Properties

Label 87.5.d.c.86.22
Level $87$
Weight $5$
Character 87.86
Analytic conductor $8.993$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [87,5,Mod(86,87)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("87.86"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(87, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 87.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.99318678829\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 86.22
Character \(\chi\) \(=\) 87.86
Dual form 87.5.d.c.86.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.29168 q^{2} +(1.45168 + 8.88215i) q^{3} -5.16484 q^{4} +6.84103i q^{5} +(4.77846 + 29.2372i) q^{6} -58.5203 q^{7} -69.6679 q^{8} +(-76.7853 + 25.7881i) q^{9} +22.5185i q^{10} +62.4927 q^{11} +(-7.49769 - 45.8749i) q^{12} +135.505 q^{13} -192.630 q^{14} +(-60.7630 + 9.93097i) q^{15} -146.687 q^{16} -362.853 q^{17} +(-252.753 + 84.8861i) q^{18} +169.000i q^{19} -35.3328i q^{20} +(-84.9526 - 519.786i) q^{21} +205.706 q^{22} +889.439i q^{23} +(-101.135 - 618.801i) q^{24} +578.200 q^{25} +446.040 q^{26} +(-340.521 - 644.582i) q^{27} +302.248 q^{28} +(-375.007 + 752.762i) q^{29} +(-200.013 + 32.6896i) q^{30} +156.038i q^{31} +631.839 q^{32} +(90.7193 + 555.069i) q^{33} -1194.40 q^{34} -400.339i q^{35} +(396.583 - 133.191i) q^{36} +1496.22i q^{37} +556.293i q^{38} +(196.710 + 1203.58i) q^{39} -476.600i q^{40} +90.8657 q^{41} +(-279.637 - 1710.97i) q^{42} -2749.96i q^{43} -322.764 q^{44} +(-176.417 - 525.290i) q^{45} +2927.75i q^{46} +2050.73 q^{47} +(-212.943 - 1302.90i) q^{48} +1023.62 q^{49} +1903.25 q^{50} +(-526.746 - 3222.92i) q^{51} -699.863 q^{52} -2798.90i q^{53} +(-1120.89 - 2121.76i) q^{54} +427.514i q^{55} +4076.98 q^{56} +(-1501.08 + 245.333i) q^{57} +(-1234.40 + 2477.85i) q^{58} +5400.05i q^{59} +(313.831 - 51.2919i) q^{60} -1215.04i q^{61} +513.626i q^{62} +(4493.49 - 1509.12i) q^{63} +4426.81 q^{64} +926.996i q^{65} +(298.619 + 1827.11i) q^{66} -2421.80 q^{67} +1874.08 q^{68} +(-7900.13 + 1291.18i) q^{69} -1317.79i q^{70} +1596.45i q^{71} +(5349.47 - 1796.60i) q^{72} -7003.97i q^{73} +4925.09i q^{74} +(839.361 + 5135.66i) q^{75} -872.857i q^{76} -3657.09 q^{77} +(647.507 + 3961.80i) q^{78} -4229.21i q^{79} -1003.49i q^{80} +(5230.95 - 3960.29i) q^{81} +299.101 q^{82} +10621.7i q^{83} +(438.766 + 2684.61i) q^{84} -2482.29i q^{85} -9051.99i q^{86} +(-7230.54 - 2238.10i) q^{87} -4353.73 q^{88} -5030.78 q^{89} +(-580.708 - 1729.09i) q^{90} -7929.81 q^{91} -4593.81i q^{92} +(-1385.95 + 226.517i) q^{93} +6750.34 q^{94} -1156.13 q^{95} +(917.228 + 5612.09i) q^{96} +13293.3i q^{97} +3369.43 q^{98} +(-4798.51 + 1611.56i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 188 q^{4} - 36 q^{6} - 84 q^{7} - 452 q^{9} - 224 q^{13} - 52 q^{16} - 4216 q^{22} - 832 q^{24} - 7684 q^{25} - 396 q^{28} + 3384 q^{30} - 3308 q^{33} + 9124 q^{34} - 3680 q^{36} + 19764 q^{42} + 44 q^{45}+ \cdots + 13884 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.29168 0.822920 0.411460 0.911428i \(-0.365019\pi\)
0.411460 + 0.911428i \(0.365019\pi\)
\(3\) 1.45168 + 8.88215i 0.161298 + 0.986906i
\(4\) −5.16484 −0.322802
\(5\) 6.84103i 0.273641i 0.990596 + 0.136821i \(0.0436884\pi\)
−0.990596 + 0.136821i \(0.956312\pi\)
\(6\) 4.77846 + 29.2372i 0.132735 + 0.812145i
\(7\) −58.5203 −1.19429 −0.597145 0.802133i \(-0.703699\pi\)
−0.597145 + 0.802133i \(0.703699\pi\)
\(8\) −69.6679 −1.08856
\(9\) −76.7853 + 25.7881i −0.947966 + 0.318371i
\(10\) 22.5185i 0.225185i
\(11\) 62.4927 0.516468 0.258234 0.966082i \(-0.416859\pi\)
0.258234 + 0.966082i \(0.416859\pi\)
\(12\) −7.49769 45.8749i −0.0520673 0.318575i
\(13\) 135.505 0.801807 0.400903 0.916120i \(-0.368696\pi\)
0.400903 + 0.916120i \(0.368696\pi\)
\(14\) −192.630 −0.982806
\(15\) −60.7630 + 9.93097i −0.270058 + 0.0441377i
\(16\) −146.687 −0.572996
\(17\) −362.853 −1.25555 −0.627773 0.778396i \(-0.716034\pi\)
−0.627773 + 0.778396i \(0.716034\pi\)
\(18\) −252.753 + 84.8861i −0.780100 + 0.261994i
\(19\) 169.000i 0.468144i 0.972219 + 0.234072i \(0.0752051\pi\)
−0.972219 + 0.234072i \(0.924795\pi\)
\(20\) 35.3328i 0.0883320i
\(21\) −84.9526 519.786i −0.192636 1.17865i
\(22\) 205.706 0.425012
\(23\) 889.439i 1.68136i 0.541533 + 0.840680i \(0.317844\pi\)
−0.541533 + 0.840680i \(0.682156\pi\)
\(24\) −101.135 618.801i −0.175582 1.07431i
\(25\) 578.200 0.925121
\(26\) 446.040 0.659823
\(27\) −340.521 644.582i −0.467107 0.884201i
\(28\) 302.248 0.385520
\(29\) −375.007 + 752.762i −0.445906 + 0.895080i
\(30\) −200.013 + 32.6896i −0.222236 + 0.0363218i
\(31\) 156.038i 0.162370i 0.996699 + 0.0811851i \(0.0258705\pi\)
−0.996699 + 0.0811851i \(0.974130\pi\)
\(32\) 631.839 0.617031
\(33\) 90.7193 + 555.069i 0.0833051 + 0.509706i
\(34\) −1194.40 −1.03321
\(35\) 400.339i 0.326807i
\(36\) 396.583 133.191i 0.306006 0.102771i
\(37\) 1496.22i 1.09293i 0.837481 + 0.546466i \(0.184027\pi\)
−0.837481 + 0.546466i \(0.815973\pi\)
\(38\) 556.293i 0.385245i
\(39\) 196.710 + 1203.58i 0.129330 + 0.791308i
\(40\) 476.600i 0.297875i
\(41\) 90.8657 0.0540545 0.0270273 0.999635i \(-0.491396\pi\)
0.0270273 + 0.999635i \(0.491396\pi\)
\(42\) −279.637 1710.97i −0.158524 0.969937i
\(43\) 2749.96i 1.48727i −0.668586 0.743635i \(-0.733100\pi\)
0.668586 0.743635i \(-0.266900\pi\)
\(44\) −322.764 −0.166717
\(45\) −176.417 525.290i −0.0871194 0.259402i
\(46\) 2927.75i 1.38362i
\(47\) 2050.73 0.928352 0.464176 0.885743i \(-0.346351\pi\)
0.464176 + 0.885743i \(0.346351\pi\)
\(48\) −212.943 1302.90i −0.0924230 0.565493i
\(49\) 1023.62 0.426331
\(50\) 1903.25 0.761300
\(51\) −526.746 3222.92i −0.202517 1.23911i
\(52\) −699.863 −0.258825
\(53\) 2798.90i 0.996404i −0.867061 0.498202i \(-0.833994\pi\)
0.867061 0.498202i \(-0.166006\pi\)
\(54\) −1120.89 2121.76i −0.384392 0.727627i
\(55\) 427.514i 0.141327i
\(56\) 4076.98 1.30006
\(57\) −1501.08 + 245.333i −0.462014 + 0.0755105i
\(58\) −1234.40 + 2477.85i −0.366945 + 0.736579i
\(59\) 5400.05i 1.55129i 0.631167 + 0.775647i \(0.282576\pi\)
−0.631167 + 0.775647i \(0.717424\pi\)
\(60\) 313.831 51.2919i 0.0871753 0.0142477i
\(61\) 1215.04i 0.326536i −0.986582 0.163268i \(-0.947796\pi\)
0.986582 0.163268i \(-0.0522035\pi\)
\(62\) 513.626i 0.133618i
\(63\) 4493.49 1509.12i 1.13215 0.380228i
\(64\) 4426.81 1.08076
\(65\) 926.996i 0.219407i
\(66\) 298.619 + 1827.11i 0.0685535 + 0.419447i
\(67\) −2421.80 −0.539496 −0.269748 0.962931i \(-0.586940\pi\)
−0.269748 + 0.962931i \(0.586940\pi\)
\(68\) 1874.08 0.405293
\(69\) −7900.13 + 1291.18i −1.65934 + 0.271199i
\(70\) 1317.79i 0.268936i
\(71\) 1596.45i 0.316694i 0.987384 + 0.158347i \(0.0506164\pi\)
−0.987384 + 0.158347i \(0.949384\pi\)
\(72\) 5349.47 1796.60i 1.03192 0.346566i
\(73\) 7003.97i 1.31431i −0.753754 0.657156i \(-0.771759\pi\)
0.753754 0.657156i \(-0.228241\pi\)
\(74\) 4925.09i 0.899396i
\(75\) 839.361 + 5135.66i 0.149220 + 0.913007i
\(76\) 872.857i 0.151118i
\(77\) −3657.09 −0.616813
\(78\) 647.507 + 3961.80i 0.106428 + 0.651183i
\(79\) 4229.21i 0.677649i −0.940850 0.338825i \(-0.889971\pi\)
0.940850 0.338825i \(-0.110029\pi\)
\(80\) 1003.49i 0.156795i
\(81\) 5230.95 3960.29i 0.797280 0.603610i
\(82\) 299.101 0.0444826
\(83\) 10621.7i 1.54183i 0.636937 + 0.770916i \(0.280201\pi\)
−0.636937 + 0.770916i \(0.719799\pi\)
\(84\) 438.766 + 2684.61i 0.0621835 + 0.380472i
\(85\) 2482.29i 0.343569i
\(86\) 9051.99i 1.22390i
\(87\) −7230.54 2238.10i −0.955283 0.295693i
\(88\) −4353.73 −0.562207
\(89\) −5030.78 −0.635119 −0.317560 0.948238i \(-0.602863\pi\)
−0.317560 + 0.948238i \(0.602863\pi\)
\(90\) −580.708 1729.09i −0.0716923 0.213468i
\(91\) −7929.81 −0.957591
\(92\) 4593.81i 0.542747i
\(93\) −1385.95 + 226.517i −0.160244 + 0.0261899i
\(94\) 6750.34 0.763959
\(95\) −1156.13 −0.128103
\(96\) 917.228 + 5612.09i 0.0995256 + 0.608951i
\(97\) 13293.3i 1.41283i 0.707797 + 0.706416i \(0.249689\pi\)
−0.707797 + 0.706416i \(0.750311\pi\)
\(98\) 3369.43 0.350836
\(99\) −4798.51 + 1611.56i −0.489594 + 0.164429i
\(100\) −2986.31 −0.298631
\(101\) −19006.3 −1.86318 −0.931590 0.363510i \(-0.881578\pi\)
−0.931590 + 0.363510i \(0.881578\pi\)
\(102\) −1733.88 10608.8i −0.166655 1.01969i
\(103\) 4398.72 0.414621 0.207311 0.978275i \(-0.433529\pi\)
0.207311 + 0.978275i \(0.433529\pi\)
\(104\) −9440.37 −0.872816
\(105\) 3555.87 581.163i 0.322528 0.0527132i
\(106\) 9213.08i 0.819961i
\(107\) 5006.16i 0.437257i 0.975808 + 0.218629i \(0.0701583\pi\)
−0.975808 + 0.218629i \(0.929842\pi\)
\(108\) 1758.74 + 3329.16i 0.150783 + 0.285422i
\(109\) −4613.46 −0.388306 −0.194153 0.980971i \(-0.562196\pi\)
−0.194153 + 0.980971i \(0.562196\pi\)
\(110\) 1407.24i 0.116301i
\(111\) −13289.7 + 2172.04i −1.07862 + 0.176287i
\(112\) 8584.16 0.684324
\(113\) 5445.52 0.426464 0.213232 0.977002i \(-0.431601\pi\)
0.213232 + 0.977002i \(0.431601\pi\)
\(114\) −4941.08 + 807.559i −0.380200 + 0.0621391i
\(115\) −6084.68 −0.460089
\(116\) 1936.85 3887.89i 0.143940 0.288934i
\(117\) −10404.8 + 3494.42i −0.760086 + 0.255272i
\(118\) 17775.3i 1.27659i
\(119\) 21234.3 1.49949
\(120\) 4233.23 691.870i 0.293975 0.0480465i
\(121\) −10735.7 −0.733261
\(122\) 3999.52i 0.268713i
\(123\) 131.908 + 807.083i 0.00871887 + 0.0533467i
\(124\) 805.910i 0.0524135i
\(125\) 8231.13i 0.526792i
\(126\) 14791.1 4967.56i 0.931667 0.312897i
\(127\) 1068.66i 0.0662571i 0.999451 + 0.0331286i \(0.0105471\pi\)
−0.999451 + 0.0331286i \(0.989453\pi\)
\(128\) 4462.20 0.272351
\(129\) 24425.6 3992.06i 1.46779 0.239893i
\(130\) 3051.37i 0.180555i
\(131\) −3556.94 −0.207269 −0.103634 0.994615i \(-0.533047\pi\)
−0.103634 + 0.994615i \(0.533047\pi\)
\(132\) −468.550 2866.84i −0.0268911 0.164534i
\(133\) 9889.91i 0.559100i
\(134\) −7971.78 −0.443962
\(135\) 4409.61 2329.51i 0.241954 0.127820i
\(136\) 25279.2 1.36674
\(137\) 6623.73 0.352908 0.176454 0.984309i \(-0.443537\pi\)
0.176454 + 0.984309i \(0.443537\pi\)
\(138\) −26004.7 + 4250.15i −1.36551 + 0.223175i
\(139\) 10755.9 0.556693 0.278347 0.960481i \(-0.410214\pi\)
0.278347 + 0.960481i \(0.410214\pi\)
\(140\) 2067.68i 0.105494i
\(141\) 2977.00 + 18214.9i 0.149741 + 0.916196i
\(142\) 5255.02i 0.260614i
\(143\) 8468.09 0.414108
\(144\) 11263.4 3782.78i 0.543181 0.182426i
\(145\) −5149.67 2565.43i −0.244931 0.122018i
\(146\) 23054.8i 1.08157i
\(147\) 1485.97 + 9091.95i 0.0687662 + 0.420748i
\(148\) 7727.75i 0.352801i
\(149\) 31213.5i 1.40595i −0.711215 0.702974i \(-0.751855\pi\)
0.711215 0.702974i \(-0.248145\pi\)
\(150\) 2762.91 + 16905.0i 0.122796 + 0.751332i
\(151\) 30770.5 1.34952 0.674761 0.738036i \(-0.264247\pi\)
0.674761 + 0.738036i \(0.264247\pi\)
\(152\) 11773.9i 0.509603i
\(153\) 27861.8 9357.28i 1.19022 0.399730i
\(154\) −12038.0 −0.507588
\(155\) −1067.46 −0.0444312
\(156\) −1015.98 6216.29i −0.0417479 0.255436i
\(157\) 12044.0i 0.488619i −0.969697 0.244309i \(-0.921439\pi\)
0.969697 0.244309i \(-0.0785612\pi\)
\(158\) 13921.2i 0.557651i
\(159\) 24860.2 4063.10i 0.983357 0.160718i
\(160\) 4322.43i 0.168845i
\(161\) 52050.2i 2.00803i
\(162\) 17218.6 13036.0i 0.656097 0.496723i
\(163\) 25980.7i 0.977857i 0.872324 + 0.488928i \(0.162612\pi\)
−0.872324 + 0.488928i \(0.837388\pi\)
\(164\) −469.307 −0.0174489
\(165\) −3797.24 + 620.613i −0.139476 + 0.0227957i
\(166\) 34963.2i 1.26880i
\(167\) 13532.2i 0.485215i −0.970125 0.242608i \(-0.921997\pi\)
0.970125 0.242608i \(-0.0780027\pi\)
\(168\) 5918.47 + 36212.4i 0.209696 + 1.28304i
\(169\) −10199.3 −0.357106
\(170\) 8170.90i 0.282730i
\(171\) −4358.18 12976.7i −0.149043 0.443784i
\(172\) 14203.1i 0.480094i
\(173\) 24080.1i 0.804575i 0.915513 + 0.402288i \(0.131785\pi\)
−0.915513 + 0.402288i \(0.868215\pi\)
\(174\) −23800.6 7367.11i −0.786122 0.243332i
\(175\) −33836.4 −1.10486
\(176\) −9166.86 −0.295934
\(177\) −47964.1 + 7839.14i −1.53098 + 0.250220i
\(178\) −16559.7 −0.522653
\(179\) 34092.2i 1.06402i 0.846739 + 0.532008i \(0.178563\pi\)
−0.846739 + 0.532008i \(0.821437\pi\)
\(180\) 911.164 + 2713.04i 0.0281224 + 0.0837357i
\(181\) 53640.8 1.63734 0.818668 0.574267i \(-0.194713\pi\)
0.818668 + 0.574267i \(0.194713\pi\)
\(182\) −26102.4 −0.788021
\(183\) 10792.2 1763.85i 0.322260 0.0526695i
\(184\) 61965.3i 1.83026i
\(185\) −10235.7 −0.299071
\(186\) −4562.11 + 745.621i −0.131868 + 0.0215522i
\(187\) −22675.6 −0.648450
\(188\) −10591.7 −0.299674
\(189\) 19927.4 + 37721.1i 0.557862 + 1.05599i
\(190\) −3805.62 −0.105419
\(191\) 25164.7 0.689802 0.344901 0.938639i \(-0.387913\pi\)
0.344901 + 0.938639i \(0.387913\pi\)
\(192\) 6426.30 + 39319.6i 0.174325 + 1.06661i
\(193\) 16800.3i 0.451028i 0.974240 + 0.225514i \(0.0724061\pi\)
−0.974240 + 0.225514i \(0.927594\pi\)
\(194\) 43757.4i 1.16265i
\(195\) −8233.72 + 1345.70i −0.216534 + 0.0353899i
\(196\) −5286.83 −0.137621
\(197\) 38965.9i 1.00404i 0.864855 + 0.502021i \(0.167410\pi\)
−0.864855 + 0.502021i \(0.832590\pi\)
\(198\) −15795.2 + 5304.76i −0.402897 + 0.135312i
\(199\) 6910.50 0.174503 0.0872516 0.996186i \(-0.472192\pi\)
0.0872516 + 0.996186i \(0.472192\pi\)
\(200\) −40282.0 −1.00705
\(201\) −3515.67 21510.8i −0.0870194 0.532432i
\(202\) −62562.7 −1.53325
\(203\) 21945.5 44051.8i 0.532542 1.06899i
\(204\) 2720.56 + 16645.8i 0.0653729 + 0.399986i
\(205\) 621.615i 0.0147915i
\(206\) 14479.2 0.341200
\(207\) −22936.9 68295.8i −0.535296 1.59387i
\(208\) −19876.9 −0.459432
\(209\) 10561.2i 0.241781i
\(210\) 11704.8 1913.00i 0.265415 0.0433788i
\(211\) 39202.4i 0.880538i −0.897866 0.440269i \(-0.854883\pi\)
0.897866 0.440269i \(-0.145117\pi\)
\(212\) 14455.9i 0.321641i
\(213\) −14179.9 + 2317.54i −0.312547 + 0.0510820i
\(214\) 16478.7i 0.359828i
\(215\) 18812.6 0.406978
\(216\) 23723.4 + 44906.7i 0.508474 + 0.962506i
\(217\) 9131.37i 0.193917i
\(218\) −15186.0 −0.319545
\(219\) 62210.3 10167.5i 1.29710 0.211995i
\(220\) 2208.04i 0.0456207i
\(221\) −49168.5 −1.00671
\(222\) −43745.4 + 7149.65i −0.887619 + 0.145070i
\(223\) 67649.0 1.36035 0.680176 0.733049i \(-0.261903\pi\)
0.680176 + 0.733049i \(0.261903\pi\)
\(224\) −36975.4 −0.736914
\(225\) −44397.3 + 14910.7i −0.876983 + 0.294532i
\(226\) 17924.9 0.350946
\(227\) 10600.2i 0.205714i 0.994696 + 0.102857i \(0.0327984\pi\)
−0.994696 + 0.102857i \(0.967202\pi\)
\(228\) 7752.84 1267.11i 0.149139 0.0243750i
\(229\) 84616.3i 1.61355i −0.590857 0.806776i \(-0.701210\pi\)
0.590857 0.806776i \(-0.298790\pi\)
\(230\) −20028.8 −0.378617
\(231\) −5308.92 32482.8i −0.0994905 0.608737i
\(232\) 26125.9 52443.3i 0.485396 0.974349i
\(233\) 81121.3i 1.49425i 0.664684 + 0.747124i \(0.268566\pi\)
−0.664684 + 0.747124i \(0.731434\pi\)
\(234\) −34249.3 + 11502.5i −0.625490 + 0.210069i
\(235\) 14029.1i 0.254035i
\(236\) 27890.4i 0.500761i
\(237\) 37564.5 6139.46i 0.668776 0.109303i
\(238\) 69896.4 1.23396
\(239\) 70001.3i 1.22549i −0.790280 0.612745i \(-0.790065\pi\)
0.790280 0.612745i \(-0.209935\pi\)
\(240\) 8913.15 1456.75i 0.154742 0.0252907i
\(241\) −60412.6 −1.04014 −0.520072 0.854123i \(-0.674095\pi\)
−0.520072 + 0.854123i \(0.674095\pi\)
\(242\) −35338.4 −0.603415
\(243\) 42769.5 + 40713.0i 0.724306 + 0.689479i
\(244\) 6275.48i 0.105407i
\(245\) 7002.62i 0.116662i
\(246\) 434.198 + 2656.66i 0.00717494 + 0.0439001i
\(247\) 22900.4i 0.375361i
\(248\) 10870.8i 0.176750i
\(249\) −94343.4 + 15419.3i −1.52164 + 0.248694i
\(250\) 27094.2i 0.433508i
\(251\) 81052.7 1.28653 0.643265 0.765643i \(-0.277579\pi\)
0.643265 + 0.765643i \(0.277579\pi\)
\(252\) −23208.2 + 7794.38i −0.365460 + 0.122738i
\(253\) 55583.4i 0.868369i
\(254\) 3517.69i 0.0545243i
\(255\) 22048.1 3603.48i 0.339070 0.0554169i
\(256\) −56140.7 −0.856640
\(257\) 83939.8i 1.27087i 0.772154 + 0.635435i \(0.219179\pi\)
−0.772154 + 0.635435i \(0.780821\pi\)
\(258\) 80401.2 13140.6i 1.20788 0.197413i
\(259\) 87559.4i 1.30528i
\(260\) 4787.78i 0.0708252i
\(261\) 9382.73 67471.7i 0.137736 0.990469i
\(262\) −11708.3 −0.170566
\(263\) 125244. 1.81070 0.905350 0.424667i \(-0.139609\pi\)
0.905350 + 0.424667i \(0.139609\pi\)
\(264\) −6320.22 38670.5i −0.0906827 0.554845i
\(265\) 19147.3 0.272657
\(266\) 32554.4i 0.460094i
\(267\) −7303.08 44684.2i −0.102443 0.626803i
\(268\) 12508.2 0.174151
\(269\) −14562.1 −0.201242 −0.100621 0.994925i \(-0.532083\pi\)
−0.100621 + 0.994925i \(0.532083\pi\)
\(270\) 14515.0 7668.02i 0.199109 0.105185i
\(271\) 107677.i 1.46617i 0.680139 + 0.733083i \(0.261919\pi\)
−0.680139 + 0.733083i \(0.738081\pi\)
\(272\) 53225.8 0.719424
\(273\) −11511.5 70433.8i −0.154457 0.945052i
\(274\) 21803.2 0.290415
\(275\) 36133.3 0.477795
\(276\) 40802.9 6668.74i 0.535640 0.0875438i
\(277\) −129146. −1.68315 −0.841575 0.540141i \(-0.818371\pi\)
−0.841575 + 0.540141i \(0.818371\pi\)
\(278\) 35404.9 0.458114
\(279\) −4023.91 11981.4i −0.0516940 0.153921i
\(280\) 27890.7i 0.355749i
\(281\) 117136.i 1.48346i 0.670697 + 0.741731i \(0.265995\pi\)
−0.670697 + 0.741731i \(0.734005\pi\)
\(282\) 9799.33 + 59957.6i 0.123225 + 0.753956i
\(283\) 28457.6 0.355324 0.177662 0.984092i \(-0.443147\pi\)
0.177662 + 0.984092i \(0.443147\pi\)
\(284\) 8245.42i 0.102230i
\(285\) −1678.33 10268.9i −0.0206628 0.126426i
\(286\) 27874.3 0.340778
\(287\) −5317.48 −0.0645569
\(288\) −48515.9 + 16293.9i −0.584924 + 0.196445i
\(289\) 48141.3 0.576398
\(290\) −16951.1 8444.59i −0.201558 0.100411i
\(291\) −118073. + 19297.6i −1.39433 + 0.227886i
\(292\) 36174.4i 0.424263i
\(293\) 17402.0 0.202705 0.101352 0.994851i \(-0.467683\pi\)
0.101352 + 0.994851i \(0.467683\pi\)
\(294\) 4891.33 + 29927.8i 0.0565891 + 0.346242i
\(295\) −36941.9 −0.424498
\(296\) 104239.i 1.18972i
\(297\) −21280.1 40281.7i −0.241246 0.456662i
\(298\) 102745.i 1.15698i
\(299\) 120524.i 1.34813i
\(300\) −4335.16 26524.9i −0.0481685 0.294721i
\(301\) 160928.i 1.77623i
\(302\) 101287. 1.11055
\(303\) −27591.1 168817.i −0.300527 1.83878i
\(304\) 24790.1i 0.268245i
\(305\) 8312.12 0.0893536
\(306\) 91712.0 30801.2i 0.979453 0.328946i
\(307\) 106206.i 1.12687i 0.826160 + 0.563435i \(0.190520\pi\)
−0.826160 + 0.563435i \(0.809480\pi\)
\(308\) 18888.3 0.199109
\(309\) 6385.52 + 39070.1i 0.0668774 + 0.409192i
\(310\) −3513.73 −0.0365633
\(311\) −45599.8 −0.471457 −0.235729 0.971819i \(-0.575748\pi\)
−0.235729 + 0.971819i \(0.575748\pi\)
\(312\) −13704.4 83850.8i −0.140783 0.861387i
\(313\) −20128.0 −0.205452 −0.102726 0.994710i \(-0.532757\pi\)
−0.102726 + 0.994710i \(0.532757\pi\)
\(314\) 39644.9i 0.402094i
\(315\) 10324.0 + 30740.1i 0.104046 + 0.309802i
\(316\) 21843.2i 0.218747i
\(317\) 95526.6 0.950617 0.475309 0.879819i \(-0.342336\pi\)
0.475309 + 0.879819i \(0.342336\pi\)
\(318\) 81832.0 13374.4i 0.809224 0.132258i
\(319\) −23435.2 + 47042.1i −0.230296 + 0.462280i
\(320\) 30283.9i 0.295741i
\(321\) −44465.4 + 7267.33i −0.431532 + 0.0705285i
\(322\) 171333.i 1.65245i
\(323\) 61322.1i 0.587776i
\(324\) −27017.0 + 20454.2i −0.257364 + 0.194847i
\(325\) 78349.2 0.741768
\(326\) 85520.1i 0.804698i
\(327\) −6697.26 40977.5i −0.0626328 0.383221i
\(328\) −6330.42 −0.0588417
\(329\) −120009. −1.10872
\(330\) −12499.3 + 2042.86i −0.114778 + 0.0187590i
\(331\) 175080.i 1.59802i −0.601319 0.799009i \(-0.705358\pi\)
0.601319 0.799009i \(-0.294642\pi\)
\(332\) 54859.2i 0.497707i
\(333\) −38584.7 114888.i −0.347958 1.03606i
\(334\) 44543.6i 0.399293i
\(335\) 16567.6i 0.147628i
\(336\) 12461.5 + 76245.9i 0.110380 + 0.675364i
\(337\) 46431.7i 0.408842i 0.978883 + 0.204421i \(0.0655311\pi\)
−0.978883 + 0.204421i \(0.934469\pi\)
\(338\) −33572.8 −0.293870
\(339\) 7905.15 + 48368.0i 0.0687877 + 0.420880i
\(340\) 12820.6i 0.110905i
\(341\) 9751.21i 0.0838590i
\(342\) −14345.7 42715.1i −0.122651 0.365199i
\(343\) 80604.6 0.685128
\(344\) 191584.i 1.61898i
\(345\) −8833.00 54045.0i −0.0742113 0.454065i
\(346\) 79264.1i 0.662101i
\(347\) 118276.i 0.982285i −0.871079 0.491142i \(-0.836579\pi\)
0.871079 0.491142i \(-0.163421\pi\)
\(348\) 37344.5 + 11559.4i 0.308368 + 0.0954504i
\(349\) 125769. 1.03258 0.516291 0.856413i \(-0.327312\pi\)
0.516291 + 0.856413i \(0.327312\pi\)
\(350\) −111379. −0.909214
\(351\) −46142.4 87344.4i −0.374530 0.708958i
\(352\) 39485.3 0.318677
\(353\) 22537.2i 0.180863i 0.995903 + 0.0904317i \(0.0288247\pi\)
−0.995903 + 0.0904317i \(0.971175\pi\)
\(354\) −157883. + 25804.0i −1.25988 + 0.205911i
\(355\) −10921.4 −0.0866605
\(356\) 25983.2 0.205018
\(357\) 30825.3 + 188606.i 0.241864 + 1.47985i
\(358\) 112221.i 0.875601i
\(359\) −223306. −1.73265 −0.866325 0.499480i \(-0.833524\pi\)
−0.866325 + 0.499480i \(0.833524\pi\)
\(360\) 12290.6 + 36595.8i 0.0948348 + 0.282375i
\(361\) 101760. 0.780842
\(362\) 176568. 1.34740
\(363\) −15584.7 95355.8i −0.118273 0.723659i
\(364\) 40956.2 0.309113
\(365\) 47914.3 0.359650
\(366\) 35524.4 5806.03i 0.265194 0.0433428i
\(367\) 3611.56i 0.0268141i −0.999910 0.0134070i \(-0.995732\pi\)
0.999910 0.0134070i \(-0.00426772\pi\)
\(368\) 130469.i 0.963413i
\(369\) −6977.15 + 2343.25i −0.0512419 + 0.0172094i
\(370\) −33692.7 −0.246112
\(371\) 163792.i 1.19000i
\(372\) 7158.21 1169.92i 0.0517272 0.00845417i
\(373\) −147889. −1.06296 −0.531480 0.847071i \(-0.678364\pi\)
−0.531480 + 0.847071i \(0.678364\pi\)
\(374\) −74641.0 −0.533623
\(375\) −73110.1 + 11949.0i −0.519894 + 0.0849703i
\(376\) −142870. −1.01057
\(377\) −50815.5 + 102003.i −0.357531 + 0.717681i
\(378\) 65594.6 + 124166.i 0.459076 + 0.868998i
\(379\) 218265.i 1.51952i 0.650204 + 0.759760i \(0.274683\pi\)
−0.650204 + 0.759760i \(0.725317\pi\)
\(380\) 5971.24 0.0413520
\(381\) −9492.01 + 1551.35i −0.0653895 + 0.0106871i
\(382\) 82834.0 0.567652
\(383\) 44333.7i 0.302229i −0.988516 0.151115i \(-0.951714\pi\)
0.988516 0.151115i \(-0.0482863\pi\)
\(384\) 6477.69 + 39634.0i 0.0439296 + 0.268785i
\(385\) 25018.2i 0.168785i
\(386\) 55301.3i 0.371160i
\(387\) 70916.2 + 211156.i 0.473504 + 1.40988i
\(388\) 68657.9i 0.456065i
\(389\) −277875. −1.83633 −0.918164 0.396201i \(-0.870328\pi\)
−0.918164 + 0.396201i \(0.870328\pi\)
\(390\) −27102.8 + 4429.62i −0.178190 + 0.0291231i
\(391\) 322736.i 2.11103i
\(392\) −71313.5 −0.464087
\(393\) −5163.54 31593.3i −0.0334320 0.204555i
\(394\) 128263.i 0.826247i
\(395\) 28932.1 0.185433
\(396\) 24783.5 8323.47i 0.158042 0.0530779i
\(397\) −234013. −1.48477 −0.742385 0.669973i \(-0.766306\pi\)
−0.742385 + 0.669973i \(0.766306\pi\)
\(398\) 22747.2 0.143602
\(399\) 87843.7 14357.0i 0.551779 0.0901815i
\(400\) −84814.5 −0.530091
\(401\) 55664.1i 0.346168i −0.984907 0.173084i \(-0.944627\pi\)
0.984907 0.173084i \(-0.0553731\pi\)
\(402\) −11572.5 70806.6i −0.0716101 0.438149i
\(403\) 21144.0i 0.130190i
\(404\) 98164.5 0.601439
\(405\) 27092.4 + 35785.1i 0.165173 + 0.218168i
\(406\) 72237.6 145005.i 0.438239 0.879690i
\(407\) 93503.0i 0.564465i
\(408\) 36697.3 + 224534.i 0.220452 + 1.34884i
\(409\) 286073.i 1.71013i −0.518519 0.855066i \(-0.673516\pi\)
0.518519 0.855066i \(-0.326484\pi\)
\(410\) 2046.16i 0.0121723i
\(411\) 9615.53 + 58833.0i 0.0569232 + 0.348287i
\(412\) −22718.7 −0.133841
\(413\) 316013.i 1.85270i
\(414\) −75501.0 224808.i −0.440506 1.31163i
\(415\) −72663.2 −0.421908
\(416\) 85617.6 0.494739
\(417\) 15614.1 + 95535.3i 0.0897933 + 0.549404i
\(418\) 34764.3i 0.198967i
\(419\) 11486.2i 0.0654258i −0.999465 0.0327129i \(-0.989585\pi\)
0.999465 0.0327129i \(-0.0104147\pi\)
\(420\) −18365.5 + 3001.61i −0.104113 + 0.0170159i
\(421\) 6592.84i 0.0371971i −0.999827 0.0185985i \(-0.994080\pi\)
0.999827 0.0185985i \(-0.00592044\pi\)
\(422\) 129042.i 0.724613i
\(423\) −157466. + 52884.3i −0.880046 + 0.295560i
\(424\) 194993.i 1.08465i
\(425\) −209802. −1.16153
\(426\) −46675.9 + 7628.60i −0.257201 + 0.0420364i
\(427\) 71104.5i 0.389979i
\(428\) 25856.0i 0.141148i
\(429\) 12292.9 + 75214.9i 0.0667946 + 0.408685i
\(430\) 61924.9 0.334910
\(431\) 106206.i 0.571735i −0.958269 0.285867i \(-0.907718\pi\)
0.958269 0.285867i \(-0.0922817\pi\)
\(432\) 49950.0 + 94551.9i 0.267651 + 0.506644i
\(433\) 47436.0i 0.253007i −0.991966 0.126504i \(-0.959624\pi\)
0.991966 0.126504i \(-0.0403755\pi\)
\(434\) 30057.6i 0.159578i
\(435\) 15310.9 49464.3i 0.0809138 0.261405i
\(436\) 23827.8 0.125346
\(437\) −150315. −0.787118
\(438\) 204777. 33468.2i 1.06741 0.174455i
\(439\) 7137.50 0.0370354 0.0185177 0.999829i \(-0.494105\pi\)
0.0185177 + 0.999829i \(0.494105\pi\)
\(440\) 29784.0i 0.153843i
\(441\) −78599.0 + 26397.2i −0.404147 + 0.135731i
\(442\) −161847. −0.828439
\(443\) 197515. 1.00645 0.503225 0.864155i \(-0.332147\pi\)
0.503225 + 0.864155i \(0.332147\pi\)
\(444\) 68639.1 11218.2i 0.348181 0.0569060i
\(445\) 34415.7i 0.173795i
\(446\) 222679. 1.11946
\(447\) 277243. 45311.9i 1.38754 0.226776i
\(448\) −259058. −1.29075
\(449\) −248523. −1.23275 −0.616373 0.787454i \(-0.711399\pi\)
−0.616373 + 0.787454i \(0.711399\pi\)
\(450\) −146142. + 49081.2i −0.721687 + 0.242376i
\(451\) 5678.44 0.0279175
\(452\) −28125.2 −0.137664
\(453\) 44668.8 + 273308.i 0.217675 + 1.33185i
\(454\) 34892.6i 0.169286i
\(455\) 54248.0i 0.262036i
\(456\) 104577. 17091.9i 0.502930 0.0821977i
\(457\) 270855. 1.29689 0.648446 0.761261i \(-0.275419\pi\)
0.648446 + 0.761261i \(0.275419\pi\)
\(458\) 278530.i 1.32783i
\(459\) 123559. + 233889.i 0.586475 + 1.11016i
\(460\) 31426.4 0.148518
\(461\) 263209. 1.23851 0.619254 0.785191i \(-0.287435\pi\)
0.619254 + 0.785191i \(0.287435\pi\)
\(462\) −17475.3 106923.i −0.0818728 0.500942i
\(463\) 214906. 1.00251 0.501253 0.865301i \(-0.332873\pi\)
0.501253 + 0.865301i \(0.332873\pi\)
\(464\) 55008.7 110420.i 0.255503 0.512877i
\(465\) −1549.61 9481.33i −0.00716664 0.0438494i
\(466\) 267025.i 1.22965i
\(467\) 344789. 1.58095 0.790477 0.612492i \(-0.209833\pi\)
0.790477 + 0.612492i \(0.209833\pi\)
\(468\) 53739.2 18048.1i 0.245357 0.0824025i
\(469\) 141724. 0.644315
\(470\) 46179.3i 0.209051i
\(471\) 106976. 17484.0i 0.482221 0.0788130i
\(472\) 376210.i 1.68868i
\(473\) 171852.i 0.768127i
\(474\) 123650. 20209.1i 0.550349 0.0899479i
\(475\) 97715.8i 0.433089i
\(476\) −109671. −0.484038
\(477\) 72178.2 + 214914.i 0.317226 + 0.944557i
\(478\) 230422.i 1.00848i
\(479\) 212339. 0.925464 0.462732 0.886498i \(-0.346869\pi\)
0.462732 + 0.886498i \(0.346869\pi\)
\(480\) −38392.5 + 6274.78i −0.166634 + 0.0272343i
\(481\) 202746.i 0.876320i
\(482\) −198859. −0.855955
\(483\) 462318. 75560.2i 1.98174 0.323891i
\(484\) 55448.0 0.236698
\(485\) −90940.0 −0.386609
\(486\) 140784. + 134014.i 0.596046 + 0.567386i
\(487\) −168100. −0.708776 −0.354388 0.935099i \(-0.615311\pi\)
−0.354388 + 0.935099i \(0.615311\pi\)
\(488\) 84649.3i 0.355454i
\(489\) −230764. + 37715.6i −0.965052 + 0.157726i
\(490\) 23050.4i 0.0960032i
\(491\) −16636.2 −0.0690068 −0.0345034 0.999405i \(-0.510985\pi\)
−0.0345034 + 0.999405i \(0.510985\pi\)
\(492\) −681.282 4168.45i −0.00281447 0.0172205i
\(493\) 136072. 273142.i 0.559856 1.12381i
\(494\) 75380.7i 0.308892i
\(495\) −11024.8 32826.8i −0.0449944 0.133973i
\(496\) 22888.7i 0.0930375i
\(497\) 93424.9i 0.378225i
\(498\) −310548. + 50755.3i −1.25219 + 0.204655i
\(499\) −284293. −1.14174 −0.570868 0.821042i \(-0.693393\pi\)
−0.570868 + 0.821042i \(0.693393\pi\)
\(500\) 42512.4i 0.170050i
\(501\) 120195. 19644.4i 0.478862 0.0782641i
\(502\) 266800. 1.05871
\(503\) 133654. 0.528257 0.264128 0.964488i \(-0.414916\pi\)
0.264128 + 0.964488i \(0.414916\pi\)
\(504\) −313052. + 105138.i −1.23241 + 0.413901i
\(505\) 130023.i 0.509843i
\(506\) 182963.i 0.714598i
\(507\) −14806.1 90591.7i −0.0576003 0.352430i
\(508\) 5519.46i 0.0213879i
\(509\) 61972.9i 0.239203i −0.992822 0.119601i \(-0.961838\pi\)
0.992822 0.119601i \(-0.0381617\pi\)
\(510\) 72575.2 11861.5i 0.279028 0.0456037i
\(511\) 409874.i 1.56967i
\(512\) −256193. −0.977298
\(513\) 108934. 57548.0i 0.413933 0.218673i
\(514\) 276303.i 1.04583i
\(515\) 30091.7i 0.113457i
\(516\) −126154. + 20618.3i −0.473807 + 0.0774380i
\(517\) 128155. 0.479464
\(518\) 288218.i 1.07414i
\(519\) −213883. + 34956.6i −0.794040 + 0.129776i
\(520\) 64581.8i 0.238838i
\(521\) 420119.i 1.54773i 0.633348 + 0.773867i \(0.281680\pi\)
−0.633348 + 0.773867i \(0.718320\pi\)
\(522\) 30885.0 222095.i 0.113346 0.815077i
\(523\) −17899.9 −0.0654405 −0.0327203 0.999465i \(-0.510417\pi\)
−0.0327203 + 0.999465i \(0.510417\pi\)
\(524\) 18371.0 0.0669069
\(525\) −49119.6 300540.i −0.178212 1.09040i
\(526\) 412264. 1.49006
\(527\) 56618.8i 0.203863i
\(528\) −13307.3 81421.5i −0.0477335 0.292059i
\(529\) −511261. −1.82697
\(530\) 63026.9 0.224375
\(531\) −139257. 414645.i −0.493887 1.47057i
\(532\) 51079.8i 0.180479i
\(533\) 12312.8 0.0433413
\(534\) −24039.4 147086.i −0.0843026 0.515809i
\(535\) −34247.3 −0.119652
\(536\) 168722. 0.587274
\(537\) −302812. + 49490.9i −1.05008 + 0.171623i
\(538\) −47933.8 −0.165606
\(539\) 63968.8 0.220186
\(540\) −22774.9 + 12031.6i −0.0781032 + 0.0412605i
\(541\) 74674.6i 0.255140i 0.991830 + 0.127570i \(0.0407177\pi\)
−0.991830 + 0.127570i \(0.959282\pi\)
\(542\) 354437.i 1.20654i
\(543\) 77869.2 + 476446.i 0.264099 + 1.61590i
\(544\) −229265. −0.774711
\(545\) 31560.8i 0.106256i
\(546\) −37892.3 231845.i −0.127106 0.777702i
\(547\) 312881. 1.04569 0.522847 0.852426i \(-0.324870\pi\)
0.522847 + 0.852426i \(0.324870\pi\)
\(548\) −34210.5 −0.113919
\(549\) 31333.5 + 93297.2i 0.103960 + 0.309545i
\(550\) 118939. 0.393187
\(551\) −127217. 63376.1i −0.419026 0.208748i
\(552\) 550386. 89953.8i 1.80630 0.295217i
\(553\) 247494.i 0.809311i
\(554\) −425109. −1.38510
\(555\) −14859.0 90915.1i −0.0482395 0.295155i
\(556\) −55552.3 −0.179702
\(557\) 179993.i 0.580158i −0.957003 0.290079i \(-0.906318\pi\)
0.957003 0.290079i \(-0.0936816\pi\)
\(558\) −13245.4 39438.9i −0.0425400 0.126665i
\(559\) 372634.i 1.19250i
\(560\) 58724.5i 0.187259i
\(561\) −32917.8 201409.i −0.104593 0.639959i
\(562\) 385573.i 1.22077i
\(563\) −237023. −0.747779 −0.373889 0.927473i \(-0.621976\pi\)
−0.373889 + 0.927473i \(0.621976\pi\)
\(564\) −15375.7 94076.9i −0.0483367 0.295750i
\(565\) 37253.0i 0.116698i
\(566\) 93673.2 0.292404
\(567\) −306117. + 231757.i −0.952184 + 0.720886i
\(568\) 111222.i 0.344741i
\(569\) −5731.38 −0.0177025 −0.00885124 0.999961i \(-0.502817\pi\)
−0.00885124 + 0.999961i \(0.502817\pi\)
\(570\) −5524.54 33802.1i −0.0170038 0.104038i
\(571\) −545446. −1.67294 −0.836469 0.548015i \(-0.815384\pi\)
−0.836469 + 0.548015i \(0.815384\pi\)
\(572\) −43736.3 −0.133675
\(573\) 36531.0 + 223516.i 0.111263 + 0.680769i
\(574\) −17503.5 −0.0531251
\(575\) 514274.i 1.55546i
\(576\) −339913. + 114159.i −1.02453 + 0.344084i
\(577\) 494416.i 1.48505i −0.669819 0.742525i \(-0.733628\pi\)
0.669819 0.742525i \(-0.266372\pi\)
\(578\) 158466. 0.474329
\(579\) −149223. + 24388.7i −0.445122 + 0.0727497i
\(580\) 26597.2 + 13250.0i 0.0790642 + 0.0393878i
\(581\) 621583.i 1.84140i
\(582\) −388660. + 63521.7i −1.14742 + 0.187532i
\(583\) 174911.i 0.514611i
\(584\) 487952.i 1.43071i
\(585\) −23905.4 71179.6i −0.0698530 0.207991i
\(586\) 57281.8 0.166810
\(587\) 428251.i 1.24286i 0.783470 + 0.621430i \(0.213448\pi\)
−0.783470 + 0.621430i \(0.786552\pi\)
\(588\) −7674.78 46958.5i −0.0221979 0.135819i
\(589\) −26370.3 −0.0760125
\(590\) −121601. −0.349328
\(591\) −346101. + 56565.9i −0.990895 + 0.161950i
\(592\) 219477.i 0.626246i
\(593\) 356829.i 1.01473i −0.861731 0.507366i \(-0.830619\pi\)
0.861731 0.507366i \(-0.169381\pi\)
\(594\) −70047.2 132594.i −0.198526 0.375796i
\(595\) 145264.i 0.410322i
\(596\) 161212.i 0.453844i
\(597\) 10031.8 + 61380.1i 0.0281470 + 0.172218i
\(598\) 396726.i 1.10940i
\(599\) −517685. −1.44282 −0.721410 0.692508i \(-0.756506\pi\)
−0.721410 + 0.692508i \(0.756506\pi\)
\(600\) −58476.5 357791.i −0.162435 0.993863i
\(601\) 619888.i 1.71619i 0.513494 + 0.858093i \(0.328351\pi\)
−0.513494 + 0.858093i \(0.671649\pi\)
\(602\) 529725.i 1.46170i
\(603\) 185958. 62453.5i 0.511424 0.171760i
\(604\) −158924. −0.435629
\(605\) 73443.0i 0.200650i
\(606\) −90821.0 555691.i −0.247310 1.51317i
\(607\) 187769.i 0.509619i −0.966991 0.254810i \(-0.917987\pi\)
0.966991 0.254810i \(-0.0820128\pi\)
\(608\) 106781.i 0.288859i
\(609\) 423133. + 130974.i 1.14089 + 0.353144i
\(610\) 27360.9 0.0735309
\(611\) 277885. 0.744359
\(612\) −143901. + 48328.8i −0.384204 + 0.129034i
\(613\) −189907. −0.505383 −0.252692 0.967547i \(-0.581316\pi\)
−0.252692 + 0.967547i \(0.581316\pi\)
\(614\) 349597.i 0.927324i
\(615\) −5521.28 + 902.385i −0.0145979 + 0.00238584i
\(616\) 254781. 0.671439
\(617\) −41392.7 −0.108731 −0.0543656 0.998521i \(-0.517314\pi\)
−0.0543656 + 0.998521i \(0.517314\pi\)
\(618\) 21019.1 + 128606.i 0.0550348 + 0.336732i
\(619\) 195178.i 0.509390i 0.967021 + 0.254695i \(0.0819750\pi\)
−0.967021 + 0.254695i \(0.918025\pi\)
\(620\) 5513.25 0.0143425
\(621\) 573317. 302873.i 1.48666 0.785375i
\(622\) −150100. −0.387972
\(623\) 294403. 0.758517
\(624\) −28854.9 176550.i −0.0741054 0.453417i
\(625\) 305066. 0.780969
\(626\) −66254.8 −0.169071
\(627\) −93806.6 + 15331.5i −0.238615 + 0.0389988i
\(628\) 62205.1i 0.157727i
\(629\) 542909.i 1.37223i
\(630\) 33983.2 + 101187.i 0.0856215 + 0.254942i
\(631\) 544068. 1.36645 0.683227 0.730206i \(-0.260576\pi\)
0.683227 + 0.730206i \(0.260576\pi\)
\(632\) 294640.i 0.737663i
\(633\) 348202. 56909.4i 0.869008 0.142029i
\(634\) 314443. 0.782282
\(635\) −7310.74 −0.0181307
\(636\) −128399. + 20985.3i −0.317430 + 0.0518800i
\(637\) 138706. 0.341835
\(638\) −77141.2 + 154848.i −0.189516 + 0.380420i
\(639\) −41169.5 122584.i −0.100826 0.300215i
\(640\) 30526.1i 0.0745265i
\(641\) 474728. 1.15539 0.577695 0.816253i \(-0.303952\pi\)
0.577695 + 0.816253i \(0.303952\pi\)
\(642\) −146366. + 23921.7i −0.355116 + 0.0580394i
\(643\) 552280. 1.33579 0.667893 0.744257i \(-0.267196\pi\)
0.667893 + 0.744257i \(0.267196\pi\)
\(644\) 268831.i 0.648198i
\(645\) 27309.8 + 167096.i 0.0656446 + 0.401649i
\(646\) 201853.i 0.483693i
\(647\) 234263.i 0.559624i −0.960055 0.279812i \(-0.909728\pi\)
0.960055 0.279812i \(-0.0902721\pi\)
\(648\) −364429. + 275905.i −0.867887 + 0.657066i
\(649\) 337464.i 0.801194i
\(650\) 257901. 0.610416
\(651\) 81106.2 13255.8i 0.191378 0.0312784i
\(652\) 134186.i 0.315654i
\(653\) 504311. 1.18269 0.591347 0.806417i \(-0.298597\pi\)
0.591347 + 0.806417i \(0.298597\pi\)
\(654\) −22045.2 134885.i −0.0515418 0.315360i
\(655\) 24333.1i 0.0567173i
\(656\) −13328.8 −0.0309731
\(657\) 180619. + 537802.i 0.418439 + 1.24592i
\(658\) −395032. −0.912390
\(659\) −623688. −1.43614 −0.718070 0.695971i \(-0.754974\pi\)
−0.718070 + 0.695971i \(0.754974\pi\)
\(660\) 19612.1 3205.37i 0.0450233 0.00735851i
\(661\) −293810. −0.672455 −0.336228 0.941781i \(-0.609151\pi\)
−0.336228 + 0.941781i \(0.609151\pi\)
\(662\) 576309.i 1.31504i
\(663\) −71376.9 436722.i −0.162379 0.993524i
\(664\) 739990.i 1.67838i
\(665\) 67657.2 0.152993
\(666\) −127009. 378174.i −0.286342 0.852597i
\(667\) −669536. 333546.i −1.50495 0.749728i
\(668\) 69891.4i 0.156629i
\(669\) 98204.6 + 600868.i 0.219422 + 1.34254i
\(670\) 54535.2i 0.121486i
\(671\) 75931.1i 0.168645i
\(672\) −53676.4 328421.i −0.118862 0.727265i
\(673\) −17987.3 −0.0397133 −0.0198566 0.999803i \(-0.506321\pi\)
−0.0198566 + 0.999803i \(0.506321\pi\)
\(674\) 152838.i 0.336444i
\(675\) −196889. 372698.i −0.432130 0.817992i
\(676\) 52677.7 0.115275
\(677\) 62501.1 0.136367 0.0681837 0.997673i \(-0.478280\pi\)
0.0681837 + 0.997673i \(0.478280\pi\)
\(678\) 26021.2 + 159212.i 0.0566068 + 0.346351i
\(679\) 777929.i 1.68733i
\(680\) 172936.i 0.373996i
\(681\) −94152.9 + 15388.1i −0.203020 + 0.0331812i
\(682\) 32097.9i 0.0690093i
\(683\) 648548.i 1.39027i 0.718877 + 0.695137i \(0.244656\pi\)
−0.718877 + 0.695137i \(0.755344\pi\)
\(684\) 22509.3 + 67022.5i 0.0481116 + 0.143255i
\(685\) 45313.1i 0.0965701i
\(686\) 265325. 0.563806
\(687\) 751575. 122836.i 1.59242 0.260262i
\(688\) 403384.i 0.852200i
\(689\) 379266.i 0.798923i
\(690\) −29075.4 177899.i −0.0610700 0.373659i
\(691\) 31695.8 0.0663814 0.0331907 0.999449i \(-0.489433\pi\)
0.0331907 + 0.999449i \(0.489433\pi\)
\(692\) 124370.i 0.259719i
\(693\) 280810. 94309.2i 0.584718 0.196376i
\(694\) 389327.i 0.808342i
\(695\) 73581.2i 0.152334i
\(696\) 503736. + 155924.i 1.03988 + 0.321880i
\(697\) −32970.9 −0.0678680
\(698\) 413993. 0.849732
\(699\) −720531. + 117762.i −1.47468 + 0.241019i
\(700\) 174760. 0.356652
\(701\) 459917.i 0.935931i −0.883747 0.467965i \(-0.844987\pi\)
0.883747 0.467965i \(-0.155013\pi\)
\(702\) −151886. 287510.i −0.308208 0.583416i
\(703\) −252862. −0.511649
\(704\) 276643. 0.558180
\(705\) −124609. + 20365.7i −0.250709 + 0.0409753i
\(706\) 74185.3i 0.148836i
\(707\) 1.11225e6 2.22518
\(708\) 247727. 40487.9i 0.494204 0.0807716i
\(709\) 126864. 0.252374 0.126187 0.992006i \(-0.459726\pi\)
0.126187 + 0.992006i \(0.459726\pi\)
\(710\) −35949.7 −0.0713146
\(711\) 109063. + 324741.i 0.215744 + 0.642389i
\(712\) 350484. 0.691366
\(713\) −138786. −0.273003
\(714\) 101467. + 620830.i 0.199035 + 1.21780i
\(715\) 57930.4i 0.113317i
\(716\) 176080.i 0.343467i
\(717\) 621762. 101619.i 1.20944 0.197669i
\(718\) −735051. −1.42583
\(719\) 786756.i 1.52189i −0.648819 0.760943i \(-0.724737\pi\)
0.648819 0.760943i \(-0.275263\pi\)
\(720\) 25878.1 + 77053.2i 0.0499191 + 0.148637i
\(721\) −257414. −0.495178
\(722\) 334962. 0.642570
\(723\) −87699.6 536594.i −0.167773 1.02652i
\(724\) −277046. −0.528536
\(725\) −216829. + 435247.i −0.412517 + 0.828057i
\(726\) −51300.0 313881.i −0.0973294 0.595514i
\(727\) 488110.i 0.923526i 0.887003 + 0.461763i \(0.152783\pi\)
−0.887003 + 0.461763i \(0.847217\pi\)
\(728\) 552453. 1.04240
\(729\) −299532. + 438988.i −0.563622 + 0.826033i
\(730\) 157719. 0.295963
\(731\) 997831.i 1.86734i
\(732\) −55739.8 + 9109.99i −0.104026 + 0.0170018i
\(733\) 44492.3i 0.0828088i 0.999142 + 0.0414044i \(0.0131832\pi\)
−0.999142 + 0.0414044i \(0.986817\pi\)
\(734\) 11888.1i 0.0220658i
\(735\) −62198.3 + 10165.5i −0.115134 + 0.0188173i
\(736\) 561983.i 1.03745i
\(737\) −151345. −0.278633
\(738\) −22966.5 + 7713.23i −0.0421680 + 0.0141620i
\(739\) 76270.1i 0.139658i −0.997559 0.0698289i \(-0.977755\pi\)
0.997559 0.0698289i \(-0.0222453\pi\)
\(740\) 52865.8 0.0965408
\(741\) −203405. + 33244.0i −0.370446 + 0.0605448i
\(742\) 539152.i 0.979272i
\(743\) −918379. −1.66358 −0.831791 0.555089i \(-0.812684\pi\)
−0.831791 + 0.555089i \(0.812684\pi\)
\(744\) 96556.3 15780.9i 0.174435 0.0285093i
\(745\) 213532. 0.384725
\(746\) −486802. −0.874732
\(747\) −273913. 815588.i −0.490875 1.46160i
\(748\) 117116. 0.209321
\(749\) 292962.i 0.522212i
\(750\) −240655. + 39332.1i −0.427831 + 0.0699238i
\(751\) 482653.i 0.855766i 0.903834 + 0.427883i \(0.140740\pi\)
−0.903834 + 0.427883i \(0.859260\pi\)
\(752\) −300815. −0.531942
\(753\) 117663. + 719923.i 0.207514 + 1.26968i
\(754\) −167268. + 335762.i −0.294219 + 0.590594i
\(755\) 210502.i 0.369285i
\(756\) −102922. 194823.i −0.180079 0.340877i
\(757\) 1.05634e6i 1.84337i −0.387935 0.921687i \(-0.626811\pi\)
0.387935 0.921687i \(-0.373189\pi\)
\(758\) 718459.i 1.25044i
\(759\) −493700. + 80689.3i −0.856998 + 0.140066i
\(760\) 80545.3 0.139448
\(761\) 254574.i 0.439587i 0.975546 + 0.219793i \(0.0705383\pi\)
−0.975546 + 0.219793i \(0.929462\pi\)
\(762\) −31244.7 + 5106.56i −0.0538104 + 0.00879464i
\(763\) 269981. 0.463750
\(764\) −129971. −0.222670
\(765\) 64013.4 + 190603.i 0.109383 + 0.325692i
\(766\) 145932.i 0.248711i
\(767\) 731736.i 1.24384i
\(768\) −81498.3 498651.i −0.138174 0.845423i
\(769\) 432584.i 0.731506i −0.930712 0.365753i \(-0.880811\pi\)
0.930712 0.365753i \(-0.119189\pi\)
\(770\) 82352.0i 0.138897i
\(771\) −745566. + 121854.i −1.25423 + 0.204989i
\(772\) 86771.0i 0.145593i
\(773\) 262908. 0.439992 0.219996 0.975501i \(-0.429396\pi\)
0.219996 + 0.975501i \(0.429396\pi\)
\(774\) 233433. + 695060.i 0.389656 + 1.16022i
\(775\) 90221.1i 0.150212i
\(776\) 926118.i 1.53795i
\(777\) 777716. 127108.i 1.28819 0.210538i
\(778\) −914676. −1.51115
\(779\) 15356.3i 0.0253053i
\(780\) 42525.8 6950.32i 0.0698978 0.0114239i
\(781\) 99766.6i 0.163562i
\(782\) 1.06234e6i 1.73721i
\(783\) 612915. 14608.4i 0.999716 0.0238276i
\(784\) −150152. −0.244286
\(785\) 82393.1 0.133706
\(786\) −16996.7 103995.i −0.0275119 0.168332i
\(787\) −31127.4 −0.0502567 −0.0251283 0.999684i \(-0.507999\pi\)
−0.0251283 + 0.999684i \(0.507999\pi\)
\(788\) 201252.i 0.324107i
\(789\) 181814. + 1.11244e6i 0.292062 + 1.78699i
\(790\) 95235.4 0.152596
\(791\) −318673. −0.509323
\(792\) 334302. 112274.i 0.532953 0.178991i
\(793\) 164644.i 0.261819i
\(794\) −770297. −1.22185
\(795\) 27795.8 + 170070.i 0.0439789 + 0.269087i
\(796\) −35691.6 −0.0563300
\(797\) 494844. 0.779025 0.389512 0.921021i \(-0.372644\pi\)
0.389512 + 0.921021i \(0.372644\pi\)
\(798\) 289153. 47258.6i 0.454070 0.0742121i
\(799\) −744113. −1.16559
\(800\) 365330. 0.570828
\(801\) 386290. 129734.i 0.602072 0.202204i
\(802\) 183228.i 0.284868i
\(803\) 437697.i 0.678801i
\(804\) 18157.9 + 111100.i 0.0280901 + 0.171870i
\(805\) 356077. 0.549480
\(806\) 69599.1i 0.107136i
\(807\) −21139.5 129343.i −0.0324599 0.198607i
\(808\) 1.32413e6 2.02819
\(809\) −837412. −1.27951 −0.639753 0.768581i \(-0.720963\pi\)
−0.639753 + 0.768581i \(0.720963\pi\)
\(810\) 89179.6 + 117793.i 0.135924 + 0.179535i
\(811\) 546447. 0.830819 0.415410 0.909634i \(-0.363638\pi\)
0.415410 + 0.909634i \(0.363638\pi\)
\(812\) −113345. + 227521.i −0.171906 + 0.345071i
\(813\) −956401. + 156312.i −1.44697 + 0.236489i
\(814\) 307782.i 0.464509i
\(815\) −177734. −0.267582
\(816\) 77266.8 + 472760.i 0.116041 + 0.710003i
\(817\) 464743. 0.696255
\(818\) 941660.i 1.40730i
\(819\) 608892. 204494.i 0.907764 0.304869i
\(820\) 3210.54i 0.00477475i
\(821\) 899223.i 1.33408i −0.745023 0.667039i \(-0.767561\pi\)
0.745023 0.667039i \(-0.232439\pi\)
\(822\) 31651.2 + 193659.i 0.0468433 + 0.286612i
\(823\) 257868.i 0.380712i −0.981715 0.190356i \(-0.939036\pi\)
0.981715 0.190356i \(-0.0609643\pi\)
\(824\) −306449. −0.451340
\(825\) 52453.9 + 320941.i 0.0770673 + 0.471539i
\(826\) 1.04021e6i 1.52462i
\(827\) −979284. −1.43185 −0.715925 0.698177i \(-0.753995\pi\)
−0.715925 + 0.698177i \(0.753995\pi\)
\(828\) 118465. + 352737.i 0.172795 + 0.514506i
\(829\) 498418.i 0.725245i 0.931936 + 0.362623i \(0.118119\pi\)
−0.931936 + 0.362623i \(0.881881\pi\)
\(830\) −239184. −0.347197
\(831\) −187479. 1.14710e6i −0.271488 1.66111i
\(832\) 599856. 0.866563
\(833\) −371424. −0.535278
\(834\) 51396.5 + 314472.i 0.0738927 + 0.452115i
\(835\) 92573.9 0.132775
\(836\) 54547.1i 0.0780476i
\(837\) 100579. 53134.1i 0.143568 0.0758443i
\(838\) 37809.0i 0.0538402i
\(839\) 501245. 0.712076 0.356038 0.934472i \(-0.384127\pi\)
0.356038 + 0.934472i \(0.384127\pi\)
\(840\) −247730. + 40488.4i −0.351091 + 0.0573815i
\(841\) −426020. 564582.i −0.602335 0.798243i
\(842\) 21701.5i 0.0306102i
\(843\) −1.04042e6 + 170043.i −1.46404 + 0.239279i
\(844\) 202474.i 0.284240i
\(845\) 69773.7i 0.0977188i
\(846\) −518327. + 174078.i −0.724208 + 0.243223i
\(847\) 628254. 0.875726
\(848\) 410562.i 0.570936i
\(849\) 41311.2 + 252764.i 0.0573130 + 0.350672i
\(850\) −690600. −0.955848
\(851\) −1.33080e6 −1.83761
\(852\) 73237.1 11969.7i 0.100891 0.0164894i
\(853\) 1.13716e6i 1.56288i 0.623983 + 0.781438i \(0.285513\pi\)
−0.623983 + 0.781438i \(0.714487\pi\)
\(854\) 234053.i 0.320922i
\(855\) 88773.9 29814.4i 0.121438 0.0407844i
\(856\) 348768.i 0.475981i
\(857\) 988346.i 1.34570i 0.739780 + 0.672848i \(0.234929\pi\)
−0.739780 + 0.672848i \(0.765071\pi\)
\(858\) 40464.5 + 247583.i 0.0549666 + 0.336315i
\(859\) 1.02564e6i 1.38998i 0.719021 + 0.694989i \(0.244591\pi\)
−0.719021 + 0.694989i \(0.755409\pi\)
\(860\) −97163.8 −0.131373
\(861\) −7719.28 47230.7i −0.0104129 0.0637115i
\(862\) 349596.i 0.470492i
\(863\) 551506.i 0.740507i 0.928931 + 0.370253i \(0.120729\pi\)
−0.928931 + 0.370253i \(0.879271\pi\)
\(864\) −215155. 407272.i −0.288219 0.545579i
\(865\) −164733. −0.220165
\(866\) 156144.i 0.208205i
\(867\) 69885.7 + 427598.i 0.0929716 + 0.568850i
\(868\) 47162.0i 0.0625969i
\(869\) 264295.i 0.349984i
\(870\) 50398.6 162821.i 0.0665856 0.215115i
\(871\) −328167. −0.432572
\(872\) 321410. 0.422694
\(873\) −342809. 1.02073e6i −0.449805 1.33932i
\(874\) −494789. −0.647735
\(875\) 481688.i 0.629143i
\(876\) −321306. + 52513.6i −0.418708 + 0.0684326i
\(877\) 190425. 0.247586 0.123793 0.992308i \(-0.460494\pi\)
0.123793 + 0.992308i \(0.460494\pi\)
\(878\) 23494.4 0.0304772
\(879\) 25262.1 + 154567.i 0.0326958 + 0.200050i
\(880\) 62710.8i 0.0809798i
\(881\) −564525. −0.727329 −0.363665 0.931530i \(-0.618475\pi\)
−0.363665 + 0.931530i \(0.618475\pi\)
\(882\) −258723. + 86891.1i −0.332581 + 0.111696i
\(883\) 370331. 0.474972 0.237486 0.971391i \(-0.423677\pi\)
0.237486 + 0.971391i \(0.423677\pi\)
\(884\) 253947. 0.324967
\(885\) −53627.8 328124.i −0.0684705 0.418939i
\(886\) 650156. 0.828228
\(887\) 1.27730e6 1.62348 0.811740 0.584019i \(-0.198520\pi\)
0.811740 + 0.584019i \(0.198520\pi\)
\(888\) 925865. 151321.i 1.17414 0.191900i
\(889\) 62538.3i 0.0791303i
\(890\) 113286.i 0.143019i
\(891\) 326896. 247489.i 0.411770 0.311746i
\(892\) −349396. −0.439125
\(893\) 346573.i 0.434602i
\(894\) 912595. 149152.i 1.14183 0.186619i
\(895\) −233225. −0.291159
\(896\) −261129. −0.325267
\(897\) −1.07051e6 + 174962.i −1.33047 + 0.217450i
\(898\) −818058. −1.01445
\(899\) −117459. 58515.3i −0.145334 0.0724019i
\(900\) 229305. 77011.2i 0.283092 0.0950755i
\(901\) 1.01559e6i 1.25103i
\(902\) 18691.6 0.0229738
\(903\) −1.42939e6 + 233616.i −1.75297 + 0.286502i
\(904\) −379378. −0.464232
\(905\) 366958.i 0.448043i
\(906\) 147035. + 899642.i 0.179129 + 1.09601i
\(907\) 1.05109e6i 1.27769i −0.769335 0.638845i \(-0.779412\pi\)
0.769335 0.638845i \(-0.220588\pi\)
\(908\) 54748.5i 0.0664050i
\(909\) 1.45940e6 490136.i 1.76623 0.593183i
\(910\) 178567.i 0.215635i
\(911\) −446552. −0.538066 −0.269033 0.963131i \(-0.586704\pi\)
−0.269033 + 0.963131i \(0.586704\pi\)
\(912\) 220189. 35987.2i 0.264732 0.0432672i
\(913\) 663777.i 0.796307i
\(914\) 891567. 1.06724
\(915\) 12066.5 + 73829.5i 0.0144125 + 0.0881836i
\(916\) 437030.i 0.520859i
\(917\) 208153. 0.247539
\(918\) 406717. + 769887.i 0.482622 + 0.913569i
\(919\) 441423. 0.522666 0.261333 0.965249i \(-0.415838\pi\)
0.261333 + 0.965249i \(0.415838\pi\)
\(920\) 423907. 0.500835
\(921\) −943341. + 154178.i −1.11211 + 0.181761i
\(922\) 866400. 1.01919
\(923\) 216328.i 0.253927i
\(924\) 27419.7 + 167768.i 0.0321158 + 0.196502i
\(925\) 865117.i 1.01109i
\(926\) 707403. 0.824983
\(927\) −337757. + 113434.i −0.393047 + 0.132003i
\(928\) −236944. + 475625.i −0.275138 + 0.552292i
\(929\) 1.59665e6i 1.85003i −0.379930 0.925015i \(-0.624052\pi\)
0.379930 0.925015i \(-0.375948\pi\)
\(930\) −5100.81 31209.5i −0.00589757 0.0360845i
\(931\) 172992.i 0.199584i
\(932\) 418978.i 0.482347i
\(933\) −66196.3 405025.i −0.0760450 0.465284i
\(934\) 1.13493e6 1.30100
\(935\) 155125.i 0.177443i
\(936\) 724881. 243449.i 0.827400 0.277879i
\(937\) −1.55026e6 −1.76573 −0.882865 0.469627i \(-0.844389\pi\)
−0.882865 + 0.469627i \(0.844389\pi\)
\(938\) 466511. 0.530220
\(939\) −29219.3 178780.i −0.0331390 0.202762i
\(940\) 72458.0i 0.0820031i
\(941\) 938876.i 1.06030i −0.847904 0.530150i \(-0.822135\pi\)
0.847904 0.530150i \(-0.177865\pi\)
\(942\) 352132. 57551.6i 0.396829 0.0648568i
\(943\) 80819.5i 0.0908851i
\(944\) 792118.i 0.888886i
\(945\) −258051. + 136324.i −0.288963 + 0.152654i
\(946\) 565683.i 0.632107i
\(947\) −447015. −0.498451 −0.249225 0.968446i \(-0.580176\pi\)
−0.249225 + 0.968446i \(0.580176\pi\)
\(948\) −194014. + 31709.3i −0.215883 + 0.0352834i
\(949\) 949076.i 1.05382i
\(950\) 321649.i 0.356398i
\(951\) 138674. + 848482.i 0.153332 + 0.938170i
\(952\) −1.47935e6 −1.63228
\(953\) 627403.i 0.690813i −0.938453 0.345407i \(-0.887741\pi\)
0.938453 0.345407i \(-0.112259\pi\)
\(954\) 237587. + 707429.i 0.261052 + 0.777295i
\(955\) 172152.i 0.188758i
\(956\) 361545.i 0.395591i
\(957\) −451855. 139865.i −0.493373 0.152716i
\(958\) 698953. 0.761583
\(959\) −387622. −0.421475
\(960\) −268986. + 43962.5i −0.291869 + 0.0477024i
\(961\) 899173. 0.973636
\(962\) 667376.i 0.721142i
\(963\) −129099. 384399.i −0.139210 0.414505i
\(964\) 312021. 0.335761
\(965\) −114932. −0.123420
\(966\) 1.52180e6 248720.i 1.63081 0.266536i
\(967\) 1.27111e6i 1.35935i 0.733514 + 0.679675i \(0.237879\pi\)
−0.733514 + 0.679675i \(0.762121\pi\)
\(968\) 747931. 0.798199
\(969\) 544672. 89020.0i 0.580080 0.0948069i
\(970\) −299346. −0.318148
\(971\) −835783. −0.886452 −0.443226 0.896410i \(-0.646166\pi\)
−0.443226 + 0.896410i \(0.646166\pi\)
\(972\) −220898. 210276.i −0.233808 0.222565i
\(973\) −629436. −0.664854
\(974\) −553330. −0.583266
\(975\) 113738. + 695910.i 0.119645 + 0.732055i
\(976\) 178231.i 0.187104i
\(977\) 193547.i 0.202767i 0.994847 + 0.101384i \(0.0323270\pi\)
−0.994847 + 0.101384i \(0.967673\pi\)
\(978\) −759602. + 124148.i −0.794161 + 0.129796i
\(979\) −314387. −0.328019
\(980\) 36167.4i 0.0376587i
\(981\) 354246. 118972.i 0.368101 0.123625i
\(982\) −54761.2 −0.0567871
\(983\) 473793. 0.490322 0.245161 0.969482i \(-0.421159\pi\)
0.245161 + 0.969482i \(0.421159\pi\)
\(984\) −9189.74 56227.8i −0.00949102 0.0580712i
\(985\) −266567. −0.274747
\(986\) 447907. 899096.i 0.460717 0.924810i
\(987\) −174215. 1.06594e6i −0.178834 1.09420i
\(988\) 118277.i 0.121167i
\(989\) 2.44592e6 2.50063
\(990\) −36290.0 108055.i −0.0370268 0.110249i
\(991\) 872411. 0.888329 0.444164 0.895945i \(-0.353501\pi\)
0.444164 + 0.895945i \(0.353501\pi\)
\(992\) 98590.8i 0.100187i
\(993\) 1.55509e6 254161.i 1.57709 0.257757i
\(994\) 307525.i 0.311249i
\(995\) 47274.9i 0.0477512i
\(996\) 487268. 79638.0i 0.491190 0.0802789i
\(997\) 590291.i 0.593848i −0.954901 0.296924i \(-0.904039\pi\)
0.954901 0.296924i \(-0.0959609\pi\)
\(998\) −935802. −0.939557
\(999\) 964440. 509496.i 0.966371 0.510516i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.5.d.c.86.22 yes 32
3.2 odd 2 inner 87.5.d.c.86.12 yes 32
29.28 even 2 inner 87.5.d.c.86.11 32
87.86 odd 2 inner 87.5.d.c.86.21 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.5.d.c.86.11 32 29.28 even 2 inner
87.5.d.c.86.12 yes 32 3.2 odd 2 inner
87.5.d.c.86.21 yes 32 87.86 odd 2 inner
87.5.d.c.86.22 yes 32 1.1 even 1 trivial