Properties

Label 87.7.b.a.59.17
Level $87$
Weight $7$
Character 87.59
Analytic conductor $20.015$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [87,7,Mod(59,87)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(87, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("87.59"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 87.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.0147052749\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 59.17
Character \(\chi\) \(=\) 87.59
Dual form 87.7.b.a.59.40

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.77900i q^{2} +(-23.4760 + 13.3371i) q^{3} +3.48715 q^{4} +148.308i q^{5} +(103.749 + 182.620i) q^{6} +172.143 q^{7} -524.983i q^{8} +(373.244 - 626.203i) q^{9} +1153.69 q^{10} +775.451i q^{11} +(-81.8643 + 46.5084i) q^{12} -2698.75 q^{13} -1339.10i q^{14} +(-1978.00 - 3481.68i) q^{15} -3860.66 q^{16} +1712.63i q^{17} +(-4871.23 - 2903.47i) q^{18} -3288.45 q^{19} +517.173i q^{20} +(-4041.22 + 2295.88i) q^{21} +6032.24 q^{22} +4756.34i q^{23} +(7001.74 + 12324.5i) q^{24} -6370.36 q^{25} +20993.6i q^{26} +(-410.554 + 19678.7i) q^{27} +600.288 q^{28} -4528.92i q^{29} +(-27084.0 + 15386.9i) q^{30} -36696.0 q^{31} -3566.79i q^{32} +(-10342.3 - 18204.5i) q^{33} +13322.5 q^{34} +25530.2i q^{35} +(1301.56 - 2183.66i) q^{36} -35742.7 q^{37} +25580.8i q^{38} +(63355.8 - 35993.5i) q^{39} +77859.3 q^{40} +113883. i q^{41} +(17859.7 + 31436.7i) q^{42} -121960. q^{43} +2704.11i q^{44} +(92871.1 + 55355.2i) q^{45} +36999.6 q^{46} +82119.8i q^{47} +(90632.9 - 51490.0i) q^{48} -88015.9 q^{49} +49555.1i q^{50} +(-22841.5 - 40205.6i) q^{51} -9410.94 q^{52} -88459.6i q^{53} +(153081. + 3193.70i) q^{54} -115006. q^{55} -90371.9i q^{56} +(77199.6 - 43858.3i) q^{57} -35230.5 q^{58} -18795.0i q^{59} +(-6897.59 - 12141.2i) q^{60} -176481. q^{61} +285458. i q^{62} +(64251.3 - 107796. i) q^{63} -274828. q^{64} -400247. i q^{65} +(-141613. + 80452.5i) q^{66} -93073.0 q^{67} +5972.19i q^{68} +(-63435.8 - 111660. i) q^{69} +198599. q^{70} +107624. i q^{71} +(-328746. - 195947. i) q^{72} -291342. q^{73} +278042. i q^{74} +(149551. - 84962.1i) q^{75} -11467.3 q^{76} +133488. i q^{77} +(-279993. - 492845. i) q^{78} +943880. q^{79} -572568. i q^{80} +(-252819. - 467453. i) q^{81} +885897. q^{82} -798424. i q^{83} +(-14092.3 + 8006.09i) q^{84} -253997. q^{85} +948727. i q^{86} +(60402.7 + 106321. i) q^{87} +407098. q^{88} +386603. i q^{89} +(430608. - 722444. i) q^{90} -464570. q^{91} +16586.1i q^{92} +(861476. - 489418. i) q^{93} +638810. q^{94} -487704. i q^{95} +(47570.6 + 83734.0i) q^{96} +1.69517e6 q^{97} +684676. i q^{98} +(485590. + 289433. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 52 q^{3} - 1924 q^{4} - 160 q^{6} + 160 q^{7} - 1060 q^{9} - 3588 q^{10} - 2166 q^{12} - 1400 q^{13} - 6240 q^{15} + 56588 q^{16} - 5978 q^{18} + 25000 q^{19} + 7520 q^{21} + 20970 q^{22} + 1238 q^{24}+ \cdots + 4793544 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.77900i 0.972375i −0.873854 0.486188i \(-0.838387\pi\)
0.873854 0.486188i \(-0.161613\pi\)
\(3\) −23.4760 + 13.3371i −0.869481 + 0.493966i
\(4\) 3.48715 0.0544867
\(5\) 148.308i 1.18647i 0.805031 + 0.593233i \(0.202149\pi\)
−0.805031 + 0.593233i \(0.797851\pi\)
\(6\) 103.749 + 182.620i 0.480320 + 0.845462i
\(7\) 172.143 0.501874 0.250937 0.968003i \(-0.419261\pi\)
0.250937 + 0.968003i \(0.419261\pi\)
\(8\) 524.983i 1.02536i
\(9\) 373.244 626.203i 0.511995 0.858989i
\(10\) 1153.69 1.15369
\(11\) 775.451i 0.582608i 0.956631 + 0.291304i \(0.0940891\pi\)
−0.956631 + 0.291304i \(0.905911\pi\)
\(12\) −81.8643 + 46.5084i −0.0473752 + 0.0269146i
\(13\) −2698.75 −1.22838 −0.614190 0.789159i \(-0.710517\pi\)
−0.614190 + 0.789159i \(0.710517\pi\)
\(14\) 1339.10i 0.488010i
\(15\) −1978.00 3481.68i −0.586075 1.03161i
\(16\) −3860.66 −0.942544
\(17\) 1712.63i 0.348591i 0.984693 + 0.174295i \(0.0557648\pi\)
−0.984693 + 0.174295i \(0.944235\pi\)
\(18\) −4871.23 2903.47i −0.835259 0.497851i
\(19\) −3288.45 −0.479436 −0.239718 0.970843i \(-0.577055\pi\)
−0.239718 + 0.970843i \(0.577055\pi\)
\(20\) 517.173i 0.0646467i
\(21\) −4041.22 + 2295.88i −0.436370 + 0.247909i
\(22\) 6032.24 0.566513
\(23\) 4756.34i 0.390922i 0.980712 + 0.195461i \(0.0626202\pi\)
−0.980712 + 0.195461i \(0.937380\pi\)
\(24\) 7001.74 + 12324.5i 0.506492 + 0.891528i
\(25\) −6370.36 −0.407703
\(26\) 20993.6i 1.19445i
\(27\) −410.554 + 19678.7i −0.0208583 + 0.999782i
\(28\) 600.288 0.0273455
\(29\) 4528.92i 0.185695i
\(30\) −27084.0 + 15386.9i −1.00311 + 0.569884i
\(31\) −36696.0 −1.23178 −0.615891 0.787831i \(-0.711204\pi\)
−0.615891 + 0.787831i \(0.711204\pi\)
\(32\) 3566.79i 0.108850i
\(33\) −10342.3 18204.5i −0.287789 0.506567i
\(34\) 13322.5 0.338961
\(35\) 25530.2i 0.595457i
\(36\) 1301.56 2183.66i 0.0278969 0.0468035i
\(37\) −35742.7 −0.705638 −0.352819 0.935692i \(-0.614777\pi\)
−0.352819 + 0.935692i \(0.614777\pi\)
\(38\) 25580.8i 0.466191i
\(39\) 63355.8 35993.5i 1.06805 0.606778i
\(40\) 77859.3 1.21655
\(41\) 113883.i 1.65237i 0.563397 + 0.826186i \(0.309494\pi\)
−0.563397 + 0.826186i \(0.690506\pi\)
\(42\) 17859.7 + 31436.7i 0.241060 + 0.424315i
\(43\) −121960. −1.53395 −0.766976 0.641676i \(-0.778240\pi\)
−0.766976 + 0.641676i \(0.778240\pi\)
\(44\) 2704.11i 0.0317444i
\(45\) 92871.1 + 55355.2i 1.01916 + 0.607465i
\(46\) 36999.6 0.380122
\(47\) 82119.8i 0.790959i 0.918475 + 0.395480i \(0.129422\pi\)
−0.918475 + 0.395480i \(0.870578\pi\)
\(48\) 90632.9 51490.0i 0.819525 0.465585i
\(49\) −88015.9 −0.748123
\(50\) 49555.1i 0.396440i
\(51\) −22841.5 40205.6i −0.172192 0.303093i
\(52\) −9410.94 −0.0669303
\(53\) 88459.6i 0.594179i −0.954850 0.297090i \(-0.903984\pi\)
0.954850 0.297090i \(-0.0960160\pi\)
\(54\) 153081. + 3193.70i 0.972164 + 0.0202821i
\(55\) −115006. −0.691245
\(56\) 90371.9i 0.514600i
\(57\) 77199.6 43858.3i 0.416860 0.236825i
\(58\) −35230.5 −0.180566
\(59\) 18795.0i 0.0915136i −0.998953 0.0457568i \(-0.985430\pi\)
0.998953 0.0457568i \(-0.0145699\pi\)
\(60\) −6897.59 12141.2i −0.0319333 0.0562091i
\(61\) −176481. −0.777513 −0.388756 0.921341i \(-0.627095\pi\)
−0.388756 + 0.921341i \(0.627095\pi\)
\(62\) 285458.i 1.19775i
\(63\) 64251.3 107796.i 0.256957 0.431104i
\(64\) −274828. −1.04839
\(65\) 400247.i 1.45743i
\(66\) −141613. + 80452.5i −0.492573 + 0.279839i
\(67\) −93073.0 −0.309456 −0.154728 0.987957i \(-0.549450\pi\)
−0.154728 + 0.987957i \(0.549450\pi\)
\(68\) 5972.19i 0.0189936i
\(69\) −63435.8 111660.i −0.193102 0.339899i
\(70\) 198599. 0.579007
\(71\) 107624.i 0.300700i 0.988633 + 0.150350i \(0.0480400\pi\)
−0.988633 + 0.150350i \(0.951960\pi\)
\(72\) −328746. 195947.i −0.880770 0.524977i
\(73\) −291342. −0.748919 −0.374459 0.927243i \(-0.622172\pi\)
−0.374459 + 0.927243i \(0.622172\pi\)
\(74\) 278042.i 0.686145i
\(75\) 149551. 84962.1i 0.354490 0.201392i
\(76\) −11467.3 −0.0261229
\(77\) 133488.i 0.292396i
\(78\) −279993. 492845.i −0.590016 1.03855i
\(79\) 943880. 1.91441 0.957206 0.289408i \(-0.0934585\pi\)
0.957206 + 0.289408i \(0.0934585\pi\)
\(80\) 572568.i 1.11830i
\(81\) −252819. 467453.i −0.475723 0.879595i
\(82\) 885897. 1.60673
\(83\) 798424.i 1.39637i −0.715920 0.698183i \(-0.753992\pi\)
0.715920 0.698183i \(-0.246008\pi\)
\(84\) −14092.3 + 8006.09i −0.0237764 + 0.0135077i
\(85\) −253997. −0.413592
\(86\) 948727.i 1.49158i
\(87\) 60402.7 + 106321.i 0.0917272 + 0.161459i
\(88\) 407098. 0.597381
\(89\) 386603.i 0.548397i 0.961673 + 0.274198i \(0.0884125\pi\)
−0.961673 + 0.274198i \(0.911588\pi\)
\(90\) 430608. 722444.i 0.590683 0.991007i
\(91\) −464570. −0.616491
\(92\) 16586.1i 0.0213000i
\(93\) 861476. 489418.i 1.07101 0.608459i
\(94\) 638810. 0.769109
\(95\) 487704.i 0.568834i
\(96\) 47570.6 + 83734.0i 0.0537681 + 0.0946429i
\(97\) 1.69517e6 1.85737 0.928684 0.370873i \(-0.120941\pi\)
0.928684 + 0.370873i \(0.120941\pi\)
\(98\) 684676.i 0.727456i
\(99\) 485590. + 289433.i 0.500454 + 0.298292i
\(100\) −22214.4 −0.0222144
\(101\) 14549.7i 0.0141218i 0.999975 + 0.00706089i \(0.00224757\pi\)
−0.999975 + 0.00706089i \(0.997752\pi\)
\(102\) −312760. + 177684.i −0.294720 + 0.167435i
\(103\) −954200. −0.873228 −0.436614 0.899649i \(-0.643822\pi\)
−0.436614 + 0.899649i \(0.643822\pi\)
\(104\) 1.41680e6i 1.25953i
\(105\) −340499. 599347.i −0.294135 0.517738i
\(106\) −688127. −0.577765
\(107\) 1.57391e6i 1.28478i −0.766379 0.642388i \(-0.777944\pi\)
0.766379 0.642388i \(-0.222056\pi\)
\(108\) −1431.66 + 68622.6i −0.00113650 + 0.0544749i
\(109\) 187660. 0.144908 0.0724539 0.997372i \(-0.476917\pi\)
0.0724539 + 0.997372i \(0.476917\pi\)
\(110\) 894631.i 0.672149i
\(111\) 839095. 476704.i 0.613539 0.348562i
\(112\) −664585. −0.473038
\(113\) 1.24151e6i 0.860431i 0.902726 + 0.430215i \(0.141562\pi\)
−0.902726 + 0.430215i \(0.858438\pi\)
\(114\) −341174. 600536.i −0.230283 0.405344i
\(115\) −705405. −0.463815
\(116\) 15793.0i 0.0101179i
\(117\) −1.00729e6 + 1.68996e6i −0.628924 + 1.05516i
\(118\) −146206. −0.0889855
\(119\) 294816.i 0.174949i
\(120\) −1.82782e6 + 1.03842e6i −1.05777 + 0.600935i
\(121\) 1.17024e6 0.660568
\(122\) 1.37284e6i 0.756034i
\(123\) −1.51887e6 2.67352e6i −0.816216 1.43671i
\(124\) −127965. −0.0671158
\(125\) 1.37254e6i 0.702740i
\(126\) −838547. 499811.i −0.419195 0.249858i
\(127\) 263141. 0.128463 0.0642315 0.997935i \(-0.479540\pi\)
0.0642315 + 0.997935i \(0.479540\pi\)
\(128\) 1.90962e6i 0.910576i
\(129\) 2.86313e6 1.62659e6i 1.33374 0.757721i
\(130\) −3.11352e6 −1.41717
\(131\) 1.92152e6i 0.854734i 0.904078 + 0.427367i \(0.140559\pi\)
−0.904078 + 0.427367i \(0.859441\pi\)
\(132\) −36065.0 63481.8i −0.0156807 0.0276012i
\(133\) −566083. −0.240616
\(134\) 724015.i 0.300908i
\(135\) −2.91852e6 60888.6i −1.18621 0.0247477i
\(136\) 899100. 0.357430
\(137\) 257927.i 0.100308i 0.998742 + 0.0501539i \(0.0159712\pi\)
−0.998742 + 0.0501539i \(0.984029\pi\)
\(138\) −868602. + 493467.i −0.330509 + 0.187768i
\(139\) −978990. −0.364531 −0.182265 0.983249i \(-0.558343\pi\)
−0.182265 + 0.983249i \(0.558343\pi\)
\(140\) 89027.7i 0.0324445i
\(141\) −1.09524e6 1.92784e6i −0.390707 0.687724i
\(142\) 837205. 0.292393
\(143\) 2.09275e6i 0.715663i
\(144\) −1.44097e6 + 2.41756e6i −0.482578 + 0.809635i
\(145\) 671677. 0.220321
\(146\) 2.26635e6i 0.728230i
\(147\) 2.06626e6 1.17388e6i 0.650478 0.369547i
\(148\) −124640. −0.0384479
\(149\) 3.83651e6i 1.15979i 0.814693 + 0.579893i \(0.196905\pi\)
−0.814693 + 0.579893i \(0.803095\pi\)
\(150\) −660920. 1.16335e6i −0.195828 0.344698i
\(151\) 4.96928e6 1.44332 0.721661 0.692247i \(-0.243379\pi\)
0.721661 + 0.692247i \(0.243379\pi\)
\(152\) 1.72638e6i 0.491592i
\(153\) 1.07245e6 + 639228.i 0.299436 + 0.178477i
\(154\) 1.03841e6 0.284318
\(155\) 5.44233e6i 1.46147i
\(156\) 220931. 125515.i 0.0581947 0.0330613i
\(157\) −4.81541e6 −1.24433 −0.622163 0.782888i \(-0.713746\pi\)
−0.622163 + 0.782888i \(0.713746\pi\)
\(158\) 7.34244e6i 1.86153i
\(159\) 1.17979e6 + 2.07668e6i 0.293504 + 0.516628i
\(160\) 528985. 0.129147
\(161\) 818770.i 0.196193i
\(162\) −3.63632e6 + 1.96668e6i −0.855296 + 0.462581i
\(163\) 2.65119e6 0.612177 0.306089 0.952003i \(-0.400980\pi\)
0.306089 + 0.952003i \(0.400980\pi\)
\(164\) 397128.i 0.0900323i
\(165\) 2.69988e6 1.53384e6i 0.601024 0.341452i
\(166\) −6.21094e6 −1.35779
\(167\) 2.12850e6i 0.457007i −0.973543 0.228504i \(-0.926617\pi\)
0.973543 0.228504i \(-0.0733833\pi\)
\(168\) 1.20530e6 + 2.12157e6i 0.254195 + 0.447435i
\(169\) 2.45644e6 0.508915
\(170\) 1.97584e6i 0.402166i
\(171\) −1.22739e6 + 2.05924e6i −0.245468 + 0.411830i
\(172\) −425293. −0.0835800
\(173\) 4.89172e6i 0.944763i 0.881394 + 0.472382i \(0.156606\pi\)
−0.881394 + 0.472382i \(0.843394\pi\)
\(174\) 827071. 469872.i 0.156998 0.0891933i
\(175\) −1.09661e6 −0.204616
\(176\) 2.99376e6i 0.549134i
\(177\) 250670. + 441230.i 0.0452046 + 0.0795693i
\(178\) 3.00738e6 0.533247
\(179\) 1.87481e6i 0.326888i 0.986553 + 0.163444i \(0.0522603\pi\)
−0.986553 + 0.163444i \(0.947740\pi\)
\(180\) 323855. + 193032.i 0.0555308 + 0.0330988i
\(181\) 8.27467e6 1.39545 0.697726 0.716365i \(-0.254195\pi\)
0.697726 + 0.716365i \(0.254195\pi\)
\(182\) 3.61389e6i 0.599461i
\(183\) 4.14306e6 2.35374e6i 0.676033 0.384065i
\(184\) 2.49700e6 0.400834
\(185\) 5.30094e6i 0.837216i
\(186\) −3.80718e6 6.70142e6i −0.591650 1.04142i
\(187\) −1.32806e6 −0.203092
\(188\) 286364.i 0.0430968i
\(189\) −70674.0 + 3.38755e6i −0.0104682 + 0.501765i
\(190\) −3.79385e6 −0.553120
\(191\) 4.07627e6i 0.585009i 0.956264 + 0.292505i \(0.0944887\pi\)
−0.956264 + 0.292505i \(0.905511\pi\)
\(192\) 6.45187e6 3.66541e6i 0.911553 0.517868i
\(193\) −4.65906e6 −0.648076 −0.324038 0.946044i \(-0.605041\pi\)
−0.324038 + 0.946044i \(0.605041\pi\)
\(194\) 1.31867e7i 1.80606i
\(195\) 5.33813e6 + 9.39619e6i 0.719922 + 1.26721i
\(196\) −306925. −0.0407627
\(197\) 3.82855e6i 0.500767i −0.968147 0.250383i \(-0.919443\pi\)
0.968147 0.250383i \(-0.0805567\pi\)
\(198\) 2.25150e6 3.77740e6i 0.290052 0.486629i
\(199\) 8.07380e6 1.02452 0.512258 0.858832i \(-0.328809\pi\)
0.512258 + 0.858832i \(0.328809\pi\)
\(200\) 3.34433e6i 0.418041i
\(201\) 2.18498e6 1.24132e6i 0.269066 0.152861i
\(202\) 113182. 0.0137317
\(203\) 779621.i 0.0931956i
\(204\) −79651.6 140203.i −0.00938219 0.0165146i
\(205\) −1.68898e7 −1.96048
\(206\) 7.42272e6i 0.849105i
\(207\) 2.97843e6 + 1.77528e6i 0.335797 + 0.200150i
\(208\) 1.04190e7 1.15780
\(209\) 2.55003e6i 0.279323i
\(210\) −4.66232e6 + 2.64874e6i −0.503436 + 0.286010i
\(211\) −4.47301e6 −0.476159 −0.238080 0.971246i \(-0.576518\pi\)
−0.238080 + 0.971246i \(0.576518\pi\)
\(212\) 308472.i 0.0323749i
\(213\) −1.43539e6 2.52657e6i −0.148535 0.261453i
\(214\) −1.22434e7 −1.24928
\(215\) 1.80877e7i 1.81998i
\(216\) 1.03310e7 + 215534.i 1.02513 + 0.0213872i
\(217\) −6.31695e6 −0.618199
\(218\) 1.45981e6i 0.140905i
\(219\) 6.83954e6 3.88565e6i 0.651170 0.369940i
\(220\) −401043. −0.0376637
\(221\) 4.62195e6i 0.428202i
\(222\) −3.70828e6 6.52732e6i −0.338933 0.596590i
\(223\) 2.02868e7 1.82936 0.914680 0.404178i \(-0.132442\pi\)
0.914680 + 0.404178i \(0.132442\pi\)
\(224\) 613997.i 0.0546289i
\(225\) −2.37770e6 + 3.98914e6i −0.208742 + 0.350212i
\(226\) 9.65773e6 0.836662
\(227\) 1.38977e7i 1.18813i −0.804416 0.594066i \(-0.797522\pi\)
0.804416 0.594066i \(-0.202478\pi\)
\(228\) 269206. 152941.i 0.0227133 0.0129038i
\(229\) −1.84534e7 −1.53663 −0.768315 0.640072i \(-0.778904\pi\)
−0.768315 + 0.640072i \(0.778904\pi\)
\(230\) 5.48735e6i 0.451003i
\(231\) −1.78035e6 3.13377e6i −0.144434 0.254233i
\(232\) −2.37761e6 −0.190404
\(233\) 1.66303e7i 1.31472i −0.753577 0.657360i \(-0.771673\pi\)
0.753577 0.657360i \(-0.228327\pi\)
\(234\) 1.31462e7 + 7.83573e6i 1.02601 + 0.611550i
\(235\) −1.21790e7 −0.938447
\(236\) 65540.9i 0.00498627i
\(237\) −2.21585e7 + 1.25886e7i −1.66454 + 0.945655i
\(238\) 2.29338e6 0.170116
\(239\) 1.19983e7i 0.878869i −0.898275 0.439435i \(-0.855179\pi\)
0.898275 0.439435i \(-0.144821\pi\)
\(240\) 7.63640e6 + 1.34416e7i 0.552401 + 0.972339i
\(241\) −1.61481e7 −1.15364 −0.576820 0.816872i \(-0.695706\pi\)
−0.576820 + 0.816872i \(0.695706\pi\)
\(242\) 9.10327e6i 0.642320i
\(243\) 1.21696e7 + 7.60206e6i 0.848122 + 0.529800i
\(244\) −615414. −0.0423641
\(245\) 1.30535e7i 0.887623i
\(246\) −2.07973e7 + 1.18153e7i −1.39702 + 0.793668i
\(247\) 8.87470e6 0.588929
\(248\) 1.92648e7i 1.26302i
\(249\) 1.06486e7 + 1.87438e7i 0.689757 + 1.21411i
\(250\) 1.06770e7 0.683327
\(251\) 7.80364e6i 0.493487i −0.969081 0.246744i \(-0.920639\pi\)
0.969081 0.246744i \(-0.0793605\pi\)
\(252\) 224054. 375902.i 0.0140007 0.0234894i
\(253\) −3.68831e6 −0.227754
\(254\) 2.04698e6i 0.124914i
\(255\) 5.96283e6 3.38758e6i 0.359610 0.204300i
\(256\) −2.73412e6 −0.162966
\(257\) 2.85578e7i 1.68239i 0.540735 + 0.841193i \(0.318146\pi\)
−0.540735 + 0.841193i \(0.681854\pi\)
\(258\) −1.26532e7 2.22723e7i −0.736789 1.29690i
\(259\) −6.15285e6 −0.354141
\(260\) 1.39572e6i 0.0794106i
\(261\) −2.83602e6 1.69039e6i −0.159510 0.0950750i
\(262\) 1.49475e7 0.831122
\(263\) 9.85496e6i 0.541736i 0.962617 + 0.270868i \(0.0873106\pi\)
−0.962617 + 0.270868i \(0.912689\pi\)
\(264\) −9.55704e6 + 5.42951e6i −0.519411 + 0.295086i
\(265\) 1.31193e7 0.704974
\(266\) 4.40356e6i 0.233969i
\(267\) −5.15615e6 9.07588e6i −0.270889 0.476821i
\(268\) −324560. −0.0168613
\(269\) 3.47508e7i 1.78529i 0.450763 + 0.892643i \(0.351152\pi\)
−0.450763 + 0.892643i \(0.648848\pi\)
\(270\) −473653. + 2.27032e7i −0.0240641 + 1.15344i
\(271\) 4.11527e6 0.206772 0.103386 0.994641i \(-0.467032\pi\)
0.103386 + 0.994641i \(0.467032\pi\)
\(272\) 6.61188e6i 0.328563i
\(273\) 1.09062e7 6.19601e6i 0.536028 0.304526i
\(274\) 2.00641e6 0.0975367
\(275\) 4.93991e6i 0.237531i
\(276\) −221210. 389375.i −0.0105215 0.0185200i
\(277\) −3.99466e7 −1.87949 −0.939746 0.341874i \(-0.888938\pi\)
−0.939746 + 0.341874i \(0.888938\pi\)
\(278\) 7.61556e6i 0.354460i
\(279\) −1.36966e7 + 2.29792e7i −0.630666 + 1.05809i
\(280\) 1.34029e7 0.610555
\(281\) 4.19054e6i 0.188865i 0.995531 + 0.0944324i \(0.0301036\pi\)
−0.995531 + 0.0944324i \(0.969896\pi\)
\(282\) −1.49967e7 + 8.51986e6i −0.668726 + 0.379914i
\(283\) 3.19996e7 1.41184 0.705921 0.708291i \(-0.250534\pi\)
0.705921 + 0.708291i \(0.250534\pi\)
\(284\) 375300.i 0.0163841i
\(285\) 6.50456e6 + 1.14493e7i 0.280985 + 0.494591i
\(286\) −1.62795e7 −0.695893
\(287\) 1.96042e7i 0.829282i
\(288\) −2.23353e6 1.33128e6i −0.0935008 0.0557305i
\(289\) 2.12045e7 0.878484
\(290\) 5.22498e6i 0.214235i
\(291\) −3.97958e7 + 2.26086e7i −1.61495 + 0.917477i
\(292\) −1.01595e6 −0.0408061
\(293\) 2.12784e6i 0.0845934i 0.999105 + 0.0422967i \(0.0134675\pi\)
−0.999105 + 0.0422967i \(0.986533\pi\)
\(294\) −9.13158e6 1.60734e7i −0.359339 0.632509i
\(295\) 2.78745e6 0.108578
\(296\) 1.87643e7i 0.723531i
\(297\) −1.52599e7 318365.i −0.582481 0.0121522i
\(298\) 2.98442e7 1.12775
\(299\) 1.28362e7i 0.480200i
\(300\) 521505. 296276.i 0.0193150 0.0109732i
\(301\) −2.09945e7 −0.769851
\(302\) 3.86561e7i 1.40345i
\(303\) −194050. 341568.i −0.00697568 0.0122786i
\(304\) 1.26956e7 0.451889
\(305\) 2.61735e7i 0.922493i
\(306\) 4.97256e6 8.34260e6i 0.173546 0.291164i
\(307\) 1.30973e7 0.452654 0.226327 0.974051i \(-0.427328\pi\)
0.226327 + 0.974051i \(0.427328\pi\)
\(308\) 465494.i 0.0159317i
\(309\) 2.24008e7 1.27263e7i 0.759255 0.431345i
\(310\) −4.23359e7 −1.42110
\(311\) 4.12146e7i 1.37015i 0.728471 + 0.685077i \(0.240231\pi\)
−0.728471 + 0.685077i \(0.759769\pi\)
\(312\) −1.88959e7 3.32607e7i −0.622164 1.09513i
\(313\) 3.09792e7 1.01027 0.505134 0.863041i \(-0.331443\pi\)
0.505134 + 0.863041i \(0.331443\pi\)
\(314\) 3.74591e7i 1.20995i
\(315\) 1.59871e7 + 9.52900e6i 0.511490 + 0.304871i
\(316\) 3.29145e6 0.104310
\(317\) 4.03629e7i 1.26708i −0.773709 0.633542i \(-0.781601\pi\)
0.773709 0.633542i \(-0.218399\pi\)
\(318\) 1.61545e7 9.17762e6i 0.502356 0.285396i
\(319\) 3.51196e6 0.108188
\(320\) 4.07594e7i 1.24388i
\(321\) 2.09913e7 + 3.69490e7i 0.634636 + 1.11709i
\(322\) 6.36921e6 0.190773
\(323\) 5.63189e6i 0.167127i
\(324\) −881616. 1.63008e6i −0.0259206 0.0479263i
\(325\) 1.71920e7 0.500814
\(326\) 2.06236e7i 0.595266i
\(327\) −4.40550e6 + 2.50283e6i −0.125995 + 0.0715795i
\(328\) 5.97867e7 1.69427
\(329\) 1.41363e7i 0.396962i
\(330\) −1.19318e7 2.10023e7i −0.332019 0.584421i
\(331\) −8.40105e6 −0.231659 −0.115830 0.993269i \(-0.536953\pi\)
−0.115830 + 0.993269i \(0.536953\pi\)
\(332\) 2.78422e6i 0.0760834i
\(333\) −1.33408e7 + 2.23822e7i −0.361283 + 0.606135i
\(334\) −1.65576e7 −0.444383
\(335\) 1.38035e7i 0.367160i
\(336\) 1.56018e7 8.86363e6i 0.411298 0.233665i
\(337\) −4.21547e7 −1.10143 −0.550714 0.834694i \(-0.685645\pi\)
−0.550714 + 0.834694i \(0.685645\pi\)
\(338\) 1.91086e7i 0.494856i
\(339\) −1.65582e7 2.91457e7i −0.425024 0.748128i
\(340\) −885725. −0.0225352
\(341\) 2.84560e7i 0.717646i
\(342\) 1.60188e7 + 9.54790e6i 0.400453 + 0.238687i
\(343\) −3.54037e7 −0.877337
\(344\) 6.40268e7i 1.57285i
\(345\) 1.65601e7 9.40805e6i 0.403279 0.229109i
\(346\) 3.80527e7 0.918664
\(347\) 5.55094e7i 1.32855i 0.747488 + 0.664275i \(0.231260\pi\)
−0.747488 + 0.664275i \(0.768740\pi\)
\(348\) 210633. + 370757.i 0.00499792 + 0.00879735i
\(349\) −4.56421e7 −1.07371 −0.536857 0.843673i \(-0.680389\pi\)
−0.536857 + 0.843673i \(0.680389\pi\)
\(350\) 8.53054e6i 0.198963i
\(351\) 1.10798e6 5.31079e7i 0.0256219 1.22811i
\(352\) 2.76587e6 0.0634168
\(353\) 6.13280e7i 1.39423i 0.716959 + 0.697115i \(0.245533\pi\)
−0.716959 + 0.697115i \(0.754467\pi\)
\(354\) 3.43233e6 1.94996e6i 0.0773712 0.0439558i
\(355\) −1.59615e7 −0.356770
\(356\) 1.34814e6i 0.0298803i
\(357\) −3.93199e6 6.92111e6i −0.0864188 0.152115i
\(358\) 1.45842e7 0.317857
\(359\) 8.89647e7i 1.92280i −0.275154 0.961400i \(-0.588729\pi\)
0.275154 0.961400i \(-0.411271\pi\)
\(360\) 2.90605e7 4.87557e7i 0.622868 1.04500i
\(361\) −3.62320e7 −0.770142
\(362\) 6.43686e7i 1.35690i
\(363\) −2.74725e7 + 1.56075e7i −0.574351 + 0.326298i
\(364\) −1.62003e6 −0.0335906
\(365\) 4.32085e7i 0.888567i
\(366\) −1.83097e7 3.22288e7i −0.373455 0.657357i
\(367\) −6.40374e7 −1.29549 −0.647747 0.761855i \(-0.724289\pi\)
−0.647747 + 0.761855i \(0.724289\pi\)
\(368\) 1.83626e7i 0.368461i
\(369\) 7.13139e7 + 4.25062e7i 1.41937 + 0.846006i
\(370\) −4.12360e7 −0.814088
\(371\) 1.52277e7i 0.298203i
\(372\) 3.00409e6 1.70667e6i 0.0583559 0.0331529i
\(373\) −4.27481e7 −0.823741 −0.411871 0.911242i \(-0.635124\pi\)
−0.411871 + 0.911242i \(0.635124\pi\)
\(374\) 1.03310e7i 0.197481i
\(375\) −1.83057e7 3.22217e7i −0.347130 0.611019i
\(376\) 4.31114e7 0.811015
\(377\) 1.22224e7i 0.228104i
\(378\) 2.63517e7 + 549773.i 0.487903 + 0.0101791i
\(379\) 2.25392e7 0.414020 0.207010 0.978339i \(-0.433627\pi\)
0.207010 + 0.978339i \(0.433627\pi\)
\(380\) 1.70070e6i 0.0309939i
\(381\) −6.17750e6 + 3.50954e6i −0.111696 + 0.0634564i
\(382\) 3.17093e7 0.568849
\(383\) 4.61805e7i 0.821982i −0.911639 0.410991i \(-0.865183\pi\)
0.911639 0.410991i \(-0.134817\pi\)
\(384\) −2.54687e7 4.48301e7i −0.449794 0.791729i
\(385\) −1.97974e7 −0.346918
\(386\) 3.62428e7i 0.630173i
\(387\) −4.55208e7 + 7.63717e7i −0.785375 + 1.31765i
\(388\) 5.91131e6 0.101202
\(389\) 6.14289e6i 0.104358i 0.998638 + 0.0521788i \(0.0166166\pi\)
−0.998638 + 0.0521788i \(0.983383\pi\)
\(390\) 7.30930e7 4.15253e7i 1.23220 0.700034i
\(391\) −8.14584e6 −0.136272
\(392\) 4.62068e7i 0.767092i
\(393\) −2.56275e7 4.51096e7i −0.422210 0.743175i
\(394\) −2.97823e7 −0.486933
\(395\) 1.39985e8i 2.27139i
\(396\) 1.69332e6 + 1.00929e6i 0.0272681 + 0.0162530i
\(397\) 9.98785e7 1.59625 0.798125 0.602492i \(-0.205826\pi\)
0.798125 + 0.602492i \(0.205826\pi\)
\(398\) 6.28061e7i 0.996214i
\(399\) 1.32893e7 7.54989e6i 0.209211 0.118856i
\(400\) 2.45938e7 0.384278
\(401\) 1.18952e8i 1.84475i 0.386291 + 0.922377i \(0.373756\pi\)
−0.386291 + 0.922377i \(0.626244\pi\)
\(402\) −9.65625e6 1.69970e7i −0.148638 0.261634i
\(403\) 9.90334e7 1.51310
\(404\) 50736.9i 0.000769449i
\(405\) 6.93272e7 3.74951e7i 1.04361 0.564429i
\(406\) −6.06467e6 −0.0906211
\(407\) 2.77167e7i 0.411111i
\(408\) −2.11073e7 + 1.19914e7i −0.310779 + 0.176558i
\(409\) 7.73616e7 1.13072 0.565360 0.824844i \(-0.308737\pi\)
0.565360 + 0.824844i \(0.308737\pi\)
\(410\) 1.31386e8i 1.90633i
\(411\) −3.43999e6 6.05508e6i −0.0495486 0.0872157i
\(412\) −3.32744e6 −0.0475793
\(413\) 3.23542e6i 0.0459283i
\(414\) 1.38099e7 2.31692e7i 0.194621 0.326521i
\(415\) 1.18413e8 1.65674
\(416\) 9.62587e6i 0.133709i
\(417\) 2.29828e7 1.30569e7i 0.316952 0.180066i
\(418\) −1.98367e7 −0.271607
\(419\) 2.08271e7i 0.283130i 0.989929 + 0.141565i \(0.0452135\pi\)
−0.989929 + 0.141565i \(0.954787\pi\)
\(420\) −1.18737e6 2.09001e6i −0.0160265 0.0282099i
\(421\) 4.70216e6 0.0630160 0.0315080 0.999503i \(-0.489969\pi\)
0.0315080 + 0.999503i \(0.489969\pi\)
\(422\) 3.47955e7i 0.463006i
\(423\) 5.14236e7 + 3.06507e7i 0.679425 + 0.404967i
\(424\) −4.64398e7 −0.609245
\(425\) 1.09101e7i 0.142122i
\(426\) −1.96542e7 + 1.11659e7i −0.254230 + 0.144432i
\(427\) −3.03799e7 −0.390213
\(428\) 5.48845e6i 0.0700032i
\(429\) 2.79112e7 + 4.91293e7i 0.353514 + 0.622256i
\(430\) −1.40704e8 −1.76971
\(431\) 1.55276e7i 0.193942i 0.995287 + 0.0969711i \(0.0309155\pi\)
−0.995287 + 0.0969711i \(0.969085\pi\)
\(432\) 1.58501e6 7.59729e7i 0.0196599 0.942339i
\(433\) 6.51193e7 0.802132 0.401066 0.916049i \(-0.368640\pi\)
0.401066 + 0.916049i \(0.368640\pi\)
\(434\) 4.91396e7i 0.601122i
\(435\) −1.57683e7 + 8.95822e6i −0.191565 + 0.108831i
\(436\) 654398. 0.00789555
\(437\) 1.56410e7i 0.187422i
\(438\) −3.02265e7 5.32048e7i −0.359721 0.633182i
\(439\) 5.30078e7 0.626536 0.313268 0.949665i \(-0.398576\pi\)
0.313268 + 0.949665i \(0.398576\pi\)
\(440\) 6.03761e7i 0.708773i
\(441\) −3.28514e7 + 5.51158e7i −0.383035 + 0.642629i
\(442\) −3.59542e7 −0.416373
\(443\) 8.07988e7i 0.929381i −0.885473 0.464691i \(-0.846166\pi\)
0.885473 0.464691i \(-0.153834\pi\)
\(444\) 2.92605e6 1.66234e6i 0.0334297 0.0189920i
\(445\) −5.73364e7 −0.650654
\(446\) 1.57811e8i 1.77882i
\(447\) −5.11679e7 9.00659e7i −0.572895 1.00841i
\(448\) −4.73097e7 −0.526158
\(449\) 5.74725e7i 0.634923i 0.948271 + 0.317461i \(0.102830\pi\)
−0.948271 + 0.317461i \(0.897170\pi\)
\(450\) 3.10315e7 + 1.84961e7i 0.340538 + 0.202975i
\(451\) −8.83108e7 −0.962685
\(452\) 4.32934e6i 0.0468821i
\(453\) −1.16659e8 + 6.62758e7i −1.25494 + 0.712952i
\(454\) −1.08110e8 −1.15531
\(455\) 6.88996e7i 0.731447i
\(456\) −2.30249e7 4.05284e7i −0.242830 0.427430i
\(457\) −9.65094e7 −1.01116 −0.505581 0.862779i \(-0.668722\pi\)
−0.505581 + 0.862779i \(0.668722\pi\)
\(458\) 1.43549e8i 1.49418i
\(459\) −3.37023e7 703127.i −0.348515 0.00727102i
\(460\) −2.45985e6 −0.0252718
\(461\) 5.75187e7i 0.587092i 0.955945 + 0.293546i \(0.0948354\pi\)
−0.955945 + 0.293546i \(0.905165\pi\)
\(462\) −2.43776e7 + 1.38493e7i −0.247209 + 0.140444i
\(463\) 5.33333e7 0.537348 0.268674 0.963231i \(-0.413415\pi\)
0.268674 + 0.963231i \(0.413415\pi\)
\(464\) 1.74846e7i 0.175026i
\(465\) 7.25848e7 + 1.27764e8i 0.721916 + 1.27072i
\(466\) −1.29367e8 −1.27840
\(467\) 1.94390e8i 1.90864i −0.298785 0.954320i \(-0.596581\pi\)
0.298785 0.954320i \(-0.403419\pi\)
\(468\) −3.51258e6 + 5.89316e6i −0.0342680 + 0.0574924i
\(469\) −1.60218e7 −0.155308
\(470\) 9.47408e7i 0.912522i
\(471\) 1.13047e8 6.42236e7i 1.08192 0.614655i
\(472\) −9.86703e6 −0.0938341
\(473\) 9.45740e7i 0.893693i
\(474\) 9.79268e7 + 1.72371e8i 0.919531 + 1.61856i
\(475\) 2.09486e7 0.195467
\(476\) 1.02807e6i 0.00953238i
\(477\) −5.53936e7 3.30170e7i −0.510393 0.304217i
\(478\) −9.33344e7 −0.854591
\(479\) 1.27719e7i 0.116212i −0.998310 0.0581058i \(-0.981494\pi\)
0.998310 0.0581058i \(-0.0185061\pi\)
\(480\) −1.24184e7 + 7.05512e6i −0.112291 + 0.0637941i
\(481\) 9.64606e7 0.866791
\(482\) 1.25616e8i 1.12177i
\(483\) −1.09200e7 1.92214e7i −0.0969129 0.170586i
\(484\) 4.08079e6 0.0359922
\(485\) 2.51408e8i 2.20370i
\(486\) 5.91364e7 9.46676e7i 0.515165 0.824693i
\(487\) −5.90986e7 −0.511671 −0.255835 0.966720i \(-0.582351\pi\)
−0.255835 + 0.966720i \(0.582351\pi\)
\(488\) 9.26492e7i 0.797228i
\(489\) −6.22392e7 + 3.53591e7i −0.532277 + 0.302395i
\(490\) −1.01543e8 −0.863102
\(491\) 8.13817e7i 0.687515i 0.939058 + 0.343757i \(0.111700\pi\)
−0.939058 + 0.343757i \(0.888300\pi\)
\(492\) −5.29653e6 9.32296e6i −0.0444729 0.0782814i
\(493\) 7.75636e6 0.0647317
\(494\) 6.90363e7i 0.572659i
\(495\) −4.29253e7 + 7.20170e7i −0.353914 + 0.593772i
\(496\) 1.41671e8 1.16101
\(497\) 1.85266e7i 0.150913i
\(498\) 1.45808e8 8.28358e7i 1.18057 0.670703i
\(499\) −7.26690e7 −0.584854 −0.292427 0.956288i \(-0.594463\pi\)
−0.292427 + 0.956288i \(0.594463\pi\)
\(500\) 4.78625e6i 0.0382900i
\(501\) 2.83879e7 + 4.99685e7i 0.225746 + 0.397359i
\(502\) −6.07045e7 −0.479855
\(503\) 1.49264e8i 1.17288i −0.809994 0.586438i \(-0.800530\pi\)
0.809994 0.586438i \(-0.199470\pi\)
\(504\) −5.65912e7 3.37308e7i −0.442035 0.263472i
\(505\) −2.15784e6 −0.0167550
\(506\) 2.86914e7i 0.221462i
\(507\) −5.76673e7 + 3.27617e7i −0.442492 + 0.251387i
\(508\) 917613. 0.00699953
\(509\) 1.58558e7i 0.120236i 0.998191 + 0.0601181i \(0.0191477\pi\)
−0.998191 + 0.0601181i \(0.980852\pi\)
\(510\) −2.63520e7 4.63849e7i −0.198657 0.349676i
\(511\) −5.01524e7 −0.375863
\(512\) 1.43484e8i 1.06904i
\(513\) 1.35009e6 6.47124e7i 0.0100002 0.479331i
\(514\) 2.22151e8 1.63591
\(515\) 1.41516e8i 1.03606i
\(516\) 9.98417e6 5.67217e6i 0.0726713 0.0412857i
\(517\) −6.36799e7 −0.460819
\(518\) 4.78630e7i 0.344358i
\(519\) −6.52412e7 1.14838e8i −0.466681 0.821454i
\(520\) −2.10123e8 −1.49439
\(521\) 1.69131e8i 1.19594i −0.801518 0.597970i \(-0.795974\pi\)
0.801518 0.597970i \(-0.204026\pi\)
\(522\) −1.31496e7 + 2.20614e7i −0.0924486 + 0.155104i
\(523\) 5.42865e7 0.379478 0.189739 0.981835i \(-0.439236\pi\)
0.189739 + 0.981835i \(0.439236\pi\)
\(524\) 6.70063e6i 0.0465716i
\(525\) 2.57440e7 1.46256e7i 0.177909 0.101073i
\(526\) 7.66617e7 0.526770
\(527\) 6.28466e7i 0.429388i
\(528\) 3.99280e7 + 7.02814e7i 0.271254 + 0.477462i
\(529\) 1.25413e8 0.847180
\(530\) 1.02055e8i 0.685499i
\(531\) −1.17695e7 7.01511e6i −0.0786091 0.0468545i
\(532\) −1.97401e6 −0.0131104
\(533\) 3.07342e8i 2.02974i
\(534\) −7.06013e7 + 4.01097e7i −0.463648 + 0.263406i
\(535\) 2.33423e8 1.52434
\(536\) 4.88617e7i 0.317303i
\(537\) −2.50045e7 4.40131e7i −0.161471 0.284223i
\(538\) 2.70327e8 1.73597
\(539\) 6.82520e7i 0.435862i
\(540\) −1.01773e7 212328.i −0.0646326 0.00134842i
\(541\) 2.02371e8 1.27808 0.639038 0.769175i \(-0.279332\pi\)
0.639038 + 0.769175i \(0.279332\pi\)
\(542\) 3.20127e7i 0.201060i
\(543\) −1.94256e8 + 1.10360e8i −1.21332 + 0.689306i
\(544\) 6.10859e6 0.0379441
\(545\) 2.78315e7i 0.171928i
\(546\) −4.81988e7 8.48397e7i −0.296113 0.521220i
\(547\) 7.58476e7 0.463425 0.231713 0.972784i \(-0.425567\pi\)
0.231713 + 0.972784i \(0.425567\pi\)
\(548\) 899429.i 0.00546544i
\(549\) −6.58704e7 + 1.10513e8i −0.398082 + 0.667875i
\(550\) −3.84275e7 −0.230969
\(551\) 1.48931e7i 0.0890289i
\(552\) −5.86195e7 + 3.33027e7i −0.348518 + 0.197998i
\(553\) 1.62482e8 0.960793
\(554\) 3.10745e8i 1.82757i
\(555\) 7.06991e7 + 1.24445e8i 0.413557 + 0.727944i
\(556\) −3.41389e6 −0.0198621
\(557\) 3.34792e8i 1.93736i −0.248318 0.968679i \(-0.579878\pi\)
0.248318 0.968679i \(-0.420122\pi\)
\(558\) 1.78755e8 + 1.06546e8i 1.02886 + 0.613244i
\(559\) 3.29139e8 1.88428
\(560\) 9.85635e7i 0.561244i
\(561\) 3.11775e7 1.77124e7i 0.176585 0.100321i
\(562\) 3.25982e7 0.183647
\(563\) 2.84555e8i 1.59456i −0.603610 0.797280i \(-0.706271\pi\)
0.603610 0.797280i \(-0.293729\pi\)
\(564\) −3.81926e6 6.72268e6i −0.0212883 0.0374718i
\(565\) −1.84127e8 −1.02087
\(566\) 2.48925e8i 1.37284i
\(567\) −4.35209e7 8.04686e7i −0.238753 0.441446i
\(568\) 5.65006e7 0.308324
\(569\) 2.15770e8i 1.17126i 0.810578 + 0.585630i \(0.199153\pi\)
−0.810578 + 0.585630i \(0.800847\pi\)
\(570\) 8.90644e7 5.05989e7i 0.480928 0.273223i
\(571\) 1.48881e8 0.799708 0.399854 0.916579i \(-0.369061\pi\)
0.399854 + 0.916579i \(0.369061\pi\)
\(572\) 7.29773e6i 0.0389942i
\(573\) −5.43656e7 9.56945e7i −0.288975 0.508655i
\(574\) 1.52501e8 0.806374
\(575\) 3.02996e7i 0.159380i
\(576\) −1.02578e8 + 1.72098e8i −0.536769 + 0.900553i
\(577\) −2.39721e8 −1.24790 −0.623949 0.781465i \(-0.714473\pi\)
−0.623949 + 0.781465i \(0.714473\pi\)
\(578\) 1.64950e8i 0.854216i
\(579\) 1.09376e8 6.21383e7i 0.563490 0.320128i
\(580\) 2.34224e6 0.0120046
\(581\) 1.37443e8i 0.700799i
\(582\) 1.75872e8 + 3.09571e8i 0.892132 + 1.57033i
\(583\) 6.85961e7 0.346173
\(584\) 1.52949e8i 0.767909i
\(585\) −2.50636e8 1.49390e8i −1.25192 0.746197i
\(586\) 1.65525e7 0.0822565
\(587\) 2.91617e8i 1.44178i −0.693050 0.720889i \(-0.743734\pi\)
0.693050 0.720889i \(-0.256266\pi\)
\(588\) 7.20536e6 4.09348e6i 0.0354424 0.0201354i
\(589\) 1.20673e8 0.590560
\(590\) 2.16836e7i 0.105578i
\(591\) 5.10617e7 + 8.98790e7i 0.247362 + 0.435407i
\(592\) 1.37990e8 0.665096
\(593\) 1.25993e8i 0.604204i 0.953276 + 0.302102i \(0.0976883\pi\)
−0.953276 + 0.302102i \(0.902312\pi\)
\(594\) −2.47656e6 + 1.18707e8i −0.0118165 + 0.566390i
\(595\) −4.37237e7 −0.207571
\(596\) 1.33785e7i 0.0631929i
\(597\) −1.89540e8 + 1.07681e8i −0.890798 + 0.506076i
\(598\) −9.98526e7 −0.466934
\(599\) 3.55722e8i 1.65512i 0.561377 + 0.827560i \(0.310272\pi\)
−0.561377 + 0.827560i \(0.689728\pi\)
\(600\) −4.46036e7 7.85115e7i −0.206498 0.363479i
\(601\) −1.21331e8 −0.558920 −0.279460 0.960157i \(-0.590155\pi\)
−0.279460 + 0.960157i \(0.590155\pi\)
\(602\) 1.63316e8i 0.748584i
\(603\) −3.47390e7 + 5.82826e7i −0.158440 + 0.265819i
\(604\) 1.73286e7 0.0786418
\(605\) 1.73556e8i 0.783742i
\(606\) −2.65706e6 + 1.50952e6i −0.0119394 + 0.00678298i
\(607\) −3.95525e8 −1.76851 −0.884255 0.467004i \(-0.845333\pi\)
−0.884255 + 0.467004i \(0.845333\pi\)
\(608\) 1.17292e7i 0.0521865i
\(609\) 1.03979e7 + 1.83024e7i 0.0460355 + 0.0810318i
\(610\) −2.03604e8 −0.897009
\(611\) 2.21621e8i 0.971598i
\(612\) 3.73980e6 + 2.22908e6i 0.0163153 + 0.00972461i
\(613\) −1.63324e8 −0.709035 −0.354517 0.935049i \(-0.615355\pi\)
−0.354517 + 0.935049i \(0.615355\pi\)
\(614\) 1.01884e8i 0.440149i
\(615\) 3.96505e8 2.25261e8i 1.70460 0.968413i
\(616\) 7.00790e7 0.299810
\(617\) 1.19047e8i 0.506829i 0.967358 + 0.253414i \(0.0815536\pi\)
−0.967358 + 0.253414i \(0.918446\pi\)
\(618\) −9.89975e7 1.74256e8i −0.419429 0.738281i
\(619\) −1.49505e8 −0.630354 −0.315177 0.949033i \(-0.602064\pi\)
−0.315177 + 0.949033i \(0.602064\pi\)
\(620\) 1.89782e7i 0.0796306i
\(621\) −9.35987e7 1.95274e6i −0.390836 0.00815397i
\(622\) 3.20608e8 1.33230
\(623\) 6.65508e7i 0.275226i
\(624\) −2.44595e8 + 1.38959e8i −1.00669 + 0.571915i
\(625\) −3.03096e8 −1.24148
\(626\) 2.40987e8i 0.982360i
\(627\) 3.40100e7 + 5.98645e7i 0.137976 + 0.242866i
\(628\) −1.67921e7 −0.0677993
\(629\) 6.12139e7i 0.245979i
\(630\) 7.41261e7 1.24364e8i 0.296449 0.497361i
\(631\) 2.61517e8 1.04091 0.520453 0.853890i \(-0.325763\pi\)
0.520453 + 0.853890i \(0.325763\pi\)
\(632\) 4.95520e8i 1.96295i
\(633\) 1.05008e8 5.96569e7i 0.414012 0.235207i
\(634\) −3.13983e8 −1.23208
\(635\) 3.90261e7i 0.152417i
\(636\) 4.11412e6 + 7.24168e6i 0.0159921 + 0.0281493i
\(637\) 2.37533e8 0.918978
\(638\) 2.73195e7i 0.105199i
\(639\) 6.73943e7 + 4.01699e7i 0.258298 + 0.153957i
\(640\) −2.83212e8 −1.08037
\(641\) 4.43231e7i 0.168289i −0.996454 0.0841445i \(-0.973184\pi\)
0.996454 0.0841445i \(-0.0268157\pi\)
\(642\) 2.87426e8 1.63292e8i 1.08623 0.617104i
\(643\) −4.59510e8 −1.72847 −0.864236 0.503086i \(-0.832198\pi\)
−0.864236 + 0.503086i \(0.832198\pi\)
\(644\) 2.85517e6i 0.0106899i
\(645\) 2.41237e8 + 4.24626e8i 0.899010 + 1.58244i
\(646\) −4.38105e7 −0.162510
\(647\) 1.10104e8i 0.406528i 0.979124 + 0.203264i \(0.0651549\pi\)
−0.979124 + 0.203264i \(0.934845\pi\)
\(648\) −2.45405e8 + 1.32725e8i −0.901899 + 0.487786i
\(649\) 1.45746e7 0.0533165
\(650\) 1.33737e8i 0.486979i
\(651\) 1.48297e8 8.42498e7i 0.537513 0.305370i
\(652\) 9.24508e6 0.0333555
\(653\) 2.50924e7i 0.0901161i 0.998984 + 0.0450581i \(0.0143473\pi\)
−0.998984 + 0.0450581i \(0.985653\pi\)
\(654\) 1.94696e7 + 3.42704e7i 0.0696022 + 0.122514i
\(655\) −2.84977e8 −1.01411
\(656\) 4.39664e8i 1.55743i
\(657\) −1.08742e8 + 1.82439e8i −0.383442 + 0.643312i
\(658\) 1.09966e8 0.385996
\(659\) 2.81480e8i 0.983539i 0.870725 + 0.491770i \(0.163650\pi\)
−0.870725 + 0.491770i \(0.836350\pi\)
\(660\) 9.41487e6 5.34874e6i 0.0327478 0.0186046i
\(661\) −2.43675e8 −0.843738 −0.421869 0.906657i \(-0.638626\pi\)
−0.421869 + 0.906657i \(0.638626\pi\)
\(662\) 6.53518e7i 0.225260i
\(663\) 6.16434e7 + 1.08505e8i 0.211517 + 0.372313i
\(664\) −4.19159e8 −1.43177
\(665\) 8.39548e7i 0.285483i
\(666\) 1.74111e8 + 1.03778e8i 0.589391 + 0.351303i
\(667\) 2.15411e7 0.0725923
\(668\) 7.42238e6i 0.0249008i
\(669\) −4.76253e8 + 2.70567e8i −1.59059 + 0.903642i
\(670\) −1.07377e8 −0.357017
\(671\) 1.36852e8i 0.452985i
\(672\) 8.18894e6 + 1.44142e7i 0.0269848 + 0.0474988i
\(673\) 1.82038e8 0.597197 0.298599 0.954379i \(-0.403481\pi\)
0.298599 + 0.954379i \(0.403481\pi\)
\(674\) 3.27922e8i 1.07100i
\(675\) 2.61538e6 1.25361e8i 0.00850401 0.407615i
\(676\) 8.56596e6 0.0277291
\(677\) 3.09228e8i 0.996581i −0.867010 0.498291i \(-0.833961\pi\)
0.867010 0.498291i \(-0.166039\pi\)
\(678\) −2.26725e8 + 1.28806e8i −0.727461 + 0.413283i
\(679\) 2.91811e8 0.932164
\(680\) 1.33344e8i 0.424079i
\(681\) 1.85355e8 + 3.26262e8i 0.586897 + 1.03306i
\(682\) −2.21359e8 −0.697821
\(683\) 3.68914e8i 1.15788i 0.815371 + 0.578939i \(0.196533\pi\)
−0.815371 + 0.578939i \(0.803467\pi\)
\(684\) −4.28011e6 + 7.18086e6i −0.0133748 + 0.0224392i
\(685\) −3.82527e7 −0.119012
\(686\) 2.75406e8i 0.853101i
\(687\) 4.33211e8 2.46114e8i 1.33607 0.759043i
\(688\) 4.70846e8 1.44582
\(689\) 2.38730e8i 0.729877i
\(690\) −7.31852e7 1.28821e8i −0.222780 0.392138i
\(691\) −7.67725e7 −0.232687 −0.116343 0.993209i \(-0.537117\pi\)
−0.116343 + 0.993209i \(0.537117\pi\)
\(692\) 1.70581e7i 0.0514770i
\(693\) 8.35907e7 + 4.98237e7i 0.251165 + 0.149705i
\(694\) 4.31807e8 1.29185
\(695\) 1.45192e8i 0.432503i
\(696\) 5.58167e7 3.17103e7i 0.165553 0.0940531i
\(697\) −1.95039e8 −0.576002
\(698\) 3.55050e8i 1.04405i
\(699\) 2.21800e8 + 3.90413e8i 0.649427 + 1.14312i
\(700\) −3.82405e6 −0.0111488
\(701\) 6.10355e8i 1.77186i 0.463822 + 0.885928i \(0.346478\pi\)
−0.463822 + 0.885928i \(0.653522\pi\)
\(702\) −4.13127e8 8.61900e6i −1.19419 0.0249141i
\(703\) 1.17538e8 0.338308
\(704\) 2.13116e8i 0.610799i
\(705\) 2.85915e8 1.62433e8i 0.815962 0.463561i
\(706\) 4.77070e8 1.35571
\(707\) 2.50462e6i 0.00708735i
\(708\) 874124. + 1.53864e6i 0.00246305 + 0.00433547i
\(709\) 1.80648e8 0.506869 0.253434 0.967353i \(-0.418440\pi\)
0.253434 + 0.967353i \(0.418440\pi\)
\(710\) 1.24164e8i 0.346914i
\(711\) 3.52298e8 5.91060e8i 0.980169 1.64446i
\(712\) 2.02960e8 0.562302
\(713\) 1.74539e8i 0.481530i
\(714\) −5.38393e7 + 3.05870e7i −0.147912 + 0.0840314i
\(715\) 3.10372e8 0.849111
\(716\) 6.53775e6i 0.0178110i
\(717\) 1.60022e8 + 2.81671e8i 0.434132 + 0.764160i
\(718\) −6.92056e8 −1.86968
\(719\) 2.27771e8i 0.612790i −0.951905 0.306395i \(-0.900877\pi\)
0.951905 0.306395i \(-0.0991228\pi\)
\(720\) −3.58544e8 2.13708e8i −0.960605 0.572562i
\(721\) −1.64259e8 −0.438250
\(722\) 2.81849e8i 0.748866i
\(723\) 3.79092e8 2.15369e8i 1.00307 0.569859i
\(724\) 2.88550e7 0.0760336
\(725\) 2.88509e7i 0.0757086i
\(726\) 1.21411e8 + 2.13708e8i 0.317284 + 0.558485i
\(727\) 5.76922e8 1.50146 0.750730 0.660609i \(-0.229702\pi\)
0.750730 + 0.660609i \(0.229702\pi\)
\(728\) 2.43891e8i 0.632124i
\(729\) −3.87083e8 1.61584e7i −0.999130 0.0417076i
\(730\) −3.36119e8 −0.864020
\(731\) 2.08872e8i 0.534722i
\(732\) 1.44475e7 8.20784e6i 0.0368348 0.0209264i
\(733\) −4.81312e8 −1.22212 −0.611061 0.791584i \(-0.709257\pi\)
−0.611061 + 0.791584i \(0.709257\pi\)
\(734\) 4.98147e8i 1.25971i
\(735\) 1.74096e8 + 3.06444e8i 0.438456 + 0.771771i
\(736\) 1.69649e7 0.0425517
\(737\) 7.21736e7i 0.180292i
\(738\) 3.30656e8 5.54751e8i 0.822635 1.38016i
\(739\) −5.14739e8 −1.27542 −0.637711 0.770276i \(-0.720119\pi\)
−0.637711 + 0.770276i \(0.720119\pi\)
\(740\) 1.84852e7i 0.0456172i
\(741\) −2.08342e8 + 1.18363e8i −0.512062 + 0.290911i
\(742\) −1.18456e8 −0.289965
\(743\) 2.40835e8i 0.587156i −0.955935 0.293578i \(-0.905154\pi\)
0.955935 0.293578i \(-0.0948460\pi\)
\(744\) −2.56936e8 4.52260e8i −0.623887 1.09817i
\(745\) −5.68986e8 −1.37605
\(746\) 3.32538e8i 0.800985i
\(747\) −4.99975e8 2.98007e8i −1.19946 0.714932i
\(748\) −4.63114e6 −0.0110658
\(749\) 2.70937e8i 0.644796i
\(750\) −2.50653e8 + 1.42400e8i −0.594140 + 0.337541i
\(751\) −1.53712e8 −0.362901 −0.181451 0.983400i \(-0.558079\pi\)
−0.181451 + 0.983400i \(0.558079\pi\)
\(752\) 3.17037e8i 0.745514i
\(753\) 1.04078e8 + 1.83198e8i 0.243766 + 0.429078i
\(754\) 9.50783e7 0.221803
\(755\) 7.36986e8i 1.71245i
\(756\) −246451. + 1.18129e7i −0.000570380 + 0.0273395i
\(757\) 2.38030e8 0.548712 0.274356 0.961628i \(-0.411535\pi\)
0.274356 + 0.961628i \(0.411535\pi\)
\(758\) 1.75333e8i 0.402583i
\(759\) 8.65868e7 4.91913e7i 0.198028 0.112503i
\(760\) −2.56036e8 −0.583258
\(761\) 4.89141e8i 1.10989i 0.831887 + 0.554945i \(0.187261\pi\)
−0.831887 + 0.554945i \(0.812739\pi\)
\(762\) 2.73007e7 + 4.80548e7i 0.0617034 + 0.108611i
\(763\) 3.23043e7 0.0727254
\(764\) 1.42146e7i 0.0318752i
\(765\) −9.48029e7 + 1.59054e8i −0.211757 + 0.355270i
\(766\) −3.59238e8 −0.799275
\(767\) 5.07229e7i 0.112413i
\(768\) 6.41861e7 3.64652e7i 0.141696 0.0804997i
\(769\) −4.74097e7 −0.104253 −0.0521265 0.998640i \(-0.516600\pi\)
−0.0521265 + 0.998640i \(0.516600\pi\)
\(770\) 1.54004e8i 0.337334i
\(771\) −3.80878e8 6.70423e8i −0.831042 1.46280i
\(772\) −1.62468e7 −0.0353116
\(773\) 8.97869e8i 1.94390i 0.235184 + 0.971951i \(0.424431\pi\)
−0.235184 + 0.971951i \(0.575569\pi\)
\(774\) 5.94095e8 + 3.54107e8i 1.28125 + 0.763680i
\(775\) 2.33767e8 0.502202
\(776\) 8.89934e8i 1.90446i
\(777\) 1.44444e8 8.20611e7i 0.307919 0.174934i
\(778\) 4.77855e7 0.101475
\(779\) 3.74499e8i 0.792206i
\(780\) 1.86149e7 + 3.27659e7i 0.0392262 + 0.0690460i
\(781\) −8.34569e7 −0.175190
\(782\) 6.33665e7i 0.132507i
\(783\) 8.91234e7 + 1.85937e6i 0.185655 + 0.00387329i
\(784\) 3.39800e8 0.705139
\(785\) 7.14165e8i 1.47635i
\(786\) −3.50907e8 + 1.99356e8i −0.722645 + 0.410546i
\(787\) 3.40052e8 0.697624 0.348812 0.937193i \(-0.386585\pi\)
0.348812 + 0.937193i \(0.386585\pi\)
\(788\) 1.33507e7i 0.0272851i
\(789\) −1.31436e8 2.31355e8i −0.267599 0.471029i
\(790\) 1.08895e9 2.20864
\(791\) 2.13717e8i 0.431828i
\(792\) 1.51947e8 2.54926e8i 0.305856 0.513143i
\(793\) 4.76277e8 0.955080
\(794\) 7.76955e8i 1.55215i
\(795\) −3.07988e8 + 1.74973e8i −0.612961 + 0.348233i
\(796\) 2.81546e7 0.0558225
\(797\) 6.65198e8i 1.31394i 0.753916 + 0.656971i \(0.228163\pi\)
−0.753916 + 0.656971i \(0.771837\pi\)
\(798\) −5.87306e7 1.03378e8i −0.115573 0.203432i
\(799\) −1.40641e8 −0.275721
\(800\) 2.27218e7i 0.0443784i
\(801\) 2.42092e8 + 1.44297e8i 0.471067 + 0.280776i
\(802\) 9.25327e8 1.79379
\(803\) 2.25922e8i 0.436326i
\(804\) 7.61936e6 4.32868e6i 0.0146605 0.00832889i
\(805\) −1.21430e8 −0.232777
\(806\) 7.70381e8i 1.47130i
\(807\) −4.63475e8 8.15810e8i −0.881872 1.55227i
\(808\) 7.63833e6 0.0144799
\(809\) 6.19262e8i 1.16958i −0.811186 0.584789i \(-0.801177\pi\)
0.811186 0.584789i \(-0.198823\pi\)
\(810\) −2.91674e8 5.39296e8i −0.548837 1.01478i
\(811\) 9.11717e8 1.70922 0.854609 0.519271i \(-0.173797\pi\)
0.854609 + 0.519271i \(0.173797\pi\)
\(812\) 2.71866e6i 0.00507792i
\(813\) −9.66101e7 + 5.48858e7i −0.179784 + 0.102138i
\(814\) −2.15608e8 −0.399754
\(815\) 3.93193e8i 0.726328i
\(816\) 8.81832e7 + 1.55220e8i 0.162299 + 0.285679i
\(817\) 4.01059e8 0.735431
\(818\) 6.01796e8i 1.09948i
\(819\) −1.73398e8 + 2.90915e8i −0.315640 + 0.529559i
\(820\) −5.88973e7 −0.106820
\(821\) 1.98609e7i 0.0358896i −0.999839 0.0179448i \(-0.994288\pi\)
0.999839 0.0179448i \(-0.00571231\pi\)
\(822\) −4.71025e7 + 2.67597e7i −0.0848063 + 0.0481799i
\(823\) −1.07498e9 −1.92841 −0.964204 0.265162i \(-0.914575\pi\)
−0.964204 + 0.265162i \(0.914575\pi\)
\(824\) 5.00938e8i 0.895370i
\(825\) 6.58840e7 + 1.15969e8i 0.117332 + 0.206529i
\(826\) −2.51683e7 −0.0446595
\(827\) 3.48689e8i 0.616483i 0.951308 + 0.308242i \(0.0997406\pi\)
−0.951308 + 0.308242i \(0.900259\pi\)
\(828\) 1.03862e7 + 6.19066e6i 0.0182965 + 0.0109055i
\(829\) −8.52363e8 −1.49610 −0.748051 0.663642i \(-0.769010\pi\)
−0.748051 + 0.663642i \(0.769010\pi\)
\(830\) 9.21134e8i 1.61097i
\(831\) 9.37786e8 5.32771e8i 1.63418 0.928405i
\(832\) 7.41693e8 1.28782
\(833\) 1.50738e8i 0.260789i
\(834\) −1.01569e8 1.78783e8i −0.175091 0.308197i
\(835\) 3.15674e8 0.542224
\(836\) 8.89234e6i 0.0152194i
\(837\) 1.50657e7 7.22131e8i 0.0256929 1.23151i
\(838\) 1.62014e8 0.275309
\(839\) 4.00851e8i 0.678730i 0.940655 + 0.339365i \(0.110212\pi\)
−0.940655 + 0.339365i \(0.889788\pi\)
\(840\) −3.14647e8 + 1.78756e8i −0.530866 + 0.301594i
\(841\) −2.05111e7 −0.0344828
\(842\) 3.65781e7i 0.0612752i
\(843\) −5.58896e7 9.83771e7i −0.0932929 0.164214i
\(844\) −1.55981e7 −0.0259444
\(845\) 3.64310e8i 0.603811i
\(846\) 2.38432e8 4.00024e8i 0.393780 0.660656i
\(847\) 2.01448e8 0.331522
\(848\) 3.41513e8i 0.560040i
\(849\) −7.51223e8 + 4.26782e8i −1.22757 + 0.697402i
\(850\) −8.48694e7 −0.138196
\(851\) 1.70005e8i 0.275849i
\(852\) −5.00541e6 8.81054e6i −0.00809321 0.0142457i
\(853\) 6.79694e8 1.09513 0.547566 0.836763i \(-0.315555\pi\)
0.547566 + 0.836763i \(0.315555\pi\)
\(854\) 2.36325e8i 0.379434i
\(855\) −3.05402e8 1.82033e8i −0.488622 0.291240i
\(856\) −8.26273e8 −1.31735
\(857\) 5.82064e8i 0.924759i 0.886682 + 0.462379i \(0.153004\pi\)
−0.886682 + 0.462379i \(0.846996\pi\)
\(858\) 3.82177e8 2.17121e8i 0.605066 0.343748i
\(859\) −7.84287e8 −1.23736 −0.618679 0.785644i \(-0.712332\pi\)
−0.618679 + 0.785644i \(0.712332\pi\)
\(860\) 6.30744e7i 0.0991649i
\(861\) −2.61462e8 4.60227e8i −0.409638 0.721045i
\(862\) 1.20789e8 0.188585
\(863\) 2.47974e8i 0.385810i −0.981217 0.192905i \(-0.938209\pi\)
0.981217 0.192905i \(-0.0617909\pi\)
\(864\) 7.01899e7 + 1.46436e6i 0.108826 + 0.00227043i
\(865\) −7.25482e8 −1.12093
\(866\) 5.06563e8i 0.779974i
\(867\) −4.97796e8 + 2.82806e8i −0.763825 + 0.433942i
\(868\) −2.20282e7 −0.0336837
\(869\) 7.31933e8i 1.11535i
\(870\) 6.96860e7 + 1.22661e8i 0.105825 + 0.186273i
\(871\) 2.51181e8 0.380130
\(872\) 9.85181e7i 0.148582i
\(873\) 6.32712e8 1.06152e9i 0.950962 1.59546i
\(874\) −1.21671e8 −0.182244
\(875\) 2.36273e8i 0.352687i
\(876\) 2.38505e7 1.35499e7i 0.0354801 0.0201568i
\(877\) 5.77617e8 0.856329 0.428165 0.903701i \(-0.359160\pi\)
0.428165 + 0.903701i \(0.359160\pi\)
\(878\) 4.12347e8i 0.609228i
\(879\) −2.83792e7 4.99532e7i −0.0417863 0.0735523i
\(880\) 4.43999e8 0.651529
\(881\) 6.53462e8i 0.955636i 0.878459 + 0.477818i \(0.158572\pi\)
−0.878459 + 0.477818i \(0.841428\pi\)
\(882\) 4.28746e8 + 2.55551e8i 0.624876 + 0.372453i
\(883\) −1.13453e8 −0.164791 −0.0823957 0.996600i \(-0.526257\pi\)
−0.0823957 + 0.996600i \(0.526257\pi\)
\(884\) 1.61174e7i 0.0233313i
\(885\) −6.54382e7 + 3.71765e7i −0.0944064 + 0.0536338i
\(886\) −6.28534e8 −0.903707
\(887\) 3.07529e8i 0.440671i 0.975424 + 0.220336i \(0.0707152\pi\)
−0.975424 + 0.220336i \(0.929285\pi\)
\(888\) −2.50261e8 4.40510e8i −0.357400 0.629096i
\(889\) 4.52979e7 0.0644722
\(890\) 4.46020e8i 0.632680i
\(891\) 3.62487e8 1.96049e8i 0.512459 0.277160i
\(892\) 7.07432e7 0.0996759
\(893\) 2.70047e8i 0.379214i
\(894\) −7.00622e8 + 3.98035e8i −0.980554 + 0.557069i
\(895\) −2.78050e8 −0.387841
\(896\) 3.28727e8i 0.456994i
\(897\) 1.71197e8 + 3.01342e8i 0.237203 + 0.417525i
\(898\) 4.47078e8 0.617383
\(899\) 1.66194e8i 0.228736i
\(900\) −8.29140e6 + 1.39107e7i −0.0113737 + 0.0190819i
\(901\) 1.51498e8 0.207125
\(902\) 6.86970e8i 0.936091i
\(903\) 4.92867e8 2.80006e8i 0.669371 0.380280i
\(904\) 6.51773e8 0.882249
\(905\) 1.22720e9i 1.65566i
\(906\) 5.15559e8 + 9.07489e8i 0.693257 + 1.22027i
\(907\) −2.29374e7 −0.0307413 −0.0153707 0.999882i \(-0.504893\pi\)
−0.0153707 + 0.999882i \(0.504893\pi\)
\(908\) 4.84633e7i 0.0647374i
\(909\) 9.11105e6 + 5.43058e6i 0.0121304 + 0.00723028i
\(910\) −5.35970e8 −0.711240
\(911\) 1.46929e8i 0.194336i 0.995268 + 0.0971679i \(0.0309784\pi\)
−0.995268 + 0.0971679i \(0.969022\pi\)
\(912\) −2.98041e8 + 1.69322e8i −0.392909 + 0.223218i
\(913\) 6.19139e8 0.813534
\(914\) 7.50747e8i 0.983229i
\(915\) 3.49079e8 + 6.14450e8i 0.455680 + 0.802090i
\(916\) −6.43497e7 −0.0837259
\(917\) 3.30776e8i 0.428969i
\(918\) −5.46962e6 + 2.62170e8i −0.00707016 + 0.338887i
\(919\) −4.76218e8 −0.613563 −0.306782 0.951780i \(-0.599252\pi\)
−0.306782 + 0.951780i \(0.599252\pi\)
\(920\) 3.70325e8i 0.475576i
\(921\) −3.07472e8 + 1.74680e8i −0.393574 + 0.223596i
\(922\) 4.47438e8 0.570873
\(923\) 2.90449e8i 0.369373i
\(924\) −6.20833e6 1.09279e7i −0.00786971 0.0138523i
\(925\) 2.27694e8 0.287691
\(926\) 4.14880e8i 0.522504i
\(927\) −3.56150e8 + 5.97523e8i −0.447088 + 0.750093i
\(928\) −1.61537e7 −0.0202129
\(929\) 7.42276e8i 0.925802i −0.886410 0.462901i \(-0.846808\pi\)
0.886410 0.462901i \(-0.153192\pi\)
\(930\) 9.93876e8 5.64637e8i 1.23562 0.701973i
\(931\) 2.89436e8 0.358677
\(932\) 5.79924e7i 0.0716347i
\(933\) −5.49682e8 9.67552e8i −0.676810 1.19132i
\(934\) −1.51216e9 −1.85591
\(935\) 1.96962e8i 0.240962i
\(936\) 8.87202e8 + 5.28811e8i 1.08192 + 0.644871i
\(937\) −1.13544e8 −0.138021 −0.0690105 0.997616i \(-0.521984\pi\)
−0.0690105 + 0.997616i \(0.521984\pi\)
\(938\) 1.24634e8i 0.151018i
\(939\) −7.27267e8 + 4.13172e8i −0.878409 + 0.499039i
\(940\) −4.24702e7 −0.0511329
\(941\) 1.11849e9i 1.34235i 0.741300 + 0.671174i \(0.234209\pi\)
−0.741300 + 0.671174i \(0.765791\pi\)
\(942\) −4.99595e8 8.79389e8i −0.597675 1.05203i
\(943\) −5.41667e8 −0.645948
\(944\) 7.25610e7i 0.0862556i
\(945\) −5.02402e8 1.04815e7i −0.595327 0.0124202i
\(946\) −7.35691e8 −0.869005
\(947\) 6.36992e8i 0.750040i 0.927017 + 0.375020i \(0.122364\pi\)
−0.927017 + 0.375020i \(0.877636\pi\)
\(948\) −7.72700e7 + 4.38984e7i −0.0906956 + 0.0515256i
\(949\) 7.86259e8 0.919956
\(950\) 1.62959e8i 0.190068i
\(951\) 5.38324e8 + 9.47560e8i 0.625896 + 1.10170i
\(952\) 1.54773e8 0.179385
\(953\) 1.42387e9i 1.64510i −0.568695 0.822548i \(-0.692552\pi\)
0.568695 0.822548i \(-0.307448\pi\)
\(954\) −2.56839e8 + 4.30907e8i −0.295813 + 0.496294i
\(955\) −6.04545e8 −0.694094
\(956\) 4.18397e7i 0.0478867i
\(957\) −8.24467e7 + 4.68393e7i −0.0940671 + 0.0534410i
\(958\) −9.93528e7 −0.113001
\(959\) 4.44002e7i 0.0503418i
\(960\) 5.43611e8 + 9.56866e8i 0.614433 + 1.08153i
\(961\) 4.59095e8 0.517288
\(962\) 7.50367e8i 0.842846i
\(963\) −9.85584e8 5.87451e8i −1.10361 0.657799i
\(964\) −5.63108e7 −0.0628580
\(965\) 6.90977e8i 0.768921i
\(966\) −1.49524e8 + 8.49467e7i −0.165874 + 0.0942357i
\(967\) −5.36219e8 −0.593011 −0.296506 0.955031i \(-0.595821\pi\)
−0.296506 + 0.955031i \(0.595821\pi\)
\(968\) 6.14354e8i 0.677318i
\(969\) 7.51130e7 + 1.32214e8i 0.0825551 + 0.145314i
\(970\) 1.95570e9 2.14283
\(971\) 4.06107e7i 0.0443591i −0.999754 0.0221795i \(-0.992939\pi\)
0.999754 0.0221795i \(-0.00706054\pi\)
\(972\) 4.24373e7 + 2.65095e7i 0.0462114 + 0.0288671i
\(973\) −1.68526e8 −0.182948
\(974\) 4.59728e8i 0.497536i
\(975\) −4.03599e8 + 2.29291e8i −0.435448 + 0.247385i
\(976\) 6.81332e8 0.732840
\(977\) 1.13933e9i 1.22170i 0.791745 + 0.610851i \(0.209173\pi\)
−0.791745 + 0.610851i \(0.790827\pi\)
\(978\) 2.75058e8 + 4.84159e8i 0.294041 + 0.517573i
\(979\) −2.99792e8 −0.319500
\(980\) 4.55195e7i 0.0483636i
\(981\) 7.00429e7 1.17513e8i 0.0741920 0.124474i
\(982\) 6.33068e8 0.668522
\(983\) 1.80605e9i 1.90138i −0.310144 0.950690i \(-0.600377\pi\)
0.310144 0.950690i \(-0.399623\pi\)
\(984\) −1.40355e9 + 7.97380e8i −1.47314 + 0.836912i
\(985\) 5.67806e8 0.594143
\(986\) 6.03367e7i 0.0629435i
\(987\) −1.88537e8 3.31864e8i −0.196086 0.345151i
\(988\) 3.09474e7 0.0320888
\(989\) 5.80083e8i 0.599655i
\(990\) 5.60220e8 + 3.33916e8i 0.577369 + 0.344137i
\(991\) −1.44945e9 −1.48930 −0.744650 0.667455i \(-0.767384\pi\)
−0.744650 + 0.667455i \(0.767384\pi\)
\(992\) 1.30887e8i 0.134079i
\(993\) 1.97223e8 1.12046e8i 0.201423 0.114432i
\(994\) 1.44119e8 0.146744
\(995\) 1.19741e9i 1.21555i
\(996\) 3.71334e7 + 6.53624e7i 0.0375826 + 0.0661531i
\(997\) −9.23758e8 −0.932122 −0.466061 0.884753i \(-0.654327\pi\)
−0.466061 + 0.884753i \(0.654327\pi\)
\(998\) 5.65292e8i 0.568697i
\(999\) 1.46743e7 7.03371e8i 0.0147184 0.705485i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.7.b.a.59.17 56
3.2 odd 2 inner 87.7.b.a.59.40 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.7.b.a.59.17 56 1.1 even 1 trivial
87.7.b.a.59.40 yes 56 3.2 odd 2 inner