8 −0.409302
\(737\) 1.77961e7i 0.0444553i
\(738\) −2.28579e6 + 1.28688e6i −0.00568680 + 0.00320163i
\(739\) 1.51845e8 0.376243 0.188121 0.982146i \(-0.439760\pi\)
0.188121 + 0.982146i \(0.439760\pi\)
\(740\) 3.41704e7i 0.0843247i
\(741\) 4.76541e7 + 1.81781e8i 0.117124 + 0.446780i
\(742\) 3.92222e8 0.960108
\(743\) 1.27236e8i 0.310200i −0.987899 0.155100i \(-0.950430\pi\)
0.987899 0.155100i \(-0.0495700\pi\)
\(744\) −6.79450e7 + 1.78119e7i −0.164983 + 0.0432504i
\(745\) −7.51451e8 −1.81732
\(746\) 5.45366e8i 1.31363i
\(747\) −1.00379e8 1.78296e8i −0.240814 0.427739i
\(748\) 3.17668e7 0.0759047
\(749\) 7.02371e8i 1.67156i
\(750\) −2.94067e7 1.12174e8i −0.0697047 0.265895i
\(751\) −1.39159e8 −0.328543 −0.164271 0.986415i \(-0.552527\pi\)
−0.164271 + 0.986415i \(0.552527\pi\)
\(752\) 4.00745e7i 0.0942354i
\(753\) 7.01883e8 1.84000e8i 1.64392 0.430955i
\(754\) 1.55812e7 0.0363485
\(755\) 5.92832e8i 1.37750i
\(756\) 1.37304e8 + 1.41842e8i 0.317775 + 0.328275i
\(757\) −3.27923e8 −0.755935 −0.377967 0.925819i \(-0.623377\pi\)
−0.377967 + 0.925819i \(0.623377\pi\)
\(758\) 1.65554e8i 0.380130i
\(759\) 1.45829e7 + 5.56279e7i 0.0333518 + 0.127224i
\(760\) 1.04364e9 2.37744
\(761\) 6.66847e8i 1.51312i 0.653926 + 0.756558i \(0.273121\pi\)
−0.653926 + 0.756558i \(0.726879\pi\)
\(762\) 3.66887e8 9.61799e7i 0.829216 0.217380i
\(763\) 3.89757e8 0.877446
\(764\) 2.85402e8i 0.639995i
\(765\) 2.93662e8 1.65330e8i 0.655938 0.369289i
\(766\) 9.12046e7 0.202923
\(767\) 2.03722e8i 0.451494i
\(768\) −1.21133e8 4.62074e8i −0.267411 1.02007i
\(769\) 1.35476e8 0.297909 0.148955 0.988844i \(-0.452409\pi\)
0.148955 + 0.988844i \(0.452409\pi\)
\(770\) 1.13199e8i 0.247953i
\(771\) 3.14207e8 8.23698e7i 0.685572 0.179724i
\(772\) 2.51743e8 0.547149
\(773\) 4.07346e8i 0.881911i 0.897529 + 0.440955i \(0.145360\pi\)
−0.897529 + 0.440955i \(0.854640\pi\)
\(774\) −2.04712e8 3.63614e8i −0.441489 0.784183i
\(775\) 5.27041e7 0.113224
\(776\) 4.53069e8i 0.969569i
\(777\) −1.52954e7 5.83456e7i −0.0326059 0.124378i
\(778\) 1.29484e8 0.274965
\(779\) 7.27959e6i 0.0153991i
\(780\) −7.78901e7 + 2.04190e7i −0.164134 + 0.0430279i
\(781\) −1.36383e8 −0.286292
\(782\) 9.49766e7i 0.198608i
\(783\) −6.40496e7 + 6.20008e7i −0.133423 + 0.129155i
\(784\) 1.25682e7 0.0260811
\(785\) 1.13624e8i 0.234889i
\(786\) 6.11128e7 + 2.33121e8i 0.125853 + 0.480079i
\(787\) −3.34146e8 −0.685508 −0.342754 0.939425i \(-0.611360\pi\)
−0.342754 + 0.939425i \(0.611360\pi\)
\(788\) 4.21810e8i 0.862061i
\(789\) 1.79548e8 4.70686e7i 0.365552 0.0958298i
\(790\) −3.06694e8 −0.622049
\(791\) 6.67780e8i 1.34929i
\(792\) −1.27244e8 + 7.16374e7i −0.256130 + 0.144200i
\(793\) −2.02791e8 −0.406658
\(794\) 3.71695e8i 0.742550i
\(795\) −2.32101e8 8.85372e8i −0.461930 1.76208i
\(796\) −3.56690e8 −0.707216
\(797\) 8.03163e8i 1.58646i 0.608923 + 0.793229i \(0.291602\pi\)
−0.608923 + 0.793229i \(0.708398\pi\)
\(798\) 5.76943e8 1.51246e8i 1.13534 0.297630i
\(799\) 9.47897e7 0.185832
\(800\) 3.10906e8i 0.607238i
\(801\) −9.92425e7 1.76277e8i −0.193108 0.343003i
\(802\) −6.49872e8 −1.25981
\(803\) 8.38265e7i 0.161895i
\(804\) −1.01883e7 3.88643e7i −0.0196035 0.0747795i
\(805\) 3.10869e8 0.595922
\(806\) 1.63737e7i 0.0312710i
\(807\) −4.79729e7 + 1.25762e7i −0.0912800 + 0.0239292i
\(808\) 3.86223e8 0.732156
\(809\) 9.26866e8i 1.75054i −0.483637 0.875269i \(-0.660685\pi\)
0.483637 0.875269i \(-0.339315\pi\)
\(810\) −2.60124e8 + 4.28813e8i −0.489470 + 0.806888i
\(811\) 4.65619e8 0.872907 0.436454 0.899727i \(-0.356234\pi\)
0.436454 + 0.899727i \(0.356234\pi\)
\(812\) 4.54232e7i 0.0848417i
\(813\) −1.99638e8 7.61539e8i −0.371512 1.41717i
\(814\) 1.44449e7 0.0267819
\(815\) 1.17697e9i 2.17417i
\(816\) −8.83804e7 + 2.31690e7i −0.162662 + 0.0426420i
\(817\) 1.15801e9 2.12346
\(818\) 4.68843e8i 0.856579i
\(819\) −1.23857e8 + 6.97305e7i −0.225459 + 0.126932i
\(820\) 3.11918e6 0.00565717
\(821\) 2.75443e8i 0.497739i 0.968537 + 0.248870i \(0.0800591\pi\)
−0.968537 + 0.248870i \(0.919941\pi\)
\(822\) −6.26676e7 2.39052e8i −0.112831 0.430404i
\(823\) 3.31587e8 0.594837 0.297418 0.954747i \(-0.403874\pi\)
0.297418 + 0.954747i \(0.403874\pi\)
\(824\) 1.04319e9i 1.86459i
\(825\) 1.05985e8 2.77841e7i 0.188748 0.0494806i
\(826\) 6.46580e8 1.14731
\(827\) 4.69560e8i 0.830184i −0.909779 0.415092i \(-0.863749\pi\)
0.909779 0.415092i \(-0.136251\pi\)
\(828\) 6.36942e7 + 1.13135e8i 0.112204 + 0.199299i
\(829\) 1.66978e8 0.293086 0.146543 0.989204i \(-0.453185\pi\)
0.146543 + 0.989204i \(0.453185\pi\)
\(830\) 2.64883e8i 0.463254i
\(831\) −2.19011e7 8.35439e7i −0.0381648 0.145583i
\(832\) 1.42188e8 0.246884
\(833\) 2.97282e7i 0.0514320i
\(834\) −4.81300e8 + 1.26173e8i −0.829694 + 0.217505i
\(835\) 3.40172e8 0.584304
\(836\) 1.31199e8i 0.224550i
\(837\) 6.51542e7 + 6.73072e7i 0.111113 + 0.114785i
\(838\) 2.70277e8 0.459279
\(839\) 3.49915e8i 0.592485i −0.955113 0.296242i \(-0.904266\pi\)
0.955113 0.296242i \(-0.0957336\pi\)
\(840\) 2.00168e8 + 7.63559e8i 0.337720 + 1.28826i
\(841\) −2.05111e7 −0.0344828
\(842\) 6.33879e8i 1.06187i
\(843\) 3.63619e8 9.53232e7i 0.606966 0.159117i
\(844\) 3.81371e8 0.634338
\(845\) 7.30716e8i 1.21110i
\(846\) −1.22927e8 + 6.92073e7i −0.203020 + 0.114299i
\(847\) −5.35921e8 −0.881964
\(848\) 2.48149e8i 0.406936i
\(849\) 1.80035e8 + 6.86760e8i 0.294194 + 1.12223i
\(850\) 1.80954e8 0.294654
\(851\) 3.96689e7i 0.0643667i
\(852\) −2.97843e8 + 7.80798e7i −0.481580 + 0.126247i
\(853\) −4.25660e8 −0.685829 −0.342914 0.939367i \(-0.611414\pi\)
−0.342914 + 0.939367i \(0.611414\pi\)
\(854\) 6.43625e8i 1.03338i
\(855\) −6.82824e8 1.21285e9i −1.09247 1.94047i
\(856\) 1.17293e9 1.87005
\(857\) 9.69039e8i 1.53957i −0.638305 0.769784i \(-0.720364\pi\)
0.638305 0.769784i \(-0.279636\pi\)
\(858\) −8.63175e6 3.29266e7i −0.0136659 0.0521297i
\(859\) −2.73280e8 −0.431149 −0.215575 0.976487i \(-0.569162\pi\)
−0.215575 + 0.976487i \(0.569162\pi\)
\(860\) 4.96186e8i 0.780098i
\(861\) 5.32598e6 1.39621e6i 0.00834430 0.00218747i
\(862\) 4.41043e8 0.688587
\(863\) 9.71130e8i 1.51093i −0.655188 0.755466i \(-0.727410\pi\)
0.655188 0.755466i \(-0.272590\pi\)
\(864\) −3.97051e8 + 3.84351e8i −0.615610 + 0.595918i
\(865\) 9.11331e8 1.40808
\(866\) 4.58680e7i 0.0706247i
\(867\) 1.10461e8 + 4.21363e8i 0.169493 + 0.646545i
\(868\) 4.77335e7 0.0729901
\(869\) 1.19087e8i 0.181469i
\(870\) −1.11630e8 + 2.92638e7i −0.169520 + 0.0444399i
\(871\) 2.89278e7 0.0437785
\(872\) 6.50880e8i 0.981639i
\(873\) −5.26526e8 + 2.96430e8i −0.791365 + 0.445533i
\(874\) 3.92261e8 0.587544
\(875\) 2.43408e8i 0.363338i
\(876\) 4.79908e7 + 1.83065e8i 0.0713914 + 0.272329i
\(877\) −2.97277e8 −0.440720 −0.220360 0.975419i \(-0.570723\pi\)
−0.220360 + 0.975419i \(0.570723\pi\)
\(878\) 7.27535e8i 1.07491i
\(879\) −7.81571e8 + 2.04890e8i −1.15081 + 0.301685i
\(880\) −7.16181e7 −0.105093
\(881\) 4.91287e8i 0.718468i −0.933247 0.359234i \(-0.883038\pi\)
0.933247 0.359234i \(-0.116962\pi\)
\(882\) −2.17050e7 3.85528e7i −0.0316339 0.0561889i
\(883\) −6.91819e8 −1.00487 −0.502436 0.864614i \(-0.667563\pi\)
−0.502436 + 0.864614i \(0.667563\pi\)
\(884\) 5.16373e7i 0.0747492i
\(885\) −3.82620e8 1.45954e9i −0.551999 2.10565i
\(886\) −5.74883e8 −0.826568
\(887\) 1.01434e9i 1.45350i 0.686903 + 0.726749i \(0.258970\pi\)
−0.686903 + 0.726749i \(0.741030\pi\)
\(888\) 9.74351e7 2.55427e7i 0.139148 0.0364778i
\(889\) −7.96111e8 −1.13310
\(890\) 2.61883e8i 0.371481i
\(891\) 1.66504e8 + 1.01004e8i 0.235392 + 0.142792i
\(892\) −3.37654e8 −0.475749
\(893\) 3.91489e8i 0.549750i
\(894\) −1.81862e8 6.93730e8i −0.254525 0.970908i
\(895\) 4.70263e8 0.655951
\(896\) 1.36864e8i 0.190267i
\(897\) −9.04238e7 + 2.37047e7i −0.125287 + 0.0328441i
\(898\) 7.30961e8 1.00940
\(899\) 2.15544e7i 0.0296658i
\(900\) 2.15550e8 1.21353e8i 0.295679 0.166465i
\(901\) −5.86957e8 −0.802476
\(902\) 1.31858e6i 0.00179674i
\(903\) 2.22103e8 + 8.47233e8i 0.301642 + 1.15064i
\(904\) −1.11517e9 −1.50951
\(905\) 1.25590e9i 1.69437i
\(906\) −5.47295e8 + 1.43474e8i −0.735931 + 0.192925i
\(907\) 1.55138e8 0.207921 0.103960 0.994581i \(-0.466849\pi\)
0.103960 + 0.994581i \(0.466849\pi\)
\(908\) 2.10512e8i 0.281203i
\(909\) −2.52695e8 4.48842e8i −0.336437 0.597587i
\(910\) −1.84006e8 −0.244179
\(911\) 5.58763e8i 0.739048i −0.929221 0.369524i \(-0.879521\pi\)
0.929221 0.369524i \(-0.120479\pi\)
\(912\) 9.56899e7 + 3.65018e8i 0.126148 + 0.481205i
\(913\) −1.02851e8 −0.135144
\(914\) 4.13207e8i 0.541164i
\(915\) 1.45287e9 3.80872e8i 1.89655 0.497182i
\(916\) −4.64598e7 −0.0604492
\(917\) 5.05850e8i 0.656015i
\(918\) 2.23701e8 + 2.31093e8i 0.289161 + 0.298716i
\(919\) −4.44174e8 −0.572278 −0.286139 0.958188i \(-0.592372\pi\)
−0.286139 + 0.958188i \(0.592372\pi\)
\(920\) 5.19140e8i 0.666686i
\(921\) −5.20853e7 1.98684e8i −0.0666709 0.254322i
\(922\) −2.09483e8 −0.267274
\(923\) 2.21693e8i 0.281933i
\(924\) 9.59895e7 2.51638e7i 0.121677 0.0318977i
\(925\) −7.55792e7 −0.0954942
\(926\) 7.54610e8i 0.950363i
\(927\) −1.21233e9 + 6.82532e8i −1.52188 + 0.856808i
\(928\) −1.27151e8 −0.159102
\(929\) 8.07835e8i 1.00757i 0.863829 + 0.503785i \(0.168060\pi\)
−0.863829 + 0.503785i \(0.831940\pi\)
\(930\) 3.07522e7 + 1.17307e8i 0.0382321 + 0.145840i
\(931\) 1.22780e8 0.152152
\(932\) 2.04602e8i 0.252733i
\(933\) 1.45305e9 3.80918e8i 1.78910 0.469015i
\(934\) −2.24669e8 −0.275742
\(935\) 1.69401e8i 0.207244i
\(936\) −1.16447e8 2.06836e8i −0.142005 0.252231i
\(937\) 7.46226e8 0.907093 0.453546 0.891233i \(-0.350159\pi\)
0.453546 + 0.891233i \(0.350159\pi\)
\(938\) 9.18121e7i 0.111248i
\(939\) −1.08534e8 4.14012e8i −0.131089 0.500053i
\(940\) 1.67746e8 0.201962
\(941\) 1.30543e9i 1.56669i 0.621585 + 0.783347i \(0.286489\pi\)
−0.621585 + 0.783347i \(0.713511\pi\)
\(942\) 1.04896e8 2.74987e7i 0.125490 0.0328973i
\(943\) 3.62111e6 0.00431823
\(944\) 4.09075e8i 0.486281i
\(945\) 7.56392e8 7.32197e8i 0.896296 0.867625i
\(946\) −2.09754e8 −0.247763
\(947\) 1.91366e8i 0.225328i −0.993633 0.112664i \(-0.964062\pi\)
0.993633 0.112664i \(-0.0359383\pi\)
\(948\) 6.81772e7 + 2.60068e8i 0.0800229 + 0.305255i
\(949\) −1.36261e8 −0.159431
\(950\) 7.47355e8i 0.871678i
\(951\) 6.98664e8 1.83156e8i 0.812319 0.212950i
\(952\) 5.06201e8 0.586695
\(953\) 1.09696e9i 1.26739i 0.773581 + 0.633697i \(0.218464\pi\)
−0.773581 + 0.633697i \(0.781536\pi\)
\(954\) 7.61193e8 4.28546e8i 0.876697 0.493574i
\(955\) −1.52195e9 −1.74739
\(956\) 3.67922e7i 0.0421097i
\(957\) 1.13629e7 + 4.33447e7i 0.0129644 + 0.0494539i
\(958\) −7.13888e8 −0.811958
\(959\) 5.18720e8i 0.588135i
\(960\) −1.01869e9 + 2.67050e8i −1.15140 + 0.301842i
\(961\) −8.64853e8 −0.974478
\(962\) 2.34804e7i 0.0263742i
\(963\) −7.67418e8 1.36310e9i −0.859316 1.52634i
\(964\) −6.28118e8 −0.701148
\(965\) 1.34246e9i 1.49389i
\(966\) 7.52348e7 + 2.86990e8i 0.0834617 + 0.318373i
\(967\) 1.28508e9 1.42119 0.710594 0.703602i \(-0.248426\pi\)
0.710594 + 0.703602i \(0.248426\pi\)
\(968\) 8.94969e8i 0.986693i
\(969\) −8.63391e8 + 2.26339e8i −0.948935 + 0.248764i
\(970\) −7.82225e8 −0.857070
\(971\) 3.79540e8i 0.414572i −0.978280 0.207286i \(-0.933537\pi\)
0.978280 0.207286i \(-0.0664631\pi\)
\(972\) 4.21447e8 + 1.25254e8i 0.458928 + 0.136394i
\(973\) 1.04438e9 1.13375
\(974\) 1.24439e9i 1.34673i
\(975\) 4.51634e7 + 1.72280e8i 0.0487273 + 0.185875i
\(976\) −4.07206e8 −0.437991
\(977\) 1.61992e8i 0.173704i 0.996221 + 0.0868521i \(0.0276808\pi\)
−0.996221 + 0.0868521i \(0.972319\pi\)
\(978\) −1.08656e9 + 2.84844e8i −1.16155 + 0.304502i
\(979\) −1.01687e8 −0.108372
\(980\) 5.26090e7i 0.0558962i
\(981\) 7.56409e8 4.25853e8i 0.801216 0.451079i
\(982\) 2.84800e7 0.0300750
\(983\) 1.65767e8i 0.174516i 0.996186 + 0.0872582i \(0.0278105\pi\)
−0.996186 + 0.0872582i \(0.972189\pi\)
\(984\) 2.33162e6 + 8.89419e6i 0.00244722 + 0.00933515i
\(985\) −2.24937e9 −2.35370
\(986\) 7.40048e7i 0.0772021i
\(987\) 2.86425e8 7.50867e7i 0.297893 0.0780929i
\(988\) 2.13266e8 0.221132
\(989\) 5.76029e8i 0.595464i
\(990\) 1.23682e8 + 2.19687e8i 0.127468 + 0.226412i
\(991\) 2.67257e8 0.274605 0.137302 0.990529i \(-0.456157\pi\)
0.137302 + 0.990529i \(0.456157\pi\)
\(992\) 1.33618e8i 0.136877i
\(993\) 4.40982e8 + 1.68217e9i 0.450374 + 1.71799i
\(994\) −7.03616e8 −0.716435
\(995\) 1.90211e9i 1.93093i
\(996\) −2.24613e8 + 5.88826e7i −0.227330 + 0.0595949i
\(997\) 1.87948e7 0.0189650 0.00948250 0.999955i \(-0.496982\pi\)
0.00948250 + 0.999955i \(0.496982\pi\)
\(998\) 7.05541e8i 0.709792i
\(999\) −9.34331e7 9.65205e7i −0.0937139 0.0968107i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.7.b.a.59.19 56
3.2 odd 2 inner 87.7.b.a.59.38 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.7.b.a.59.19 56 1.1 even 1 trivial
87.7.b.a.59.38 yes 56 3.2 odd 2 inner