Properties

Label 87.7.b.a.59.16
Level $87$
Weight $7$
Character 87.59
Analytic conductor $20.015$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [87,7,Mod(59,87)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(87, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("87.59"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 87.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.0147052749\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 59.16
Character \(\chi\) \(=\) 87.59
Dual form 87.7.b.a.59.41

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.21957i q^{2} +(1.43004 - 26.9621i) q^{3} -3.56134 q^{4} +27.4201i q^{5} +(-221.617 - 11.7543i) q^{6} +526.273 q^{7} -496.780i q^{8} +(-724.910 - 77.1139i) q^{9} +225.382 q^{10} -993.883i q^{11} +(-5.09287 + 96.0213i) q^{12} -10.0183 q^{13} -4325.74i q^{14} +(739.304 + 39.2119i) q^{15} -4311.24 q^{16} -9477.19i q^{17} +(-633.843 + 5958.45i) q^{18} -4564.09 q^{19} -97.6524i q^{20} +(752.593 - 14189.4i) q^{21} -8169.29 q^{22} +19187.9i q^{23} +(-13394.2 - 710.416i) q^{24} +14873.1 q^{25} +82.3464i q^{26} +(-3115.80 + 19434.8i) q^{27} -1874.24 q^{28} +4528.92i q^{29} +(322.305 - 6076.76i) q^{30} +14172.3 q^{31} +3642.66i q^{32} +(-26797.2 - 1421.29i) q^{33} -77898.4 q^{34} +14430.5i q^{35} +(2581.65 + 274.629i) q^{36} -47186.1 q^{37} +37514.9i q^{38} +(-14.3266 + 270.115i) q^{39} +13621.8 q^{40} +8542.42i q^{41} +(-116631. - 6185.99i) q^{42} -72470.5 q^{43} +3539.56i q^{44} +(2114.47 - 19877.1i) q^{45} +157716. q^{46} -64474.3i q^{47} +(-6165.26 + 116240. i) q^{48} +159314. q^{49} -122251. i q^{50} +(-255525. - 13552.8i) q^{51} +35.6787 q^{52} +195048. i q^{53} +(159746. + 25610.6i) q^{54} +27252.4 q^{55} -261442. i q^{56} +(-6526.84 + 123058. i) q^{57} +37225.8 q^{58} -122318. i q^{59} +(-2632.91 - 139.647i) q^{60} +18733.9 q^{61} -116490. i q^{62} +(-381501. - 40583.0i) q^{63} -245978. q^{64} -274.704i q^{65} +(-11682.4 + 220261. i) q^{66} -45066.5 q^{67} +33751.5i q^{68} +(517345. + 27439.5i) q^{69} +118612. q^{70} -352226. i q^{71} +(-38308.6 + 360121. i) q^{72} +733499. q^{73} +387849. i q^{74} +(21269.2 - 401011. i) q^{75} +16254.3 q^{76} -523054. i q^{77} +(2220.23 + 117.759i) q^{78} +791148. q^{79} -118215. i q^{80} +(519548. + 111801. i) q^{81} +70215.0 q^{82} -533839. i q^{83} +(-2680.24 + 50533.4i) q^{84} +259866. q^{85} +595676. i q^{86} +(122109. + 6476.55i) q^{87} -493741. q^{88} +69045.2i q^{89} +(-163381. - 17380.1i) q^{90} -5272.38 q^{91} -68334.5i q^{92} +(20266.9 - 382114. i) q^{93} -529951. q^{94} -125148. i q^{95} +(98213.7 + 5209.15i) q^{96} -1.39339e6 q^{97} -1.30950e6i q^{98} +(-76642.2 + 720476. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 52 q^{3} - 1924 q^{4} - 160 q^{6} + 160 q^{7} - 1060 q^{9} - 3588 q^{10} - 2166 q^{12} - 1400 q^{13} - 6240 q^{15} + 56588 q^{16} - 5978 q^{18} + 25000 q^{19} + 7520 q^{21} + 20970 q^{22} + 1238 q^{24}+ \cdots + 4793544 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.21957i 1.02745i −0.857956 0.513723i \(-0.828266\pi\)
0.857956 0.513723i \(-0.171734\pi\)
\(3\) 1.43004 26.9621i 0.0529645 0.998596i
\(4\) −3.56134 −0.0556460
\(5\) 27.4201i 0.219361i 0.993967 + 0.109680i \(0.0349828\pi\)
−0.993967 + 0.109680i \(0.965017\pi\)
\(6\) −221.617 11.7543i −1.02600 0.0544182i
\(7\) 526.273 1.53432 0.767162 0.641453i \(-0.221668\pi\)
0.767162 + 0.641453i \(0.221668\pi\)
\(8\) 496.780i 0.970273i
\(9\) −724.910 77.1139i −0.994390 0.105780i
\(10\) 225.382 0.225382
\(11\) 993.883i 0.746719i −0.927687 0.373359i \(-0.878206\pi\)
0.927687 0.373359i \(-0.121794\pi\)
\(12\) −5.09287 + 96.0213i −0.00294726 + 0.0555679i
\(13\) −10.0183 −0.00456001 −0.00228000 0.999997i \(-0.500726\pi\)
−0.00228000 + 0.999997i \(0.500726\pi\)
\(14\) 4325.74i 1.57644i
\(15\) 739.304 + 39.2119i 0.219053 + 0.0116183i
\(16\) −4311.24 −1.05255
\(17\) 9477.19i 1.92900i −0.264080 0.964501i \(-0.585068\pi\)
0.264080 0.964501i \(-0.414932\pi\)
\(18\) −633.843 + 5958.45i −0.108684 + 1.02168i
\(19\) −4564.09 −0.665417 −0.332708 0.943030i \(-0.607962\pi\)
−0.332708 + 0.943030i \(0.607962\pi\)
\(20\) 97.6524i 0.0122066i
\(21\) 752.593 14189.4i 0.0812647 1.53217i
\(22\) −8169.29 −0.767214
\(23\) 19187.9i 1.57704i 0.615008 + 0.788521i \(0.289153\pi\)
−0.615008 + 0.788521i \(0.710847\pi\)
\(24\) −13394.2 710.416i −0.968911 0.0513901i
\(25\) 14873.1 0.951881
\(26\) 82.3464i 0.00468516i
\(27\) −3115.80 + 19434.8i −0.158299 + 0.987391i
\(28\) −1874.24 −0.0853790
\(29\) 4528.92i 0.185695i
\(30\) 322.305 6076.76i 0.0119372 0.225065i
\(31\) 14172.3 0.475723 0.237861 0.971299i \(-0.423554\pi\)
0.237861 + 0.971299i \(0.423554\pi\)
\(32\) 3642.66i 0.111165i
\(33\) −26797.2 1421.29i −0.745671 0.0395496i
\(34\) −77898.4 −1.98195
\(35\) 14430.5i 0.336571i
\(36\) 2581.65 + 274.629i 0.0553338 + 0.00588625i
\(37\) −47186.1 −0.931556 −0.465778 0.884902i \(-0.654225\pi\)
−0.465778 + 0.884902i \(0.654225\pi\)
\(38\) 37514.9i 0.683680i
\(39\) −14.3266 + 270.115i −0.000241519 + 0.00455361i
\(40\) 13621.8 0.212840
\(41\) 8542.42i 0.123945i 0.998078 + 0.0619726i \(0.0197391\pi\)
−0.998078 + 0.0619726i \(0.980261\pi\)
\(42\) −116631. 6185.99i −1.57422 0.0834952i
\(43\) −72470.5 −0.911498 −0.455749 0.890108i \(-0.650629\pi\)
−0.455749 + 0.890108i \(0.650629\pi\)
\(44\) 3539.56i 0.0415519i
\(45\) 2114.47 19877.1i 0.0232041 0.218130i
\(46\) 157716. 1.62033
\(47\) 64474.3i 0.621002i −0.950573 0.310501i \(-0.899503\pi\)
0.950573 0.310501i \(-0.100497\pi\)
\(48\) −6165.26 + 116240.i −0.0557478 + 1.05107i
\(49\) 159314. 1.35415
\(50\) 122251.i 0.978006i
\(51\) −255525. 13552.8i −1.92629 0.102169i
\(52\) 35.6787 0.000253746
\(53\) 195048.i 1.31013i 0.755573 + 0.655064i \(0.227358\pi\)
−0.755573 + 0.655064i \(0.772642\pi\)
\(54\) 159746. + 25610.6i 1.01449 + 0.162644i
\(55\) 27252.4 0.163801
\(56\) 261442.i 1.48871i
\(57\) −6526.84 + 123058.i −0.0352435 + 0.664483i
\(58\) 37225.8 0.190792
\(59\) 122318.i 0.595574i −0.954632 0.297787i \(-0.903752\pi\)
0.954632 0.297787i \(-0.0962485\pi\)
\(60\) −2632.91 139.647i −0.0121894 0.000646514i
\(61\) 18733.9 0.0825349 0.0412675 0.999148i \(-0.486860\pi\)
0.0412675 + 0.999148i \(0.486860\pi\)
\(62\) 116490.i 0.488779i
\(63\) −381501. 40583.0i −1.52572 0.162301i
\(64\) −245978. −0.938333
\(65\) 274.704i 0.00100029i
\(66\) −11682.4 + 220261.i −0.0406351 + 0.766137i
\(67\) −45066.5 −0.149841 −0.0749203 0.997190i \(-0.523870\pi\)
−0.0749203 + 0.997190i \(0.523870\pi\)
\(68\) 33751.5i 0.107341i
\(69\) 517345. + 27439.5i 1.57483 + 0.0835272i
\(70\) 118612. 0.345808
\(71\) 352226.i 0.984117i −0.870562 0.492058i \(-0.836245\pi\)
0.870562 0.492058i \(-0.163755\pi\)
\(72\) −38308.6 + 360121.i −0.102636 + 0.964829i
\(73\) 733499. 1.88552 0.942759 0.333474i \(-0.108221\pi\)
0.942759 + 0.333474i \(0.108221\pi\)
\(74\) 387849.i 0.957124i
\(75\) 21269.2 401011.i 0.0504159 0.950545i
\(76\) 16254.3 0.0370278
\(77\) 523054.i 1.14571i
\(78\) 2220.23 + 117.759i 0.00467858 + 0.000248147i
\(79\) 791148. 1.60463 0.802317 0.596898i \(-0.203600\pi\)
0.802317 + 0.596898i \(0.203600\pi\)
\(80\) 118215.i 0.230888i
\(81\) 519548. + 111801.i 0.977621 + 0.210374i
\(82\) 70215.0 0.127347
\(83\) 533839.i 0.933632i −0.884355 0.466816i \(-0.845401\pi\)
0.884355 0.466816i \(-0.154599\pi\)
\(84\) −2680.24 + 50533.4i −0.00452206 + 0.0852591i
\(85\) 259866. 0.423148
\(86\) 595676.i 0.936516i
\(87\) 122109. + 6476.55i 0.185435 + 0.00983527i
\(88\) −493741. −0.724521
\(89\) 69045.2i 0.0979407i 0.998800 + 0.0489703i \(0.0155940\pi\)
−0.998800 + 0.0489703i \(0.984406\pi\)
\(90\) −163381. 17380.1i −0.224117 0.0238410i
\(91\) −5272.38 −0.00699653
\(92\) 68334.5i 0.0877560i
\(93\) 20266.9 382114.i 0.0251964 0.475055i
\(94\) −529951. −0.638046
\(95\) 125148.i 0.145966i
\(96\) 98213.7 + 5209.15i 0.111009 + 0.00588780i
\(97\) −1.39339e6 −1.52672 −0.763359 0.645974i \(-0.776451\pi\)
−0.763359 + 0.645974i \(0.776451\pi\)
\(98\) 1.30950e6i 1.39132i
\(99\) −76642.2 + 720476.i −0.0789882 + 0.742529i
\(100\) −52968.3 −0.0529683
\(101\) 645302.i 0.626324i 0.949700 + 0.313162i \(0.101388\pi\)
−0.949700 + 0.313162i \(0.898612\pi\)
\(102\) −111398. + 2.10030e6i −0.104973 + 1.97916i
\(103\) 927503. 0.848797 0.424398 0.905476i \(-0.360486\pi\)
0.424398 + 0.905476i \(0.360486\pi\)
\(104\) 4976.91i 0.00442445i
\(105\) 389076. + 20636.2i 0.336098 + 0.0178263i
\(106\) 1.60321e6 1.34609
\(107\) 2.21917e6i 1.81150i 0.423813 + 0.905750i \(0.360692\pi\)
−0.423813 + 0.905750i \(0.639308\pi\)
\(108\) 11096.4 69214.0i 0.00880872 0.0549443i
\(109\) 1.34130e6 1.03573 0.517865 0.855463i \(-0.326727\pi\)
0.517865 + 0.855463i \(0.326727\pi\)
\(110\) 224003.i 0.168297i
\(111\) −67478.1 + 1.27224e6i −0.0493394 + 0.930248i
\(112\) −2.26889e6 −1.61495
\(113\) 2.16316e6i 1.49918i −0.661904 0.749589i \(-0.730251\pi\)
0.661904 0.749589i \(-0.269749\pi\)
\(114\) 1.01148e6 + 53647.9i 0.682720 + 0.0362108i
\(115\) −526134. −0.345941
\(116\) 16129.0i 0.0103332i
\(117\) 7262.39 + 772.553i 0.00453442 + 0.000482359i
\(118\) −1.00540e6 −0.611920
\(119\) 4.98759e6i 2.95971i
\(120\) 19479.7 367271.i 0.0112730 0.212541i
\(121\) 783758. 0.442411
\(122\) 153984.i 0.0848002i
\(123\) 230322. + 12216.0i 0.123771 + 0.00656469i
\(124\) −50472.2 −0.0264720
\(125\) 836263.i 0.428166i
\(126\) −333575. + 3.13577e6i −0.166756 + 1.56759i
\(127\) −3.35966e6 −1.64015 −0.820076 0.572255i \(-0.806069\pi\)
−0.820076 + 0.572255i \(0.806069\pi\)
\(128\) 2.25497e6i 1.07525i
\(129\) −103636. + 1.95396e6i −0.0482771 + 0.910219i
\(130\) −2257.95 −0.00102774
\(131\) 160070.i 0.0712028i 0.999366 + 0.0356014i \(0.0113347\pi\)
−0.999366 + 0.0356014i \(0.988665\pi\)
\(132\) 95433.9 + 5061.72i 0.0414936 + 0.00220078i
\(133\) −2.40196e6 −1.02096
\(134\) 370427.i 0.153953i
\(135\) −532905. 85435.7i −0.216595 0.0347247i
\(136\) −4.70807e6 −1.87166
\(137\) 1.11773e6i 0.434684i −0.976096 0.217342i \(-0.930261\pi\)
0.976096 0.217342i \(-0.0697386\pi\)
\(138\) 225541. 4.25235e6i 0.0858198 1.61805i
\(139\) 348897. 0.129913 0.0649566 0.997888i \(-0.479309\pi\)
0.0649566 + 0.997888i \(0.479309\pi\)
\(140\) 51391.9i 0.0187288i
\(141\) −1.73836e6 92200.9i −0.620130 0.0328911i
\(142\) −2.89515e6 −1.01113
\(143\) 9957.05i 0.00340504i
\(144\) 3.12526e6 + 332457.i 1.04664 + 0.111339i
\(145\) −124184. −0.0407343
\(146\) 6.02905e6i 1.93727i
\(147\) 227826. 4.29545e6i 0.0717219 1.35225i
\(148\) 168046. 0.0518373
\(149\) 4.09116e6i 1.23677i −0.785877 0.618383i \(-0.787788\pi\)
0.785877 0.618383i \(-0.212212\pi\)
\(150\) −3.29614e6 174824.i −0.976634 0.0517996i
\(151\) 5.39153e6 1.56596 0.782981 0.622046i \(-0.213698\pi\)
0.782981 + 0.622046i \(0.213698\pi\)
\(152\) 2.26735e6i 0.645636i
\(153\) −730823. + 6.87011e6i −0.204051 + 1.91818i
\(154\) −4.29928e6 −1.17715
\(155\) 388605.i 0.104355i
\(156\) 51.0221 961.973i 1.34395e−5 0.000253390i
\(157\) 5.24153e6 1.35444 0.677219 0.735782i \(-0.263185\pi\)
0.677219 + 0.735782i \(0.263185\pi\)
\(158\) 6.50289e6i 1.64868i
\(159\) 5.25890e6 + 278927.i 1.30829 + 0.0693903i
\(160\) −99882.1 −0.0243853
\(161\) 1.00981e7i 2.41969i
\(162\) 918958. 4.27046e6i 0.216148 1.00445i
\(163\) 3.41116e6 0.787660 0.393830 0.919183i \(-0.371150\pi\)
0.393830 + 0.919183i \(0.371150\pi\)
\(164\) 30422.5i 0.00689705i
\(165\) 38972.1 734782.i 0.00867564 0.163571i
\(166\) −4.38792e6 −0.959257
\(167\) 587384.i 0.126117i −0.998010 0.0630584i \(-0.979915\pi\)
0.998010 0.0630584i \(-0.0200854\pi\)
\(168\) −7.04902e6 373873.i −1.48662 0.0788490i
\(169\) −4.82671e6 −0.999979
\(170\) 2.13598e6i 0.434762i
\(171\) 3.30856e6 + 351955.i 0.661683 + 0.0703880i
\(172\) 258092. 0.0507212
\(173\) 6.26741e6i 1.21046i 0.796051 + 0.605229i \(0.206918\pi\)
−0.796051 + 0.605229i \(0.793082\pi\)
\(174\) 53234.5 1.00369e6i 0.0101052 0.190524i
\(175\) 7.82733e6 1.46049
\(176\) 4.28487e6i 0.785959i
\(177\) −3.29796e6 174920.i −0.594738 0.0315443i
\(178\) 567522. 0.100629
\(179\) 7.15708e6i 1.24789i 0.781468 + 0.623946i \(0.214471\pi\)
−0.781468 + 0.623946i \(0.785529\pi\)
\(180\) −7530.36 + 70789.2i −0.00129121 + 0.0121381i
\(181\) 7.02443e6 1.18461 0.592305 0.805714i \(-0.298218\pi\)
0.592305 + 0.805714i \(0.298218\pi\)
\(182\) 43336.7i 0.00718856i
\(183\) 26790.2 505104.i 0.00437142 0.0824191i
\(184\) 9.53214e6 1.53016
\(185\) 1.29385e6i 0.204347i
\(186\) −3.14081e6 166585.i −0.488093 0.0258880i
\(187\) −9.41921e6 −1.44042
\(188\) 229615.i 0.0345562i
\(189\) −1.63976e6 + 1.02280e7i −0.242882 + 1.51498i
\(190\) −1.02866e6 −0.149973
\(191\) 1.05522e6i 0.151441i −0.997129 0.0757204i \(-0.975874\pi\)
0.997129 0.0757204i \(-0.0241257\pi\)
\(192\) −351760. + 6.63210e6i −0.0496984 + 0.937016i
\(193\) 5.19727e6 0.722942 0.361471 0.932383i \(-0.382275\pi\)
0.361471 + 0.932383i \(0.382275\pi\)
\(194\) 1.14531e7i 1.56862i
\(195\) −7406.59 392.838i −0.000998883 5.29797e-5i
\(196\) −567373. −0.0753530
\(197\) 4.27750e6i 0.559488i −0.960075 0.279744i \(-0.909750\pi\)
0.960075 0.279744i \(-0.0902496\pi\)
\(198\) 5.92200e6 + 629966.i 0.762909 + 0.0811561i
\(199\) 9.29138e6 1.17902 0.589510 0.807761i \(-0.299321\pi\)
0.589510 + 0.807761i \(0.299321\pi\)
\(200\) 7.38867e6i 0.923584i
\(201\) −64447.0 + 1.21509e6i −0.00793623 + 0.149630i
\(202\) 5.30410e6 0.643514
\(203\) 2.38345e6i 0.284917i
\(204\) 910011. + 48266.1i 0.107191 + 0.00568527i
\(205\) −234234. −0.0271887
\(206\) 7.62368e6i 0.872093i
\(207\) 1.47965e6 1.39095e7i 0.166820 1.56819i
\(208\) 43191.5 0.00479963
\(209\) 4.53617e6i 0.496879i
\(210\) 169621. 3.19804e6i 0.0183156 0.345323i
\(211\) −1.86792e6 −0.198844 −0.0994219 0.995045i \(-0.531699\pi\)
−0.0994219 + 0.995045i \(0.531699\pi\)
\(212\) 694633.i 0.0729034i
\(213\) −9.49676e6 503698.i −0.982735 0.0521233i
\(214\) 1.82406e7 1.86122
\(215\) 1.98715e6i 0.199947i
\(216\) 9.65483e6 + 1.54787e6i 0.958039 + 0.153594i
\(217\) 7.45848e6 0.729913
\(218\) 1.10249e7i 1.06416i
\(219\) 1.04893e6 1.97767e7i 0.0998656 1.88287i
\(220\) −97055.1 −0.00911486
\(221\) 94945.6i 0.00879626i
\(222\) 1.04572e7 + 554641.i 0.955780 + 0.0506936i
\(223\) 9.29137e6 0.837848 0.418924 0.908021i \(-0.362407\pi\)
0.418924 + 0.908021i \(0.362407\pi\)
\(224\) 1.91703e6i 0.170563i
\(225\) −1.07817e7 1.14693e6i −0.946540 0.100690i
\(226\) −1.77802e7 −1.54032
\(227\) 1.45920e7i 1.24749i 0.781628 + 0.623744i \(0.214389\pi\)
−0.781628 + 0.623744i \(0.785611\pi\)
\(228\) 23244.3 438250.i 0.00196116 0.0369758i
\(229\) −145812. −0.0121419 −0.00607094 0.999982i \(-0.501932\pi\)
−0.00607094 + 0.999982i \(0.501932\pi\)
\(230\) 4.32459e6i 0.355436i
\(231\) −1.41026e7 747989.i −1.14410 0.0606819i
\(232\) 2.24988e6 0.180175
\(233\) 6.52761e6i 0.516044i −0.966139 0.258022i \(-0.916929\pi\)
0.966139 0.258022i \(-0.0830707\pi\)
\(234\) 6350.05 59693.7i 0.000495598 0.00465887i
\(235\) 1.76789e6 0.136224
\(236\) 435618.i 0.0331413i
\(237\) 1.13137e6 2.13310e7i 0.0849887 1.60238i
\(238\) −4.09958e7 −3.04095
\(239\) 6.85727e6i 0.502294i 0.967949 + 0.251147i \(0.0808077\pi\)
−0.967949 + 0.251147i \(0.919192\pi\)
\(240\) −3.18732e6 169052.i −0.230564 0.0122289i
\(241\) 413659. 0.0295523 0.0147762 0.999891i \(-0.495296\pi\)
0.0147762 + 0.999891i \(0.495296\pi\)
\(242\) 6.44215e6i 0.454554i
\(243\) 3.75737e6 1.38482e7i 0.261858 0.965106i
\(244\) −66717.7 −0.00459274
\(245\) 4.36842e6i 0.297048i
\(246\) 100410. 1.89314e6i 0.00674487 0.127168i
\(247\) 45724.6 0.00303430
\(248\) 7.04049e6i 0.461581i
\(249\) −1.43934e7 763412.i −0.932321 0.0494494i
\(250\) 6.87372e6 0.439918
\(251\) 5.84846e6i 0.369845i −0.982753 0.184923i \(-0.940797\pi\)
0.982753 0.184923i \(-0.0592034\pi\)
\(252\) 1.35865e6 + 144530.i 0.0848999 + 0.00903142i
\(253\) 1.90705e7 1.17761
\(254\) 2.76150e7i 1.68517i
\(255\) 371619. 7.00652e6i 0.0224118 0.422554i
\(256\) 2.79224e6 0.166431
\(257\) 1.29196e7i 0.761113i 0.924758 + 0.380556i \(0.124268\pi\)
−0.924758 + 0.380556i \(0.875732\pi\)
\(258\) 1.60607e7 + 851842.i 0.935201 + 0.0496021i
\(259\) −2.48328e7 −1.42931
\(260\) 978.315i 5.56620e-5i
\(261\) 349243. 3.28306e6i 0.0196429 0.184653i
\(262\) 1.31571e6 0.0731570
\(263\) 7.82292e6i 0.430033i 0.976610 + 0.215016i \(0.0689805\pi\)
−0.976610 + 0.215016i \(0.931020\pi\)
\(264\) −706070. + 1.33123e7i −0.0383739 + 0.723504i
\(265\) −5.34824e6 −0.287391
\(266\) 1.97431e7i 1.04899i
\(267\) 1.86160e6 + 98737.5i 0.0978032 + 0.00518738i
\(268\) 160497. 0.00833802
\(269\) 121998.i 0.00626754i −0.999995 0.00313377i \(-0.999002\pi\)
0.999995 0.00313377i \(-0.000997511\pi\)
\(270\) −702245. + 4.38025e6i −0.0356777 + 0.222540i
\(271\) −1.40479e7 −0.705834 −0.352917 0.935655i \(-0.614810\pi\)
−0.352917 + 0.935655i \(0.614810\pi\)
\(272\) 4.08584e7i 2.03037i
\(273\) −7539.72 + 142154.i −0.000370568 + 0.00698671i
\(274\) −9.18722e6 −0.446614
\(275\) 1.47822e7i 0.710787i
\(276\) −1.84244e6 97721.3i −0.0876328 0.00464795i
\(277\) 2.84627e7 1.33917 0.669586 0.742734i \(-0.266471\pi\)
0.669586 + 0.742734i \(0.266471\pi\)
\(278\) 2.86779e6i 0.133479i
\(279\) −1.02736e7 1.09288e6i −0.473054 0.0503221i
\(280\) 7.16877e6 0.326566
\(281\) 2.60655e7i 1.17475i −0.809314 0.587376i \(-0.800161\pi\)
0.809314 0.587376i \(-0.199839\pi\)
\(282\) −757852. + 1.42886e7i −0.0337938 + 0.637150i
\(283\) 6.00133e6 0.264782 0.132391 0.991198i \(-0.457735\pi\)
0.132391 + 0.991198i \(0.457735\pi\)
\(284\) 1.25440e6i 0.0547621i
\(285\) −3.37425e6 178967.i −0.145762 0.00773104i
\(286\) 81842.7 0.00349850
\(287\) 4.49565e6i 0.190172i
\(288\) 280899. 2.64060e6i 0.0117591 0.110541i
\(289\) −6.56795e7 −2.72105
\(290\) 1.02074e6i 0.0418523i
\(291\) −1.99261e6 + 3.75688e7i −0.0808619 + 1.52458i
\(292\) −2.61224e6 −0.104922
\(293\) 2.32761e7i 0.925354i 0.886527 + 0.462677i \(0.153111\pi\)
−0.886527 + 0.462677i \(0.846889\pi\)
\(294\) −3.53068e7 1.87264e6i −1.38936 0.0736904i
\(295\) 3.35398e6 0.130646
\(296\) 2.34411e7i 0.903864i
\(297\) 1.93159e7 + 3.09674e6i 0.737304 + 0.118205i
\(298\) −3.36275e7 −1.27071
\(299\) 192230.i 0.00719132i
\(300\) −75746.9 + 1.42814e6i −0.00280544 + 0.0528940i
\(301\) −3.81393e7 −1.39853
\(302\) 4.43161e7i 1.60894i
\(303\) 1.73987e7 + 922809.i 0.625444 + 0.0331729i
\(304\) 1.96769e7 0.700384
\(305\) 513685.i 0.0181049i
\(306\) 5.64693e7 + 6.00705e6i 1.97083 + 0.209651i
\(307\) −4.64492e7 −1.60532 −0.802662 0.596434i \(-0.796584\pi\)
−0.802662 + 0.596434i \(0.796584\pi\)
\(308\) 1.86277e6i 0.0637541i
\(309\) 1.32637e6 2.50074e7i 0.0449561 0.847605i
\(310\) 3.19417e6 0.107219
\(311\) 9.60311e6i 0.319250i −0.987178 0.159625i \(-0.948972\pi\)
0.987178 0.159625i \(-0.0510285\pi\)
\(312\) 134188. + 7117.18i 0.00441824 + 0.000234339i
\(313\) −4.34567e7 −1.41718 −0.708589 0.705622i \(-0.750668\pi\)
−0.708589 + 0.705622i \(0.750668\pi\)
\(314\) 4.30831e7i 1.39161i
\(315\) 1.11279e6 1.04608e7i 0.0356026 0.334683i
\(316\) −2.81755e6 −0.0892915
\(317\) 96332.8i 0.00302410i 0.999999 + 0.00151205i \(0.000481301\pi\)
−0.999999 + 0.00151205i \(0.999519\pi\)
\(318\) 2.29266e6 4.32259e7i 0.0712948 1.34420i
\(319\) 4.50122e6 0.138662
\(320\) 6.74476e6i 0.205834i
\(321\) 5.98334e7 + 3.17350e6i 1.80896 + 0.0959452i
\(322\) 8.30017e7 2.48610
\(323\) 4.32547e7i 1.28359i
\(324\) −1.85029e6 398162.i −0.0544007 0.0117065i
\(325\) −149004. −0.00434058
\(326\) 2.80382e7i 0.809278i
\(327\) 1.91811e6 3.61642e7i 0.0548569 1.03428i
\(328\) 4.24370e6 0.120261
\(329\) 3.39311e7i 0.952818i
\(330\) −6.03959e6 320334.i −0.168060 0.00891375i
\(331\) 2.91261e7 0.803154 0.401577 0.915825i \(-0.368462\pi\)
0.401577 + 0.915825i \(0.368462\pi\)
\(332\) 1.90118e6i 0.0519528i
\(333\) 3.42057e7 + 3.63870e6i 0.926329 + 0.0985403i
\(334\) −4.82805e6 −0.129578
\(335\) 1.23573e6i 0.0328692i
\(336\) −3.24461e6 + 6.11741e7i −0.0855352 + 1.61269i
\(337\) 1.33666e7 0.349245 0.174623 0.984635i \(-0.444129\pi\)
0.174623 + 0.984635i \(0.444129\pi\)
\(338\) 3.96735e7i 1.02742i
\(339\) −5.83233e7 3.09341e6i −1.49707 0.0794032i
\(340\) −925470. −0.0235465
\(341\) 1.40856e7i 0.355231i
\(342\) 2.89292e6 2.71949e7i 0.0723199 0.679844i
\(343\) 2.19274e7 0.543382
\(344\) 3.60019e7i 0.884402i
\(345\) −752393. + 1.41857e7i −0.0183226 + 0.345456i
\(346\) 5.15154e7 1.24368
\(347\) 3.03380e7i 0.726103i −0.931769 0.363052i \(-0.881735\pi\)
0.931769 0.363052i \(-0.118265\pi\)
\(348\) −434873. 23065.2i −0.0103187 0.000547293i
\(349\) 5.99937e6 0.141133 0.0705666 0.997507i \(-0.477519\pi\)
0.0705666 + 0.997507i \(0.477519\pi\)
\(350\) 6.43373e7i 1.50058i
\(351\) 31215.2 194704.i 0.000721845 0.00450251i
\(352\) 3.62037e6 0.0830090
\(353\) 1.47501e6i 0.0335329i −0.999859 0.0167665i \(-0.994663\pi\)
0.999859 0.0167665i \(-0.00533718\pi\)
\(354\) −1.43777e6 + 2.71078e7i −0.0324101 + 0.611061i
\(355\) 9.65808e6 0.215877
\(356\) 245893.i 0.00545001i
\(357\) −1.34476e8 7.13246e6i −2.95556 0.156760i
\(358\) 5.88281e7 1.28214
\(359\) 2.78598e7i 0.602136i 0.953603 + 0.301068i \(0.0973432\pi\)
−0.953603 + 0.301068i \(0.902657\pi\)
\(360\) −9.87455e6 1.05043e6i −0.211646 0.0225143i
\(361\) −2.62149e7 −0.557221
\(362\) 5.77378e7i 1.21712i
\(363\) 1.12081e6 2.11318e7i 0.0234321 0.441790i
\(364\) 18776.7 0.000389329
\(365\) 2.01126e7i 0.413609i
\(366\) −4.15174e6 220204.i −0.0846812 0.00449140i
\(367\) 4.54760e7 0.919992 0.459996 0.887921i \(-0.347851\pi\)
0.459996 + 0.887921i \(0.347851\pi\)
\(368\) 8.27235e7i 1.65991i
\(369\) 658739. 6.19249e6i 0.0131110 0.123250i
\(370\) −1.06349e7 −0.209956
\(371\) 1.02649e8i 2.01016i
\(372\) −72177.4 + 1.36084e6i −0.00140208 + 0.0264349i
\(373\) 4.87094e7 0.938612 0.469306 0.883036i \(-0.344504\pi\)
0.469306 + 0.883036i \(0.344504\pi\)
\(374\) 7.74219e7i 1.47996i
\(375\) 2.25474e7 + 1.19589e6i 0.427565 + 0.0226776i
\(376\) −3.20295e7 −0.602541
\(377\) 45372.3i 0.000846772i
\(378\) 8.40700e7 + 1.34782e7i 1.55656 + 0.249549i
\(379\) −3.95431e7 −0.726362 −0.363181 0.931719i \(-0.618309\pi\)
−0.363181 + 0.931719i \(0.618309\pi\)
\(380\) 445695.i 0.00812244i
\(381\) −4.80445e6 + 9.05835e7i −0.0868699 + 1.63785i
\(382\) −8.67346e6 −0.155597
\(383\) 7.92576e7i 1.41073i −0.708843 0.705366i \(-0.750783\pi\)
0.708843 0.705366i \(-0.249217\pi\)
\(384\) 6.07987e7 + 3.22470e6i 1.07374 + 0.0569502i
\(385\) 1.43422e7 0.251324
\(386\) 4.27194e7i 0.742785i
\(387\) 5.25346e7 + 5.58848e6i 0.906384 + 0.0964186i
\(388\) 4.96235e6 0.0849557
\(389\) 9.14835e7i 1.55415i 0.629406 + 0.777077i \(0.283298\pi\)
−0.629406 + 0.777077i \(0.716702\pi\)
\(390\) −3228.96 + 60879.0i −5.44338e−5 + 0.00102630i
\(391\) 1.81847e8 3.04212
\(392\) 7.91442e7i 1.31390i
\(393\) 4.31583e6 + 228907.i 0.0711028 + 0.00377122i
\(394\) −3.51592e7 −0.574844
\(395\) 2.16934e7i 0.351994i
\(396\) 272949. 2.56586e6i 0.00439537 0.0413188i
\(397\) −8.41857e7 −1.34545 −0.672724 0.739894i \(-0.734876\pi\)
−0.672724 + 0.739894i \(0.734876\pi\)
\(398\) 7.63712e7i 1.21138i
\(399\) −3.43490e6 + 6.47619e7i −0.0540749 + 1.01953i
\(400\) −6.41217e7 −1.00190
\(401\) 4.17015e7i 0.646724i 0.946275 + 0.323362i \(0.104813\pi\)
−0.946275 + 0.323362i \(0.895187\pi\)
\(402\) 9.98750e6 + 529726.i 0.153737 + 0.00815405i
\(403\) −141982. −0.00216930
\(404\) 2.29814e6i 0.0348524i
\(405\) −3.06560e6 + 1.42461e7i −0.0461478 + 0.214452i
\(406\) 1.95909e7 0.292737
\(407\) 4.68974e7i 0.695610i
\(408\) −6.73275e6 + 1.26940e8i −0.0991315 + 1.86903i
\(409\) −3.70766e7 −0.541913 −0.270957 0.962592i \(-0.587340\pi\)
−0.270957 + 0.962592i \(0.587340\pi\)
\(410\) 1.92530e6i 0.0279350i
\(411\) −3.01362e7 1.59839e6i −0.434074 0.0230228i
\(412\) −3.30316e6 −0.0472321
\(413\) 6.43729e7i 0.913803i
\(414\) −1.14330e8 1.21621e7i −1.61123 0.171399i
\(415\) 1.46379e7 0.204802
\(416\) 36493.3i 0.000506913i
\(417\) 498938. 9.40700e6i 0.00688079 0.129731i
\(418\) 3.72854e7 0.510517
\(419\) 5.85726e7i 0.796256i 0.917330 + 0.398128i \(0.130340\pi\)
−0.917330 + 0.398128i \(0.869660\pi\)
\(420\) −1.38563e6 73492.5i −0.0187025 0.000991963i
\(421\) −7.79458e7 −1.04459 −0.522295 0.852765i \(-0.674924\pi\)
−0.522295 + 0.852765i \(0.674924\pi\)
\(422\) 1.53535e7i 0.204301i
\(423\) −4.97186e6 + 4.67380e7i −0.0656898 + 0.617518i
\(424\) 9.68959e7 1.27118
\(425\) 1.40955e8i 1.83618i
\(426\) −4.14018e6 + 7.80593e7i −0.0535539 + 1.00971i
\(427\) 9.85913e6 0.126635
\(428\) 7.90321e6i 0.100803i
\(429\) 268463. + 14239.0i 0.00340026 + 0.000180346i
\(430\) −1.63335e7 −0.205435
\(431\) 8.22894e7i 1.02781i −0.857847 0.513904i \(-0.828199\pi\)
0.857847 0.513904i \(-0.171801\pi\)
\(432\) 1.34330e7 8.37882e7i 0.166618 1.03928i
\(433\) −6.82966e7 −0.841269 −0.420635 0.907230i \(-0.638193\pi\)
−0.420635 + 0.907230i \(0.638193\pi\)
\(434\) 6.13055e7i 0.749946i
\(435\) −177588. + 3.34825e6i −0.00215747 + 0.0406771i
\(436\) −4.77683e6 −0.0576342
\(437\) 8.75752e7i 1.04939i
\(438\) −1.62556e8 8.62179e6i −1.93455 0.102607i
\(439\) 8.73631e7 1.03261 0.516303 0.856406i \(-0.327308\pi\)
0.516303 + 0.856406i \(0.327308\pi\)
\(440\) 1.35384e7i 0.158932i
\(441\) −1.15489e8 1.22854e7i −1.34655 0.143243i
\(442\) 780412. 0.00903768
\(443\) 1.08767e7i 0.125108i −0.998042 0.0625541i \(-0.980075\pi\)
0.998042 0.0625541i \(-0.0199246\pi\)
\(444\) 240313. 4.53087e6i 0.00274554 0.0517646i
\(445\) −1.89323e6 −0.0214844
\(446\) 7.63711e7i 0.860844i
\(447\) −1.10306e8 5.85053e6i −1.23503 0.0655047i
\(448\) −1.29452e8 −1.43971
\(449\) 1.41021e8i 1.55792i 0.627072 + 0.778961i \(0.284253\pi\)
−0.627072 + 0.778961i \(0.715747\pi\)
\(450\) −9.42723e6 + 8.86208e7i −0.103454 + 0.972519i
\(451\) 8.49017e6 0.0925522
\(452\) 7.70375e6i 0.0834232i
\(453\) 7.71011e6 1.45367e8i 0.0829404 1.56376i
\(454\) 1.19940e8 1.28173
\(455\) 144569.i 0.00153476i
\(456\) 6.11325e7 + 3.24240e6i 0.644730 + 0.0341958i
\(457\) −1.35918e7 −0.142406 −0.0712032 0.997462i \(-0.522684\pi\)
−0.0712032 + 0.997462i \(0.522684\pi\)
\(458\) 1.19851e6i 0.0124751i
\(459\) 1.84187e8 + 2.95291e7i 1.90468 + 0.305360i
\(460\) 1.87374e6 0.0192502
\(461\) 1.40829e8i 1.43744i 0.695298 + 0.718722i \(0.255272\pi\)
−0.695298 + 0.718722i \(0.744728\pi\)
\(462\) −6.14815e6 + 1.15918e8i −0.0623474 + 1.17550i
\(463\) −5.76881e7 −0.581223 −0.290612 0.956841i \(-0.593859\pi\)
−0.290612 + 0.956841i \(0.593859\pi\)
\(464\) 1.95253e7i 0.195454i
\(465\) 1.04776e7 + 555721.i 0.104208 + 0.00552711i
\(466\) −5.36542e7 −0.530208
\(467\) 6.46004e7i 0.634285i 0.948378 + 0.317143i \(0.102723\pi\)
−0.948378 + 0.317143i \(0.897277\pi\)
\(468\) −25863.9 2751.32i −0.000252322 2.68413e-5i
\(469\) −2.37173e7 −0.229904
\(470\) 1.45313e7i 0.139962i
\(471\) 7.49561e6 1.41323e8i 0.0717372 1.35254i
\(472\) −6.07653e7 −0.577869
\(473\) 7.20272e7i 0.680633i
\(474\) −1.75332e8 9.29941e6i −1.64636 0.0873214i
\(475\) −6.78824e7 −0.633397
\(476\) 1.77625e7i 0.164696i
\(477\) 1.50409e7 1.41392e8i 0.138586 1.30278i
\(478\) 5.63638e7 0.516080
\(479\) 1.88584e8i 1.71593i 0.513711 + 0.857963i \(0.328270\pi\)
−0.513711 + 0.857963i \(0.671730\pi\)
\(480\) −142836. + 2.69303e6i −0.00129155 + 0.0243510i
\(481\) 472726. 0.00424790
\(482\) 3.40010e6i 0.0303634i
\(483\) 2.72265e8 + 1.44406e7i 2.41630 + 0.128158i
\(484\) −2.79123e6 −0.0246184
\(485\) 3.82070e7i 0.334902i
\(486\) −1.13826e8 3.08840e7i −0.991595 0.269045i
\(487\) −1.60078e8 −1.38594 −0.692970 0.720967i \(-0.743698\pi\)
−0.692970 + 0.720967i \(0.743698\pi\)
\(488\) 9.30660e6i 0.0800814i
\(489\) 4.87810e6 9.19719e7i 0.0417180 0.786554i
\(490\) 3.59066e7 0.305201
\(491\) 2.05811e8i 1.73870i −0.494196 0.869350i \(-0.664538\pi\)
0.494196 0.869350i \(-0.335462\pi\)
\(492\) −820254. 43505.4i −0.00688737 0.000365299i
\(493\) 4.29214e7 0.358207
\(494\) 375837.i 0.00311758i
\(495\) −1.97555e7 2.10154e6i −0.162882 0.0173269i
\(496\) −6.11000e7 −0.500722
\(497\) 1.85367e8i 1.50995i
\(498\) −6.27492e6 + 1.18308e8i −0.0508066 + 0.957910i
\(499\) −1.81955e8 −1.46441 −0.732206 0.681083i \(-0.761509\pi\)
−0.732206 + 0.681083i \(0.761509\pi\)
\(500\) 2.97822e6i 0.0238257i
\(501\) −1.58371e7 839984.i −0.125940 0.00667972i
\(502\) −4.80718e7 −0.379996
\(503\) 2.76416e7i 0.217200i −0.994086 0.108600i \(-0.965363\pi\)
0.994086 0.108600i \(-0.0346368\pi\)
\(504\) −2.01608e7 + 1.89522e8i −0.157477 + 1.48036i
\(505\) −1.76943e7 −0.137391
\(506\) 1.56751e8i 1.20993i
\(507\) −6.90240e6 + 1.30138e8i −0.0529634 + 0.998576i
\(508\) 1.19649e7 0.0912679
\(509\) 1.36494e6i 0.0103505i −0.999987 0.00517525i \(-0.998353\pi\)
0.999987 0.00517525i \(-0.00164734\pi\)
\(510\) −5.75906e7 3.05455e6i −0.434151 0.0230269i
\(511\) 3.86021e8 2.89300
\(512\) 1.21367e8i 0.904254i
\(513\) 1.42208e7 8.87023e7i 0.105335 0.657026i
\(514\) 1.06193e8 0.782003
\(515\) 2.54323e7i 0.186193i
\(516\) 369083. 6.95871e6i 0.00268642 0.0506500i
\(517\) −6.40799e7 −0.463714
\(518\) 2.04115e8i 1.46854i
\(519\) 1.68983e8 + 8.96266e6i 1.20876 + 0.0641113i
\(520\) −136467. −0.000970552
\(521\) 1.63080e8i 1.15315i 0.817044 + 0.576576i \(0.195611\pi\)
−0.817044 + 0.576576i \(0.804389\pi\)
\(522\) −2.69854e7 2.87063e6i −0.189722 0.0201820i
\(523\) 3.30308e7 0.230895 0.115447 0.993314i \(-0.463170\pi\)
0.115447 + 0.993314i \(0.463170\pi\)
\(524\) 570065.i 0.00396215i
\(525\) 1.11934e7 2.11041e8i 0.0773543 1.45844i
\(526\) 6.43010e7 0.441836
\(527\) 1.34313e8i 0.917670i
\(528\) 1.15529e8 + 6.12754e6i 0.784855 + 0.0416279i
\(529\) −2.20138e8 −1.48706
\(530\) 4.39602e7i 0.295279i
\(531\) −9.43244e6 + 8.86698e7i −0.0630000 + 0.592232i
\(532\) 8.55420e6 0.0568126
\(533\) 85580.8i 0.000565190i
\(534\) 811580. 1.53016e7i 0.00532976 0.100488i
\(535\) −6.08498e7 −0.397372
\(536\) 2.23881e7i 0.145386i
\(537\) 1.92970e8 + 1.02349e7i 1.24614 + 0.0660940i
\(538\) −1.00277e6 −0.00643956
\(539\) 1.58340e8i 1.01117i
\(540\) 1.89786e6 + 304266.i 0.0120526 + 0.00193229i
\(541\) −1.35354e8 −0.854827 −0.427413 0.904056i \(-0.640575\pi\)
−0.427413 + 0.904056i \(0.640575\pi\)
\(542\) 1.15468e8i 0.725207i
\(543\) 1.00452e7 1.89393e8i 0.0627423 1.18295i
\(544\) 3.45221e7 0.214438
\(545\) 3.67786e7i 0.227199i
\(546\) 1.16845e6 + 61973.3i 0.00717847 + 0.000380738i
\(547\) 2.16134e8 1.32057 0.660284 0.751016i \(-0.270436\pi\)
0.660284 + 0.751016i \(0.270436\pi\)
\(548\) 3.98060e6i 0.0241884i
\(549\) −1.35804e7 1.44464e6i −0.0820719 0.00873057i
\(550\) −1.21503e8 −0.730296
\(551\) 2.06704e7i 0.123565i
\(552\) 1.36314e7 2.57007e8i 0.0810442 1.52801i
\(553\) 4.16360e8 2.46203
\(554\) 2.33951e8i 1.37593i
\(555\) −3.48849e7 1.85026e6i −0.204060 0.0108231i
\(556\) −1.24254e6 −0.00722914
\(557\) 9.72802e7i 0.562936i 0.959571 + 0.281468i \(0.0908213\pi\)
−0.959571 + 0.281468i \(0.909179\pi\)
\(558\) −8.98298e6 + 8.44446e7i −0.0517033 + 0.486037i
\(559\) 726034. 0.00415644
\(560\) 6.22133e7i 0.354257i
\(561\) −1.34699e7 + 2.53962e8i −0.0762913 + 1.43840i
\(562\) −2.14247e8 −1.20700
\(563\) 2.58047e8i 1.44602i 0.690838 + 0.723010i \(0.257242\pi\)
−0.690838 + 0.723010i \(0.742758\pi\)
\(564\) 6.19090e6 + 328359.i 0.0345077 + 0.00183026i
\(565\) 5.93141e7 0.328861
\(566\) 4.93283e7i 0.272049i
\(567\) 2.73424e8 + 5.88380e7i 1.49999 + 0.322782i
\(568\) −1.74979e8 −0.954862
\(569\) 3.26240e8i 1.77093i 0.464708 + 0.885464i \(0.346159\pi\)
−0.464708 + 0.885464i \(0.653841\pi\)
\(570\) −1.47103e6 + 2.77349e7i −0.00794323 + 0.149762i
\(571\) −1.74709e8 −0.938440 −0.469220 0.883081i \(-0.655465\pi\)
−0.469220 + 0.883081i \(0.655465\pi\)
\(572\) 35460.5i 0.000189477i
\(573\) −2.84510e7 1.50901e6i −0.151228 0.00802099i
\(574\) 3.69523e7 0.195392
\(575\) 2.85384e8i 1.50116i
\(576\) 1.78312e8 + 1.89684e7i 0.933069 + 0.0992572i
\(577\) −2.05275e8 −1.06858 −0.534292 0.845300i \(-0.679422\pi\)
−0.534292 + 0.845300i \(0.679422\pi\)
\(578\) 5.39857e8i 2.79573i
\(579\) 7.43232e6 1.40129e8i 0.0382903 0.721928i
\(580\) 442260. 0.00226670
\(581\) 2.80945e8i 1.43249i
\(582\) 3.08800e8 + 1.63784e7i 1.56642 + 0.0830813i
\(583\) 1.93855e8 0.978297
\(584\) 3.64387e8i 1.82947i
\(585\) −21183.5 + 199136.i −0.000105811 + 0.000994675i
\(586\) 1.91320e8 0.950751
\(587\) 1.29163e8i 0.638592i −0.947655 0.319296i \(-0.896554\pi\)
0.947655 0.319296i \(-0.103446\pi\)
\(588\) −811368. + 1.52976e7i −0.00399104 + 0.0752473i
\(589\) −6.46835e7 −0.316554
\(590\) 2.75683e7i 0.134231i
\(591\) −1.15330e8 6.11700e6i −0.558703 0.0296330i
\(592\) 2.03431e8 0.980509
\(593\) 4.34746e6i 0.0208483i −0.999946 0.0104242i \(-0.996682\pi\)
0.999946 0.0104242i \(-0.00331817\pi\)
\(594\) 2.54539e7 1.58769e8i 0.121449 0.757540i
\(595\) 1.36760e8 0.649246
\(596\) 1.45700e7i 0.0688210i
\(597\) 1.32871e7 2.50515e8i 0.0624462 1.17737i
\(598\) −1.58005e6 −0.00738869
\(599\) 2.07726e8i 0.966517i −0.875478 0.483259i \(-0.839453\pi\)
0.875478 0.483259i \(-0.160547\pi\)
\(600\) −1.99214e8 1.05661e7i −0.922288 0.0489172i
\(601\) 9.97958e7 0.459715 0.229858 0.973224i \(-0.426174\pi\)
0.229858 + 0.973224i \(0.426174\pi\)
\(602\) 3.13489e8i 1.43692i
\(603\) 3.26691e7 + 3.47525e6i 0.149000 + 0.0158502i
\(604\) −1.92011e7 −0.0871395
\(605\) 2.14907e7i 0.0970477i
\(606\) 7.58509e6 1.43010e8i 0.0340834 0.642611i
\(607\) 1.03441e8 0.462514 0.231257 0.972893i \(-0.425716\pi\)
0.231257 + 0.972893i \(0.425716\pi\)
\(608\) 1.66254e7i 0.0739711i
\(609\) 6.42629e7 + 3.40844e6i 0.284517 + 0.0150905i
\(610\) 4.22227e6 0.0186019
\(611\) 645925.i 0.00283177i
\(612\) 2.60271e6 2.44668e7i 0.0113546 0.106739i
\(613\) −5.88853e7 −0.255638 −0.127819 0.991798i \(-0.540798\pi\)
−0.127819 + 0.991798i \(0.540798\pi\)
\(614\) 3.81792e8i 1.64939i
\(615\) −334965. + 6.31545e6i −0.00144004 + 0.0271506i
\(616\) −2.59843e8 −1.11165
\(617\) 5.11701e7i 0.217852i −0.994050 0.108926i \(-0.965259\pi\)
0.994050 0.108926i \(-0.0347411\pi\)
\(618\) −2.05550e8 1.09022e7i −0.870869 0.0461900i
\(619\) 2.21985e8 0.935947 0.467974 0.883742i \(-0.344984\pi\)
0.467974 + 0.883742i \(0.344984\pi\)
\(620\) 1.38395e6i 0.00580693i
\(621\) −3.72913e8 5.97856e7i −1.55716 0.249644i
\(622\) −7.89335e7 −0.328012
\(623\) 3.63366e7i 0.150273i
\(624\) 61765.6 1.16453e6i 0.000254210 0.00479289i
\(625\) 2.09462e8 0.857958
\(626\) 3.57196e8i 1.45607i
\(627\) 1.22305e8 + 6.48692e6i 0.496182 + 0.0263170i
\(628\) −1.86669e7 −0.0753690
\(629\) 4.47191e8i 1.79697i
\(630\) −8.59832e7 9.14666e6i −0.343868 0.0365797i
\(631\) −2.92143e8 −1.16281 −0.581404 0.813615i \(-0.697496\pi\)
−0.581404 + 0.813615i \(0.697496\pi\)
\(632\) 3.93026e8i 1.55693i
\(633\) −2.67121e6 + 5.03632e7i −0.0105317 + 0.198565i
\(634\) 791814. 0.00310710
\(635\) 9.21223e7i 0.359785i
\(636\) −1.87288e7 993354.i −0.0728010 0.00386129i
\(637\) −1.59607e6 −0.00617493
\(638\) 3.69981e7i 0.142468i
\(639\) −2.71615e7 + 2.55332e8i −0.104100 + 0.978595i
\(640\) −6.18315e7 −0.235868
\(641\) 1.18663e8i 0.450547i −0.974296 0.225274i \(-0.927672\pi\)
0.974296 0.225274i \(-0.0723276\pi\)
\(642\) 2.60848e7 4.91805e8i 0.0985786 1.85861i
\(643\) 3.82833e8 1.44004 0.720022 0.693951i \(-0.244132\pi\)
0.720022 + 0.693951i \(0.244132\pi\)
\(644\) 3.59626e7i 0.134646i
\(645\) −5.35777e7 2.84171e6i −0.199667 0.0105901i
\(646\) 3.55535e8 1.31882
\(647\) 3.75784e8i 1.38747i −0.720228 0.693737i \(-0.755963\pi\)
0.720228 0.693737i \(-0.244037\pi\)
\(648\) 5.55406e7 2.58101e8i 0.204120 0.948559i
\(649\) −1.21570e8 −0.444726
\(650\) 1.22475e6i 0.00445971i
\(651\) 1.06659e7 2.01096e8i 0.0386595 0.728888i
\(652\) −1.21483e7 −0.0438301
\(653\) 3.78212e8i 1.35830i 0.733999 + 0.679151i \(0.237652\pi\)
−0.733999 + 0.679151i \(0.762348\pi\)
\(654\) −2.97255e8 1.57661e7i −1.06266 0.0563625i
\(655\) −4.38915e6 −0.0156191
\(656\) 3.68285e7i 0.130458i
\(657\) −5.31721e8 5.65629e7i −1.87494 0.199451i
\(658\) −2.78899e8 −0.978969
\(659\) 1.02913e7i 0.0359595i −0.999838 0.0179798i \(-0.994277\pi\)
0.999838 0.0179798i \(-0.00572344\pi\)
\(660\) −138793. + 2.61681e6i −0.000482764 + 0.00910207i
\(661\) 6.79279e7 0.235204 0.117602 0.993061i \(-0.462479\pi\)
0.117602 + 0.993061i \(0.462479\pi\)
\(662\) 2.39404e8i 0.825198i
\(663\) 2.55993e6 + 135776.i 0.00878391 + 0.000465890i
\(664\) −2.65200e8 −0.905878
\(665\) 6.58620e7i 0.223960i
\(666\) 2.99086e7 2.81156e8i 0.101245 0.951754i
\(667\) −8.69004e7 −0.292849
\(668\) 2.09188e6i 0.00701789i
\(669\) 1.32871e7 2.50515e8i 0.0443762 0.836672i
\(670\) −1.01572e7 −0.0337713
\(671\) 1.86193e7i 0.0616304i
\(672\) 5.16872e7 + 2.74144e6i 0.170324 + 0.00903380i
\(673\) −2.86900e8 −0.941207 −0.470604 0.882345i \(-0.655964\pi\)
−0.470604 + 0.882345i \(0.655964\pi\)
\(674\) 1.09868e8i 0.358831i
\(675\) −4.63418e7 + 2.89057e8i −0.150682 + 0.939879i
\(676\) 1.71896e7 0.0556448
\(677\) 1.31298e8i 0.423149i −0.977362 0.211574i \(-0.932141\pi\)
0.977362 0.211574i \(-0.0678590\pi\)
\(678\) −2.54265e7 + 4.79392e8i −0.0815825 + 1.53816i
\(679\) −7.33306e8 −2.34248
\(680\) 1.29096e8i 0.410569i
\(681\) 3.93430e8 + 2.08671e7i 1.24574 + 0.0660727i
\(682\) −1.15777e8 −0.364981
\(683\) 9.64308e7i 0.302659i 0.988483 + 0.151330i \(0.0483555\pi\)
−0.988483 + 0.151330i \(0.951645\pi\)
\(684\) −1.17829e7 1.25343e6i −0.0368200 0.00391681i
\(685\) 3.06482e7 0.0953526
\(686\) 1.80234e8i 0.558296i
\(687\) −208517. + 3.93139e6i −0.000643089 + 0.0121248i
\(688\) 3.12438e8 0.959397
\(689\) 1.95406e6i 0.00597419i
\(690\) 1.16600e8 + 6.18435e6i 0.354937 + 0.0188255i
\(691\) 5.37804e8 1.63001 0.815005 0.579455i \(-0.196734\pi\)
0.815005 + 0.579455i \(0.196734\pi\)
\(692\) 2.23204e7i 0.0673571i
\(693\) −4.03347e7 + 3.79167e8i −0.121193 + 1.13928i
\(694\) −2.49365e8 −0.746032
\(695\) 9.56680e6i 0.0284979i
\(696\) 3.21742e6 6.06614e7i 0.00954289 0.179922i
\(697\) 8.09581e7 0.239090
\(698\) 4.93122e7i 0.145007i
\(699\) −1.75998e8 9.33476e6i −0.515320 0.0273320i
\(700\) −2.78758e7 −0.0812706
\(701\) 8.72547e7i 0.253300i 0.991947 + 0.126650i \(0.0404225\pi\)
−0.991947 + 0.126650i \(0.959578\pi\)
\(702\) −1.60039e6 256575.i −0.00462609 0.000741658i
\(703\) 2.15362e8 0.619873
\(704\) 2.44474e8i 0.700671i
\(705\) 2.52816e6 4.76661e7i 0.00721502 0.136032i
\(706\) −1.21240e7 −0.0344533
\(707\) 3.39605e8i 0.960983i
\(708\) 1.17452e7 + 622951.i 0.0330948 + 0.00175531i
\(709\) −3.81980e8 −1.07177 −0.535886 0.844290i \(-0.680022\pi\)
−0.535886 + 0.844290i \(0.680022\pi\)
\(710\) 7.93853e7i 0.221802i
\(711\) −5.73511e8 6.10085e7i −1.59563 0.169739i
\(712\) 3.43002e7 0.0950292
\(713\) 2.71935e8i 0.750234i
\(714\) −5.86258e7 + 1.10533e9i −0.161062 + 3.03668i
\(715\) −273023. −0.000746933
\(716\) 2.54888e7i 0.0694402i
\(717\) 1.84886e8 + 9.80619e6i 0.501589 + 0.0266037i
\(718\) 2.28996e8 0.618663
\(719\) 6.86531e8i 1.84703i −0.383564 0.923514i \(-0.625303\pi\)
0.383564 0.923514i \(-0.374697\pi\)
\(720\) −9.11600e6 + 8.56951e7i −0.0244234 + 0.229593i
\(721\) 4.88120e8 1.30233
\(722\) 2.15476e8i 0.572514i
\(723\) 591550. 1.11531e7i 0.00156523 0.0295108i
\(724\) −2.50164e7 −0.0659188
\(725\) 6.73593e7i 0.176760i
\(726\) −1.73694e8 9.21255e6i −0.453916 0.0240752i
\(727\) −7.14336e8 −1.85909 −0.929543 0.368714i \(-0.879798\pi\)
−0.929543 + 0.368714i \(0.879798\pi\)
\(728\) 2.61921e6i 0.00678854i
\(729\) −3.68004e8 1.21110e8i −0.949883 0.312607i
\(730\) 1.65317e8 0.424961
\(731\) 6.86816e8i 1.75828i
\(732\) −95409.1 + 1.79885e6i −0.000243252 + 0.00458629i
\(733\) −3.40557e8 −0.864725 −0.432363 0.901700i \(-0.642320\pi\)
−0.432363 + 0.901700i \(0.642320\pi\)
\(734\) 3.73793e8i 0.945242i
\(735\) 1.17782e8 + 6.24703e6i 0.296631 + 0.0157330i
\(736\) −6.98948e7 −0.175312
\(737\) 4.47908e7i 0.111889i
\(738\) −5.08996e7 5.41455e6i −0.126632 0.0134708i
\(739\) −8.56092e7 −0.212123 −0.106061 0.994360i \(-0.533824\pi\)
−0.106061 + 0.994360i \(0.533824\pi\)
\(740\) 4.60784e6i 0.0113711i
\(741\) 65388.1 1.23283e6i 0.000160710 0.00303004i
\(742\) 8.43727e8 2.06533
\(743\) 3.20134e8i 0.780486i −0.920712 0.390243i \(-0.872391\pi\)
0.920712 0.390243i \(-0.127609\pi\)
\(744\) −1.89826e8 1.00682e7i −0.460933 0.0244474i
\(745\) 1.12180e8 0.271298
\(746\) 4.00370e8i 0.964374i
\(747\) −4.11664e7 + 3.86985e8i −0.0987599 + 0.928394i
\(748\) 3.35450e7 0.0801537
\(749\) 1.16789e9i 2.77943i
\(750\) 9.82971e6 1.85330e8i 0.0233001 0.439301i
\(751\) 7.03872e8 1.66178 0.830890 0.556436i \(-0.187832\pi\)
0.830890 + 0.556436i \(0.187832\pi\)
\(752\) 2.77964e8i 0.653635i
\(753\) −1.57687e8 8.36354e6i −0.369326 0.0195887i
\(754\) −372941. −0.000870013
\(755\) 1.47836e8i 0.343511i
\(756\) 5.83976e6 3.64255e7i 0.0135154 0.0843024i
\(757\) −5.02352e8 −1.15803 −0.579016 0.815316i \(-0.696563\pi\)
−0.579016 + 0.815316i \(0.696563\pi\)
\(758\) 3.25027e8i 0.746298i
\(759\) 2.72716e7 5.14180e8i 0.0623714 1.17595i
\(760\) −6.21710e7 −0.141627
\(761\) 6.15805e8i 1.39730i −0.715464 0.698650i \(-0.753785\pi\)
0.715464 0.698650i \(-0.246215\pi\)
\(762\) 7.44557e8 + 3.94906e7i 1.68280 + 0.0892541i
\(763\) 7.05890e8 1.58914
\(764\) 3.75800e6i 0.00842707i
\(765\) −1.88379e8 2.00392e7i −0.420774 0.0447607i
\(766\) −6.51463e8 −1.44945
\(767\) 1.22543e6i 0.00271582i
\(768\) 3.99302e6 7.52847e7i 0.00881492 0.166197i
\(769\) −3.83492e8 −0.843291 −0.421646 0.906761i \(-0.638547\pi\)
−0.421646 + 0.906761i \(0.638547\pi\)
\(770\) 1.17887e8i 0.258222i
\(771\) 3.48339e8 + 1.84755e7i 0.760045 + 0.0403120i
\(772\) −1.85093e7 −0.0402288
\(773\) 1.45254e8i 0.314477i −0.987561 0.157239i \(-0.949741\pi\)
0.987561 0.157239i \(-0.0502592\pi\)
\(774\) 4.59349e7 4.31812e8i 0.0990650 0.931261i
\(775\) 2.10786e8 0.452831
\(776\) 6.92210e8i 1.48133i
\(777\) −3.55119e7 + 6.69544e8i −0.0757026 + 1.42730i
\(778\) 7.51955e8 1.59681
\(779\) 3.89884e7i 0.0824751i
\(780\) 26377.4 + 1399.03i 5.55838e−5 + 2.94811e-6i
\(781\) −3.50072e8 −0.734858
\(782\) 1.49470e9i 3.12561i
\(783\) −8.80188e7 1.41112e7i −0.183354 0.0293954i
\(784\) −6.86843e8 −1.42531
\(785\) 1.43723e8i 0.297111i
\(786\) 1.88152e6 3.54743e7i 0.00387473 0.0730543i
\(787\) 5.41839e8 1.11159 0.555797 0.831318i \(-0.312413\pi\)
0.555797 + 0.831318i \(0.312413\pi\)
\(788\) 1.52336e7i 0.0311333i
\(789\) 2.10922e8 + 1.11871e7i 0.429429 + 0.0227765i
\(790\) 1.78310e8 0.361655
\(791\) 1.13841e9i 2.30022i
\(792\) 3.57918e8 + 3.80743e7i 0.720456 + 0.0766401i
\(793\) −187682. −0.000376360
\(794\) 6.91970e8i 1.38237i
\(795\) −7.64821e6 + 1.44200e8i −0.0152215 + 0.286988i
\(796\) −3.30898e7 −0.0656077
\(797\) 4.02944e7i 0.0795921i 0.999208 + 0.0397961i \(0.0126708\pi\)
−0.999208 + 0.0397961i \(0.987329\pi\)
\(798\) 5.32315e8 + 2.82334e7i 1.04751 + 0.0555591i
\(799\) −6.11035e8 −1.19791
\(800\) 5.41777e7i 0.105816i
\(801\) 5.32434e6 5.00515e7i 0.0103602 0.0973912i
\(802\) 3.42769e8 0.664474
\(803\) 7.29012e8i 1.40795i
\(804\) 229518. 4.32734e6i 0.000441619 0.00832632i
\(805\) −2.76890e8 −0.530786
\(806\) 1.16703e6i 0.00222884i
\(807\) −3.28933e6 174463.i −0.00625874 0.000331957i
\(808\) 3.20573e8 0.607705
\(809\) 7.65099e8i 1.44501i −0.691364 0.722507i \(-0.742990\pi\)
0.691364 0.722507i \(-0.257010\pi\)
\(810\) 1.17097e8 + 2.51979e7i 0.220338 + 0.0474144i
\(811\) 2.70817e8 0.507707 0.253854 0.967243i \(-0.418302\pi\)
0.253854 + 0.967243i \(0.418302\pi\)
\(812\) 8.48828e6i 0.0158545i
\(813\) −2.00891e7 + 3.78760e8i −0.0373842 + 0.704844i
\(814\) 3.85477e8 0.714702
\(815\) 9.35343e7i 0.172782i
\(816\) 1.10163e9 + 5.84293e7i 2.02752 + 0.107538i
\(817\) 3.30762e8 0.606526
\(818\) 3.04754e8i 0.556787i
\(819\) 3.82200e6 + 406574.i 0.00695727 + 0.000740095i
\(820\) 834188. 0.00151294
\(821\) 3.68452e8i 0.665812i 0.942960 + 0.332906i \(0.108029\pi\)
−0.942960 + 0.332906i \(0.891971\pi\)
\(822\) −1.31381e7 + 2.47707e8i −0.0236547 + 0.445987i
\(823\) −1.09763e8 −0.196904 −0.0984521 0.995142i \(-0.531389\pi\)
−0.0984521 + 0.995142i \(0.531389\pi\)
\(824\) 4.60765e8i 0.823565i
\(825\) −3.98558e8 2.11391e7i −0.709790 0.0376465i
\(826\) −5.29117e8 −0.938884
\(827\) 5.95216e8i 1.05234i 0.850378 + 0.526172i \(0.176373\pi\)
−0.850378 + 0.526172i \(0.823627\pi\)
\(828\) −5.26954e6 + 4.95364e7i −0.00928286 + 0.0872636i
\(829\) 1.18601e8 0.208173 0.104087 0.994568i \(-0.466808\pi\)
0.104087 + 0.994568i \(0.466808\pi\)
\(830\) 1.20317e8i 0.210423i
\(831\) 4.07028e7 7.67414e8i 0.0709286 1.33729i
\(832\) 2.46429e6 0.00427881
\(833\) 1.50985e9i 2.61216i
\(834\) −7.73215e7 4.10105e6i −0.133291 0.00706964i
\(835\) 1.61062e7 0.0276651
\(836\) 1.61549e7i 0.0276493i
\(837\) −4.41580e7 + 2.75435e8i −0.0753065 + 0.469724i
\(838\) 4.81442e8 0.818110
\(839\) 5.53616e8i 0.937395i −0.883359 0.468697i \(-0.844723\pi\)
0.883359 0.468697i \(-0.155277\pi\)
\(840\) 1.02516e7 1.93285e8i 0.0172964 0.326107i
\(841\) −2.05111e7 −0.0344828
\(842\) 6.40681e8i 1.07326i
\(843\) −7.02780e8 3.72747e7i −1.17310 0.0622202i
\(844\) 6.65232e6 0.0110649
\(845\) 1.32349e8i 0.219356i
\(846\) 3.84167e8 + 4.08666e7i 0.634466 + 0.0674927i
\(847\) 4.12471e8 0.678802
\(848\) 8.40899e8i 1.37897i
\(849\) 8.58215e6 1.61808e8i 0.0140240 0.264410i
\(850\) −1.15859e9 −1.88658
\(851\) 9.05400e8i 1.46910i
\(852\) 3.38212e7 + 1.79384e6i 0.0546853 + 0.00290045i
\(853\) 5.11960e8 0.824877 0.412438 0.910986i \(-0.364677\pi\)
0.412438 + 0.910986i \(0.364677\pi\)
\(854\) 8.10378e7i 0.130111i
\(855\) −9.65065e6 + 9.07210e7i −0.0154404 + 0.145147i
\(856\) 1.10244e9 1.75765
\(857\) 4.09778e8i 0.651038i 0.945535 + 0.325519i \(0.105539\pi\)
−0.945535 + 0.325519i \(0.894461\pi\)
\(858\) 117038. 2.20665e6i 0.000185296 0.00349359i
\(859\) −8.97643e8 −1.41620 −0.708099 0.706113i \(-0.750447\pi\)
−0.708099 + 0.706113i \(0.750447\pi\)
\(860\) 7.07692e6i 0.0111263i
\(861\) 1.21212e8 + 6.42896e6i 0.189905 + 0.0100724i
\(862\) −6.76384e8 −1.05602
\(863\) 4.46254e7i 0.0694305i 0.999397 + 0.0347152i \(0.0110524\pi\)
−0.999397 + 0.0347152i \(0.988948\pi\)
\(864\) −7.07944e7 1.13498e7i −0.109763 0.0175973i
\(865\) −1.71853e8 −0.265527
\(866\) 5.61368e8i 0.864359i
\(867\) −9.39244e7 + 1.77086e9i −0.144119 + 2.71723i
\(868\) −2.65622e7 −0.0406167
\(869\) 7.86308e8i 1.19821i
\(870\) 2.75212e7 + 1.45970e6i 0.0417936 + 0.00221669i
\(871\) 451491. 0.000683274
\(872\) 6.66330e8i 1.00494i
\(873\) 1.01009e9 + 1.07450e8i 1.51815 + 0.161497i
\(874\) −7.19830e8 −1.07819
\(875\) 4.40103e8i 0.656946i
\(876\) −3.73561e6 + 7.04315e7i −0.00555712 + 0.104774i
\(877\) −7.36575e8 −1.09199 −0.545994 0.837789i \(-0.683848\pi\)
−0.545994 + 0.837789i \(0.683848\pi\)
\(878\) 7.18087e8i 1.06095i
\(879\) 6.27573e8 + 3.32858e7i 0.924055 + 0.0490109i
\(880\) −1.17492e8 −0.172409
\(881\) 9.15425e8i 1.33874i 0.742931 + 0.669368i \(0.233435\pi\)
−0.742931 + 0.669368i \(0.766565\pi\)
\(882\) −1.00980e8 + 9.49267e8i −0.147174 + 1.38351i
\(883\) 6.92368e8 1.00567 0.502834 0.864383i \(-0.332291\pi\)
0.502834 + 0.864383i \(0.332291\pi\)
\(884\) 338134.i 0.000489476i
\(885\) 4.79634e6 9.04305e7i 0.00691958 0.130462i
\(886\) −8.94017e7 −0.128542
\(887\) 9.81846e8i 1.40693i 0.710730 + 0.703465i \(0.248365\pi\)
−0.710730 + 0.703465i \(0.751635\pi\)
\(888\) 6.32021e8 + 3.35218e7i 0.902595 + 0.0478727i
\(889\) −1.76810e9 −2.51652
\(890\) 1.55615e7i 0.0220740i
\(891\) 1.11117e8 5.16370e8i 0.157090 0.730008i
\(892\) −3.30898e7 −0.0466229
\(893\) 2.94267e8i 0.413225i
\(894\) −4.80888e7 + 9.06669e8i −0.0673025 + 1.26893i
\(895\) −1.96248e8 −0.273739
\(896\) 1.18673e9i 1.64979i
\(897\) −5.18294e6 274898.i −0.00718122 0.000380885i
\(898\) 1.15914e9 1.60068
\(899\) 6.41850e7i 0.0883395i
\(900\) 3.83973e7 + 4.08459e6i 0.0526712 + 0.00560301i
\(901\) 1.84851e9 2.52724
\(902\) 6.97855e7i 0.0950924i
\(903\) −5.45408e7 + 1.02832e9i −0.0740727 + 1.39657i
\(904\) −1.07461e9 −1.45461
\(905\) 1.92611e8i 0.259857i
\(906\) −1.19485e9 6.33738e7i −1.60668 0.0852168i
\(907\) 1.08447e9 1.45344 0.726718 0.686936i \(-0.241045\pi\)
0.726718 + 0.686936i \(0.241045\pi\)
\(908\) 5.19670e7i 0.0694177i
\(909\) 4.97617e7 4.67786e8i 0.0662527 0.622810i
\(910\) −1.18830e6 −0.00157689
\(911\) 2.80031e8i 0.370383i 0.982702 + 0.185192i \(0.0592906\pi\)
−0.982702 + 0.185192i \(0.940709\pi\)
\(912\) 2.81388e7 5.30531e8i 0.0370955 0.699401i
\(913\) −5.30573e8 −0.697160
\(914\) 1.11719e8i 0.146315i
\(915\) 1.38500e7 + 734591.i 0.0180795 + 0.000958920i
\(916\) 519285. 0.000675647
\(917\) 8.42407e7i 0.109248i
\(918\) 2.42716e8 1.51394e9i 0.313741 1.95696i
\(919\) −2.37598e8 −0.306124 −0.153062 0.988217i \(-0.548913\pi\)
−0.153062 + 0.988217i \(0.548913\pi\)
\(920\) 2.61373e8i 0.335658i
\(921\) −6.64243e7 + 1.25237e9i −0.0850253 + 1.60307i
\(922\) 1.15756e9 1.47690
\(923\) 3.52872e6i 0.00448758i
\(924\) 5.02243e7 + 2.66384e6i 0.0636646 + 0.00337670i
\(925\) −7.01805e8 −0.886730
\(926\) 4.74171e8i 0.597176i
\(927\) −6.72356e8 7.15234e7i −0.844035 0.0897860i
\(928\) −1.64973e7 −0.0206428
\(929\) 4.60429e8i 0.574269i −0.957890 0.287135i \(-0.907297\pi\)
0.957890 0.287135i \(-0.0927027\pi\)
\(930\) 4.56779e6 8.61214e7i 0.00567881 0.107069i
\(931\) −7.27126e8 −0.901074
\(932\) 2.32471e7i 0.0287158i
\(933\) −2.58920e8 1.37329e7i −0.318802 0.0169089i
\(934\) 5.30988e8 0.651694
\(935\) 2.58276e8i 0.315972i
\(936\) 383789. 3.60781e6i 0.000468020 0.00439963i
\(937\) −1.43131e8 −0.173986 −0.0869932 0.996209i \(-0.527726\pi\)
−0.0869932 + 0.996209i \(0.527726\pi\)
\(938\) 1.94946e8i 0.236214i
\(939\) −6.21450e7 + 1.17169e9i −0.0750601 + 1.41519i
\(940\) −6.29607e6 −0.00758029
\(941\) 8.07757e8i 0.969420i −0.874675 0.484710i \(-0.838925\pi\)
0.874675 0.484710i \(-0.161075\pi\)
\(942\) −1.16161e9 6.16107e7i −1.38966 0.0737061i
\(943\) −1.63911e8 −0.195467
\(944\) 5.27344e8i 0.626871i
\(945\) −2.80454e8 4.49625e7i −0.332327 0.0532789i
\(946\) 5.92033e8 0.699314
\(947\) 3.69806e8i 0.435436i 0.976012 + 0.217718i \(0.0698613\pi\)
−0.976012 + 0.217718i \(0.930139\pi\)
\(948\) −4.02921e6 + 7.59670e7i −0.00472928 + 0.0891661i
\(949\) −7.34844e6 −0.00859798
\(950\) 5.57964e8i 0.650782i
\(951\) 2.59733e6 + 137760.i 0.00301986 + 0.000160170i
\(952\) −2.47773e9 −2.87173
\(953\) 3.86658e8i 0.446733i −0.974735 0.223367i \(-0.928295\pi\)
0.974735 0.223367i \(-0.0717047\pi\)
\(954\) −1.16218e9 1.23630e8i −1.33853 0.142390i
\(955\) 2.89343e7 0.0332202
\(956\) 2.44211e7i 0.0279506i
\(957\) 6.43693e6 1.21362e8i 0.00734418 0.138468i
\(958\) 1.55008e9 1.76302
\(959\) 5.88229e8i 0.666946i
\(960\) −1.81853e8 9.64529e6i −0.205545 0.0109019i
\(961\) −6.86651e8 −0.773688
\(962\) 3.88560e6i 0.00436449i
\(963\) 1.71128e8 1.60869e9i 0.191621 1.80134i
\(964\) −1.47318e6 −0.00164447
\(965\) 1.42510e8i 0.158585i
\(966\) 1.18696e8 2.23790e9i 0.131675 2.48261i
\(967\) −1.01671e9 −1.12440 −0.562198 0.827003i \(-0.690044\pi\)
−0.562198 + 0.827003i \(0.690044\pi\)
\(968\) 3.89355e8i 0.429259i
\(969\) 1.16624e9 + 6.18561e7i 1.28179 + 0.0679847i
\(970\) −3.14045e8 −0.344094
\(971\) 1.20538e9i 1.31664i 0.752739 + 0.658319i \(0.228732\pi\)
−0.752739 + 0.658319i \(0.771268\pi\)
\(972\) −1.33813e7 + 4.93183e7i −0.0145713 + 0.0537043i
\(973\) 1.83615e8 0.199329
\(974\) 1.31577e9i 1.42398i
\(975\) −213082. + 4.01746e6i −0.000229897 + 0.00433449i
\(976\) −8.07662e7 −0.0868721
\(977\) 1.51726e9i 1.62696i −0.581591 0.813481i \(-0.697570\pi\)
0.581591 0.813481i \(-0.302430\pi\)
\(978\) −7.55970e8 4.00959e7i −0.808142 0.0428630i
\(979\) 6.86228e7 0.0731342
\(980\) 1.55574e7i 0.0165295i
\(981\) −9.72321e8 1.03433e8i −1.02992 0.109560i
\(982\) −1.69168e9 −1.78642
\(983\) 6.17688e8i 0.650292i 0.945664 + 0.325146i \(0.105413\pi\)
−0.945664 + 0.325146i \(0.894587\pi\)
\(984\) 6.06867e6 1.14419e8i 0.00636955 0.120092i
\(985\) 1.17289e8 0.122730
\(986\) 3.52796e8i 0.368038i
\(987\) −9.14853e8 4.85229e7i −0.951481 0.0504656i
\(988\) −162841. −0.000168847
\(989\) 1.39055e9i 1.43747i
\(990\) −1.72737e7 + 1.62382e8i −0.0178025 + 0.167352i
\(991\) 8.78695e8 0.902853 0.451427 0.892308i \(-0.350915\pi\)
0.451427 + 0.892308i \(0.350915\pi\)
\(992\) 5.16246e7i 0.0528837i
\(993\) 4.16516e7 7.85302e8i 0.0425387 0.802027i
\(994\) −1.52364e9 −1.55140
\(995\) 2.54771e8i 0.258631i
\(996\) 5.12599e7 + 2.71877e6i 0.0518799 + 0.00275166i
\(997\) 1.83961e9 1.85626 0.928131 0.372253i \(-0.121415\pi\)
0.928131 + 0.372253i \(0.121415\pi\)
\(998\) 1.49559e9i 1.50460i
\(999\) 1.47023e8 9.17053e8i 0.147465 0.919810i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.7.b.a.59.16 56
3.2 odd 2 inner 87.7.b.a.59.41 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.7.b.a.59.16 56 1.1 even 1 trivial
87.7.b.a.59.41 yes 56 3.2 odd 2 inner