Properties

Label 87.7.b.a.59.13
Level $87$
Weight $7$
Character 87.59
Analytic conductor $20.015$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [87,7,Mod(59,87)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(87, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("87.59"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 87.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.0147052749\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 59.13
Character \(\chi\) \(=\) 87.59
Dual form 87.7.b.a.59.44

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.80663i q^{2} +(-13.8860 - 23.1556i) q^{3} -32.1699 q^{4} -31.8600i q^{5} +(-227.078 + 136.175i) q^{6} -247.832 q^{7} -312.146i q^{8} +(-343.359 + 643.075i) q^{9} -312.439 q^{10} +1235.01i q^{11} +(446.711 + 744.913i) q^{12} +187.470 q^{13} +2430.40i q^{14} +(-737.735 + 442.407i) q^{15} -5119.97 q^{16} +3648.48i q^{17} +(6306.40 + 3367.20i) q^{18} -7863.06 q^{19} +1024.93i q^{20} +(3441.39 + 5738.70i) q^{21} +12111.3 q^{22} -3181.08i q^{23} +(-7227.90 + 4334.45i) q^{24} +14609.9 q^{25} -1838.45i q^{26} +(19658.6 - 979.049i) q^{27} +7972.75 q^{28} -4528.92i q^{29} +(4338.52 + 7234.69i) q^{30} -5020.63 q^{31} +30232.3i q^{32} +(28597.3 - 17149.3i) q^{33} +35779.3 q^{34} +7895.93i q^{35} +(11045.8 - 20687.7i) q^{36} +27281.8 q^{37} +77110.1i q^{38} +(-2603.20 - 4340.97i) q^{39} -9944.94 q^{40} -99324.1i q^{41} +(56277.3 - 33748.5i) q^{42} -28545.6 q^{43} -39730.2i q^{44} +(20488.3 + 10939.4i) q^{45} -31195.6 q^{46} +19529.9i q^{47} +(71095.8 + 118556. i) q^{48} -56228.1 q^{49} -143274. i q^{50} +(84482.5 - 50662.7i) q^{51} -6030.90 q^{52} +291331. i q^{53} +(-9601.17 - 192785. i) q^{54} +39347.3 q^{55} +77359.8i q^{56} +(109186. + 182074. i) q^{57} -44413.5 q^{58} +256441. i q^{59} +(23732.9 - 14232.2i) q^{60} -222205. q^{61} +49235.5i q^{62} +(85095.6 - 159375. i) q^{63} -31200.9 q^{64} -5972.79i q^{65} +(-168177. - 280443. i) q^{66} -366542. q^{67} -117371. i q^{68} +(-73659.6 + 44172.4i) q^{69} +77432.4 q^{70} +270730. i q^{71} +(200733. + 107178. i) q^{72} -253432. q^{73} -267542. i q^{74} +(-202873. - 338301. i) q^{75} +252954. q^{76} -306075. i q^{77} +(-42570.3 + 25528.6i) q^{78} -197960. q^{79} +163122. i q^{80} +(-295650. - 441612. i) q^{81} -974034. q^{82} +397030. i q^{83} +(-110709. - 184614. i) q^{84} +116240. q^{85} +279936. i q^{86} +(-104870. + 62888.5i) q^{87} +385503. q^{88} +147749. i q^{89} +(107279. - 200922. i) q^{90} -46461.1 q^{91} +102335. i q^{92} +(69716.4 + 116256. i) q^{93} +191523. q^{94} +250517. i q^{95} +(700046. - 419805. i) q^{96} -139941. q^{97} +551408. i q^{98} +(-794203. - 424052. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 52 q^{3} - 1924 q^{4} - 160 q^{6} + 160 q^{7} - 1060 q^{9} - 3588 q^{10} - 2166 q^{12} - 1400 q^{13} - 6240 q^{15} + 56588 q^{16} - 5978 q^{18} + 25000 q^{19} + 7520 q^{21} + 20970 q^{22} + 1238 q^{24}+ \cdots + 4793544 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.80663i 1.22583i −0.790149 0.612914i \(-0.789997\pi\)
0.790149 0.612914i \(-0.210003\pi\)
\(3\) −13.8860 23.1556i −0.514295 0.857613i
\(4\) −32.1699 −0.502655
\(5\) 31.8600i 0.254880i −0.991846 0.127440i \(-0.959324\pi\)
0.991846 0.127440i \(-0.0406760\pi\)
\(6\) −227.078 + 136.175i −1.05129 + 0.630438i
\(7\) −247.832 −0.722543 −0.361272 0.932461i \(-0.617657\pi\)
−0.361272 + 0.932461i \(0.617657\pi\)
\(8\) 312.146i 0.609659i
\(9\) −343.359 + 643.075i −0.471000 + 0.882133i
\(10\) −312.439 −0.312439
\(11\) 1235.01i 0.927881i 0.885866 + 0.463940i \(0.153565\pi\)
−0.885866 + 0.463940i \(0.846435\pi\)
\(12\) 446.711 + 744.913i 0.258513 + 0.431084i
\(13\) 187.470 0.0853300 0.0426650 0.999089i \(-0.486415\pi\)
0.0426650 + 0.999089i \(0.486415\pi\)
\(14\) 2430.40i 0.885714i
\(15\) −737.735 + 442.407i −0.218588 + 0.131083i
\(16\) −5119.97 −1.24999
\(17\) 3648.48i 0.742617i 0.928509 + 0.371309i \(0.121091\pi\)
−0.928509 + 0.371309i \(0.878909\pi\)
\(18\) 6306.40 + 3367.20i 1.08134 + 0.577366i
\(19\) −7863.06 −1.14639 −0.573193 0.819420i \(-0.694296\pi\)
−0.573193 + 0.819420i \(0.694296\pi\)
\(20\) 1024.93i 0.128117i
\(21\) 3441.39 + 5738.70i 0.371601 + 0.619663i
\(22\) 12111.3 1.13742
\(23\) 3181.08i 0.261451i −0.991419 0.130726i \(-0.958269\pi\)
0.991419 0.130726i \(-0.0417307\pi\)
\(24\) −7227.90 + 4334.45i −0.522852 + 0.313545i
\(25\) 14609.9 0.935036
\(26\) 1838.45i 0.104600i
\(27\) 19658.6 979.049i 0.998762 0.0497409i
\(28\) 7972.75 0.363190
\(29\) 4528.92i 0.185695i
\(30\) 4338.52 + 7234.69i 0.160686 + 0.267952i
\(31\) −5020.63 −0.168529 −0.0842643 0.996443i \(-0.526854\pi\)
−0.0842643 + 0.996443i \(0.526854\pi\)
\(32\) 30232.3i 0.922618i
\(33\) 28597.3 17149.3i 0.795763 0.477205i
\(34\) 35779.3 0.910321
\(35\) 7895.93i 0.184162i
\(36\) 11045.8 20687.7i 0.236751 0.443409i
\(37\) 27281.8 0.538601 0.269300 0.963056i \(-0.413208\pi\)
0.269300 + 0.963056i \(0.413208\pi\)
\(38\) 77110.1i 1.40527i
\(39\) −2603.20 4340.97i −0.0438848 0.0731801i
\(40\) −9944.94 −0.155390
\(41\) 99324.1i 1.44113i −0.693388 0.720565i \(-0.743883\pi\)
0.693388 0.720565i \(-0.256117\pi\)
\(42\) 56277.3 33748.5i 0.759600 0.455519i
\(43\) −28545.6 −0.359033 −0.179516 0.983755i \(-0.557453\pi\)
−0.179516 + 0.983755i \(0.557453\pi\)
\(44\) 39730.2i 0.466404i
\(45\) 20488.3 + 10939.4i 0.224838 + 0.120048i
\(46\) −31195.6 −0.320494
\(47\) 19529.9i 0.188108i 0.995567 + 0.0940540i \(0.0299826\pi\)
−0.995567 + 0.0940540i \(0.970017\pi\)
\(48\) 71095.8 + 118556.i 0.642866 + 1.07201i
\(49\) −56228.1 −0.477931
\(50\) 143274.i 1.14619i
\(51\) 84482.5 50662.7i 0.636878 0.381925i
\(52\) −6030.90 −0.0428916
\(53\) 291331.i 1.95685i 0.206594 + 0.978427i \(0.433762\pi\)
−0.206594 + 0.978427i \(0.566238\pi\)
\(54\) −9601.17 192785.i −0.0609738 1.22431i
\(55\) 39347.3 0.236498
\(56\) 77359.8i 0.440505i
\(57\) 109186. + 182074.i 0.589581 + 0.983156i
\(58\) −44413.5 −0.227631
\(59\) 256441.i 1.24862i 0.781176 + 0.624311i \(0.214620\pi\)
−0.781176 + 0.624311i \(0.785380\pi\)
\(60\) 23732.9 14232.2i 0.109874 0.0658898i
\(61\) −222205. −0.978961 −0.489480 0.872014i \(-0.662814\pi\)
−0.489480 + 0.872014i \(0.662814\pi\)
\(62\) 49235.5i 0.206587i
\(63\) 85095.6 159375.i 0.340318 0.637379i
\(64\) −31200.9 −0.119022
\(65\) 5972.79i 0.0217489i
\(66\) −168177. 280443.i −0.584971 0.975468i
\(67\) −366542. −1.21871 −0.609353 0.792899i \(-0.708571\pi\)
−0.609353 + 0.792899i \(0.708571\pi\)
\(68\) 117371.i 0.373281i
\(69\) −73659.6 + 44172.4i −0.224224 + 0.134463i
\(70\) 77432.4 0.225751
\(71\) 270730.i 0.756418i 0.925720 + 0.378209i \(0.123460\pi\)
−0.925720 + 0.378209i \(0.876540\pi\)
\(72\) 200733. + 107178.i 0.537801 + 0.287150i
\(73\) −253432. −0.651468 −0.325734 0.945462i \(-0.605611\pi\)
−0.325734 + 0.945462i \(0.605611\pi\)
\(74\) 267542.i 0.660232i
\(75\) −202873. 338301.i −0.480885 0.801899i
\(76\) 252954. 0.576237
\(77\) 306075.i 0.670434i
\(78\) −42570.3 + 25528.6i −0.0897063 + 0.0537953i
\(79\) −197960. −0.401510 −0.200755 0.979641i \(-0.564340\pi\)
−0.200755 + 0.979641i \(0.564340\pi\)
\(80\) 163122.i 0.318598i
\(81\) −295650. 441612.i −0.556317 0.830970i
\(82\) −974034. −1.76658
\(83\) 397030.i 0.694367i 0.937797 + 0.347184i \(0.112862\pi\)
−0.937797 + 0.347184i \(0.887138\pi\)
\(84\) −110709. 184614.i −0.186787 0.311477i
\(85\) 116240. 0.189278
\(86\) 279936.i 0.440112i
\(87\) −104870. + 62888.5i −0.159255 + 0.0955023i
\(88\) 385503. 0.565691
\(89\) 147749.i 0.209583i 0.994494 + 0.104791i \(0.0334175\pi\)
−0.994494 + 0.104791i \(0.966583\pi\)
\(90\) 107279. 200922.i 0.147159 0.275613i
\(91\) −46461.1 −0.0616546
\(92\) 102335.i 0.131420i
\(93\) 69716.4 + 116256.i 0.0866735 + 0.144532i
\(94\) 191523. 0.230588
\(95\) 250517.i 0.292191i
\(96\) 700046. 419805.i 0.791249 0.474498i
\(97\) −139941. −0.153331 −0.0766656 0.997057i \(-0.524427\pi\)
−0.0766656 + 0.997057i \(0.524427\pi\)
\(98\) 551408.i 0.585861i
\(99\) −794203. 424052.i −0.818514 0.437032i
\(100\) −470001. −0.470001
\(101\) 946009.i 0.918187i −0.888388 0.459093i \(-0.848174\pi\)
0.888388 0.459093i \(-0.151826\pi\)
\(102\) −496830. 828489.i −0.468174 0.780704i
\(103\) −1.71704e6 −1.57133 −0.785666 0.618651i \(-0.787680\pi\)
−0.785666 + 0.618651i \(0.787680\pi\)
\(104\) 58517.9i 0.0520222i
\(105\) 182835. 109643.i 0.157939 0.0947135i
\(106\) 2.85697e6 2.39877
\(107\) 968294.i 0.790416i −0.918592 0.395208i \(-0.870672\pi\)
0.918592 0.395208i \(-0.129328\pi\)
\(108\) −632417. + 31496.0i −0.502033 + 0.0250025i
\(109\) 414004. 0.319687 0.159844 0.987142i \(-0.448901\pi\)
0.159844 + 0.987142i \(0.448901\pi\)
\(110\) 385865.i 0.289906i
\(111\) −378834. 631724.i −0.277000 0.461911i
\(112\) 1.26889e6 0.903174
\(113\) 1.03894e6i 0.720035i 0.932946 + 0.360018i \(0.117229\pi\)
−0.932946 + 0.360018i \(0.882771\pi\)
\(114\) 1.78553e6 1.07075e6i 1.20518 0.722726i
\(115\) −101349. −0.0666386
\(116\) 145695.i 0.0933407i
\(117\) −64369.6 + 120557.i −0.0401905 + 0.0752724i
\(118\) 2.51482e6 1.53060
\(119\) 904211.i 0.536573i
\(120\) 138095. + 230281.i 0.0799162 + 0.133264i
\(121\) 246313. 0.139038
\(122\) 2.17909e6i 1.20004i
\(123\) −2.29990e6 + 1.37921e6i −1.23593 + 0.741166i
\(124\) 161514. 0.0847118
\(125\) 963284.i 0.493201i
\(126\) −1.56293e6 834500.i −0.781318 0.417172i
\(127\) 490061. 0.239243 0.119621 0.992820i \(-0.461832\pi\)
0.119621 + 0.992820i \(0.461832\pi\)
\(128\) 2.24085e6i 1.06852i
\(129\) 396384. + 660989.i 0.184649 + 0.307911i
\(130\) −58572.9 −0.0266604
\(131\) 2.48801e6i 1.10672i 0.832942 + 0.553360i \(0.186655\pi\)
−0.832942 + 0.553360i \(0.813345\pi\)
\(132\) −919974. + 551692.i −0.399994 + 0.239870i
\(133\) 1.94872e6 0.828314
\(134\) 3.59454e6i 1.49392i
\(135\) −31192.5 626323.i −0.0126779 0.254564i
\(136\) 1.13886e6 0.452744
\(137\) 1.35615e6i 0.527407i 0.964604 + 0.263704i \(0.0849441\pi\)
−0.964604 + 0.263704i \(0.915056\pi\)
\(138\) 433182. + 722352.i 0.164829 + 0.274860i
\(139\) 1.76507e6 0.657232 0.328616 0.944464i \(-0.393418\pi\)
0.328616 + 0.944464i \(0.393418\pi\)
\(140\) 254012.i 0.0925698i
\(141\) 452226. 271192.i 0.161324 0.0967430i
\(142\) 2.65495e6 0.927239
\(143\) 231527.i 0.0791760i
\(144\) 1.75799e6 3.29253e6i 0.588747 1.10266i
\(145\) −144291. −0.0473300
\(146\) 2.48531e6i 0.798587i
\(147\) 780782. + 1.30199e6i 0.245798 + 0.409880i
\(148\) −877652. −0.270731
\(149\) 875793.i 0.264754i −0.991199 0.132377i \(-0.957739\pi\)
0.991199 0.132377i \(-0.0422610\pi\)
\(150\) −3.31759e6 + 1.98950e6i −0.982991 + 0.589482i
\(151\) −5.64316e6 −1.63905 −0.819524 0.573045i \(-0.805762\pi\)
−0.819524 + 0.573045i \(0.805762\pi\)
\(152\) 2.45442e6i 0.698905i
\(153\) −2.34625e6 1.25274e6i −0.655087 0.349773i
\(154\) −3.00157e6 −0.821837
\(155\) 159957.i 0.0429545i
\(156\) 83744.9 + 139649.i 0.0220589 + 0.0367844i
\(157\) 1.94763e6 0.503277 0.251639 0.967821i \(-0.419031\pi\)
0.251639 + 0.967821i \(0.419031\pi\)
\(158\) 1.94132e6i 0.492182i
\(159\) 6.74592e6 4.04541e6i 1.67822 1.00640i
\(160\) 963201. 0.235156
\(161\) 788374.i 0.188910i
\(162\) −4.33072e6 + 2.89933e6i −1.01863 + 0.681949i
\(163\) −1.99137e6 −0.459821 −0.229910 0.973212i \(-0.573843\pi\)
−0.229910 + 0.973212i \(0.573843\pi\)
\(164\) 3.19525e6i 0.724391i
\(165\) −546376. 911109.i −0.121630 0.202824i
\(166\) 3.89353e6 0.851175
\(167\) 2.16621e6i 0.465105i −0.972584 0.232553i \(-0.925292\pi\)
0.972584 0.232553i \(-0.0747078\pi\)
\(168\) 1.79131e6 1.07422e6i 0.377783 0.226550i
\(169\) −4.79166e6 −0.992719
\(170\) 1.13993e6i 0.232022i
\(171\) 2.69986e6 5.05654e6i 0.539948 1.01127i
\(172\) 918310. 0.180470
\(173\) 5.92200e6i 1.14375i −0.820341 0.571874i \(-0.806217\pi\)
0.820341 0.571874i \(-0.193783\pi\)
\(174\) 616724. + 1.02842e6i 0.117069 + 0.195219i
\(175\) −3.62082e6 −0.675604
\(176\) 6.32321e6i 1.15984i
\(177\) 5.93803e6 3.56093e6i 1.07083 0.642161i
\(178\) 1.44892e6 0.256912
\(179\) 7.10375e6i 1.23859i −0.785157 0.619296i \(-0.787418\pi\)
0.785157 0.619296i \(-0.212582\pi\)
\(180\) −659109. 351920.i −0.113016 0.0603430i
\(181\) −4.42218e6 −0.745763 −0.372882 0.927879i \(-0.621630\pi\)
−0.372882 + 0.927879i \(0.621630\pi\)
\(182\) 455627.i 0.0755780i
\(183\) 3.08554e6 + 5.14529e6i 0.503475 + 0.839570i
\(184\) −992959. −0.159396
\(185\) 869196.i 0.137278i
\(186\) 1.14008e6 683683.i 0.177172 0.106247i
\(187\) −4.50590e6 −0.689060
\(188\) 628277.i 0.0945534i
\(189\) −4.87205e6 + 242640.i −0.721649 + 0.0359399i
\(190\) 2.45673e6 0.358176
\(191\) 7.46641e6i 1.07155i −0.844361 0.535774i \(-0.820020\pi\)
0.844361 0.535774i \(-0.179980\pi\)
\(192\) 433255. + 722475.i 0.0612125 + 0.102075i
\(193\) 1.06116e7 1.47608 0.738041 0.674756i \(-0.235751\pi\)
0.738041 + 0.674756i \(0.235751\pi\)
\(194\) 1.37235e6i 0.187958i
\(195\) −138303. + 82938.0i −0.0186521 + 0.0111853i
\(196\) 1.80885e6 0.240235
\(197\) 1.02633e7i 1.34242i −0.741266 0.671211i \(-0.765774\pi\)
0.741266 0.671211i \(-0.234226\pi\)
\(198\) −4.15852e6 + 7.78846e6i −0.535726 + 1.00336i
\(199\) 996251. 0.126418 0.0632091 0.998000i \(-0.479867\pi\)
0.0632091 + 0.998000i \(0.479867\pi\)
\(200\) 4.56043e6i 0.570054i
\(201\) 5.08979e6 + 8.48747e6i 0.626775 + 1.04518i
\(202\) −9.27715e6 −1.12554
\(203\) 1.12241e6i 0.134173i
\(204\) −2.71780e6 + 1.62982e6i −0.320130 + 0.191976i
\(205\) −3.16446e6 −0.367315
\(206\) 1.68383e7i 1.92618i
\(207\) 2.04567e6 + 1.09225e6i 0.230635 + 0.123144i
\(208\) −959841. −0.106662
\(209\) 9.71096e6i 1.06371i
\(210\) −1.07523e6 1.79299e6i −0.116102 0.193607i
\(211\) −1.71010e7 −1.82043 −0.910213 0.414140i \(-0.864082\pi\)
−0.910213 + 0.414140i \(0.864082\pi\)
\(212\) 9.37208e6i 0.983623i
\(213\) 6.26891e6 3.75936e6i 0.648714 0.389022i
\(214\) −9.49570e6 −0.968915
\(215\) 909462.i 0.0915101i
\(216\) −305606. 6.13636e6i −0.0303250 0.608905i
\(217\) 1.24428e6 0.121769
\(218\) 4.05998e6i 0.391882i
\(219\) 3.51915e6 + 5.86836e6i 0.335047 + 0.558707i
\(220\) −1.26580e6 −0.118877
\(221\) 683980.i 0.0633675i
\(222\) −6.19508e6 + 3.71508e6i −0.566224 + 0.339555i
\(223\) −1.35473e7 −1.22163 −0.610813 0.791775i \(-0.709157\pi\)
−0.610813 + 0.791775i \(0.709157\pi\)
\(224\) 7.49255e6i 0.666631i
\(225\) −5.01646e6 + 9.39529e6i −0.440402 + 0.824826i
\(226\) 1.01885e7 0.882640
\(227\) 1.21661e7i 1.04010i 0.854137 + 0.520048i \(0.174086\pi\)
−0.854137 + 0.520048i \(0.825914\pi\)
\(228\) −3.51252e6 5.85730e6i −0.296356 0.494189i
\(229\) −106942. −0.00890513 −0.00445257 0.999990i \(-0.501417\pi\)
−0.00445257 + 0.999990i \(0.501417\pi\)
\(230\) 993892.i 0.0816875i
\(231\) −7.08734e6 + 4.25015e6i −0.574973 + 0.344801i
\(232\) −1.41368e6 −0.113211
\(233\) 6.22858e6i 0.492403i 0.969219 + 0.246202i \(0.0791826\pi\)
−0.969219 + 0.246202i \(0.920817\pi\)
\(234\) 1.18226e6 + 631248.i 0.0922710 + 0.0492666i
\(235\) 622223. 0.0479449
\(236\) 8.24969e6i 0.627627i
\(237\) 2.74887e6 + 4.58387e6i 0.206495 + 0.344340i
\(238\) −8.86726e6 −0.657747
\(239\) 1.79738e7i 1.31658i 0.752765 + 0.658289i \(0.228720\pi\)
−0.752765 + 0.658289i \(0.771280\pi\)
\(240\) 3.77718e6 2.26511e6i 0.273234 0.163853i
\(241\) −1.18320e7 −0.845289 −0.422644 0.906296i \(-0.638898\pi\)
−0.422644 + 0.906296i \(0.638898\pi\)
\(242\) 2.41550e6i 0.170436i
\(243\) −6.12037e6 + 1.29781e7i −0.426539 + 0.904469i
\(244\) 7.14834e6 0.492080
\(245\) 1.79143e6i 0.121815i
\(246\) 1.35254e7 + 2.25543e7i 0.908543 + 1.51504i
\(247\) −1.47409e6 −0.0978211
\(248\) 1.56717e6i 0.102745i
\(249\) 9.19345e6 5.51315e6i 0.595498 0.357110i
\(250\) −9.44657e6 −0.604580
\(251\) 1.53641e7i 0.971596i −0.874071 0.485798i \(-0.838529\pi\)
0.874071 0.485798i \(-0.161471\pi\)
\(252\) −2.73752e6 + 5.12708e6i −0.171063 + 0.320382i
\(253\) 3.92866e6 0.242596
\(254\) 4.80585e6i 0.293271i
\(255\) −1.61411e6 2.69161e6i −0.0973448 0.162327i
\(256\) 1.99783e7 1.19080
\(257\) 2.60637e7i 1.53546i 0.640776 + 0.767728i \(0.278613\pi\)
−0.640776 + 0.767728i \(0.721387\pi\)
\(258\) 6.48208e6 3.88719e6i 0.377446 0.226348i
\(259\) −6.76130e6 −0.389163
\(260\) 192144.i 0.0109322i
\(261\) 2.91244e6 + 1.55505e6i 0.163808 + 0.0874626i
\(262\) 2.43990e7 1.35665
\(263\) 1.23092e6i 0.0676649i 0.999428 + 0.0338324i \(0.0107713\pi\)
−0.999428 + 0.0338324i \(0.989229\pi\)
\(264\) −5.35308e6 8.92653e6i −0.290932 0.485144i
\(265\) 9.28178e6 0.498762
\(266\) 1.91104e7i 1.01537i
\(267\) 3.42122e6 2.05164e6i 0.179741 0.107787i
\(268\) 1.17916e7 0.612589
\(269\) 1.21453e7i 0.623952i −0.950090 0.311976i \(-0.899009\pi\)
0.950090 0.311976i \(-0.100991\pi\)
\(270\) −6.14212e6 + 305893.i −0.312052 + 0.0155410i
\(271\) 3.72092e7 1.86957 0.934787 0.355210i \(-0.115591\pi\)
0.934787 + 0.355210i \(0.115591\pi\)
\(272\) 1.86801e7i 0.928266i
\(273\) 645158. + 1.07583e6i 0.0317087 + 0.0528758i
\(274\) 1.32993e7 0.646511
\(275\) 1.80434e7i 0.867602i
\(276\) 2.36963e6 1.42102e6i 0.112707 0.0675886i
\(277\) 3.67120e7 1.72731 0.863653 0.504088i \(-0.168171\pi\)
0.863653 + 0.504088i \(0.168171\pi\)
\(278\) 1.73094e7i 0.805654i
\(279\) 1.72388e6 3.22864e6i 0.0793770 0.148665i
\(280\) 2.46468e6 0.112276
\(281\) 2.53156e7i 1.14096i −0.821313 0.570478i \(-0.806758\pi\)
0.821313 0.570478i \(-0.193242\pi\)
\(282\) −2.65948e6 4.43481e6i −0.118590 0.197755i
\(283\) −2.09587e7 −0.924710 −0.462355 0.886695i \(-0.652995\pi\)
−0.462355 + 0.886695i \(0.652995\pi\)
\(284\) 8.70938e6i 0.380218i
\(285\) 5.80086e6 3.47867e6i 0.250587 0.150272i
\(286\) 2.27050e6 0.0970562
\(287\) 2.46157e7i 1.04128i
\(288\) −1.94417e7 1.03806e7i −0.813871 0.434553i
\(289\) 1.08262e7 0.448520
\(290\) 1.41501e6i 0.0580184i
\(291\) 1.94322e6 + 3.24042e6i 0.0788576 + 0.131499i
\(292\) 8.15289e6 0.327464
\(293\) 2.69780e7i 1.07252i −0.844052 0.536262i \(-0.819836\pi\)
0.844052 0.536262i \(-0.180164\pi\)
\(294\) 1.27682e7 7.65684e6i 0.502442 0.301306i
\(295\) 8.17019e6 0.318249
\(296\) 8.51588e6i 0.328363i
\(297\) 1.20913e6 + 2.42786e7i 0.0461536 + 0.926732i
\(298\) −8.58858e6 −0.324543
\(299\) 596356.i 0.0223096i
\(300\) 6.52642e6 + 1.08831e7i 0.241719 + 0.403079i
\(301\) 7.07453e6 0.259417
\(302\) 5.53404e7i 2.00919i
\(303\) −2.19054e7 + 1.31363e7i −0.787449 + 0.472219i
\(304\) 4.02587e7 1.43298
\(305\) 7.07946e6i 0.249517i
\(306\) −1.22851e7 + 2.30088e7i −0.428762 + 0.803025i
\(307\) −3.23320e7 −1.11742 −0.558712 0.829362i \(-0.688704\pi\)
−0.558712 + 0.829362i \(0.688704\pi\)
\(308\) 9.84642e6i 0.336997i
\(309\) 2.38427e7 + 3.97589e7i 0.808129 + 1.34759i
\(310\) 1.56864e6 0.0526549
\(311\) 2.29843e7i 0.764101i −0.924141 0.382051i \(-0.875218\pi\)
0.924141 0.382051i \(-0.124782\pi\)
\(312\) −1.35501e6 + 812578.i −0.0446149 + 0.0267548i
\(313\) −4.27519e7 −1.39419 −0.697096 0.716978i \(-0.745525\pi\)
−0.697096 + 0.716978i \(0.745525\pi\)
\(314\) 1.90997e7i 0.616932i
\(315\) −5.07767e6 2.71114e6i −0.162455 0.0867402i
\(316\) 6.36836e6 0.201821
\(317\) 2.16841e7i 0.680714i 0.940296 + 0.340357i \(0.110548\pi\)
−0.940296 + 0.340357i \(0.889452\pi\)
\(318\) −3.96718e7 6.61547e7i −1.23367 2.05721i
\(319\) 5.59326e6 0.172303
\(320\) 994060.i 0.0303363i
\(321\) −2.24214e7 + 1.34457e7i −0.677871 + 0.406508i
\(322\) 7.73129e6 0.231571
\(323\) 2.86882e7i 0.851326i
\(324\) 9.51104e6 + 1.42066e7i 0.279636 + 0.417691i
\(325\) 2.73893e6 0.0797866
\(326\) 1.95286e7i 0.563662i
\(327\) −5.74885e6 9.58649e6i −0.164414 0.274168i
\(328\) −3.10036e7 −0.878598
\(329\) 4.84015e6i 0.135916i
\(330\) −8.93491e6 + 5.35811e6i −0.248627 + 0.149097i
\(331\) −5.08850e7 −1.40316 −0.701578 0.712593i \(-0.747521\pi\)
−0.701578 + 0.712593i \(0.747521\pi\)
\(332\) 1.27724e7i 0.349027i
\(333\) −9.36744e6 + 1.75442e7i −0.253681 + 0.475118i
\(334\) −2.12432e7 −0.570139
\(335\) 1.16780e7i 0.310623i
\(336\) −1.76198e7 2.93820e7i −0.464498 0.774574i
\(337\) 5.64419e7 1.47473 0.737364 0.675495i \(-0.236070\pi\)
0.737364 + 0.675495i \(0.236070\pi\)
\(338\) 4.69901e7i 1.21690i
\(339\) 2.40572e7 1.44266e7i 0.617512 0.370311i
\(340\) −3.73945e6 −0.0951416
\(341\) 6.20053e6i 0.156374i
\(342\) −4.95876e7 2.64765e7i −1.23964 0.661884i
\(343\) 4.30924e7 1.06787
\(344\) 8.91038e6i 0.218888i
\(345\) 1.40733e6 + 2.34679e6i 0.0342719 + 0.0571501i
\(346\) −5.80749e7 −1.40204
\(347\) 2.35217e7i 0.562963i −0.959567 0.281482i \(-0.909174\pi\)
0.959567 0.281482i \(-0.0908258\pi\)
\(348\) 3.37365e6 2.02312e6i 0.0800502 0.0480047i
\(349\) 1.51034e7 0.355302 0.177651 0.984094i \(-0.443150\pi\)
0.177651 + 0.984094i \(0.443150\pi\)
\(350\) 3.55080e7i 0.828175i
\(351\) 3.68540e6 183542.i 0.0852244 0.00424439i
\(352\) −3.73372e7 −0.856079
\(353\) 3.41559e7i 0.776501i 0.921554 + 0.388251i \(0.126920\pi\)
−0.921554 + 0.388251i \(0.873080\pi\)
\(354\) −3.49207e7 5.82320e7i −0.787179 1.31266i
\(355\) 8.62546e6 0.192796
\(356\) 4.75309e6i 0.105348i
\(357\) −2.09375e7 + 1.25559e7i −0.460172 + 0.275957i
\(358\) −6.96638e7 −1.51830
\(359\) 7.94032e6i 0.171615i −0.996312 0.0858074i \(-0.972653\pi\)
0.996312 0.0858074i \(-0.0273470\pi\)
\(360\) 3.41469e6 6.39534e6i 0.0731886 0.137074i
\(361\) 1.47819e7 0.314202
\(362\) 4.33667e7i 0.914178i
\(363\) −3.42030e6 5.70353e6i −0.0715064 0.119240i
\(364\) 1.49465e6 0.0309910
\(365\) 8.07433e6i 0.166046i
\(366\) 5.04580e7 3.02587e7i 1.02917 0.617174i
\(367\) −7.30410e6 −0.147764 −0.0738820 0.997267i \(-0.523539\pi\)
−0.0738820 + 0.997267i \(0.523539\pi\)
\(368\) 1.62870e7i 0.326812i
\(369\) 6.38728e7 + 3.41038e7i 1.27127 + 0.678773i
\(370\) −8.52388e6 −0.168280
\(371\) 7.22011e7i 1.41391i
\(372\) −2.24277e6 3.73993e6i −0.0435669 0.0726499i
\(373\) 3.98886e7 0.768638 0.384319 0.923200i \(-0.374436\pi\)
0.384319 + 0.923200i \(0.374436\pi\)
\(374\) 4.41877e7i 0.844670i
\(375\) −2.23054e7 + 1.33761e7i −0.422976 + 0.253651i
\(376\) 6.09618e6 0.114682
\(377\) 849037.i 0.0158454i
\(378\) 2.37948e6 + 4.77783e7i 0.0440562 + 0.884618i
\(379\) 9.74833e7 1.79066 0.895329 0.445405i \(-0.146940\pi\)
0.895329 + 0.445405i \(0.146940\pi\)
\(380\) 8.05911e6i 0.146871i
\(381\) −6.80498e6 1.13476e7i −0.123042 0.205178i
\(382\) −7.32203e7 −1.31353
\(383\) 6.25259e7i 1.11292i −0.830875 0.556459i \(-0.812160\pi\)
0.830875 0.556459i \(-0.187840\pi\)
\(384\) 5.18880e7 3.11163e7i 0.916375 0.549534i
\(385\) −9.75155e6 −0.170880
\(386\) 1.04064e8i 1.80942i
\(387\) 9.80140e6 1.83570e7i 0.169105 0.316715i
\(388\) 4.50190e6 0.0770728
\(389\) 1.44314e7i 0.245166i 0.992458 + 0.122583i \(0.0391178\pi\)
−0.992458 + 0.122583i \(0.960882\pi\)
\(390\) 813342. + 1.35629e6i 0.0137113 + 0.0228643i
\(391\) 1.16061e7 0.194158
\(392\) 1.75514e7i 0.291375i
\(393\) 5.76112e7 3.45484e7i 0.949138 0.569182i
\(394\) −1.00649e8 −1.64558
\(395\) 6.30700e6i 0.102337i
\(396\) 2.55495e7 + 1.36417e7i 0.411430 + 0.219677i
\(397\) −6.06096e7 −0.968658 −0.484329 0.874886i \(-0.660936\pi\)
−0.484329 + 0.874886i \(0.660936\pi\)
\(398\) 9.76986e6i 0.154967i
\(399\) −2.70599e7 4.51237e7i −0.425998 0.710373i
\(400\) −7.48025e7 −1.16879
\(401\) 7.19363e6i 0.111562i 0.998443 + 0.0557809i \(0.0177648\pi\)
−0.998443 + 0.0557809i \(0.982235\pi\)
\(402\) 8.32335e7 4.99137e7i 1.28121 0.768318i
\(403\) −941218. −0.0143805
\(404\) 3.04330e7i 0.461531i
\(405\) −1.40697e7 + 9.41939e6i −0.211797 + 0.141794i
\(406\) 1.10071e7 0.164473
\(407\) 3.36932e7i 0.499757i
\(408\) −1.58141e7 2.63709e7i −0.232844 0.388279i
\(409\) −6.65153e7 −0.972191 −0.486096 0.873906i \(-0.661579\pi\)
−0.486096 + 0.873906i \(0.661579\pi\)
\(410\) 3.10327e7i 0.450265i
\(411\) 3.14024e7 1.88315e7i 0.452311 0.271243i
\(412\) 5.52370e7 0.789838
\(413\) 6.35543e7i 0.902184i
\(414\) 1.07113e7 2.00611e7i 0.150953 0.282719i
\(415\) 1.26494e7 0.176980
\(416\) 5.66765e6i 0.0787269i
\(417\) −2.45098e7 4.08713e7i −0.338011 0.563651i
\(418\) −9.52317e7 −1.30393
\(419\) 8.77437e7i 1.19282i −0.802681 0.596408i \(-0.796594\pi\)
0.802681 0.596408i \(-0.203406\pi\)
\(420\) −5.88178e6 + 3.52720e6i −0.0793891 + 0.0476082i
\(421\) 9.26942e6 0.124224 0.0621121 0.998069i \(-0.480216\pi\)
0.0621121 + 0.998069i \(0.480216\pi\)
\(422\) 1.67703e8i 2.23153i
\(423\) −1.25592e7 6.70578e6i −0.165936 0.0885989i
\(424\) 9.09375e7 1.19301
\(425\) 5.33041e7i 0.694374i
\(426\) −3.68666e7 6.14769e7i −0.476875 0.795212i
\(427\) 5.50697e7 0.707342
\(428\) 3.11500e7i 0.397307i
\(429\) 5.36114e6 3.21498e6i 0.0679024 0.0407199i
\(430\) 8.91875e6 0.112176
\(431\) 8.61114e7i 1.07555i 0.843090 + 0.537773i \(0.180734\pi\)
−0.843090 + 0.537773i \(0.819266\pi\)
\(432\) −1.00652e8 + 5.01270e6i −1.24845 + 0.0621757i
\(433\) 6.72358e7 0.828204 0.414102 0.910231i \(-0.364096\pi\)
0.414102 + 0.910231i \(0.364096\pi\)
\(434\) 1.22022e7i 0.149268i
\(435\) 2.00363e6 + 3.34115e6i 0.0243416 + 0.0405908i
\(436\) −1.33185e7 −0.160692
\(437\) 2.50130e7i 0.299724i
\(438\) 5.75488e7 3.45110e7i 0.684879 0.410710i
\(439\) −2.84352e7 −0.336096 −0.168048 0.985779i \(-0.553746\pi\)
−0.168048 + 0.985779i \(0.553746\pi\)
\(440\) 1.22821e7i 0.144183i
\(441\) 1.93064e7 3.61589e7i 0.225106 0.421599i
\(442\) 6.70754e6 0.0776777
\(443\) 1.31152e8i 1.50857i −0.656550 0.754283i \(-0.727985\pi\)
0.656550 0.754283i \(-0.272015\pi\)
\(444\) 1.21871e7 + 2.03225e7i 0.139236 + 0.232182i
\(445\) 4.70729e6 0.0534184
\(446\) 1.32853e8i 1.49750i
\(447\) −2.02795e7 + 1.21612e7i −0.227057 + 0.136162i
\(448\) 7.73260e6 0.0859986
\(449\) 1.20424e8i 1.33037i 0.746678 + 0.665186i \(0.231648\pi\)
−0.746678 + 0.665186i \(0.768352\pi\)
\(450\) 9.21361e7 + 4.91946e7i 1.01110 + 0.539858i
\(451\) 1.22666e8 1.33720
\(452\) 3.34225e7i 0.361929i
\(453\) 7.83608e7 + 1.30670e8i 0.842955 + 1.40567i
\(454\) 1.19308e8 1.27498
\(455\) 1.48025e6i 0.0157145i
\(456\) 5.68335e7 3.40820e7i 0.599390 0.359444i
\(457\) −1.22301e8 −1.28139 −0.640696 0.767794i \(-0.721354\pi\)
−0.640696 + 0.767794i \(0.721354\pi\)
\(458\) 1.04874e6i 0.0109162i
\(459\) 3.57204e6 + 7.17241e7i 0.0369384 + 0.741698i
\(460\) 3.26039e6 0.0334963
\(461\) 3.21147e7i 0.327794i 0.986477 + 0.163897i \(0.0524065\pi\)
−0.986477 + 0.163897i \(0.947594\pi\)
\(462\) 4.16797e7 + 6.95029e7i 0.422667 + 0.704818i
\(463\) −1.20156e8 −1.21061 −0.605304 0.795995i \(-0.706948\pi\)
−0.605304 + 0.795995i \(0.706948\pi\)
\(464\) 2.31880e7i 0.232118i
\(465\) 3.70390e6 2.22116e6i 0.0368384 0.0220913i
\(466\) 6.10813e7 0.603602
\(467\) 1.87217e8i 1.83821i 0.394015 + 0.919104i \(0.371086\pi\)
−0.394015 + 0.919104i \(0.628914\pi\)
\(468\) 2.07076e6 3.87832e6i 0.0202019 0.0378361i
\(469\) 9.08409e7 0.880568
\(470\) 6.10191e6i 0.0587722i
\(471\) −2.70447e7 4.50985e7i −0.258833 0.431617i
\(472\) 8.00469e7 0.761234
\(473\) 3.52541e7i 0.333139i
\(474\) 4.49523e7 2.69571e7i 0.422102 0.253127i
\(475\) −1.14879e8 −1.07191
\(476\) 2.90884e7i 0.269711i
\(477\) −1.87347e8 1.00031e8i −1.72621 0.921679i
\(478\) 1.76263e8 1.61390
\(479\) 1.72673e8i 1.57115i −0.618764 0.785577i \(-0.712366\pi\)
0.618764 0.785577i \(-0.287634\pi\)
\(480\) −1.33750e7 2.23035e7i −0.120940 0.201673i
\(481\) 5.11451e6 0.0459588
\(482\) 1.16032e8i 1.03618i
\(483\) 1.82552e7 1.09473e7i 0.162012 0.0971555i
\(484\) −7.92389e6 −0.0698880
\(485\) 4.45852e6i 0.0390810i
\(486\) 1.27272e8 + 6.00202e7i 1.10872 + 0.522864i
\(487\) −1.89868e8 −1.64386 −0.821932 0.569586i \(-0.807104\pi\)
−0.821932 + 0.569586i \(0.807104\pi\)
\(488\) 6.93605e7i 0.596833i
\(489\) 2.76521e7 + 4.61112e7i 0.236484 + 0.394348i
\(490\) 1.75678e7 0.149324
\(491\) 4.55181e7i 0.384539i −0.981342 0.192269i \(-0.938415\pi\)
0.981342 0.192269i \(-0.0615847\pi\)
\(492\) 7.39878e7 4.43692e7i 0.621248 0.372551i
\(493\) 1.65237e7 0.137901
\(494\) 1.44558e7i 0.119912i
\(495\) −1.35103e7 + 2.53033e7i −0.111391 + 0.208623i
\(496\) 2.57055e7 0.210660
\(497\) 6.70958e7i 0.546545i
\(498\) −5.40654e7 9.01567e7i −0.437755 0.729979i
\(499\) −6.85454e7 −0.551666 −0.275833 0.961206i \(-0.588954\pi\)
−0.275833 + 0.961206i \(0.588954\pi\)
\(500\) 3.09888e7i 0.247910i
\(501\) −5.01598e7 + 3.00799e7i −0.398880 + 0.239202i
\(502\) −1.50670e8 −1.19101
\(503\) 4.84361e6i 0.0380597i −0.999819 0.0190298i \(-0.993942\pi\)
0.999819 0.0190298i \(-0.00605775\pi\)
\(504\) −4.97481e7 2.65622e7i −0.388584 0.207478i
\(505\) −3.01398e7 −0.234027
\(506\) 3.85269e7i 0.297381i
\(507\) 6.65369e7 + 1.10954e8i 0.510551 + 0.851369i
\(508\) −1.57652e7 −0.120257
\(509\) 5.06611e7i 0.384168i −0.981378 0.192084i \(-0.938475\pi\)
0.981378 0.192084i \(-0.0615246\pi\)
\(510\) −2.63956e7 + 1.58290e7i −0.198985 + 0.119328i
\(511\) 6.28086e7 0.470714
\(512\) 5.25054e7i 0.391196i
\(513\) −1.54577e8 + 7.69833e6i −1.14497 + 0.0570223i
\(514\) 2.55597e8 1.88221
\(515\) 5.47047e7i 0.400501i
\(516\) −1.27516e7 2.12640e7i −0.0928147 0.154773i
\(517\) −2.41196e7 −0.174542
\(518\) 6.63056e7i 0.477047i
\(519\) −1.37127e8 + 8.22328e7i −0.980893 + 0.588225i
\(520\) −1.86438e6 −0.0132594
\(521\) 1.13166e8i 0.800207i −0.916470 0.400104i \(-0.868974\pi\)
0.916470 0.400104i \(-0.131026\pi\)
\(522\) 1.52498e7 2.85612e7i 0.107214 0.200800i
\(523\) 6.70587e7 0.468760 0.234380 0.972145i \(-0.424694\pi\)
0.234380 + 0.972145i \(0.424694\pi\)
\(524\) 8.00391e7i 0.556299i
\(525\) 5.02786e7 + 8.38420e7i 0.347460 + 0.579407i
\(526\) 1.20712e7 0.0829456
\(527\) 1.83177e7i 0.125152i
\(528\) −1.46417e8 + 8.78040e7i −0.994698 + 0.596503i
\(529\) 1.37917e8 0.931643
\(530\) 9.10229e7i 0.611397i
\(531\) −1.64911e8 8.80513e7i −1.10145 0.588102i
\(532\) −6.26903e7 −0.416356
\(533\) 1.86203e7i 0.122972i
\(534\) −2.01197e7 3.35506e7i −0.132129 0.220331i
\(535\) −3.08498e7 −0.201461
\(536\) 1.14414e8i 0.742995i
\(537\) −1.64491e8 + 9.86425e7i −1.06223 + 0.637003i
\(538\) −1.19104e8 −0.764858
\(539\) 6.94422e7i 0.443463i
\(540\) 1.00346e6 + 2.01488e7i 0.00637263 + 0.127958i
\(541\) 1.82515e8 1.15268 0.576338 0.817212i \(-0.304481\pi\)
0.576338 + 0.817212i \(0.304481\pi\)
\(542\) 3.64897e8i 2.29178i
\(543\) 6.14063e7 + 1.02398e8i 0.383543 + 0.639576i
\(544\) −1.10302e8 −0.685152
\(545\) 1.31902e7i 0.0814818i
\(546\) 1.05503e7 6.32683e6i 0.0648167 0.0388694i
\(547\) 1.37327e8 0.839062 0.419531 0.907741i \(-0.362195\pi\)
0.419531 + 0.907741i \(0.362195\pi\)
\(548\) 4.36273e7i 0.265104i
\(549\) 7.62963e7 1.42895e8i 0.461091 0.863574i
\(550\) 1.76945e8 1.06353
\(551\) 3.56112e7i 0.212879i
\(552\) 1.37882e7 + 2.29925e7i 0.0819767 + 0.136700i
\(553\) 4.90609e7 0.290108
\(554\) 3.60021e8i 2.11738i
\(555\) −2.01267e7 + 1.20696e7i −0.117732 + 0.0706017i
\(556\) −5.67823e7 −0.330361
\(557\) 2.73001e8i 1.57979i 0.613244 + 0.789894i \(0.289864\pi\)
−0.613244 + 0.789894i \(0.710136\pi\)
\(558\) −3.16621e7 1.69055e7i −0.182237 0.0973026i
\(559\) −5.35144e6 −0.0306362
\(560\) 4.04269e7i 0.230201i
\(561\) 6.25689e7 + 1.04337e8i 0.354381 + 0.590947i
\(562\) −2.48261e8 −1.39862
\(563\) 2.80300e8i 1.57072i −0.619042 0.785358i \(-0.712479\pi\)
0.619042 0.785358i \(-0.287521\pi\)
\(564\) −1.45481e7 + 8.72423e6i −0.0810903 + 0.0486284i
\(565\) 3.31005e7 0.183522
\(566\) 2.05534e8i 1.13354i
\(567\) 7.32716e7 + 1.09446e8i 0.401963 + 0.600412i
\(568\) 8.45073e7 0.461157
\(569\) 2.41862e7i 0.131290i −0.997843 0.0656448i \(-0.979090\pi\)
0.997843 0.0656448i \(-0.0209104\pi\)
\(570\) −3.41140e7 5.68869e7i −0.184208 0.307176i
\(571\) −3.11828e8 −1.67497 −0.837485 0.546461i \(-0.815975\pi\)
−0.837485 + 0.546461i \(0.815975\pi\)
\(572\) 7.44821e6i 0.0397983i
\(573\) −1.72889e8 + 1.03678e8i −0.918974 + 0.551092i
\(574\) 2.41397e8 1.27643
\(575\) 4.64754e7i 0.244466i
\(576\) 1.07131e7 2.00645e7i 0.0560594 0.104993i
\(577\) 2.20391e8 1.14727 0.573637 0.819110i \(-0.305532\pi\)
0.573637 + 0.819110i \(0.305532\pi\)
\(578\) 1.06168e8i 0.549808i
\(579\) −1.47353e8 2.45718e8i −0.759142 1.26591i
\(580\) 4.64184e6 0.0237907
\(581\) 9.83969e7i 0.501710i
\(582\) 3.17776e7 1.90565e7i 0.161195 0.0966659i
\(583\) −3.59796e8 −1.81573
\(584\) 7.91077e7i 0.397173i
\(585\) 3.84095e6 + 2.05081e6i 0.0191854 + 0.0102437i
\(586\) −2.64563e8 −1.31473
\(587\) 2.32721e8i 1.15059i −0.817945 0.575296i \(-0.804887\pi\)
0.817945 0.575296i \(-0.195113\pi\)
\(588\) −2.51177e7 4.18850e7i −0.123552 0.206028i
\(589\) 3.94776e7 0.193199
\(590\) 8.01221e7i 0.390118i
\(591\) −2.37653e8 + 1.42516e8i −1.15128 + 0.690402i
\(592\) −1.39682e8 −0.673247
\(593\) 1.41260e8i 0.677414i −0.940892 0.338707i \(-0.890011\pi\)
0.940892 0.338707i \(-0.109989\pi\)
\(594\) 2.38091e8 1.18575e7i 1.13601 0.0565764i
\(595\) −2.88081e7 −0.136762
\(596\) 2.81742e7i 0.133080i
\(597\) −1.38339e7 2.30687e7i −0.0650163 0.108418i
\(598\) −5.84825e6 −0.0273478
\(599\) 1.05860e8i 0.492551i 0.969200 + 0.246275i \(0.0792068\pi\)
−0.969200 + 0.246275i \(0.920793\pi\)
\(600\) −1.05599e8 + 6.33260e7i −0.488885 + 0.293176i
\(601\) −1.45836e8 −0.671800 −0.335900 0.941898i \(-0.609040\pi\)
−0.335900 + 0.941898i \(0.609040\pi\)
\(602\) 6.93772e7i 0.318000i
\(603\) 1.25855e8 2.35714e8i 0.574011 1.07506i
\(604\) 1.81540e8 0.823876
\(605\) 7.84754e6i 0.0354378i
\(606\) 1.28822e8 + 2.14818e8i 0.578860 + 0.965277i
\(607\) −1.23952e8 −0.554229 −0.277114 0.960837i \(-0.589378\pi\)
−0.277114 + 0.960837i \(0.589378\pi\)
\(608\) 2.37719e8i 1.05768i
\(609\) 2.59901e7 1.55858e7i 0.115068 0.0690045i
\(610\) 6.94256e7 0.305865
\(611\) 3.66128e6i 0.0160512i
\(612\) 7.54786e7 + 4.03005e7i 0.329283 + 0.175815i
\(613\) 4.23699e8 1.83940 0.919700 0.392621i \(-0.128432\pi\)
0.919700 + 0.392621i \(0.128432\pi\)
\(614\) 3.17068e8i 1.36977i
\(615\) 4.39416e7 + 7.32749e7i 0.188908 + 0.315014i
\(616\) −9.55400e7 −0.408736
\(617\) 2.95729e8i 1.25904i 0.776986 + 0.629518i \(0.216748\pi\)
−0.776986 + 0.629518i \(0.783252\pi\)
\(618\) 3.89901e8 2.33817e8i 1.65192 0.990627i
\(619\) 8.50387e7 0.358546 0.179273 0.983799i \(-0.442625\pi\)
0.179273 + 0.983799i \(0.442625\pi\)
\(620\) 5.14581e6i 0.0215913i
\(621\) −3.11443e6 6.25356e7i −0.0130048 0.261128i
\(622\) −2.25399e8 −0.936657
\(623\) 3.66171e7i 0.151433i
\(624\) 1.33283e7 + 2.22256e7i 0.0548557 + 0.0914746i
\(625\) 1.97590e8 0.809329
\(626\) 4.19252e8i 1.70904i
\(627\) −2.24863e8 + 1.34846e8i −0.912251 + 0.547061i
\(628\) −6.26551e7 −0.252975
\(629\) 9.95369e7i 0.399974i
\(630\) −2.65871e7 + 4.97949e7i −0.106329 + 0.199142i
\(631\) −3.80935e8 −1.51622 −0.758111 0.652126i \(-0.773877\pi\)
−0.758111 + 0.652126i \(0.773877\pi\)
\(632\) 6.17923e7i 0.244784i
\(633\) 2.37463e8 + 3.95982e8i 0.936237 + 1.56122i
\(634\) 2.12648e8 0.834438
\(635\) 1.56133e7i 0.0609781i
\(636\) −2.17016e8 + 1.30141e8i −0.843568 + 0.505873i
\(637\) −1.05411e7 −0.0407818
\(638\) 5.48510e7i 0.211214i
\(639\) −1.74100e8 9.29578e7i −0.667262 0.356273i
\(640\) 7.13932e7 0.272344
\(641\) 2.77323e8i 1.05296i −0.850188 0.526479i \(-0.823512\pi\)
0.850188 0.526479i \(-0.176488\pi\)
\(642\) 1.31857e8 + 2.19878e8i 0.498308 + 0.830954i
\(643\) 3.47519e8 1.30721 0.653605 0.756836i \(-0.273256\pi\)
0.653605 + 0.756836i \(0.273256\pi\)
\(644\) 2.53619e7i 0.0949566i
\(645\) 2.10591e7 1.26288e7i 0.0784803 0.0470632i
\(646\) −2.81335e8 −1.04358
\(647\) 2.64335e8i 0.975981i −0.872849 0.487991i \(-0.837730\pi\)
0.872849 0.487991i \(-0.162270\pi\)
\(648\) −1.37847e8 + 9.22858e7i −0.506609 + 0.339164i
\(649\) −3.16707e8 −1.15857
\(650\) 2.68596e7i 0.0978047i
\(651\) −1.72780e7 2.88119e7i −0.0626254 0.104431i
\(652\) 6.40622e7 0.231131
\(653\) 9.01727e7i 0.323844i 0.986804 + 0.161922i \(0.0517693\pi\)
−0.986804 + 0.161922i \(0.948231\pi\)
\(654\) −9.40112e7 + 5.63768e7i −0.336083 + 0.201543i
\(655\) 7.92679e7 0.282081
\(656\) 5.08536e8i 1.80140i
\(657\) 8.70182e7 1.62976e8i 0.306842 0.574681i
\(658\) −4.74655e7 −0.166610
\(659\) 4.08939e7i 0.142890i 0.997445 + 0.0714451i \(0.0227611\pi\)
−0.997445 + 0.0714451i \(0.977239\pi\)
\(660\) 1.75769e7 + 2.93103e7i 0.0611379 + 0.101950i
\(661\) −1.12172e7 −0.0388401 −0.0194200 0.999811i \(-0.506182\pi\)
−0.0194200 + 0.999811i \(0.506182\pi\)
\(662\) 4.99011e8i 1.72003i
\(663\) 1.58379e7 9.49773e6i 0.0543448 0.0325896i
\(664\) 1.23931e8 0.423327
\(665\) 6.20862e7i 0.211120i
\(666\) 1.72050e8 + 9.18630e7i 0.582413 + 0.310970i
\(667\) −1.44069e7 −0.0485503
\(668\) 6.96869e7i 0.233788i
\(669\) 1.88118e8 + 3.13695e8i 0.628277 + 1.04768i
\(670\) 1.14522e8 0.380771
\(671\) 2.74426e8i 0.908359i
\(672\) −1.73494e8 + 1.04041e8i −0.571712 + 0.342845i
\(673\) −3.83326e8 −1.25754 −0.628771 0.777590i \(-0.716442\pi\)
−0.628771 + 0.777590i \(0.716442\pi\)
\(674\) 5.53505e8i 1.80776i
\(675\) 2.87212e8 1.43039e7i 0.933879 0.0465095i
\(676\) 1.54148e8 0.498995
\(677\) 3.42935e7i 0.110521i −0.998472 0.0552607i \(-0.982401\pi\)
0.998472 0.0552607i \(-0.0175990\pi\)
\(678\) −1.41477e8 2.35920e8i −0.453937 0.756963i
\(679\) 3.46820e7 0.110788
\(680\) 3.62839e7i 0.115395i
\(681\) 2.81713e8 1.68938e8i 0.892000 0.534917i
\(682\) −6.08063e7 −0.191688
\(683\) 7.40065e7i 0.232278i 0.993233 + 0.116139i \(0.0370518\pi\)
−0.993233 + 0.116139i \(0.962948\pi\)
\(684\) −8.68542e7 + 1.62669e8i −0.271408 + 0.508318i
\(685\) 4.32069e7 0.134425
\(686\) 4.22591e8i 1.30902i
\(687\) 1.48499e6 + 2.47629e6i 0.00457987 + 0.00763716i
\(688\) 1.46153e8 0.448788
\(689\) 5.46157e7i 0.166978i
\(690\) 2.30141e7 1.38012e7i 0.0700563 0.0420115i
\(691\) −5.50557e8 −1.66866 −0.834330 0.551265i \(-0.814145\pi\)
−0.834330 + 0.551265i \(0.814145\pi\)
\(692\) 1.90511e8i 0.574911i
\(693\) 1.96829e8 + 1.05094e8i 0.591412 + 0.315775i
\(694\) −2.30668e8 −0.690096
\(695\) 5.62352e7i 0.167515i
\(696\) 1.96304e7 + 3.27346e7i 0.0582238 + 0.0970911i
\(697\) 3.62382e8 1.07021
\(698\) 1.48113e8i 0.435540i
\(699\) 1.44226e8 8.64899e7i 0.422292 0.253241i
\(700\) 1.16481e8 0.339596
\(701\) 2.31653e8i 0.672487i 0.941775 + 0.336243i \(0.109157\pi\)
−0.941775 + 0.336243i \(0.890843\pi\)
\(702\) −1.79993e6 3.61414e7i −0.00520289 0.104470i
\(703\) −2.14518e8 −0.617445
\(704\) 3.85334e7i 0.110438i
\(705\) −8.64017e6 1.44079e7i −0.0246578 0.0411182i
\(706\) 3.34955e8 0.951857
\(707\) 2.34452e8i 0.663430i
\(708\) −1.91026e8 + 1.14555e8i −0.538261 + 0.322786i
\(709\) 3.37520e8 0.947023 0.473512 0.880788i \(-0.342986\pi\)
0.473512 + 0.880788i \(0.342986\pi\)
\(710\) 8.45867e7i 0.236334i
\(711\) 6.79714e7 1.27303e8i 0.189111 0.354185i
\(712\) 4.61193e7 0.127774
\(713\) 1.59710e7i 0.0440620i
\(714\) 1.23131e8 + 2.05326e8i 0.338276 + 0.564092i
\(715\) 7.37645e6 0.0201804
\(716\) 2.28527e8i 0.622585i
\(717\) 4.16194e8 2.49584e8i 1.12911 0.677110i
\(718\) −7.78678e7 −0.210370
\(719\) 2.68649e8i 0.722766i 0.932417 + 0.361383i \(0.117695\pi\)
−0.932417 + 0.361383i \(0.882305\pi\)
\(720\) −1.04900e8 5.60095e7i −0.281046 0.150060i
\(721\) 4.25537e8 1.13536
\(722\) 1.44961e8i 0.385158i
\(723\) 1.64298e8 + 2.73975e8i 0.434728 + 0.724931i
\(724\) 1.42261e8 0.374862
\(725\) 6.61673e7i 0.173632i
\(726\) −5.59323e7 + 3.35416e7i −0.146168 + 0.0876545i
\(727\) 5.84091e8 1.52012 0.760059 0.649855i \(-0.225170\pi\)
0.760059 + 0.649855i \(0.225170\pi\)
\(728\) 1.45026e7i 0.0375883i
\(729\) 3.85503e8 3.84935e7i 0.995052 0.0993586i
\(730\) 7.91820e7 0.203544
\(731\) 1.04148e8i 0.266624i
\(732\) −9.92616e7 1.65524e8i −0.253074 0.422014i
\(733\) −1.05493e8 −0.267862 −0.133931 0.990991i \(-0.542760\pi\)
−0.133931 + 0.990991i \(0.542760\pi\)
\(734\) 7.16286e7i 0.181133i
\(735\) 4.14814e7 2.48757e7i 0.104470 0.0626489i
\(736\) 9.61714e7 0.241220
\(737\) 4.52682e8i 1.13081i
\(738\) 3.34444e8 6.26377e8i 0.832059 1.55836i
\(739\) −1.77720e8 −0.440355 −0.220177 0.975460i \(-0.570664\pi\)
−0.220177 + 0.975460i \(0.570664\pi\)
\(740\) 2.79620e7i 0.0690037i
\(741\) 2.04692e7 + 3.41333e7i 0.0503090 + 0.0838927i
\(742\) −7.08050e8 −1.73321
\(743\) 2.65973e8i 0.648441i 0.945982 + 0.324220i \(0.105102\pi\)
−0.945982 + 0.324220i \(0.894898\pi\)
\(744\) 3.62887e7 2.17617e7i 0.0881155 0.0528413i
\(745\) −2.79027e7 −0.0674804
\(746\) 3.91172e8i 0.942218i
\(747\) −2.55320e8 1.36324e8i −0.612524 0.327047i
\(748\) 1.44955e8 0.346360
\(749\) 2.39975e8i 0.571110i
\(750\) 1.31175e8 + 2.18741e8i 0.310933 + 0.518496i
\(751\) −5.29864e8 −1.25096 −0.625482 0.780239i \(-0.715098\pi\)
−0.625482 + 0.780239i \(0.715098\pi\)
\(752\) 9.99927e7i 0.235134i
\(753\) −3.55764e8 + 2.13345e8i −0.833253 + 0.499687i
\(754\) −8.32619e6 −0.0194237
\(755\) 1.79791e8i 0.417760i
\(756\) 1.56733e8 7.80572e6i 0.362741 0.0180654i
\(757\) 2.80306e8 0.646166 0.323083 0.946371i \(-0.395281\pi\)
0.323083 + 0.946371i \(0.395281\pi\)
\(758\) 9.55982e8i 2.19504i
\(759\) −5.45533e7 9.09703e7i −0.124766 0.208053i
\(760\) 7.81977e7 0.178137
\(761\) 4.05753e8i 0.920677i −0.887743 0.460339i \(-0.847728\pi\)
0.887743 0.460339i \(-0.152272\pi\)
\(762\) −1.11282e8 + 6.67339e7i −0.251513 + 0.150828i
\(763\) −1.02604e8 −0.230988
\(764\) 2.40194e8i 0.538619i
\(765\) −3.99122e7 + 7.47513e7i −0.0891500 + 0.166968i
\(766\) −6.13168e8 −1.36425
\(767\) 4.80750e7i 0.106545i
\(768\) −2.77418e8 4.62608e8i −0.612422 1.02124i
\(769\) −5.95981e7 −0.131055 −0.0655275 0.997851i \(-0.520873\pi\)
−0.0655275 + 0.997851i \(0.520873\pi\)
\(770\) 9.56298e7i 0.209470i
\(771\) 6.03520e8 3.61920e8i 1.31683 0.789678i
\(772\) −3.41376e8 −0.741960
\(773\) 4.90915e8i 1.06284i −0.847109 0.531420i \(-0.821659\pi\)
0.847109 0.531420i \(-0.178341\pi\)
\(774\) −1.80020e8 9.61187e7i −0.388238 0.207293i
\(775\) −7.33512e7 −0.157580
\(776\) 4.36821e7i 0.0934798i
\(777\) 9.38873e7 + 1.56562e8i 0.200145 + 0.333751i
\(778\) 1.41524e8 0.300532
\(779\) 7.80992e8i 1.65209i
\(780\) 4.44920e6 2.66811e6i 0.00937559 0.00562238i
\(781\) −3.34355e8 −0.701866
\(782\) 1.13817e8i 0.238005i
\(783\) −4.43404e6 8.90325e7i −0.00923665 0.185465i
\(784\) 2.87886e8 0.597410
\(785\) 6.20514e7i 0.128275i
\(786\) −3.38804e8 5.64972e8i −0.697719 1.16348i
\(787\) 1.56894e8 0.321870 0.160935 0.986965i \(-0.448549\pi\)
0.160935 + 0.986965i \(0.448549\pi\)
\(788\) 3.30170e8i 0.674776i
\(789\) 2.85027e7 1.70926e7i 0.0580303 0.0347997i
\(790\) 6.18504e7 0.125447
\(791\) 2.57482e8i 0.520257i
\(792\) −1.32366e8 + 2.47907e8i −0.266441 + 0.499015i
\(793\) −4.16569e7 −0.0835347
\(794\) 5.94376e8i 1.18741i
\(795\) −1.28887e8 2.14925e8i −0.256511 0.427745i
\(796\) −3.20493e7 −0.0635448
\(797\) 9.14070e8i 1.80553i 0.430135 + 0.902765i \(0.358466\pi\)
−0.430135 + 0.902765i \(0.641534\pi\)
\(798\) −4.42512e8 + 2.65366e8i −0.870795 + 0.522201i
\(799\) −7.12545e7 −0.139692
\(800\) 4.41693e8i 0.862681i
\(801\) −9.50139e7 5.07311e7i −0.184880 0.0987135i
\(802\) 7.05453e7 0.136756
\(803\) 3.12991e8i 0.604484i
\(804\) −1.63738e8 2.73042e8i −0.315052 0.525364i
\(805\) 2.51176e7 0.0481493
\(806\) 9.23018e6i 0.0176281i
\(807\) −2.81231e8 + 1.68649e8i −0.535109 + 0.320896i
\(808\) −2.95292e8 −0.559781
\(809\) 8.62430e8i 1.62884i 0.580276 + 0.814420i \(0.302945\pi\)
−0.580276 + 0.814420i \(0.697055\pi\)
\(810\) 9.23725e7 + 1.37977e8i 0.173815 + 0.259627i
\(811\) 1.97242e8 0.369775 0.184888 0.982760i \(-0.440808\pi\)
0.184888 + 0.982760i \(0.440808\pi\)
\(812\) 3.61080e7i 0.0674427i
\(813\) −5.16686e8 8.61600e8i −0.961513 1.60337i
\(814\) 3.30417e8 0.612617
\(815\) 6.34449e7i 0.117199i
\(816\) −4.32548e8 + 2.59392e8i −0.796093 + 0.477403i
\(817\) 2.24456e8 0.411590
\(818\) 6.52291e8i 1.19174i
\(819\) 1.59529e7 2.98780e7i 0.0290394 0.0543876i
\(820\) 1.01801e8 0.184633
\(821\) 5.31778e8i 0.960950i 0.877008 + 0.480475i \(0.159536\pi\)
−0.877008 + 0.480475i \(0.840464\pi\)
\(822\) −1.84673e8 3.07952e8i −0.332498 0.554456i
\(823\) −8.38836e8 −1.50480 −0.752398 0.658709i \(-0.771103\pi\)
−0.752398 + 0.658709i \(0.771103\pi\)
\(824\) 5.35965e8i 0.957977i
\(825\) 4.17805e8 2.50550e8i 0.744067 0.446204i
\(826\) −6.23254e8 −1.10592
\(827\) 7.12797e8i 1.26023i 0.776502 + 0.630114i \(0.216992\pi\)
−0.776502 + 0.630114i \(0.783008\pi\)
\(828\) −6.58091e7 3.51377e7i −0.115930 0.0618988i
\(829\) 1.24432e8 0.218408 0.109204 0.994019i \(-0.465170\pi\)
0.109204 + 0.994019i \(0.465170\pi\)
\(830\) 1.24048e8i 0.216947i
\(831\) −5.09782e8 8.50087e8i −0.888345 1.48136i
\(832\) −5.84924e6 −0.0101562
\(833\) 2.05147e8i 0.354920i
\(834\) −4.00809e8 + 2.40358e8i −0.690939 + 0.414344i
\(835\) −6.90154e7 −0.118546
\(836\) 3.12401e8i 0.534679i
\(837\) −9.86988e7 + 4.91545e6i −0.168320 + 0.00838276i
\(838\) −8.60469e8 −1.46219
\(839\) 1.80792e8i 0.306122i 0.988217 + 0.153061i \(0.0489130\pi\)
−0.988217 + 0.153061i \(0.951087\pi\)
\(840\) −3.42245e7 5.70710e7i −0.0577430 0.0962892i
\(841\) −2.05111e7 −0.0344828
\(842\) 9.09017e7i 0.152277i
\(843\) −5.86197e8 + 3.51532e8i −0.978500 + 0.586789i
\(844\) 5.50137e8 0.915047
\(845\) 1.52662e8i 0.253024i
\(846\) −6.57611e7 + 1.23163e8i −0.108607 + 0.203409i
\(847\) −6.10445e7 −0.100461
\(848\) 1.49160e9i 2.44605i
\(849\) 2.91032e8 + 4.85311e8i 0.475574 + 0.793043i
\(850\) 5.22733e8 0.851184
\(851\) 8.67854e7i 0.140818i
\(852\) −2.01671e8 + 1.20938e8i −0.326080 + 0.195544i
\(853\) 4.34651e7 0.0700315 0.0350158 0.999387i \(-0.488852\pi\)
0.0350158 + 0.999387i \(0.488852\pi\)
\(854\) 5.40048e8i 0.867079i
\(855\) −1.61101e8 8.60173e7i −0.257751 0.137622i
\(856\) −3.02249e8 −0.481885
\(857\) 7.59544e8i 1.20673i −0.797465 0.603366i \(-0.793826\pi\)
0.797465 0.603366i \(-0.206174\pi\)
\(858\) −3.15281e7 5.25747e7i −0.0499156 0.0832367i
\(859\) 1.13631e9 1.79274 0.896370 0.443307i \(-0.146195\pi\)
0.896370 + 0.443307i \(0.146195\pi\)
\(860\) 2.92573e7i 0.0459980i
\(861\) 5.69991e8 3.41813e8i 0.893014 0.535525i
\(862\) 8.44462e8 1.31843
\(863\) 7.27656e8i 1.13212i 0.824363 + 0.566062i \(0.191534\pi\)
−0.824363 + 0.566062i \(0.808466\pi\)
\(864\) 2.95989e7 + 5.94326e8i 0.0458918 + 0.921476i
\(865\) −1.88675e8 −0.291518
\(866\) 6.59357e8i 1.01524i
\(867\) −1.50332e8 2.50686e8i −0.230672 0.384656i
\(868\) −4.00283e7 −0.0612079
\(869\) 2.44482e8i 0.372553i
\(870\) 3.27654e7 1.96488e7i 0.0497574 0.0298386i
\(871\) −6.87156e7 −0.103992
\(872\) 1.29230e8i 0.194900i
\(873\) 4.80502e7 8.99928e7i 0.0722191 0.135259i
\(874\) 2.45293e8 0.367410
\(875\) 2.38733e8i 0.356359i
\(876\) −1.13211e8 1.88785e8i −0.168413 0.280837i
\(877\) 2.08164e8 0.308608 0.154304 0.988023i \(-0.450686\pi\)
0.154304 + 0.988023i \(0.450686\pi\)
\(878\) 2.78854e8i 0.411996i
\(879\) −6.24690e8 + 3.74616e8i −0.919810 + 0.551594i
\(880\) −2.01457e8 −0.295621
\(881\) 8.68090e8i 1.26951i −0.772712 0.634757i \(-0.781100\pi\)
0.772712 0.634757i \(-0.218900\pi\)
\(882\) −3.54597e8 1.89331e8i −0.516808 0.275941i
\(883\) 2.93853e8 0.426824 0.213412 0.976962i \(-0.431542\pi\)
0.213412 + 0.976962i \(0.431542\pi\)
\(884\) 2.20036e7i 0.0318520i
\(885\) −1.13451e8 1.89185e8i −0.163674 0.272934i
\(886\) −1.28616e9 −1.84924
\(887\) 6.47260e8i 0.927487i 0.885970 + 0.463743i \(0.153494\pi\)
−0.885970 + 0.463743i \(0.846506\pi\)
\(888\) −1.97190e8 + 1.18251e8i −0.281608 + 0.168876i
\(889\) −1.21453e8 −0.172863
\(890\) 4.61626e7i 0.0654817i
\(891\) 5.45394e8 3.65130e8i 0.771041 0.516196i
\(892\) 4.35816e8 0.614057
\(893\) 1.53565e8i 0.215644i
\(894\) 1.19261e8 + 1.98873e8i 0.166911 + 0.278332i
\(895\) −2.26325e8 −0.315692
\(896\) 5.55354e8i 0.772051i
\(897\) −1.38090e7 + 8.28099e6i −0.0191330 + 0.0114737i
\(898\) 1.18095e9 1.63081
\(899\) 2.27381e7i 0.0312950i
\(900\) 1.61379e8 3.02246e8i 0.221371 0.414603i
\(901\) −1.06291e9 −1.45319
\(902\) 1.20294e9i 1.63917i
\(903\) −9.82367e7 1.63815e8i −0.133417 0.222479i
\(904\) 3.24299e8 0.438976
\(905\) 1.40891e8i 0.190080i
\(906\) 1.28144e9 7.68455e8i 1.72311 1.03332i
\(907\) 1.29705e9 1.73834 0.869168 0.494516i \(-0.164655\pi\)
0.869168 + 0.494516i \(0.164655\pi\)
\(908\) 3.91383e8i 0.522810i
\(909\) 6.08354e8 + 3.24821e8i 0.809963 + 0.432466i
\(910\) 1.45163e7 0.0192633
\(911\) 9.76953e8i 1.29217i 0.763267 + 0.646084i \(0.223594\pi\)
−0.763267 + 0.646084i \(0.776406\pi\)
\(912\) −5.59031e8 9.32212e8i −0.736973 1.22894i
\(913\) −4.90336e8 −0.644290
\(914\) 1.19936e9i 1.57077i
\(915\) 1.63929e8 9.83052e7i 0.213989 0.128326i
\(916\) 3.44031e6 0.00447621
\(917\) 6.16609e8i 0.799654i
\(918\) 7.03372e8 3.50297e7i 0.909195 0.0452802i
\(919\) 1.08791e9 1.40167 0.700837 0.713322i \(-0.252810\pi\)
0.700837 + 0.713322i \(0.252810\pi\)
\(920\) 3.16356e7i 0.0406268i
\(921\) 4.48962e8 + 7.48666e8i 0.574686 + 0.958317i
\(922\) 3.14937e8 0.401819
\(923\) 5.07538e7i 0.0645452i
\(924\) 2.27999e8 1.36727e8i 0.289013 0.173316i
\(925\) 3.98585e8 0.503612
\(926\) 1.17833e9i 1.48400i
\(927\) 5.89561e8 1.10418e9i 0.740098 1.38612i
\(928\) 1.36920e8 0.171326
\(929\) 1.28342e8i 0.160074i 0.996792 + 0.0800370i \(0.0255039\pi\)
−0.996792 + 0.0800370i \(0.974496\pi\)
\(930\) −2.17821e7 3.63227e7i −0.0270802 0.0451575i
\(931\) 4.42125e8 0.547894
\(932\) 2.00373e8i 0.247509i
\(933\) −5.32215e8 + 3.19160e8i −0.655303 + 0.392974i
\(934\) 1.83597e9 2.25333
\(935\) 1.43558e8i 0.175627i
\(936\) 3.76314e7 + 2.00927e7i 0.0458905 + 0.0245025i
\(937\) 4.77275e8 0.580163 0.290082 0.957002i \(-0.406318\pi\)
0.290082 + 0.957002i \(0.406318\pi\)
\(938\) 8.90843e8i 1.07943i
\(939\) 5.93652e8 + 9.89944e8i 0.717026 + 1.19568i
\(940\) −2.00169e7 −0.0240998
\(941\) 8.34145e8i 1.00109i 0.865711 + 0.500545i \(0.166867\pi\)
−0.865711 + 0.500545i \(0.833133\pi\)
\(942\) −4.42264e8 + 2.65218e8i −0.529089 + 0.317285i
\(943\) −3.15958e8 −0.376785
\(944\) 1.31297e9i 1.56077i
\(945\) 7.73051e6 + 1.55223e8i 0.00916036 + 0.183934i
\(946\) −3.45724e8 −0.408372
\(947\) 5.49043e8i 0.646481i −0.946317 0.323241i \(-0.895228\pi\)
0.946317 0.323241i \(-0.104772\pi\)
\(948\) −8.84309e7 1.47463e8i −0.103796 0.173084i
\(949\) −4.75109e7 −0.0555897
\(950\) 1.12657e9i 1.31398i
\(951\) 5.02108e8 3.01106e8i 0.583789 0.350088i
\(952\) −2.82246e8 −0.327127
\(953\) 1.36926e9i 1.58200i 0.611817 + 0.791000i \(0.290439\pi\)
−0.611817 + 0.791000i \(0.709561\pi\)
\(954\) −9.80967e8 + 1.83725e9i −1.12982 + 2.11603i
\(955\) −2.37880e8 −0.273116
\(956\) 5.78217e8i 0.661785i
\(957\) −7.76679e7 1.29515e8i −0.0886147 0.147769i
\(958\) −1.69334e9 −1.92597
\(959\) 3.36098e8i 0.381075i
\(960\) 2.30180e7 1.38035e7i 0.0260168 0.0156018i
\(961\) −8.62297e8 −0.971598
\(962\) 5.01561e7i 0.0563376i
\(963\) 6.22686e8 + 3.32473e8i 0.697252 + 0.372286i
\(964\) 3.80633e8 0.424889
\(965\) 3.38086e8i 0.376223i
\(966\) −1.07357e8 1.79022e8i −0.119096 0.198598i
\(967\) 5.12824e8 0.567138 0.283569 0.958952i \(-0.408481\pi\)
0.283569 + 0.958952i \(0.408481\pi\)
\(968\) 7.68857e7i 0.0847655i
\(969\) −6.64292e8 + 3.98364e8i −0.730109 + 0.437833i
\(970\) 4.37231e7 0.0479066
\(971\) 3.05458e8i 0.333653i 0.985986 + 0.166826i \(0.0533519\pi\)
−0.985986 + 0.166826i \(0.946648\pi\)
\(972\) 1.96892e8 4.17506e8i 0.214402 0.454636i
\(973\) −4.37443e8 −0.474879
\(974\) 1.86197e9i 2.01510i
\(975\) −3.80327e7 6.34213e7i −0.0410339 0.0684261i
\(976\) 1.13769e9 1.22369
\(977\) 4.41991e8i 0.473947i 0.971516 + 0.236974i \(0.0761555\pi\)
−0.971516 + 0.236974i \(0.923845\pi\)
\(978\) 4.52196e8 2.71174e8i 0.483404 0.289889i
\(979\) −1.82472e8 −0.194468
\(980\) 5.76300e7i 0.0612309i
\(981\) −1.42152e8 + 2.66236e8i −0.150573 + 0.282007i
\(982\) −4.46379e8 −0.471378
\(983\) 1.94251e7i 0.0204504i −0.999948 0.0102252i \(-0.996745\pi\)
0.999948 0.0102252i \(-0.00325484\pi\)
\(984\) 4.30515e8 + 7.17905e8i 0.451859 + 0.753497i
\(985\) −3.26989e8 −0.342156
\(986\) 1.62042e8i 0.169042i
\(987\) −1.12076e8 + 6.72102e7i −0.116563 + 0.0699010i
\(988\) 4.74213e7 0.0491703
\(989\) 9.08058e7i 0.0938695i
\(990\) 2.48140e8 + 1.32490e8i 0.255736 + 0.136546i
\(991\) −1.41258e9 −1.45141 −0.725707 0.688004i \(-0.758487\pi\)
−0.725707 + 0.688004i \(0.758487\pi\)
\(992\) 1.51786e8i 0.155487i
\(993\) 7.06588e8 + 1.17827e9i 0.721637 + 1.20337i
\(994\) −6.57983e8 −0.669970
\(995\) 3.17405e7i 0.0322214i
\(996\) −2.95753e8 + 1.77358e8i −0.299330 + 0.179503i
\(997\) 1.44017e9 1.45321 0.726606 0.687054i \(-0.241097\pi\)
0.726606 + 0.687054i \(0.241097\pi\)
\(998\) 6.72199e8i 0.676248i
\(999\) 5.36322e8 2.67102e7i 0.537934 0.0267905i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.7.b.a.59.13 56
3.2 odd 2 inner 87.7.b.a.59.44 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.7.b.a.59.13 56 1.1 even 1 trivial
87.7.b.a.59.44 yes 56 3.2 odd 2 inner