Properties

Label 87.7.b.a.59.18
Level $87$
Weight $7$
Character 87.59
Analytic conductor $20.015$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [87,7,Mod(59,87)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(87, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("87.59"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 87.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.0147052749\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 59.18
Character \(\chi\) \(=\) 87.59
Dual form 87.7.b.a.59.39

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.42129i q^{2} +(-14.8480 + 22.5508i) q^{3} +8.92448 q^{4} +51.0538i q^{5} +(167.356 + 110.191i) q^{6} -600.212 q^{7} -541.194i q^{8} +(-288.074 - 669.667i) q^{9} +378.885 q^{10} -435.717i q^{11} +(-132.511 + 201.254i) q^{12} +3856.92 q^{13} +4454.35i q^{14} +(-1151.30 - 758.047i) q^{15} -3445.19 q^{16} +6036.31i q^{17} +(-4969.79 + 2137.88i) q^{18} +10692.9 q^{19} +455.629i q^{20} +(8911.95 - 13535.2i) q^{21} -3233.58 q^{22} +298.515i q^{23} +(12204.3 + 8035.64i) q^{24} +13018.5 q^{25} -28623.3i q^{26} +(19378.8 + 3446.92i) q^{27} -5356.58 q^{28} +4528.92i q^{29} +(-5625.68 + 8544.15i) q^{30} +27516.4 q^{31} -9068.67i q^{32} +(9825.76 + 6469.52i) q^{33} +44797.2 q^{34} -30643.1i q^{35} +(-2570.91 - 5976.43i) q^{36} +6064.56 q^{37} -79355.3i q^{38} +(-57267.6 + 86976.6i) q^{39} +27630.0 q^{40} -75054.1i q^{41} +(-100449. - 66138.1i) q^{42} -69367.5 q^{43} -3888.55i q^{44} +(34189.1 - 14707.3i) q^{45} +2215.37 q^{46} +28187.6i q^{47} +(51154.1 - 77691.6i) q^{48} +242606. q^{49} -96614.1i q^{50} +(-136123. - 89627.1i) q^{51} +34421.1 q^{52} -138272. i q^{53} +(25580.6 - 143816. i) q^{54} +22245.0 q^{55} +324831. i q^{56} +(-158768. + 241134. i) q^{57} +33610.4 q^{58} +330148. i q^{59} +(-10274.8 - 6765.17i) q^{60} +153145. q^{61} -204207. i q^{62} +(172906. + 401942. i) q^{63} -287793. q^{64} +196911. i q^{65} +(48012.2 - 72919.8i) q^{66} +17464.3 q^{67} +53871.0i q^{68} +(-6731.75 - 4432.35i) q^{69} -227411. q^{70} -472069. i q^{71} +(-362420. + 155904. i) q^{72} +594785. q^{73} -45006.8i q^{74} +(-193299. + 293577. i) q^{75} +95428.8 q^{76} +261523. i q^{77} +(645478. + 424999. i) q^{78} +117250. q^{79} -175890. i q^{80} +(-365467. + 385828. i) q^{81} -556998. q^{82} -233851. i q^{83} +(79534.5 - 120795. i) q^{84} -308177. q^{85} +514796. i q^{86} +(-102131. - 67245.4i) q^{87} -235807. q^{88} -1.22488e6i q^{89} +(-109147. - 253727. i) q^{90} -2.31497e6 q^{91} +2664.10i q^{92} +(-408563. + 620516. i) q^{93} +209188. q^{94} +545915. i q^{95} +(204505. + 134652. i) q^{96} -19188.6 q^{97} -1.80045e6i q^{98} +(-291785. + 125519. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 52 q^{3} - 1924 q^{4} - 160 q^{6} + 160 q^{7} - 1060 q^{9} - 3588 q^{10} - 2166 q^{12} - 1400 q^{13} - 6240 q^{15} + 56588 q^{16} - 5978 q^{18} + 25000 q^{19} + 7520 q^{21} + 20970 q^{22} + 1238 q^{24}+ \cdots + 4793544 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.42129i 0.927661i −0.885924 0.463831i \(-0.846475\pi\)
0.885924 0.463831i \(-0.153525\pi\)
\(3\) −14.8480 + 22.5508i −0.549926 + 0.835214i
\(4\) 8.92448 0.139445
\(5\) 51.0538i 0.408430i 0.978926 + 0.204215i \(0.0654642\pi\)
−0.978926 + 0.204215i \(0.934536\pi\)
\(6\) 167.356 + 110.191i 0.774795 + 0.510145i
\(7\) −600.212 −1.74989 −0.874945 0.484222i \(-0.839103\pi\)
−0.874945 + 0.484222i \(0.839103\pi\)
\(8\) 541.194i 1.05702i
\(9\) −288.074 669.667i −0.395164 0.918611i
\(10\) 378.885 0.378885
\(11\) 435.717i 0.327361i −0.986513 0.163680i \(-0.947663\pi\)
0.986513 0.163680i \(-0.0523366\pi\)
\(12\) −132.511 + 201.254i −0.0766844 + 0.116466i
\(13\) 3856.92 1.75554 0.877771 0.479081i \(-0.159030\pi\)
0.877771 + 0.479081i \(0.159030\pi\)
\(14\) 4454.35i 1.62330i
\(15\) −1151.30 758.047i −0.341127 0.224606i
\(16\) −3445.19 −0.841110
\(17\) 6036.31i 1.22864i 0.789057 + 0.614320i \(0.210570\pi\)
−0.789057 + 0.614320i \(0.789430\pi\)
\(18\) −4969.79 + 2137.88i −0.852159 + 0.366578i
\(19\) 10692.9 1.55896 0.779481 0.626426i \(-0.215483\pi\)
0.779481 + 0.626426i \(0.215483\pi\)
\(20\) 455.629i 0.0569536i
\(21\) 8911.95 13535.2i 0.962309 1.46153i
\(22\) −3233.58 −0.303680
\(23\) 298.515i 0.0245348i 0.999925 + 0.0122674i \(0.00390494\pi\)
−0.999925 + 0.0122674i \(0.996095\pi\)
\(24\) 12204.3 + 8035.64i 0.882836 + 0.581282i
\(25\) 13018.5 0.833185
\(26\) 28623.3i 1.62855i
\(27\) 19378.8 + 3446.92i 0.984547 + 0.175122i
\(28\) −5356.58 −0.244014
\(29\) 4528.92i 0.185695i
\(30\) −5625.68 + 8544.15i −0.208359 + 0.316450i
\(31\) 27516.4 0.923648 0.461824 0.886972i \(-0.347195\pi\)
0.461824 + 0.886972i \(0.347195\pi\)
\(32\) 9068.67i 0.276754i
\(33\) 9825.76 + 6469.52i 0.273416 + 0.180024i
\(34\) 44797.2 1.13976
\(35\) 30643.1i 0.714708i
\(36\) −2570.91 5976.43i −0.0551036 0.128096i
\(37\) 6064.56 0.119727 0.0598637 0.998207i \(-0.480933\pi\)
0.0598637 + 0.998207i \(0.480933\pi\)
\(38\) 79355.3i 1.44619i
\(39\) −57267.6 + 86976.6i −0.965417 + 1.46625i
\(40\) 27630.0 0.431719
\(41\) 75054.1i 1.08899i −0.838765 0.544493i \(-0.816722\pi\)
0.838765 0.544493i \(-0.183278\pi\)
\(42\) −100449. 66138.1i −1.35581 0.892697i
\(43\) −69367.5 −0.872470 −0.436235 0.899833i \(-0.643688\pi\)
−0.436235 + 0.899833i \(0.643688\pi\)
\(44\) 3888.55i 0.0456488i
\(45\) 34189.1 14707.3i 0.375189 0.161397i
\(46\) 2215.37 0.0227600
\(47\) 28187.6i 0.271496i 0.990743 + 0.135748i \(0.0433438\pi\)
−0.990743 + 0.135748i \(0.956656\pi\)
\(48\) 51154.1 77691.6i 0.462548 0.702507i
\(49\) 242606. 2.06211
\(50\) 96614.1i 0.772913i
\(51\) −136123. 89627.1i −1.02618 0.675661i
\(52\) 34421.1 0.244802
\(53\) 138272.i 0.928767i −0.885634 0.464384i \(-0.846276\pi\)
0.885634 0.464384i \(-0.153724\pi\)
\(54\) 25580.6 143816.i 0.162453 0.913326i
\(55\) 22245.0 0.133704
\(56\) 324831.i 1.84967i
\(57\) −158768. + 241134.i −0.857313 + 1.30207i
\(58\) 33610.4 0.172262
\(59\) 330148.i 1.60751i 0.594962 + 0.803754i \(0.297167\pi\)
−0.594962 + 0.803754i \(0.702833\pi\)
\(60\) −10274.8 6765.17i −0.0475684 0.0313203i
\(61\) 153145. 0.674705 0.337352 0.941378i \(-0.390469\pi\)
0.337352 + 0.941378i \(0.390469\pi\)
\(62\) 204207.i 0.856832i
\(63\) 172906. + 401942.i 0.691493 + 1.60747i
\(64\) −287793. −1.09784
\(65\) 196911.i 0.717016i
\(66\) 48012.2 72919.8i 0.167001 0.253637i
\(67\) 17464.3 0.0580665 0.0290333 0.999578i \(-0.490757\pi\)
0.0290333 + 0.999578i \(0.490757\pi\)
\(68\) 53871.0i 0.171328i
\(69\) −6731.75 4432.35i −0.0204918 0.0134923i
\(70\) −227411. −0.663007
\(71\) 472069.i 1.31896i −0.751724 0.659478i \(-0.770777\pi\)
0.751724 0.659478i \(-0.229223\pi\)
\(72\) −362420. + 155904.i −0.970989 + 0.417695i
\(73\) 594785. 1.52894 0.764472 0.644657i \(-0.223000\pi\)
0.764472 + 0.644657i \(0.223000\pi\)
\(74\) 45006.8i 0.111067i
\(75\) −193299. + 293577.i −0.458190 + 0.695887i
\(76\) 95428.8 0.217390
\(77\) 261523.i 0.572845i
\(78\) 645478. + 424999.i 1.36018 + 0.895580i
\(79\) 117250. 0.237811 0.118905 0.992906i \(-0.462062\pi\)
0.118905 + 0.992906i \(0.462062\pi\)
\(80\) 175890.i 0.343535i
\(81\) −365467. + 385828.i −0.687691 + 0.726003i
\(82\) −556998. −1.01021
\(83\) 233851.i 0.408983i −0.978868 0.204492i \(-0.934446\pi\)
0.978868 0.204492i \(-0.0655541\pi\)
\(84\) 79534.5 120795.i 0.134189 0.203803i
\(85\) −308177. −0.501814
\(86\) 514796.i 0.809356i
\(87\) −102131. 67245.4i −0.155095 0.102119i
\(88\) −235807. −0.346026
\(89\) 1.22488e6i 1.73750i −0.495250 0.868751i \(-0.664923\pi\)
0.495250 0.868751i \(-0.335077\pi\)
\(90\) −109147. 253727.i −0.149722 0.348048i
\(91\) −2.31497e6 −3.07200
\(92\) 2664.10i 0.00342126i
\(93\) −408563. + 620516.i −0.507938 + 0.771443i
\(94\) 209188. 0.251857
\(95\) 545915.i 0.636728i
\(96\) 204505. + 134652.i 0.231149 + 0.152194i
\(97\) −19188.6 −0.0210247 −0.0105123 0.999945i \(-0.503346\pi\)
−0.0105123 + 0.999945i \(0.503346\pi\)
\(98\) 1.80045e6i 1.91294i
\(99\) −291785. + 125519.i −0.300717 + 0.129361i
\(100\) 116183. 0.116183
\(101\) 570642.i 0.553859i 0.960890 + 0.276930i \(0.0893169\pi\)
−0.960890 + 0.276930i \(0.910683\pi\)
\(102\) −665149. + 1.01021e6i −0.626784 + 0.951945i
\(103\) −485382. −0.444194 −0.222097 0.975025i \(-0.571290\pi\)
−0.222097 + 0.975025i \(0.571290\pi\)
\(104\) 2.08734e6i 1.85564i
\(105\) 691026. + 454989.i 0.596934 + 0.393036i
\(106\) −1.02616e6 −0.861581
\(107\) 61780.7i 0.0504315i 0.999682 + 0.0252157i \(0.00802727\pi\)
−0.999682 + 0.0252157i \(0.991973\pi\)
\(108\) 172946. + 30762.0i 0.137290 + 0.0244198i
\(109\) 435769. 0.336493 0.168247 0.985745i \(-0.446189\pi\)
0.168247 + 0.985745i \(0.446189\pi\)
\(110\) 165087.i 0.124032i
\(111\) −90046.5 + 136760.i −0.0658412 + 0.0999980i
\(112\) 2.06784e6 1.47185
\(113\) 1.34847e6i 0.934557i 0.884110 + 0.467279i \(0.154766\pi\)
−0.884110 + 0.467279i \(0.845234\pi\)
\(114\) 1.78952e6 + 1.17827e6i 1.20788 + 0.795296i
\(115\) −15240.3 −0.0100208
\(116\) 40418.3i 0.0258943i
\(117\) −1.11108e6 2.58286e6i −0.693726 1.61266i
\(118\) 2.45012e6 1.49122
\(119\) 3.62307e6i 2.14999i
\(120\) −410250. + 623078.i −0.237413 + 0.360577i
\(121\) 1.58171e6 0.892835
\(122\) 1.13653e6i 0.625897i
\(123\) 1.69253e6 + 1.11440e6i 0.909537 + 0.598862i
\(124\) 245570. 0.128798
\(125\) 1.46236e6i 0.748728i
\(126\) 2.98293e6 1.28318e6i 1.49119 0.641471i
\(127\) −157123. −0.0767059 −0.0383529 0.999264i \(-0.512211\pi\)
−0.0383529 + 0.999264i \(0.512211\pi\)
\(128\) 1.55540e6i 0.741673i
\(129\) 1.02997e6 1.56429e6i 0.479793 0.728699i
\(130\) 1.46133e6 0.665148
\(131\) 3.60670e6i 1.60434i 0.597097 + 0.802169i \(0.296321\pi\)
−0.597097 + 0.802169i \(0.703679\pi\)
\(132\) 87689.8 + 57737.2i 0.0381265 + 0.0251035i
\(133\) −6.41802e6 −2.72801
\(134\) 129607.i 0.0538660i
\(135\) −175978. + 989363.i −0.0715250 + 0.402119i
\(136\) 3.26681e6 1.29870
\(137\) 2.13936e6i 0.831998i 0.909365 + 0.415999i \(0.136568\pi\)
−0.909365 + 0.415999i \(0.863432\pi\)
\(138\) −32893.8 + 49958.3i −0.0125163 + 0.0190095i
\(139\) −485864. −0.180913 −0.0904566 0.995900i \(-0.528833\pi\)
−0.0904566 + 0.995900i \(0.528833\pi\)
\(140\) 273474.i 0.0996626i
\(141\) −635651. 418529.i −0.226757 0.149303i
\(142\) −3.50336e6 −1.22354
\(143\) 1.68053e6i 0.574695i
\(144\) 992470. + 2.30713e6i 0.332376 + 0.772653i
\(145\) −231219. −0.0758436
\(146\) 4.41407e6i 1.41834i
\(147\) −3.60221e6 + 5.47095e6i −1.13401 + 1.72231i
\(148\) 54123.0 0.0166954
\(149\) 6.38081e6i 1.92893i −0.264205 0.964466i \(-0.585110\pi\)
0.264205 0.964466i \(-0.414890\pi\)
\(150\) 2.17872e6 + 1.43453e6i 0.645547 + 0.425045i
\(151\) 4.13156e6 1.20001 0.600003 0.799998i \(-0.295166\pi\)
0.600003 + 0.799998i \(0.295166\pi\)
\(152\) 5.78694e6i 1.64785i
\(153\) 4.04232e6 1.73891e6i 1.12864 0.485514i
\(154\) 1.94084e6 0.531406
\(155\) 1.40482e6i 0.377246i
\(156\) −511084. + 776221.i −0.134623 + 0.204462i
\(157\) 700607. 0.181040 0.0905202 0.995895i \(-0.471147\pi\)
0.0905202 + 0.995895i \(0.471147\pi\)
\(158\) 870145.i 0.220608i
\(159\) 3.11814e6 + 2.05306e6i 0.775719 + 0.510753i
\(160\) 462990. 0.113035
\(161\) 179173.i 0.0429333i
\(162\) 2.86334e6 + 2.71224e6i 0.673485 + 0.637945i
\(163\) −5.01052e6 −1.15696 −0.578482 0.815695i \(-0.696355\pi\)
−0.578482 + 0.815695i \(0.696355\pi\)
\(164\) 669819.i 0.151854i
\(165\) −330294. + 501642.i −0.0735273 + 0.111671i
\(166\) −1.73548e6 −0.379398
\(167\) 3.69070e6i 0.792427i −0.918158 0.396214i \(-0.870324\pi\)
0.918158 0.396214i \(-0.129676\pi\)
\(168\) −7.32519e6 4.82309e6i −1.54487 1.01718i
\(169\) 1.00491e7 2.08192
\(170\) 2.28707e6i 0.465514i
\(171\) −3.08036e6 7.16070e6i −0.616045 1.43208i
\(172\) −619069. −0.121662
\(173\) 9.47429e6i 1.82982i 0.403657 + 0.914910i \(0.367739\pi\)
−0.403657 + 0.914910i \(0.632261\pi\)
\(174\) −499048. + 757941.i −0.0947315 + 0.143876i
\(175\) −7.81387e6 −1.45798
\(176\) 1.50113e6i 0.275346i
\(177\) −7.44510e6 4.90204e6i −1.34261 0.884009i
\(178\) −9.09022e6 −1.61181
\(179\) 7.78036e6i 1.35657i −0.734801 0.678283i \(-0.762725\pi\)
0.734801 0.678283i \(-0.237275\pi\)
\(180\) 305120. 131255.i 0.0523182 0.0225060i
\(181\) 4.54068e6 0.765747 0.382873 0.923801i \(-0.374935\pi\)
0.382873 + 0.923801i \(0.374935\pi\)
\(182\) 1.71801e7i 2.84978i
\(183\) −2.27390e6 + 3.45354e6i −0.371037 + 0.563523i
\(184\) 161555. 0.0259338
\(185\) 309619.i 0.0489004i
\(186\) 4.60503e6 + 3.03206e6i 0.715638 + 0.471194i
\(187\) 2.63012e6 0.402209
\(188\) 251559.i 0.0378588i
\(189\) −1.16314e7 2.06888e6i −1.72285 0.306443i
\(190\) 4.05139e6 0.590668
\(191\) 1.98531e6i 0.284923i 0.989800 + 0.142461i \(0.0455017\pi\)
−0.989800 + 0.142461i \(0.954498\pi\)
\(192\) 4.27315e6 6.48996e6i 0.603732 0.916934i
\(193\) 5.25937e6 0.731580 0.365790 0.930697i \(-0.380799\pi\)
0.365790 + 0.930697i \(0.380799\pi\)
\(194\) 142404.i 0.0195038i
\(195\) −4.44049e6 2.92373e6i −0.598862 0.394306i
\(196\) 2.16513e6 0.287552
\(197\) 1.26012e7i 1.64821i 0.566438 + 0.824104i \(0.308321\pi\)
−0.566438 + 0.824104i \(0.691679\pi\)
\(198\) 931512. + 2.16542e6i 0.120003 + 0.278964i
\(199\) −7.75969e6 −0.984658 −0.492329 0.870409i \(-0.663854\pi\)
−0.492329 + 0.870409i \(0.663854\pi\)
\(200\) 7.04553e6i 0.880692i
\(201\) −259309. + 393832.i −0.0319323 + 0.0484979i
\(202\) 4.23490e6 0.513794
\(203\) 2.71832e6i 0.324946i
\(204\) −1.21483e6 799876.i −0.143095 0.0942176i
\(205\) 3.83180e6 0.444775
\(206\) 3.60216e6i 0.412061i
\(207\) 199906. 85994.6i 0.0225380 0.00969527i
\(208\) −1.32878e7 −1.47660
\(209\) 4.65909e6i 0.510343i
\(210\) 3.37660e6 5.12830e6i 0.364605 0.553753i
\(211\) −2.64319e6 −0.281372 −0.140686 0.990054i \(-0.544931\pi\)
−0.140686 + 0.990054i \(0.544931\pi\)
\(212\) 1.23401e6i 0.129512i
\(213\) 1.06455e7 + 7.00928e6i 1.10161 + 0.725328i
\(214\) 458492. 0.0467833
\(215\) 3.54147e6i 0.356343i
\(216\) 1.86545e6 1.04877e7i 0.185107 1.04068i
\(217\) −1.65157e7 −1.61628
\(218\) 3.23396e6i 0.312152i
\(219\) −8.83136e6 + 1.34129e7i −0.840805 + 1.27699i
\(220\) 198525. 0.0186444
\(221\) 2.32816e7i 2.15693i
\(222\) 1.01494e6 + 668261.i 0.0927643 + 0.0610783i
\(223\) 1.23097e7 1.11002 0.555012 0.831842i \(-0.312714\pi\)
0.555012 + 0.831842i \(0.312714\pi\)
\(224\) 5.44313e6i 0.484289i
\(225\) −3.75030e6 8.71807e6i −0.329244 0.765372i
\(226\) 1.00074e7 0.866952
\(227\) 1.01820e7i 0.870477i 0.900315 + 0.435239i \(0.143336\pi\)
−0.900315 + 0.435239i \(0.856664\pi\)
\(228\) −1.41693e6 + 2.15199e6i −0.119548 + 0.181567i
\(229\) 5.56887e6 0.463725 0.231863 0.972749i \(-0.425518\pi\)
0.231863 + 0.972749i \(0.425518\pi\)
\(230\) 113103.i 0.00929588i
\(231\) −5.89754e6 3.88309e6i −0.478448 0.315022i
\(232\) 2.45102e6 0.196283
\(233\) 5.68445e6i 0.449387i 0.974429 + 0.224694i \(0.0721381\pi\)
−0.974429 + 0.224694i \(0.927862\pi\)
\(234\) −1.91681e7 + 8.24565e6i −1.49600 + 0.643543i
\(235\) −1.43908e6 −0.110887
\(236\) 2.94640e6i 0.224159i
\(237\) −1.74093e6 + 2.64408e6i −0.130778 + 0.198623i
\(238\) −2.68878e7 −1.99446
\(239\) 3.89596e6i 0.285378i 0.989768 + 0.142689i \(0.0455749\pi\)
−0.989768 + 0.142689i \(0.954425\pi\)
\(240\) 3.96645e6 + 2.61161e6i 0.286925 + 0.188919i
\(241\) −4.55570e6 −0.325465 −0.162732 0.986670i \(-0.552031\pi\)
−0.162732 + 0.986670i \(0.552031\pi\)
\(242\) 1.17383e7i 0.828248i
\(243\) −3.27426e6 1.39703e7i −0.228189 0.973617i
\(244\) 1.36674e6 0.0940843
\(245\) 1.23859e7i 0.842231i
\(246\) 8.27030e6 1.25607e7i 0.555541 0.843742i
\(247\) 4.12418e7 2.73682
\(248\) 1.48917e7i 0.976313i
\(249\) 5.27353e6 + 3.47222e6i 0.341589 + 0.224910i
\(250\) 1.08526e7 0.694566
\(251\) 1.78387e7i 1.12808i −0.825746 0.564042i \(-0.809246\pi\)
0.825746 0.564042i \(-0.190754\pi\)
\(252\) 1.54309e6 + 3.58713e6i 0.0964253 + 0.224153i
\(253\) 130068. 0.00803174
\(254\) 1.16606e6i 0.0711571i
\(255\) 4.57581e6 6.94962e6i 0.275961 0.419122i
\(256\) −6.87568e6 −0.409823
\(257\) 1.39928e7i 0.824337i 0.911108 + 0.412169i \(0.135229\pi\)
−0.911108 + 0.412169i \(0.864771\pi\)
\(258\) −1.16090e7 7.64368e6i −0.675985 0.445086i
\(259\) −3.64002e6 −0.209510
\(260\) 1.75733e6i 0.0999844i
\(261\) 3.03287e6 1.30467e6i 0.170582 0.0733800i
\(262\) 2.67663e7 1.48828
\(263\) 2.76544e7i 1.52019i −0.649813 0.760094i \(-0.725153\pi\)
0.649813 0.760094i \(-0.274847\pi\)
\(264\) 3.50127e6 5.31764e6i 0.190289 0.289006i
\(265\) 7.05932e6 0.379337
\(266\) 4.76300e7i 2.53067i
\(267\) 2.76221e7 + 1.81871e7i 1.45118 + 0.955496i
\(268\) 155859. 0.00809709
\(269\) 2.85759e6i 0.146806i −0.997302 0.0734028i \(-0.976614\pi\)
0.997302 0.0734028i \(-0.0233859\pi\)
\(270\) 7.34235e6 + 1.30599e6i 0.373030 + 0.0663509i
\(271\) −2.52219e7 −1.26727 −0.633636 0.773631i \(-0.718438\pi\)
−0.633636 + 0.773631i \(0.718438\pi\)
\(272\) 2.07962e7i 1.03342i
\(273\) 3.43727e7 5.22044e7i 1.68937 2.56578i
\(274\) 1.58768e7 0.771812
\(275\) 5.67239e6i 0.272752i
\(276\) −60077.4 39556.5i −0.00285748 0.00188144i
\(277\) 2.74140e7 1.28983 0.644915 0.764254i \(-0.276893\pi\)
0.644915 + 0.764254i \(0.276893\pi\)
\(278\) 3.60574e6i 0.167826i
\(279\) −7.92676e6 1.84268e7i −0.364992 0.848473i
\(280\) −1.65839e7 −0.755460
\(281\) 3.36267e7i 1.51553i −0.652527 0.757766i \(-0.726291\pi\)
0.652527 0.757766i \(-0.273709\pi\)
\(282\) −3.10602e6 + 4.71735e6i −0.138502 + 0.210354i
\(283\) −2.49158e7 −1.09930 −0.549649 0.835396i \(-0.685239\pi\)
−0.549649 + 0.835396i \(0.685239\pi\)
\(284\) 4.21297e6i 0.183922i
\(285\) −1.23108e7 8.10573e6i −0.531804 0.350153i
\(286\) −1.24717e7 −0.533122
\(287\) 4.50484e7i 1.90561i
\(288\) −6.07299e6 + 2.61245e6i −0.254229 + 0.109363i
\(289\) −1.22995e7 −0.509558
\(290\) 1.71594e6i 0.0703572i
\(291\) 284913. 432719.i 0.0115620 0.0175601i
\(292\) 5.30815e6 0.213204
\(293\) 1.44908e7i 0.576088i 0.957617 + 0.288044i \(0.0930049\pi\)
−0.957617 + 0.288044i \(0.906995\pi\)
\(294\) 4.06015e7 + 2.67330e7i 1.59772 + 1.05198i
\(295\) −1.68553e7 −0.656555
\(296\) 3.28210e6i 0.126554i
\(297\) 1.50188e6 8.44369e6i 0.0573279 0.322302i
\(298\) −4.73538e7 −1.78940
\(299\) 1.15135e6i 0.0430719i
\(300\) −1.72509e6 + 2.62003e6i −0.0638923 + 0.0970380i
\(301\) 4.16352e7 1.52673
\(302\) 3.06615e7i 1.11320i
\(303\) −1.28684e7 8.47288e6i −0.462591 0.304581i
\(304\) −3.68391e7 −1.31126
\(305\) 7.81864e6i 0.275570i
\(306\) −1.29049e7 2.99992e7i −0.450393 1.04700i
\(307\) −1.52676e7 −0.527663 −0.263831 0.964569i \(-0.584986\pi\)
−0.263831 + 0.964569i \(0.584986\pi\)
\(308\) 2.33396e6i 0.0798804i
\(309\) 7.20695e6 1.09457e7i 0.244273 0.370997i
\(310\) 1.04255e7 0.349956
\(311\) 1.72886e7i 0.574749i 0.957818 + 0.287374i \(0.0927824\pi\)
−0.957818 + 0.287374i \(0.907218\pi\)
\(312\) 4.70712e7 + 3.09928e7i 1.54986 + 1.02046i
\(313\) 5.01302e7 1.63481 0.817404 0.576065i \(-0.195412\pi\)
0.817404 + 0.576065i \(0.195412\pi\)
\(314\) 5.19941e6i 0.167944i
\(315\) −2.05207e7 + 8.82750e6i −0.656539 + 0.282427i
\(316\) 1.04639e6 0.0331615
\(317\) 4.65885e7i 1.46252i −0.682100 0.731259i \(-0.738933\pi\)
0.682100 0.731259i \(-0.261067\pi\)
\(318\) 1.52364e7 2.31406e7i 0.473806 0.719604i
\(319\) 1.97333e6 0.0607894
\(320\) 1.46929e7i 0.448393i
\(321\) −1.39320e6 917319.i −0.0421210 0.0277336i
\(322\) −1.32969e6 −0.0398275
\(323\) 6.45458e7i 1.91541i
\(324\) −3.26161e6 + 3.44331e6i −0.0958952 + 0.101238i
\(325\) 5.02114e7 1.46269
\(326\) 3.71845e7i 1.07327i
\(327\) −6.47029e6 + 9.82692e6i −0.185046 + 0.281044i
\(328\) −4.06188e7 −1.15108
\(329\) 1.69185e7i 0.475089i
\(330\) 3.72283e6 + 2.45121e6i 0.103593 + 0.0682084i
\(331\) 5.88714e6 0.162338 0.0811690 0.996700i \(-0.474135\pi\)
0.0811690 + 0.996700i \(0.474135\pi\)
\(332\) 2.08700e6i 0.0570307i
\(333\) −1.74704e6 4.06123e6i −0.0473119 0.109983i
\(334\) −2.73898e7 −0.735104
\(335\) 891617.i 0.0237161i
\(336\) −3.07033e7 + 4.66315e7i −0.809408 + 1.22931i
\(337\) −7.18547e7 −1.87744 −0.938719 0.344683i \(-0.887986\pi\)
−0.938719 + 0.344683i \(0.887986\pi\)
\(338\) 7.45769e7i 1.93132i
\(339\) −3.04090e7 2.00221e7i −0.780555 0.513937i
\(340\) −2.75032e6 −0.0699755
\(341\) 1.19894e7i 0.302366i
\(342\) −5.31416e7 + 2.28602e7i −1.32848 + 0.571481i
\(343\) −7.50006e7 −1.85858
\(344\) 3.75412e7i 0.922217i
\(345\) 226289. 343681.i 0.00551068 0.00836949i
\(346\) 7.03115e7 1.69745
\(347\) 6.63417e6i 0.158781i −0.996844 0.0793905i \(-0.974703\pi\)
0.996844 0.0793905i \(-0.0252974\pi\)
\(348\) −911464. 600131.i −0.0216273 0.0142399i
\(349\) 4.76717e7 1.12146 0.560731 0.827998i \(-0.310520\pi\)
0.560731 + 0.827998i \(0.310520\pi\)
\(350\) 5.79890e7i 1.35251i
\(351\) 7.47427e7 + 1.32945e7i 1.72841 + 0.307433i
\(352\) −3.95137e6 −0.0905983
\(353\) 1.03416e7i 0.235106i −0.993067 0.117553i \(-0.962495\pi\)
0.993067 0.117553i \(-0.0375050\pi\)
\(354\) −3.63794e7 + 5.52522e7i −0.820061 + 1.24549i
\(355\) 2.41009e7 0.538702
\(356\) 1.09315e7i 0.242286i
\(357\) 8.17030e7 + 5.37953e7i 1.79570 + 1.18233i
\(358\) −5.77403e7 −1.25843
\(359\) 1.98603e7i 0.429242i −0.976697 0.214621i \(-0.931148\pi\)
0.976697 0.214621i \(-0.0688517\pi\)
\(360\) −7.95949e6 1.85029e7i −0.170600 0.396581i
\(361\) 6.72928e7 1.43036
\(362\) 3.36977e7i 0.710354i
\(363\) −2.34852e7 + 3.56688e7i −0.490993 + 0.745708i
\(364\) −2.06599e7 −0.428376
\(365\) 3.03660e7i 0.624467i
\(366\) 2.56297e7 + 1.68753e7i 0.522758 + 0.344197i
\(367\) 4.00332e7 0.809882 0.404941 0.914343i \(-0.367292\pi\)
0.404941 + 0.914343i \(0.367292\pi\)
\(368\) 1.02844e6i 0.0206365i
\(369\) −5.02613e7 + 2.16211e7i −1.00036 + 0.430328i
\(370\) 2.29777e6 0.0453629
\(371\) 8.29926e7i 1.62524i
\(372\) −3.64621e6 + 5.53778e6i −0.0708294 + 0.107574i
\(373\) −6.24657e7 −1.20369 −0.601846 0.798613i \(-0.705568\pi\)
−0.601846 + 0.798613i \(0.705568\pi\)
\(374\) 1.95189e7i 0.373113i
\(375\) −3.29773e7 2.17131e7i −0.625348 0.411745i
\(376\) 1.52549e7 0.286977
\(377\) 1.74677e7i 0.325996i
\(378\) −1.53538e7 + 8.63201e7i −0.284276 + 1.59822i
\(379\) −1.87608e7 −0.344615 −0.172307 0.985043i \(-0.555122\pi\)
−0.172307 + 0.985043i \(0.555122\pi\)
\(380\) 4.87201e6i 0.0887886i
\(381\) 2.33296e6 3.54325e6i 0.0421825 0.0640658i
\(382\) 1.47335e7 0.264312
\(383\) 9.88027e6i 0.175862i 0.996127 + 0.0879311i \(0.0280255\pi\)
−0.996127 + 0.0879311i \(0.971974\pi\)
\(384\) −3.50755e7 2.30946e7i −0.619455 0.407865i
\(385\) −1.33517e7 −0.233967
\(386\) 3.90313e7i 0.678658i
\(387\) 1.99830e7 + 4.64531e7i 0.344768 + 0.801460i
\(388\) −171249. −0.00293179
\(389\) 8.99360e7i 1.52786i −0.645297 0.763932i \(-0.723266\pi\)
0.645297 0.763932i \(-0.276734\pi\)
\(390\) −2.16978e7 + 3.29541e7i −0.365782 + 0.555541i
\(391\) −1.80193e6 −0.0301445
\(392\) 1.31297e8i 2.17969i
\(393\) −8.13338e7 5.35522e7i −1.33996 0.882266i
\(394\) 9.35169e7 1.52898
\(395\) 5.98605e6i 0.0971291i
\(396\) −2.60403e6 + 1.12019e6i −0.0419335 + 0.0180388i
\(397\) −1.52610e7 −0.243900 −0.121950 0.992536i \(-0.538915\pi\)
−0.121950 + 0.992536i \(0.538915\pi\)
\(398\) 5.75869e7i 0.913429i
\(399\) 9.52948e7 1.44731e8i 1.50020 2.27847i
\(400\) −4.48512e7 −0.700800
\(401\) 5.10080e7i 0.791052i 0.918455 + 0.395526i \(0.129438\pi\)
−0.918455 + 0.395526i \(0.870562\pi\)
\(402\) 2.92274e6 + 1.92441e6i 0.0449896 + 0.0296223i
\(403\) 1.06129e8 1.62150
\(404\) 5.09268e6i 0.0772329i
\(405\) −1.96980e7 1.86585e7i −0.296522 0.280874i
\(406\) −2.01734e7 −0.301440
\(407\) 2.64243e6i 0.0391941i
\(408\) −4.85056e7 + 7.36692e7i −0.714186 + 1.08469i
\(409\) 1.59688e6 0.0233400 0.0116700 0.999932i \(-0.496285\pi\)
0.0116700 + 0.999932i \(0.496285\pi\)
\(410\) 2.84369e7i 0.412601i
\(411\) −4.82442e7 3.17652e7i −0.694896 0.457537i
\(412\) −4.33179e6 −0.0619406
\(413\) 1.98159e8i 2.81296i
\(414\) −638191. 1.48356e6i −0.00899393 0.0209076i
\(415\) 1.19390e7 0.167041
\(416\) 3.49772e7i 0.485853i
\(417\) 7.21410e6 1.09566e7i 0.0994888 0.151101i
\(418\) −3.45764e7 −0.473425
\(419\) 4.87381e7i 0.662562i −0.943532 0.331281i \(-0.892519\pi\)
0.943532 0.331281i \(-0.107481\pi\)
\(420\) 6.16705e6 + 4.06054e6i 0.0832395 + 0.0548070i
\(421\) −1.13094e8 −1.51564 −0.757818 0.652466i \(-0.773734\pi\)
−0.757818 + 0.652466i \(0.773734\pi\)
\(422\) 1.96159e7i 0.261018i
\(423\) 1.88763e7 8.12011e6i 0.249399 0.107285i
\(424\) −7.48320e7 −0.981725
\(425\) 7.85838e7i 1.02368i
\(426\) 5.20179e7 7.90035e7i 0.672858 1.02192i
\(427\) −9.19196e7 −1.18066
\(428\) 551361.i 0.00703242i
\(429\) 3.78972e7 + 2.49525e7i 0.479993 + 0.316040i
\(430\) −2.62823e7 −0.330566
\(431\) 9.44033e7i 1.17911i 0.807727 + 0.589556i \(0.200697\pi\)
−0.807727 + 0.589556i \(0.799303\pi\)
\(432\) −6.67637e7 1.18753e7i −0.828112 0.147296i
\(433\) −1.72744e7 −0.212784 −0.106392 0.994324i \(-0.533930\pi\)
−0.106392 + 0.994324i \(0.533930\pi\)
\(434\) 1.22568e8i 1.49936i
\(435\) 3.43313e6 5.21416e6i 0.0417084 0.0633456i
\(436\) 3.88901e6 0.0469223
\(437\) 3.19200e6i 0.0382489i
\(438\) 9.95407e7 + 6.55401e7i 1.18462 + 0.779982i
\(439\) −3.72266e7 −0.440008 −0.220004 0.975499i \(-0.570607\pi\)
−0.220004 + 0.975499i \(0.570607\pi\)
\(440\) 1.20389e7i 0.141328i
\(441\) −6.98885e7 1.62465e8i −0.814873 1.89428i
\(442\) 1.72779e8 2.00090
\(443\) 4.93266e7i 0.567375i 0.958917 + 0.283687i \(0.0915578\pi\)
−0.958917 + 0.283687i \(0.908442\pi\)
\(444\) −803618. + 1.22052e6i −0.00918123 + 0.0139442i
\(445\) 6.25350e7 0.709648
\(446\) 9.13538e7i 1.02973i
\(447\) 1.43892e8 + 9.47422e7i 1.61107 + 1.06077i
\(448\) 1.72737e8 1.92111
\(449\) 8.88290e7i 0.981331i −0.871348 0.490666i \(-0.836754\pi\)
0.871348 0.490666i \(-0.163246\pi\)
\(450\) −6.46993e7 + 2.78320e7i −0.710006 + 0.305427i
\(451\) −3.27023e7 −0.356492
\(452\) 1.20344e7i 0.130319i
\(453\) −6.13454e7 + 9.31699e7i −0.659914 + 1.00226i
\(454\) 7.55639e7 0.807508
\(455\) 1.18188e8i 1.25470i
\(456\) 1.30500e8 + 8.59245e7i 1.37631 + 0.906196i
\(457\) −8.47439e6 −0.0887891 −0.0443946 0.999014i \(-0.514136\pi\)
−0.0443946 + 0.999014i \(0.514136\pi\)
\(458\) 4.13282e7i 0.430180i
\(459\) −2.08067e7 + 1.16977e8i −0.215161 + 1.20965i
\(460\) −136012. −0.00139735
\(461\) 4.03149e7i 0.411494i −0.978605 0.205747i \(-0.934038\pi\)
0.978605 0.205747i \(-0.0659623\pi\)
\(462\) −2.88175e7 + 4.37673e7i −0.292234 + 0.443838i
\(463\) 1.34370e8 1.35382 0.676909 0.736067i \(-0.263319\pi\)
0.676909 + 0.736067i \(0.263319\pi\)
\(464\) 1.56030e7i 0.156190i
\(465\) −3.16797e7 2.08587e7i −0.315081 0.207457i
\(466\) 4.21859e7 0.416879
\(467\) 6.30542e7i 0.619104i −0.950883 0.309552i \(-0.899821\pi\)
0.950883 0.309552i \(-0.100179\pi\)
\(468\) −9.91582e6 2.30507e7i −0.0967367 0.224877i
\(469\) −1.04823e7 −0.101610
\(470\) 1.06798e7i 0.102866i
\(471\) −1.04026e7 + 1.57992e7i −0.0995588 + 0.151207i
\(472\) 1.78674e8 1.69917
\(473\) 3.02246e7i 0.285612i
\(474\) 1.96224e7 + 1.29199e7i 0.184254 + 0.121318i
\(475\) 1.39206e8 1.29890
\(476\) 3.23340e7i 0.299805i
\(477\) −9.25963e7 + 3.98326e7i −0.853176 + 0.367015i
\(478\) 2.89130e7 0.264734
\(479\) 4.53517e7i 0.412655i −0.978483 0.206328i \(-0.933849\pi\)
0.978483 0.206328i \(-0.0661512\pi\)
\(480\) −6.87447e6 + 1.04408e7i −0.0621607 + 0.0944081i
\(481\) 2.33905e7 0.210187
\(482\) 3.38092e7i 0.301921i
\(483\) 4.04048e6 + 2.66035e6i 0.0358584 + 0.0236101i
\(484\) 1.41160e7 0.124501
\(485\) 979654.i 0.00858712i
\(486\) −1.03678e8 + 2.42992e7i −0.903186 + 0.211682i
\(487\) −4.28077e7 −0.370626 −0.185313 0.982680i \(-0.559330\pi\)
−0.185313 + 0.982680i \(0.559330\pi\)
\(488\) 8.28812e7i 0.713176i
\(489\) 7.43962e7 1.12991e8i 0.636244 0.966312i
\(490\) 9.19197e7 0.781304
\(491\) 1.83655e6i 0.0155152i −0.999970 0.00775761i \(-0.997531\pi\)
0.999970 0.00775761i \(-0.00246935\pi\)
\(492\) 1.51049e7 + 9.94546e6i 0.126830 + 0.0835083i
\(493\) −2.73380e7 −0.228153
\(494\) 3.06067e8i 2.53884i
\(495\) −6.40822e6 1.48968e7i −0.0528350 0.122822i
\(496\) −9.47991e7 −0.776889
\(497\) 2.83342e8i 2.30803i
\(498\) 2.57684e7 3.91364e7i 0.208641 0.316878i
\(499\) 2.44733e7 0.196965 0.0984827 0.995139i \(-0.468601\pi\)
0.0984827 + 0.995139i \(0.468601\pi\)
\(500\) 1.30508e7i 0.104406i
\(501\) 8.32281e7 + 5.47995e7i 0.661846 + 0.435776i
\(502\) −1.32386e8 −1.04648
\(503\) 5.59779e7i 0.439858i 0.975516 + 0.219929i \(0.0705826\pi\)
−0.975516 + 0.219929i \(0.929417\pi\)
\(504\) 2.17529e8 9.35755e7i 1.69912 0.730921i
\(505\) −2.91334e7 −0.226213
\(506\) 965274.i 0.00745073i
\(507\) −1.49208e8 + 2.26614e8i −1.14490 + 1.73885i
\(508\) −1.40224e6 −0.0106963
\(509\) 2.08152e8i 1.57844i 0.614113 + 0.789218i \(0.289514\pi\)
−0.614113 + 0.789218i \(0.710486\pi\)
\(510\) −5.15751e7 3.39584e7i −0.388803 0.255998i
\(511\) −3.56997e8 −2.67548
\(512\) 1.50572e8i 1.12185i
\(513\) 2.07216e8 + 3.68576e7i 1.53487 + 0.273008i
\(514\) 1.03845e8 0.764706
\(515\) 2.47806e7i 0.181422i
\(516\) 9.19193e6 1.39605e7i 0.0669048 0.101613i
\(517\) 1.22818e7 0.0888772
\(518\) 2.70136e7i 0.194354i
\(519\) −2.13653e8 1.40674e8i −1.52829 1.00627i
\(520\) 1.06567e8 0.757900
\(521\) 1.64264e8i 1.16153i 0.814072 + 0.580764i \(0.197246\pi\)
−0.814072 + 0.580764i \(0.802754\pi\)
\(522\) −9.68231e6 2.25078e7i −0.0680718 0.158242i
\(523\) −2.05811e8 −1.43868 −0.719338 0.694660i \(-0.755555\pi\)
−0.719338 + 0.694660i \(0.755555\pi\)
\(524\) 3.21879e7i 0.223717i
\(525\) 1.16020e8 1.76209e8i 0.801781 1.21773i
\(526\) −2.05231e8 −1.41022
\(527\) 1.66098e8i 1.13483i
\(528\) −3.38516e7 2.22887e7i −0.229973 0.151420i
\(529\) 1.47947e8 0.999398
\(530\) 5.23892e7i 0.351896i
\(531\) 2.21089e8 9.51072e7i 1.47667 0.635228i
\(532\) −5.72776e7 −0.380408
\(533\) 2.89478e8i 1.91176i
\(534\) 1.34972e8 2.04991e8i 0.886377 1.34621i
\(535\) −3.15414e6 −0.0205977
\(536\) 9.45154e6i 0.0613774i
\(537\) 1.75453e8 + 1.15523e8i 1.13302 + 0.746010i
\(538\) −2.12070e7 −0.136186
\(539\) 1.05707e8i 0.675055i
\(540\) −1.57052e6 + 8.82956e6i −0.00997380 + 0.0560735i
\(541\) −1.70547e8 −1.07709 −0.538546 0.842596i \(-0.681026\pi\)
−0.538546 + 0.842596i \(0.681026\pi\)
\(542\) 1.87179e8i 1.17560i
\(543\) −6.74200e7 + 1.02396e8i −0.421104 + 0.639562i
\(544\) 5.47413e7 0.340031
\(545\) 2.22476e7i 0.137434i
\(546\) −3.87424e8 2.55090e8i −2.38017 1.56717i
\(547\) −2.59357e8 −1.58466 −0.792330 0.610093i \(-0.791132\pi\)
−0.792330 + 0.610093i \(0.791132\pi\)
\(548\) 1.90927e7i 0.116018i
\(549\) −4.41172e7 1.02556e8i −0.266619 0.619791i
\(550\) −4.20964e7 −0.253021
\(551\) 4.84274e7i 0.289492i
\(552\) −2.39876e6 + 3.64318e6i −0.0142616 + 0.0216602i
\(553\) −7.03748e7 −0.416142
\(554\) 2.03447e8i 1.19652i
\(555\) −6.98214e6 4.59722e6i −0.0408422 0.0268916i
\(556\) −4.33608e6 −0.0252274
\(557\) 3.72865e6i 0.0215768i −0.999942 0.0107884i \(-0.996566\pi\)
0.999942 0.0107884i \(-0.00343411\pi\)
\(558\) −1.36751e8 + 5.88268e7i −0.787095 + 0.338589i
\(559\) −2.67545e8 −1.53166
\(560\) 1.05571e8i 0.601148i
\(561\) −3.90521e7 + 5.93113e7i −0.221185 + 0.335930i
\(562\) −2.49553e8 −1.40590
\(563\) 1.66415e8i 0.932538i 0.884643 + 0.466269i \(0.154402\pi\)
−0.884643 + 0.466269i \(0.845598\pi\)
\(564\) −5.67286e6 3.73515e6i −0.0316202 0.0208195i
\(565\) −6.88445e7 −0.381702
\(566\) 1.84907e8i 1.01978i
\(567\) 2.19358e8 2.31579e8i 1.20338 1.27043i
\(568\) −2.55481e8 −1.39416
\(569\) 1.01456e8i 0.550734i −0.961339 0.275367i \(-0.911201\pi\)
0.961339 0.275367i \(-0.0887993\pi\)
\(570\) −6.01550e7 + 9.13619e7i −0.324823 + 0.493334i
\(571\) 2.88051e8 1.54725 0.773626 0.633642i \(-0.218441\pi\)
0.773626 + 0.633642i \(0.218441\pi\)
\(572\) 1.49978e7i 0.0801384i
\(573\) −4.47702e7 2.94778e7i −0.237971 0.156686i
\(574\) 3.34317e8 1.76776
\(575\) 3.88622e6i 0.0204420i
\(576\) 8.29058e7 + 1.92726e8i 0.433828 + 1.00849i
\(577\) −1.59495e8 −0.830272 −0.415136 0.909759i \(-0.636266\pi\)
−0.415136 + 0.909759i \(0.636266\pi\)
\(578\) 9.12781e7i 0.472697i
\(579\) −7.80911e7 + 1.18603e8i −0.402314 + 0.611025i
\(580\) −2.06351e6 −0.0105760
\(581\) 1.40360e8i 0.715676i
\(582\) −3.21133e6 2.11442e6i −0.0162898 0.0107256i
\(583\) −6.02475e7 −0.304042
\(584\) 3.21894e8i 1.61612i
\(585\) 1.31865e8 5.67249e7i 0.658659 0.283339i
\(586\) 1.07540e8 0.534414
\(587\) 3.97580e8i 1.96567i 0.184491 + 0.982834i \(0.440936\pi\)
−0.184491 + 0.982834i \(0.559064\pi\)
\(588\) −3.21479e7 + 4.88254e7i −0.158132 + 0.240167i
\(589\) 2.94231e8 1.43993
\(590\) 1.25088e8i 0.609060i
\(591\) −2.84166e8 1.87102e8i −1.37661 0.906392i
\(592\) −2.08935e7 −0.100704
\(593\) 1.08542e8i 0.520516i −0.965539 0.260258i \(-0.916192\pi\)
0.965539 0.260258i \(-0.0838077\pi\)
\(594\) −6.26631e7 1.11459e7i −0.298987 0.0531809i
\(595\) 1.84971e8 0.878120
\(596\) 5.69455e7i 0.268980i
\(597\) 1.15216e8 1.74987e8i 0.541489 0.822400i
\(598\) 8.54451e6 0.0399561
\(599\) 2.18512e8i 1.01671i 0.861149 + 0.508353i \(0.169746\pi\)
−0.861149 + 0.508353i \(0.830254\pi\)
\(600\) 1.58882e8 + 1.04612e8i 0.735566 + 0.484315i
\(601\) −3.24335e8 −1.49407 −0.747034 0.664786i \(-0.768523\pi\)
−0.747034 + 0.664786i \(0.768523\pi\)
\(602\) 3.08987e8i 1.41628i
\(603\) −5.03100e6 1.16952e7i −0.0229458 0.0533405i
\(604\) 3.68721e7 0.167335
\(605\) 8.07524e7i 0.364661i
\(606\) −6.28797e7 + 9.55002e7i −0.282548 + 0.429127i
\(607\) −2.33094e8 −1.04223 −0.521117 0.853485i \(-0.674484\pi\)
−0.521117 + 0.853485i \(0.674484\pi\)
\(608\) 9.69706e7i 0.431449i
\(609\) 6.13001e7 + 4.03615e7i 0.271400 + 0.178696i
\(610\) 5.80244e7 0.255636
\(611\) 1.08717e8i 0.476623i
\(612\) 3.60756e7 1.55188e7i 0.157384 0.0677026i
\(613\) 1.75311e8 0.761078 0.380539 0.924765i \(-0.375739\pi\)
0.380539 + 0.924765i \(0.375739\pi\)
\(614\) 1.13305e8i 0.489492i
\(615\) −5.68945e7 + 8.64099e7i −0.244593 + 0.371483i
\(616\) 1.41534e8 0.605508
\(617\) 4.00691e7i 0.170590i −0.996356 0.0852952i \(-0.972817\pi\)
0.996356 0.0852952i \(-0.0271833\pi\)
\(618\) −8.12315e7 5.34849e7i −0.344159 0.226603i
\(619\) 8.91071e7 0.375699 0.187850 0.982198i \(-0.439848\pi\)
0.187850 + 0.982198i \(0.439848\pi\)
\(620\) 1.25373e7i 0.0526051i
\(621\) −1.02896e6 + 5.78488e6i −0.00429658 + 0.0241557i
\(622\) 1.28303e8 0.533172
\(623\) 7.35191e8i 3.04044i
\(624\) 1.97297e8 2.99651e8i 0.812022 1.23328i
\(625\) 1.28755e8 0.527381
\(626\) 3.72031e8i 1.51655i
\(627\) 1.05066e8 + 6.91781e7i 0.426246 + 0.280651i
\(628\) 6.25256e6 0.0252452
\(629\) 3.66076e7i 0.147102i
\(630\) 6.55114e7 + 1.52290e8i 0.261996 + 0.609045i
\(631\) −1.19235e8 −0.474587 −0.237294 0.971438i \(-0.576260\pi\)
−0.237294 + 0.971438i \(0.576260\pi\)
\(632\) 6.34549e7i 0.251370i
\(633\) 3.92461e7 5.96061e7i 0.154734 0.235006i
\(634\) −3.45747e8 −1.35672
\(635\) 8.02173e6i 0.0313290i
\(636\) 2.78278e7 + 1.83225e7i 0.108170 + 0.0712220i
\(637\) 9.35712e8 3.62013
\(638\) 1.46446e7i 0.0563919i
\(639\) −3.16129e8 + 1.35991e8i −1.21161 + 0.521204i
\(640\) −7.94091e7 −0.302922
\(641\) 2.58040e8i 0.979745i 0.871794 + 0.489873i \(0.162957\pi\)
−0.871794 + 0.489873i \(0.837043\pi\)
\(642\) −6.80769e6 + 1.03394e7i −0.0257273 + 0.0390740i
\(643\) −3.23616e8 −1.21730 −0.608650 0.793439i \(-0.708288\pi\)
−0.608650 + 0.793439i \(0.708288\pi\)
\(644\) 1.59902e6i 0.00598683i
\(645\) 7.98629e7 + 5.25838e7i 0.297623 + 0.195962i
\(646\) 4.79013e8 1.77685
\(647\) 9.78821e6i 0.0361402i −0.999837 0.0180701i \(-0.994248\pi\)
0.999837 0.0180701i \(-0.00575220\pi\)
\(648\) 2.08808e8 + 1.97789e8i 0.767399 + 0.726903i
\(649\) 1.43851e8 0.526235
\(650\) 3.72633e8i 1.35688i
\(651\) 2.45225e8 3.72441e8i 0.888835 1.34994i
\(652\) −4.47163e7 −0.161333
\(653\) 4.74996e7i 0.170589i −0.996356 0.0852944i \(-0.972817\pi\)
0.996356 0.0852944i \(-0.0271831\pi\)
\(654\) 7.29284e7 + 4.80179e7i 0.260713 + 0.171660i
\(655\) −1.84136e8 −0.655260
\(656\) 2.58575e8i 0.915958i
\(657\) −1.71342e8 3.98308e8i −0.604183 1.40450i
\(658\) −1.25557e8 −0.440721
\(659\) 8.26983e7i 0.288962i 0.989508 + 0.144481i \(0.0461512\pi\)
−0.989508 + 0.144481i \(0.953849\pi\)
\(660\) −2.94770e6 + 4.47690e6i −0.0102530 + 0.0155720i
\(661\) 7.40018e6 0.0256235 0.0128117 0.999918i \(-0.495922\pi\)
0.0128117 + 0.999918i \(0.495922\pi\)
\(662\) 4.36902e7i 0.150595i
\(663\) −5.25018e8 3.45685e8i −1.80150 1.18615i
\(664\) −1.26559e8 −0.432303
\(665\) 3.27665e8i 1.11420i
\(666\) −3.01396e7 + 1.29653e7i −0.102027 + 0.0438894i
\(667\) −1.35195e6 −0.00455600
\(668\) 3.29376e7i 0.110500i
\(669\) −1.82774e8 + 2.77593e8i −0.610431 + 0.927108i
\(670\) 6.61695e6 0.0220005
\(671\) 6.67280e7i 0.220872i
\(672\) −1.22747e8 8.08195e7i −0.404485 0.266323i
\(673\) 2.83904e8 0.931380 0.465690 0.884948i \(-0.345806\pi\)
0.465690 + 0.884948i \(0.345806\pi\)
\(674\) 5.33255e8i 1.74163i
\(675\) 2.52284e8 + 4.48737e7i 0.820309 + 0.145909i
\(676\) 8.96826e7 0.290314
\(677\) 1.86630e8i 0.601472i −0.953707 0.300736i \(-0.902768\pi\)
0.953707 0.300736i \(-0.0972324\pi\)
\(678\) −1.48590e8 + 2.25674e8i −0.476759 + 0.724090i
\(679\) 1.15173e7 0.0367909
\(680\) 1.66783e8i 0.530427i
\(681\) −2.29613e8 1.51183e8i −0.727034 0.478698i
\(682\) −8.89765e7 −0.280493
\(683\) 3.66059e6i 0.0114892i 0.999983 + 0.00574458i \(0.00182857\pi\)
−0.999983 + 0.00574458i \(0.998171\pi\)
\(684\) −2.74906e7 6.39056e7i −0.0859045 0.199696i
\(685\) −1.09222e8 −0.339813
\(686\) 5.56601e8i 1.72414i
\(687\) −8.26865e7 + 1.25582e8i −0.255014 + 0.387310i
\(688\) 2.38984e8 0.733843
\(689\) 5.33305e8i 1.63049i
\(690\) −2.55056e6 1.67935e6i −0.00776405 0.00511204i
\(691\) 4.80222e8 1.45549 0.727743 0.685850i \(-0.240570\pi\)
0.727743 + 0.685850i \(0.240570\pi\)
\(692\) 8.45532e7i 0.255159i
\(693\) 1.75133e8 7.53380e7i 0.526222 0.226368i
\(694\) −4.92341e7 −0.147295
\(695\) 2.48052e7i 0.0738904i
\(696\) −3.63928e7 + 5.52725e7i −0.107941 + 0.163939i
\(697\) 4.53050e8 1.33797
\(698\) 3.53786e8i 1.04034i
\(699\) −1.28189e8 8.44026e7i −0.375334 0.247129i
\(700\) −6.97347e7 −0.203308
\(701\) 4.97056e8i 1.44295i −0.692440 0.721475i \(-0.743464\pi\)
0.692440 0.721475i \(-0.256536\pi\)
\(702\) 9.86623e7 5.54687e8i 0.285194 1.60338i
\(703\) 6.48478e7 0.186651
\(704\) 1.25396e8i 0.359391i
\(705\) 2.13675e7 3.24524e7i 0.0609798 0.0926146i
\(706\) −7.67481e7 −0.218099
\(707\) 3.42506e8i 0.969193i
\(708\) −6.64436e7 4.37482e7i −0.187221 0.123271i
\(709\) 7.79637e7 0.218753 0.109376 0.994000i \(-0.465115\pi\)
0.109376 + 0.994000i \(0.465115\pi\)
\(710\) 1.78860e8i 0.499733i
\(711\) −3.37767e7 7.85184e7i −0.0939741 0.218455i
\(712\) −6.62900e8 −1.83657
\(713\) 8.21406e6i 0.0226615i
\(714\) 3.99230e8 6.06341e8i 1.09680 1.66580i
\(715\) 8.57973e7 0.234723
\(716\) 6.94357e7i 0.189166i
\(717\) −8.78568e7 5.78471e7i −0.238352 0.156937i
\(718\) −1.47389e8 −0.398191
\(719\) 3.91317e8i 1.05279i −0.850240 0.526395i \(-0.823543\pi\)
0.850240 0.526395i \(-0.176457\pi\)
\(720\) −1.17788e8 + 5.06694e7i −0.315575 + 0.135753i
\(721\) 2.91332e8 0.777290
\(722\) 4.99399e8i 1.32689i
\(723\) 6.76430e7 1.02735e8i 0.178982 0.271833i
\(724\) 4.05232e7 0.106780
\(725\) 5.89598e7i 0.154718i
\(726\) 2.64709e8 + 1.74291e8i 0.691764 + 0.455475i
\(727\) −1.51315e8 −0.393802 −0.196901 0.980423i \(-0.563088\pi\)
−0.196901 + 0.980423i \(0.563088\pi\)
\(728\) 1.25285e9i 3.24717i
\(729\) 3.63658e8 + 1.33594e8i 0.938665 + 0.344831i
\(730\) 2.25355e8 0.579294
\(731\) 4.18724e8i 1.07195i
\(732\) −2.02934e7 + 3.08211e7i −0.0517393 + 0.0785805i
\(733\) −3.81746e8 −0.969311 −0.484655 0.874705i \(-0.661055\pi\)
−0.484655 + 0.874705i \(0.661055\pi\)
\(734\) 2.97098e8i 0.751296i
\(735\) −2.79313e8 1.83906e8i −0.703442 0.463164i
\(736\) 2.70714e6 0.00679011
\(737\) 7.60948e6i 0.0190087i
\(738\) 1.60457e8 + 3.73003e8i 0.399199 + 0.927990i
\(739\) −2.06461e8 −0.511568 −0.255784 0.966734i \(-0.582334\pi\)
−0.255784 + 0.966734i \(0.582334\pi\)
\(740\) 2.76319e6i 0.00681891i
\(741\) −6.12358e8 + 9.30034e8i −1.50505 + 2.28583i
\(742\) 6.15912e8 1.50767
\(743\) 2.59148e8i 0.631803i −0.948792 0.315901i \(-0.897693\pi\)
0.948792 0.315901i \(-0.102307\pi\)
\(744\) 3.35819e8 + 2.21112e8i 0.815430 + 0.536899i
\(745\) 3.25765e8 0.787835
\(746\) 4.63576e8i 1.11662i
\(747\) −1.56603e8 + 6.73666e7i −0.375697 + 0.161615i
\(748\) 2.34725e7 0.0560860
\(749\) 3.70815e7i 0.0882495i
\(750\) −1.61139e8 + 2.44734e8i −0.381960 + 0.580111i
\(751\) −5.11966e8 −1.20871 −0.604354 0.796716i \(-0.706569\pi\)
−0.604354 + 0.796716i \(0.706569\pi\)
\(752\) 9.71114e7i 0.228358i
\(753\) 4.02276e8 + 2.64869e8i 0.942191 + 0.620362i
\(754\) 1.29633e8 0.302414
\(755\) 2.10932e8i 0.490119i
\(756\) −1.03804e8 1.84637e7i −0.240243 0.0427320i
\(757\) 9.23357e7 0.212854 0.106427 0.994321i \(-0.466059\pi\)
0.106427 + 0.994321i \(0.466059\pi\)
\(758\) 1.39229e8i 0.319686i
\(759\) −1.93125e6 + 2.93314e6i −0.00441686 + 0.00670822i
\(760\) 2.95445e8 0.673033
\(761\) 4.39644e8i 0.997578i −0.866723 0.498789i \(-0.833778\pi\)
0.866723 0.498789i \(-0.166222\pi\)
\(762\) −2.62954e7 1.73136e7i −0.0594314 0.0391311i
\(763\) −2.61554e8 −0.588826
\(764\) 1.77178e7i 0.0397311i
\(765\) 8.87778e7 + 2.06376e8i 0.198299 + 0.460972i
\(766\) 7.33244e7 0.163141
\(767\) 1.27336e9i 2.82204i
\(768\) 1.02090e8 1.55052e8i 0.225372 0.342289i
\(769\) −4.27609e8 −0.940303 −0.470152 0.882586i \(-0.655801\pi\)
−0.470152 + 0.882586i \(0.655801\pi\)
\(770\) 9.90871e7i 0.217042i
\(771\) −3.15548e8 2.07765e8i −0.688498 0.453324i
\(772\) 4.69372e7 0.102015
\(773\) 1.41436e8i 0.306212i 0.988210 + 0.153106i \(0.0489275\pi\)
−0.988210 + 0.153106i \(0.951072\pi\)
\(774\) 3.44742e8 1.48299e8i 0.743483 0.319828i
\(775\) 3.58222e8 0.769569
\(776\) 1.03848e7i 0.0222235i
\(777\) 5.40470e7 8.20853e7i 0.115215 0.174986i
\(778\) −6.67441e8 −1.41734
\(779\) 8.02547e8i 1.69769i
\(780\) −3.96291e7 2.60928e7i −0.0835083 0.0549840i
\(781\) −2.05689e8 −0.431775
\(782\) 1.33727e7i 0.0279639i
\(783\) −1.56108e7 + 8.77653e7i −0.0325193 + 0.182826i
\(784\) −8.35822e8 −1.73447
\(785\) 3.57687e7i 0.0739424i
\(786\) −3.97426e8 + 6.03601e8i −0.818444 + 1.24303i
\(787\) 6.38614e8 1.31013 0.655064 0.755573i \(-0.272641\pi\)
0.655064 + 0.755573i \(0.272641\pi\)
\(788\) 1.12459e8i 0.229835i
\(789\) 6.23629e8 + 4.10613e8i 1.26968 + 0.835991i
\(790\) 4.44242e7 0.0901029
\(791\) 8.09368e8i 1.63537i
\(792\) 6.79300e7 + 1.57912e8i 0.136737 + 0.317864i
\(793\) 5.90669e8 1.18447
\(794\) 1.13256e8i 0.226257i
\(795\) −1.04817e8 + 1.59193e8i −0.208607 + 0.316827i
\(796\) −6.92513e7 −0.137306
\(797\) 8.22008e8i 1.62368i −0.583878 0.811841i \(-0.698465\pi\)
0.583878 0.811841i \(-0.301535\pi\)
\(798\) −1.07409e9 7.07210e8i −2.11365 1.39168i
\(799\) −1.70149e8 −0.333571
\(800\) 1.18061e8i 0.230587i
\(801\) −8.20265e8 + 3.52858e8i −1.59609 + 0.686597i
\(802\) 3.78545e8 0.733828
\(803\) 2.59158e8i 0.500516i
\(804\) −2.31420e6 + 3.51475e6i −0.00445280 + 0.00676280i
\(805\) 9.14744e6 0.0175353
\(806\) 7.87611e8i 1.50420i
\(807\) 6.44407e7 + 4.24294e7i 0.122614 + 0.0807321i
\(808\) 3.08828e8 0.585440
\(809\) 3.99682e8i 0.754864i 0.926037 + 0.377432i \(0.123193\pi\)
−0.926037 + 0.377432i \(0.876807\pi\)
\(810\) −1.38470e8 + 1.46184e8i −0.260556 + 0.275072i
\(811\) −3.21671e8 −0.603045 −0.301522 0.953459i \(-0.597495\pi\)
−0.301522 + 0.953459i \(0.597495\pi\)
\(812\) 2.42596e7i 0.0453122i
\(813\) 3.74494e8 5.68773e8i 0.696905 1.05844i
\(814\) −1.96102e7 −0.0363588
\(815\) 2.55806e8i 0.472540i
\(816\) 4.68971e8 + 3.08782e8i 0.863128 + 0.568305i
\(817\) −7.41741e8 −1.36015
\(818\) 1.18509e7i 0.0216516i
\(819\) 6.66884e8 + 1.55026e9i 1.21394 + 2.82198i
\(820\) 3.41968e7 0.0620217
\(821\) 4.69175e8i 0.847823i 0.905704 + 0.423911i \(0.139343\pi\)
−0.905704 + 0.423911i \(0.860657\pi\)
\(822\) −2.35739e8 + 3.58034e8i −0.424439 + 0.644628i
\(823\) −1.46859e8 −0.263451 −0.131726 0.991286i \(-0.542052\pi\)
−0.131726 + 0.991286i \(0.542052\pi\)
\(824\) 2.62686e8i 0.469521i
\(825\) 1.27917e8 + 8.42236e7i 0.227806 + 0.149993i
\(826\) −1.47060e9 −2.60947
\(827\) 6.58628e8i 1.16446i −0.813025 0.582229i \(-0.802181\pi\)
0.813025 0.582229i \(-0.197819\pi\)
\(828\) 1.78406e6 767457.i 0.00314281 0.00135196i
\(829\) 2.25651e8 0.396072 0.198036 0.980195i \(-0.436544\pi\)
0.198036 + 0.980195i \(0.436544\pi\)
\(830\) 8.86028e7i 0.154958i
\(831\) −4.07042e8 + 6.18206e8i −0.709310 + 1.07728i
\(832\) −1.11000e9 −1.92731
\(833\) 1.46444e9i 2.53360i
\(834\) −8.13121e7 5.35379e7i −0.140171 0.0922919i
\(835\) 1.88424e8 0.323651
\(836\) 4.15800e7i 0.0711648i
\(837\) 5.33236e8 + 9.48467e7i 0.909374 + 0.161751i
\(838\) −3.61699e8 −0.614633
\(839\) 7.22641e8i 1.22359i −0.791016 0.611796i \(-0.790447\pi\)
0.791016 0.611796i \(-0.209553\pi\)
\(840\) 2.46237e8 3.73979e8i 0.415447 0.630971i
\(841\) −2.05111e7 −0.0344828
\(842\) 8.39306e8i 1.40600i
\(843\) 7.58307e8 + 4.99289e8i 1.26579 + 0.833430i
\(844\) −2.35891e7 −0.0392360
\(845\) 5.13042e8i 0.850321i
\(846\) −6.02617e7 1.40086e8i −0.0995245 0.231358i
\(847\) −9.49363e8 −1.56236
\(848\) 4.76373e8i 0.781196i
\(849\) 3.69950e8 5.61870e8i 0.604532 0.918149i
\(850\) 5.83193e8 0.949632
\(851\) 1.81036e6i 0.00293749i
\(852\) 9.50058e7 + 6.25542e7i 0.153614 + 0.101143i
\(853\) −1.28675e8 −0.207323 −0.103662 0.994613i \(-0.533056\pi\)
−0.103662 + 0.994613i \(0.533056\pi\)
\(854\) 6.82162e8i 1.09525i
\(855\) 3.65581e8 1.57264e8i 0.584905 0.251612i
\(856\) 3.34353e7 0.0533070
\(857\) 2.86617e7i 0.0455366i −0.999741 0.0227683i \(-0.992752\pi\)
0.999741 0.0227683i \(-0.00724799\pi\)
\(858\) 1.85179e8 2.81246e8i 0.293178 0.445271i
\(859\) 4.16982e8 0.657867 0.328933 0.944353i \(-0.393311\pi\)
0.328933 + 0.944353i \(0.393311\pi\)
\(860\) 3.16058e7i 0.0496903i
\(861\) −1.01588e9 6.68878e8i −1.59159 1.04794i
\(862\) 7.00594e8 1.09382
\(863\) 3.05527e8i 0.475354i 0.971344 + 0.237677i \(0.0763859\pi\)
−0.971344 + 0.237677i \(0.923614\pi\)
\(864\) 3.12589e7 1.75740e8i 0.0484656 0.272477i
\(865\) −4.83699e8 −0.747355
\(866\) 1.28198e8i 0.197391i
\(867\) 1.82623e8 2.77363e8i 0.280219 0.425590i
\(868\) −1.47394e8 −0.225383
\(869\) 5.10878e7i 0.0778498i
\(870\) −3.86958e7 2.54783e7i −0.0587633 0.0386912i
\(871\) 6.73583e7 0.101938
\(872\) 2.35835e8i 0.355680i
\(873\) 5.52776e6 + 1.28500e7i 0.00830819 + 0.0193135i
\(874\) 2.36888e7 0.0354820
\(875\) 8.77727e8i 1.31019i
\(876\) −7.88154e7 + 1.19703e8i −0.117246 + 0.178071i
\(877\) −7.75901e8 −1.15029 −0.575145 0.818051i \(-0.695054\pi\)
−0.575145 + 0.818051i \(0.695054\pi\)
\(878\) 2.76269e8i 0.408178i
\(879\) −3.26778e8 2.15159e8i −0.481156 0.316805i
\(880\) −7.66382e7 −0.112460
\(881\) 9.60239e8i 1.40427i −0.712043 0.702136i \(-0.752230\pi\)
0.712043 0.702136i \(-0.247770\pi\)
\(882\) −1.20570e9 + 5.18663e8i −1.75725 + 0.755926i
\(883\) 7.66285e8 1.11303 0.556517 0.830836i \(-0.312138\pi\)
0.556517 + 0.830836i \(0.312138\pi\)
\(884\) 2.07776e8i 0.300773i
\(885\) 2.50268e8 3.80100e8i 0.361056 0.548364i
\(886\) 3.66067e8 0.526331
\(887\) 2.70708e8i 0.387909i 0.981010 + 0.193955i \(0.0621315\pi\)
−0.981010 + 0.193955i \(0.937869\pi\)
\(888\) 7.40139e7 + 4.87326e7i 0.105700 + 0.0695954i
\(889\) 9.43072e7 0.134227
\(890\) 4.64090e8i 0.658313i
\(891\) 1.68112e8 + 1.59240e8i 0.237665 + 0.225123i
\(892\) 1.09858e8 0.154787
\(893\) 3.01407e8i 0.423253i
\(894\) 7.03109e8 1.06787e9i 0.984035 1.49453i
\(895\) 3.97217e8 0.554062
\(896\) 9.33571e8i 1.29785i
\(897\) −2.59638e7 1.70952e7i −0.0359742 0.0236863i
\(898\) −6.59225e8 −0.910343
\(899\) 1.24620e8i 0.171517i
\(900\) −3.34695e7 7.78043e7i −0.0459115 0.106727i
\(901\) 8.34654e8 1.14112
\(902\) 2.42693e8i 0.330703i
\(903\) −6.18199e8 + 9.38906e8i −0.839586 + 1.27514i
\(904\) 7.29783e8 0.987845
\(905\) 2.31819e8i 0.312754i
\(906\) 6.91441e8 + 4.55262e8i 0.929759 + 0.612177i
\(907\) −5.17723e8 −0.693865 −0.346933 0.937890i \(-0.612777\pi\)
−0.346933 + 0.937890i \(0.612777\pi\)
\(908\) 9.08695e7i 0.121384i
\(909\) 3.82140e8 1.64387e8i 0.508781 0.218865i
\(910\) −8.77109e8 −1.16394
\(911\) 1.42829e8i 0.188913i 0.995529 + 0.0944564i \(0.0301113\pi\)
−0.995529 + 0.0944564i \(0.969889\pi\)
\(912\) 5.46987e8 8.30750e8i 0.721095 1.09518i
\(913\) −1.01893e8 −0.133885
\(914\) 6.28909e7i 0.0823662i
\(915\) −1.76316e8 1.16091e8i −0.230160 0.151543i
\(916\) 4.96993e7 0.0646642
\(917\) 2.16478e9i 2.80741i
\(918\) 8.68118e8 + 1.54412e8i 1.12215 + 0.199597i
\(919\) 8.91001e8 1.14797 0.573986 0.818865i \(-0.305396\pi\)
0.573986 + 0.818865i \(0.305396\pi\)
\(920\) 8.24798e6i 0.0105921i
\(921\) 2.26694e8 3.44297e8i 0.290175 0.440711i
\(922\) −2.99189e8 −0.381727
\(923\) 1.82073e9i 2.31548i
\(924\) −5.26325e7 3.46546e7i −0.0667172 0.0439283i
\(925\) 7.89515e7 0.0997551
\(926\) 9.97200e8i 1.25588i
\(927\) 1.39826e8 + 3.25045e8i 0.175529 + 0.408041i
\(928\) 4.10713e7 0.0513919
\(929\) 1.30396e9i 1.62636i 0.582009 + 0.813182i \(0.302267\pi\)
−0.582009 + 0.813182i \(0.697733\pi\)
\(930\) −1.54798e8 + 2.35104e8i −0.192450 + 0.292288i
\(931\) 2.59416e9 3.21476
\(932\) 5.07308e7i 0.0626648i
\(933\) −3.89871e8 2.56701e8i −0.480038 0.316069i
\(934\) −4.67943e8 −0.574318
\(935\) 1.34278e8i 0.164274i
\(936\) −1.39782e9 + 6.01310e8i −1.70461 + 0.733281i
\(937\) 5.49074e8 0.667439 0.333720 0.942672i \(-0.391696\pi\)
0.333720 + 0.942672i \(0.391696\pi\)
\(938\) 7.77919e7i 0.0942596i
\(939\) −7.44333e8 + 1.13048e9i −0.899023 + 1.36541i
\(940\) −1.28431e7 −0.0154627
\(941\) 6.98610e8i 0.838428i 0.907887 + 0.419214i \(0.137694\pi\)
−0.907887 + 0.419214i \(0.862306\pi\)
\(942\) 1.17251e8 + 7.72007e7i 0.140269 + 0.0923568i
\(943\) 2.24048e7 0.0267181
\(944\) 1.13742e9i 1.35209i
\(945\) 1.05624e8 5.93828e8i 0.125161 0.703664i
\(946\) 2.24305e8 0.264951
\(947\) 9.67032e8i 1.13865i 0.822112 + 0.569326i \(0.192796\pi\)
−0.822112 + 0.569326i \(0.807204\pi\)
\(948\) −1.55369e7 + 2.35970e7i −0.0182364 + 0.0276969i
\(949\) 2.29404e9 2.68412
\(950\) 1.03309e9i 1.20494i
\(951\) 1.05061e9 + 6.91746e8i 1.22151 + 0.804276i
\(952\) −1.96078e9 −2.27258
\(953\) 1.40157e6i 0.00161933i 1.00000 0.000809664i \(0.000257724\pi\)
−1.00000 0.000809664i \(0.999742\pi\)
\(954\) 2.95609e8 + 6.87184e8i 0.340466 + 0.791458i
\(955\) −1.01357e8 −0.116371
\(956\) 3.47694e7i 0.0397945i
\(957\) −2.93000e7 + 4.45001e7i −0.0334296 + 0.0507721i
\(958\) −3.36568e8 −0.382804
\(959\) 1.28407e9i 1.45590i
\(960\) 3.31337e8 + 2.18161e8i 0.374504 + 0.246583i
\(961\) −1.30352e8 −0.146875
\(962\) 1.73588e8i 0.194982i
\(963\) 4.13725e7 1.77974e7i 0.0463269 0.0199287i
\(964\) −4.06573e7 −0.0453845
\(965\) 2.68511e8i 0.298799i
\(966\) 1.97432e7 2.99856e7i 0.0219022 0.0332645i
\(967\) −1.02482e9 −1.13336 −0.566681 0.823937i \(-0.691773\pi\)
−0.566681 + 0.823937i \(0.691773\pi\)
\(968\) 8.56012e8i 0.943743i
\(969\) −1.45556e9 9.58376e8i −1.59977 1.05333i
\(970\) −7.27029e6 −0.00796593
\(971\) 1.77266e9i 1.93628i 0.250417 + 0.968138i \(0.419432\pi\)
−0.250417 + 0.968138i \(0.580568\pi\)
\(972\) −2.92211e7 1.24678e8i −0.0318198 0.135766i
\(973\) 2.91621e8 0.316578
\(974\) 3.17689e8i 0.343815i
\(975\) −7.45538e8 + 1.13231e9i −0.804371 + 1.22166i
\(976\) −5.27614e8 −0.567501
\(977\) 1.21143e9i 1.29901i 0.760356 + 0.649507i \(0.225025\pi\)
−0.760356 + 0.649507i \(0.774975\pi\)
\(978\) −8.38539e8 5.52115e8i −0.896410 0.590219i
\(979\) −5.33703e8 −0.568790
\(980\) 1.10538e8i 0.117445i
\(981\) −1.25534e8 2.91820e8i −0.132970 0.309106i
\(982\) −1.36295e7 −0.0143929
\(983\) 6.59670e8i 0.694490i −0.937774 0.347245i \(-0.887117\pi\)
0.937774 0.347245i \(-0.112883\pi\)
\(984\) 6.03107e8 9.15985e8i 0.633008 0.961397i
\(985\) −6.43338e8 −0.673179
\(986\) 2.02883e8i 0.211649i
\(987\) 3.81526e8 + 2.51206e8i 0.396801 + 0.261263i
\(988\) 3.68062e8 0.381636
\(989\) 2.07072e7i 0.0214059i
\(990\) −1.10553e8 + 4.75572e7i −0.113937 + 0.0490130i
\(991\) 1.48885e9 1.52978 0.764890 0.644161i \(-0.222793\pi\)
0.764890 + 0.644161i \(0.222793\pi\)
\(992\) 2.49537e8i 0.255623i
\(993\) −8.74122e7 + 1.32759e8i −0.0892738 + 0.135587i
\(994\) 2.10276e9 2.14107
\(995\) 3.96162e8i 0.402164i
\(996\) 4.70635e7 + 3.09878e7i 0.0476328 + 0.0313627i
\(997\) −1.43861e9 −1.45164 −0.725820 0.687885i \(-0.758540\pi\)
−0.725820 + 0.687885i \(0.758540\pi\)
\(998\) 1.81623e8i 0.182717i
\(999\) 1.17524e8 + 2.09040e7i 0.117877 + 0.0209669i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.7.b.a.59.18 56
3.2 odd 2 inner 87.7.b.a.59.39 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.7.b.a.59.18 56 1.1 even 1 trivial
87.7.b.a.59.39 yes 56 3.2 odd 2 inner