Properties

Label 87.5.d.c.86.12
Level $87$
Weight $5$
Character 87.86
Analytic conductor $8.993$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [87,5,Mod(86,87)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(87, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("87.86"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 87.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.99318678829\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 86.12
Character \(\chi\) \(=\) 87.86
Dual form 87.5.d.c.86.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.29168 q^{2} +(-1.45168 + 8.88215i) q^{3} -5.16484 q^{4} -6.84103i q^{5} +(4.77846 - 29.2372i) q^{6} -58.5203 q^{7} +69.6679 q^{8} +(-76.7853 - 25.7881i) q^{9} +22.5185i q^{10} -62.4927 q^{11} +(7.49769 - 45.8749i) q^{12} +135.505 q^{13} +192.630 q^{14} +(60.7630 + 9.93097i) q^{15} -146.687 q^{16} +362.853 q^{17} +(252.753 + 84.8861i) q^{18} +169.000i q^{19} +35.3328i q^{20} +(84.9526 - 519.786i) q^{21} +205.706 q^{22} -889.439i q^{23} +(-101.135 + 618.801i) q^{24} +578.200 q^{25} -446.040 q^{26} +(340.521 - 644.582i) q^{27} +302.248 q^{28} +(375.007 - 752.762i) q^{29} +(-200.013 - 32.6896i) q^{30} +156.038i q^{31} -631.839 q^{32} +(90.7193 - 555.069i) q^{33} -1194.40 q^{34} +400.339i q^{35} +(396.583 + 133.191i) q^{36} +1496.22i q^{37} -556.293i q^{38} +(-196.710 + 1203.58i) q^{39} -476.600i q^{40} -90.8657 q^{41} +(-279.637 + 1710.97i) q^{42} -2749.96i q^{43} +322.764 q^{44} +(-176.417 + 525.290i) q^{45} +2927.75i q^{46} -2050.73 q^{47} +(212.943 - 1302.90i) q^{48} +1023.62 q^{49} -1903.25 q^{50} +(-526.746 + 3222.92i) q^{51} -699.863 q^{52} +2798.90i q^{53} +(-1120.89 + 2121.76i) q^{54} +427.514i q^{55} -4076.98 q^{56} +(-1501.08 - 245.333i) q^{57} +(-1234.40 + 2477.85i) q^{58} -5400.05i q^{59} +(-313.831 - 51.2919i) q^{60} -1215.04i q^{61} -513.626i q^{62} +(4493.49 + 1509.12i) q^{63} +4426.81 q^{64} -926.996i q^{65} +(-298.619 + 1827.11i) q^{66} -2421.80 q^{67} -1874.08 q^{68} +(7900.13 + 1291.18i) q^{69} -1317.79i q^{70} -1596.45i q^{71} +(-5349.47 - 1796.60i) q^{72} -7003.97i q^{73} -4925.09i q^{74} +(-839.361 + 5135.66i) q^{75} -872.857i q^{76} +3657.09 q^{77} +(647.507 - 3961.80i) q^{78} -4229.21i q^{79} +1003.49i q^{80} +(5230.95 + 3960.29i) q^{81} +299.101 q^{82} -10621.7i q^{83} +(-438.766 + 2684.61i) q^{84} -2482.29i q^{85} +9051.99i q^{86} +(6141.76 + 4423.64i) q^{87} -4353.73 q^{88} +5030.78 q^{89} +(580.708 - 1729.09i) q^{90} -7929.81 q^{91} +4593.81i q^{92} +(-1385.95 - 226.517i) q^{93} +6750.34 q^{94} +1156.13 q^{95} +(917.228 - 5612.09i) q^{96} +13293.3i q^{97} -3369.43 q^{98} +(4798.51 + 1611.56i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 188 q^{4} - 36 q^{6} - 84 q^{7} - 452 q^{9} - 224 q^{13} - 52 q^{16} - 4216 q^{22} - 832 q^{24} - 7684 q^{25} - 396 q^{28} + 3384 q^{30} - 3308 q^{33} + 9124 q^{34} - 3680 q^{36} + 19764 q^{42} + 44 q^{45}+ \cdots + 13884 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.29168 −0.822920 −0.411460 0.911428i \(-0.634981\pi\)
−0.411460 + 0.911428i \(0.634981\pi\)
\(3\) −1.45168 + 8.88215i −0.161298 + 0.986906i
\(4\) −5.16484 −0.322802
\(5\) 6.84103i 0.273641i −0.990596 0.136821i \(-0.956312\pi\)
0.990596 0.136821i \(-0.0436884\pi\)
\(6\) 4.77846 29.2372i 0.132735 0.812145i
\(7\) −58.5203 −1.19429 −0.597145 0.802133i \(-0.703699\pi\)
−0.597145 + 0.802133i \(0.703699\pi\)
\(8\) 69.6679 1.08856
\(9\) −76.7853 25.7881i −0.947966 0.318371i
\(10\) 22.5185i 0.225185i
\(11\) −62.4927 −0.516468 −0.258234 0.966082i \(-0.583141\pi\)
−0.258234 + 0.966082i \(0.583141\pi\)
\(12\) 7.49769 45.8749i 0.0520673 0.318575i
\(13\) 135.505 0.801807 0.400903 0.916120i \(-0.368696\pi\)
0.400903 + 0.916120i \(0.368696\pi\)
\(14\) 192.630 0.982806
\(15\) 60.7630 + 9.93097i 0.270058 + 0.0441377i
\(16\) −146.687 −0.572996
\(17\) 362.853 1.25555 0.627773 0.778396i \(-0.283966\pi\)
0.627773 + 0.778396i \(0.283966\pi\)
\(18\) 252.753 + 84.8861i 0.780100 + 0.261994i
\(19\) 169.000i 0.468144i 0.972219 + 0.234072i \(0.0752051\pi\)
−0.972219 + 0.234072i \(0.924795\pi\)
\(20\) 35.3328i 0.0883320i
\(21\) 84.9526 519.786i 0.192636 1.17865i
\(22\) 205.706 0.425012
\(23\) 889.439i 1.68136i −0.541533 0.840680i \(-0.682156\pi\)
0.541533 0.840680i \(-0.317844\pi\)
\(24\) −101.135 + 618.801i −0.175582 + 1.07431i
\(25\) 578.200 0.925121
\(26\) −446.040 −0.659823
\(27\) 340.521 644.582i 0.467107 0.884201i
\(28\) 302.248 0.385520
\(29\) 375.007 752.762i 0.445906 0.895080i
\(30\) −200.013 32.6896i −0.222236 0.0363218i
\(31\) 156.038i 0.162370i 0.996699 + 0.0811851i \(0.0258705\pi\)
−0.996699 + 0.0811851i \(0.974130\pi\)
\(32\) −631.839 −0.617031
\(33\) 90.7193 555.069i 0.0833051 0.509706i
\(34\) −1194.40 −1.03321
\(35\) 400.339i 0.326807i
\(36\) 396.583 + 133.191i 0.306006 + 0.102771i
\(37\) 1496.22i 1.09293i 0.837481 + 0.546466i \(0.184027\pi\)
−0.837481 + 0.546466i \(0.815973\pi\)
\(38\) 556.293i 0.385245i
\(39\) −196.710 + 1203.58i −0.129330 + 0.791308i
\(40\) 476.600i 0.297875i
\(41\) −90.8657 −0.0540545 −0.0270273 0.999635i \(-0.508604\pi\)
−0.0270273 + 0.999635i \(0.508604\pi\)
\(42\) −279.637 + 1710.97i −0.158524 + 0.969937i
\(43\) 2749.96i 1.48727i −0.668586 0.743635i \(-0.733100\pi\)
0.668586 0.743635i \(-0.266900\pi\)
\(44\) 322.764 0.166717
\(45\) −176.417 + 525.290i −0.0871194 + 0.259402i
\(46\) 2927.75i 1.38362i
\(47\) −2050.73 −0.928352 −0.464176 0.885743i \(-0.653649\pi\)
−0.464176 + 0.885743i \(0.653649\pi\)
\(48\) 212.943 1302.90i 0.0924230 0.565493i
\(49\) 1023.62 0.426331
\(50\) −1903.25 −0.761300
\(51\) −526.746 + 3222.92i −0.202517 + 1.23911i
\(52\) −699.863 −0.258825
\(53\) 2798.90i 0.996404i 0.867061 + 0.498202i \(0.166006\pi\)
−0.867061 + 0.498202i \(0.833994\pi\)
\(54\) −1120.89 + 2121.76i −0.384392 + 0.727627i
\(55\) 427.514i 0.141327i
\(56\) −4076.98 −1.30006
\(57\) −1501.08 245.333i −0.462014 0.0755105i
\(58\) −1234.40 + 2477.85i −0.366945 + 0.736579i
\(59\) 5400.05i 1.55129i −0.631167 0.775647i \(-0.717424\pi\)
0.631167 0.775647i \(-0.282576\pi\)
\(60\) −313.831 51.2919i −0.0871753 0.0142477i
\(61\) 1215.04i 0.326536i −0.986582 0.163268i \(-0.947796\pi\)
0.986582 0.163268i \(-0.0522035\pi\)
\(62\) 513.626i 0.133618i
\(63\) 4493.49 + 1509.12i 1.13215 + 0.380228i
\(64\) 4426.81 1.08076
\(65\) 926.996i 0.219407i
\(66\) −298.619 + 1827.11i −0.0685535 + 0.419447i
\(67\) −2421.80 −0.539496 −0.269748 0.962931i \(-0.586940\pi\)
−0.269748 + 0.962931i \(0.586940\pi\)
\(68\) −1874.08 −0.405293
\(69\) 7900.13 + 1291.18i 1.65934 + 0.271199i
\(70\) 1317.79i 0.268936i
\(71\) 1596.45i 0.316694i −0.987384 0.158347i \(-0.949384\pi\)
0.987384 0.158347i \(-0.0506164\pi\)
\(72\) −5349.47 1796.60i −1.03192 0.346566i
\(73\) 7003.97i 1.31431i −0.753754 0.657156i \(-0.771759\pi\)
0.753754 0.657156i \(-0.228241\pi\)
\(74\) 4925.09i 0.899396i
\(75\) −839.361 + 5135.66i −0.149220 + 0.913007i
\(76\) 872.857i 0.151118i
\(77\) 3657.09 0.616813
\(78\) 647.507 3961.80i 0.106428 0.651183i
\(79\) 4229.21i 0.677649i −0.940850 0.338825i \(-0.889971\pi\)
0.940850 0.338825i \(-0.110029\pi\)
\(80\) 1003.49i 0.156795i
\(81\) 5230.95 + 3960.29i 0.797280 + 0.603610i
\(82\) 299.101 0.0444826
\(83\) 10621.7i 1.54183i −0.636937 0.770916i \(-0.719799\pi\)
0.636937 0.770916i \(-0.280201\pi\)
\(84\) −438.766 + 2684.61i −0.0621835 + 0.380472i
\(85\) 2482.29i 0.343569i
\(86\) 9051.99i 1.22390i
\(87\) 6141.76 + 4423.64i 0.811436 + 0.584442i
\(88\) −4353.73 −0.562207
\(89\) 5030.78 0.635119 0.317560 0.948238i \(-0.397137\pi\)
0.317560 + 0.948238i \(0.397137\pi\)
\(90\) 580.708 1729.09i 0.0716923 0.213468i
\(91\) −7929.81 −0.957591
\(92\) 4593.81i 0.542747i
\(93\) −1385.95 226.517i −0.160244 0.0261899i
\(94\) 6750.34 0.763959
\(95\) 1156.13 0.128103
\(96\) 917.228 5612.09i 0.0995256 0.608951i
\(97\) 13293.3i 1.41283i 0.707797 + 0.706416i \(0.249689\pi\)
−0.707797 + 0.706416i \(0.750311\pi\)
\(98\) −3369.43 −0.350836
\(99\) 4798.51 + 1611.56i 0.489594 + 0.164429i
\(100\) −2986.31 −0.298631
\(101\) 19006.3 1.86318 0.931590 0.363510i \(-0.118422\pi\)
0.931590 + 0.363510i \(0.118422\pi\)
\(102\) 1733.88 10608.8i 0.166655 1.01969i
\(103\) 4398.72 0.414621 0.207311 0.978275i \(-0.433529\pi\)
0.207311 + 0.978275i \(0.433529\pi\)
\(104\) 9440.37 0.872816
\(105\) −3555.87 581.163i −0.322528 0.0527132i
\(106\) 9213.08i 0.819961i
\(107\) 5006.16i 0.437257i −0.975808 0.218629i \(-0.929842\pi\)
0.975808 0.218629i \(-0.0701583\pi\)
\(108\) −1758.74 + 3329.16i −0.150783 + 0.285422i
\(109\) −4613.46 −0.388306 −0.194153 0.980971i \(-0.562196\pi\)
−0.194153 + 0.980971i \(0.562196\pi\)
\(110\) 1407.24i 0.116301i
\(111\) −13289.7 2172.04i −1.07862 0.176287i
\(112\) 8584.16 0.684324
\(113\) −5445.52 −0.426464 −0.213232 0.977002i \(-0.568399\pi\)
−0.213232 + 0.977002i \(0.568399\pi\)
\(114\) 4941.08 + 807.559i 0.380200 + 0.0621391i
\(115\) −6084.68 −0.460089
\(116\) −1936.85 + 3887.89i −0.143940 + 0.288934i
\(117\) −10404.8 3494.42i −0.760086 0.255272i
\(118\) 17775.3i 1.27659i
\(119\) −21234.3 −1.49949
\(120\) 4233.23 + 691.870i 0.293975 + 0.0480465i
\(121\) −10735.7 −0.733261
\(122\) 3999.52i 0.268713i
\(123\) 131.908 807.083i 0.00871887 0.0533467i
\(124\) 805.910i 0.0524135i
\(125\) 8231.13i 0.526792i
\(126\) −14791.1 4967.56i −0.931667 0.312897i
\(127\) 1068.66i 0.0662571i 0.999451 + 0.0331286i \(0.0105471\pi\)
−0.999451 + 0.0331286i \(0.989453\pi\)
\(128\) −4462.20 −0.272351
\(129\) 24425.6 + 3992.06i 1.46779 + 0.239893i
\(130\) 3051.37i 0.180555i
\(131\) 3556.94 0.207269 0.103634 0.994615i \(-0.466953\pi\)
0.103634 + 0.994615i \(0.466953\pi\)
\(132\) −468.550 + 2866.84i −0.0268911 + 0.164534i
\(133\) 9889.91i 0.559100i
\(134\) 7971.78 0.443962
\(135\) −4409.61 2329.51i −0.241954 0.127820i
\(136\) 25279.2 1.36674
\(137\) −6623.73 −0.352908 −0.176454 0.984309i \(-0.556463\pi\)
−0.176454 + 0.984309i \(0.556463\pi\)
\(138\) −26004.7 4250.15i −1.36551 0.223175i
\(139\) 10755.9 0.556693 0.278347 0.960481i \(-0.410214\pi\)
0.278347 + 0.960481i \(0.410214\pi\)
\(140\) 2067.68i 0.105494i
\(141\) 2977.00 18214.9i 0.149741 0.916196i
\(142\) 5255.02i 0.260614i
\(143\) −8468.09 −0.414108
\(144\) 11263.4 + 3782.78i 0.543181 + 0.182426i
\(145\) −5149.67 2565.43i −0.244931 0.122018i
\(146\) 23054.8i 1.08157i
\(147\) −1485.97 + 9091.95i −0.0687662 + 0.420748i
\(148\) 7727.75i 0.352801i
\(149\) 31213.5i 1.40595i 0.711215 + 0.702974i \(0.248145\pi\)
−0.711215 + 0.702974i \(0.751855\pi\)
\(150\) 2762.91 16905.0i 0.122796 0.751332i
\(151\) 30770.5 1.34952 0.674761 0.738036i \(-0.264247\pi\)
0.674761 + 0.738036i \(0.264247\pi\)
\(152\) 11773.9i 0.509603i
\(153\) −27861.8 9357.28i −1.19022 0.399730i
\(154\) −12038.0 −0.507588
\(155\) 1067.46 0.0444312
\(156\) 1015.98 6216.29i 0.0417479 0.255436i
\(157\) 12044.0i 0.488619i −0.969697 0.244309i \(-0.921439\pi\)
0.969697 0.244309i \(-0.0785612\pi\)
\(158\) 13921.2i 0.557651i
\(159\) −24860.2 4063.10i −0.983357 0.160718i
\(160\) 4322.43i 0.168845i
\(161\) 52050.2i 2.00803i
\(162\) −17218.6 13036.0i −0.656097 0.496723i
\(163\) 25980.7i 0.977857i 0.872324 + 0.488928i \(0.162612\pi\)
−0.872324 + 0.488928i \(0.837388\pi\)
\(164\) 469.307 0.0174489
\(165\) −3797.24 620.613i −0.139476 0.0227957i
\(166\) 34963.2i 1.26880i
\(167\) 13532.2i 0.485215i 0.970125 + 0.242608i \(0.0780027\pi\)
−0.970125 + 0.242608i \(0.921997\pi\)
\(168\) 5918.47 36212.4i 0.209696 1.28304i
\(169\) −10199.3 −0.357106
\(170\) 8170.90i 0.282730i
\(171\) 4358.18 12976.7i 0.149043 0.443784i
\(172\) 14203.1i 0.480094i
\(173\) 24080.1i 0.804575i −0.915513 0.402288i \(-0.868215\pi\)
0.915513 0.402288i \(-0.131785\pi\)
\(174\) −20216.7 14561.2i −0.667747 0.480949i
\(175\) −33836.4 −1.10486
\(176\) 9166.86 0.295934
\(177\) 47964.1 + 7839.14i 1.53098 + 0.250220i
\(178\) −16559.7 −0.522653
\(179\) 34092.2i 1.06402i −0.846739 0.532008i \(-0.821437\pi\)
0.846739 0.532008i \(-0.178563\pi\)
\(180\) 911.164 2713.04i 0.0281224 0.0837357i
\(181\) 53640.8 1.63734 0.818668 0.574267i \(-0.194713\pi\)
0.818668 + 0.574267i \(0.194713\pi\)
\(182\) 26102.4 0.788021
\(183\) 10792.2 + 1763.85i 0.322260 + 0.0526695i
\(184\) 61965.3i 1.83026i
\(185\) 10235.7 0.299071
\(186\) 4562.11 + 745.621i 0.131868 + 0.0215522i
\(187\) −22675.6 −0.648450
\(188\) 10591.7 0.299674
\(189\) −19927.4 + 37721.1i −0.557862 + 1.05599i
\(190\) −3805.62 −0.105419
\(191\) −25164.7 −0.689802 −0.344901 0.938639i \(-0.612087\pi\)
−0.344901 + 0.938639i \(0.612087\pi\)
\(192\) −6426.30 + 39319.6i −0.174325 + 1.06661i
\(193\) 16800.3i 0.451028i 0.974240 + 0.225514i \(0.0724061\pi\)
−0.974240 + 0.225514i \(0.927594\pi\)
\(194\) 43757.4i 1.16265i
\(195\) 8233.72 + 1345.70i 0.216534 + 0.0353899i
\(196\) −5286.83 −0.137621
\(197\) 38965.9i 1.00404i −0.864855 0.502021i \(-0.832590\pi\)
0.864855 0.502021i \(-0.167410\pi\)
\(198\) −15795.2 5304.76i −0.402897 0.135312i
\(199\) 6910.50 0.174503 0.0872516 0.996186i \(-0.472192\pi\)
0.0872516 + 0.996186i \(0.472192\pi\)
\(200\) 40282.0 1.00705
\(201\) 3515.67 21510.8i 0.0870194 0.532432i
\(202\) −62562.7 −1.53325
\(203\) −21945.5 + 44051.8i −0.532542 + 1.06899i
\(204\) 2720.56 16645.8i 0.0653729 0.399986i
\(205\) 621.615i 0.0147915i
\(206\) −14479.2 −0.341200
\(207\) −22936.9 + 68295.8i −0.535296 + 1.59387i
\(208\) −19876.9 −0.459432
\(209\) 10561.2i 0.241781i
\(210\) 11704.8 + 1913.00i 0.265415 + 0.0433788i
\(211\) 39202.4i 0.880538i −0.897866 0.440269i \(-0.854883\pi\)
0.897866 0.440269i \(-0.145117\pi\)
\(212\) 14455.9i 0.321641i
\(213\) 14179.9 + 2317.54i 0.312547 + 0.0510820i
\(214\) 16478.7i 0.359828i
\(215\) −18812.6 −0.406978
\(216\) 23723.4 44906.7i 0.508474 0.962506i
\(217\) 9131.37i 0.193917i
\(218\) 15186.0 0.319545
\(219\) 62210.3 + 10167.5i 1.29710 + 0.211995i
\(220\) 2208.04i 0.0456207i
\(221\) 49168.5 1.00671
\(222\) 43745.4 + 7149.65i 0.887619 + 0.145070i
\(223\) 67649.0 1.36035 0.680176 0.733049i \(-0.261903\pi\)
0.680176 + 0.733049i \(0.261903\pi\)
\(224\) 36975.4 0.736914
\(225\) −44397.3 14910.7i −0.876983 0.294532i
\(226\) 17924.9 0.350946
\(227\) 10600.2i 0.205714i −0.994696 0.102857i \(-0.967202\pi\)
0.994696 0.102857i \(-0.0327984\pi\)
\(228\) 7752.84 + 1267.11i 0.149139 + 0.0243750i
\(229\) 84616.3i 1.61355i −0.590857 0.806776i \(-0.701210\pi\)
0.590857 0.806776i \(-0.298790\pi\)
\(230\) 20028.8 0.378617
\(231\) −5308.92 + 32482.8i −0.0994905 + 0.608737i
\(232\) 26125.9 52443.3i 0.485396 0.974349i
\(233\) 81121.3i 1.49425i −0.664684 0.747124i \(-0.731434\pi\)
0.664684 0.747124i \(-0.268566\pi\)
\(234\) 34249.3 + 11502.5i 0.625490 + 0.210069i
\(235\) 14029.1i 0.254035i
\(236\) 27890.4i 0.500761i
\(237\) 37564.5 + 6139.46i 0.668776 + 0.109303i
\(238\) 69896.4 1.23396
\(239\) 70001.3i 1.22549i 0.790280 + 0.612745i \(0.209935\pi\)
−0.790280 + 0.612745i \(0.790065\pi\)
\(240\) −8913.15 1456.75i −0.154742 0.0252907i
\(241\) −60412.6 −1.04014 −0.520072 0.854123i \(-0.674095\pi\)
−0.520072 + 0.854123i \(0.674095\pi\)
\(242\) 35338.4 0.603415
\(243\) −42769.5 + 40713.0i −0.724306 + 0.689479i
\(244\) 6275.48i 0.105407i
\(245\) 7002.62i 0.116662i
\(246\) −434.198 + 2656.66i −0.00717494 + 0.0439001i
\(247\) 22900.4i 0.375361i
\(248\) 10870.8i 0.176750i
\(249\) 94343.4 + 15419.3i 1.52164 + 0.248694i
\(250\) 27094.2i 0.433508i
\(251\) −81052.7 −1.28653 −0.643265 0.765643i \(-0.722421\pi\)
−0.643265 + 0.765643i \(0.722421\pi\)
\(252\) −23208.2 7794.38i −0.365460 0.122738i
\(253\) 55583.4i 0.868369i
\(254\) 3517.69i 0.0545243i
\(255\) 22048.1 + 3603.48i 0.339070 + 0.0554169i
\(256\) −56140.7 −0.856640
\(257\) 83939.8i 1.27087i −0.772154 0.635435i \(-0.780821\pi\)
0.772154 0.635435i \(-0.219179\pi\)
\(258\) −80401.2 13140.6i −1.20788 0.197413i
\(259\) 87559.4i 1.30528i
\(260\) 4787.78i 0.0708252i
\(261\) −48207.3 + 48130.3i −0.707672 + 0.706542i
\(262\) −11708.3 −0.170566
\(263\) −125244. −1.81070 −0.905350 0.424667i \(-0.860391\pi\)
−0.905350 + 0.424667i \(0.860391\pi\)
\(264\) 6320.22 38670.5i 0.0906827 0.554845i
\(265\) 19147.3 0.272657
\(266\) 32554.4i 0.460094i
\(267\) −7303.08 + 44684.2i −0.102443 + 0.626803i
\(268\) 12508.2 0.174151
\(269\) 14562.1 0.201242 0.100621 0.994925i \(-0.467917\pi\)
0.100621 + 0.994925i \(0.467917\pi\)
\(270\) 14515.0 + 7668.02i 0.199109 + 0.105185i
\(271\) 107677.i 1.46617i 0.680139 + 0.733083i \(0.261919\pi\)
−0.680139 + 0.733083i \(0.738081\pi\)
\(272\) −53225.8 −0.719424
\(273\) 11511.5 70433.8i 0.154457 0.945052i
\(274\) 21803.2 0.290415
\(275\) −36133.3 −0.477795
\(276\) −40802.9 6668.74i −0.535640 0.0875438i
\(277\) −129146. −1.68315 −0.841575 0.540141i \(-0.818371\pi\)
−0.841575 + 0.540141i \(0.818371\pi\)
\(278\) −35404.9 −0.458114
\(279\) 4023.91 11981.4i 0.0516940 0.153921i
\(280\) 27890.7i 0.355749i
\(281\) 117136.i 1.48346i −0.670697 0.741731i \(-0.734005\pi\)
0.670697 0.741731i \(-0.265995\pi\)
\(282\) −9799.33 + 59957.6i −0.123225 + 0.753956i
\(283\) 28457.6 0.355324 0.177662 0.984092i \(-0.443147\pi\)
0.177662 + 0.984092i \(0.443147\pi\)
\(284\) 8245.42i 0.102230i
\(285\) −1678.33 + 10268.9i −0.0206628 + 0.126426i
\(286\) 27874.3 0.340778
\(287\) 5317.48 0.0645569
\(288\) 48515.9 + 16293.9i 0.584924 + 0.196445i
\(289\) 48141.3 0.576398
\(290\) 16951.1 + 8444.59i 0.201558 + 0.100411i
\(291\) −118073. 19297.6i −1.39433 0.227886i
\(292\) 36174.4i 0.424263i
\(293\) −17402.0 −0.202705 −0.101352 0.994851i \(-0.532317\pi\)
−0.101352 + 0.994851i \(0.532317\pi\)
\(294\) 4891.33 29927.8i 0.0565891 0.346242i
\(295\) −36941.9 −0.424498
\(296\) 104239.i 1.18972i
\(297\) −21280.1 + 40281.7i −0.241246 + 0.456662i
\(298\) 102745.i 1.15698i
\(299\) 120524.i 1.34813i
\(300\) 4335.16 26524.9i 0.0481685 0.294721i
\(301\) 160928.i 1.77623i
\(302\) −101287. −1.11055
\(303\) −27591.1 + 168817.i −0.300527 + 1.83878i
\(304\) 24790.1i 0.268245i
\(305\) −8312.12 −0.0893536
\(306\) 91712.0 + 30801.2i 0.979453 + 0.328946i
\(307\) 106206.i 1.12687i 0.826160 + 0.563435i \(0.190520\pi\)
−0.826160 + 0.563435i \(0.809480\pi\)
\(308\) −18888.3 −0.199109
\(309\) −6385.52 + 39070.1i −0.0668774 + 0.409192i
\(310\) −3513.73 −0.0365633
\(311\) 45599.8 0.471457 0.235729 0.971819i \(-0.424252\pi\)
0.235729 + 0.971819i \(0.424252\pi\)
\(312\) −13704.4 + 83850.8i −0.140783 + 0.861387i
\(313\) −20128.0 −0.205452 −0.102726 0.994710i \(-0.532757\pi\)
−0.102726 + 0.994710i \(0.532757\pi\)
\(314\) 39644.9i 0.402094i
\(315\) 10324.0 30740.1i 0.104046 0.309802i
\(316\) 21843.2i 0.218747i
\(317\) −95526.6 −0.950617 −0.475309 0.879819i \(-0.657664\pi\)
−0.475309 + 0.879819i \(0.657664\pi\)
\(318\) 81832.0 + 13374.4i 0.809224 + 0.132258i
\(319\) −23435.2 + 47042.1i −0.230296 + 0.462280i
\(320\) 30283.9i 0.295741i
\(321\) 44465.4 + 7267.33i 0.431532 + 0.0705285i
\(322\) 171333.i 1.65245i
\(323\) 61322.1i 0.587776i
\(324\) −27017.0 20454.2i −0.257364 0.194847i
\(325\) 78349.2 0.741768
\(326\) 85520.1i 0.804698i
\(327\) 6697.26 40977.5i 0.0626328 0.383221i
\(328\) −6330.42 −0.0588417
\(329\) 120009. 1.10872
\(330\) 12499.3 + 2042.86i 0.114778 + 0.0187590i
\(331\) 175080.i 1.59802i −0.601319 0.799009i \(-0.705358\pi\)
0.601319 0.799009i \(-0.294642\pi\)
\(332\) 54859.2i 0.497707i
\(333\) 38584.7 114888.i 0.347958 1.03606i
\(334\) 44543.6i 0.399293i
\(335\) 16567.6i 0.147628i
\(336\) −12461.5 + 76245.9i −0.110380 + 0.675364i
\(337\) 46431.7i 0.408842i 0.978883 + 0.204421i \(0.0655311\pi\)
−0.978883 + 0.204421i \(0.934469\pi\)
\(338\) 33572.8 0.293870
\(339\) 7905.15 48368.0i 0.0687877 0.420880i
\(340\) 12820.6i 0.110905i
\(341\) 9751.21i 0.0838590i
\(342\) −14345.7 + 42715.1i −0.122651 + 0.365199i
\(343\) 80604.6 0.685128
\(344\) 191584.i 1.61898i
\(345\) 8833.00 54045.0i 0.0742113 0.454065i
\(346\) 79264.1i 0.662101i
\(347\) 118276.i 0.982285i 0.871079 + 0.491142i \(0.163421\pi\)
−0.871079 + 0.491142i \(0.836579\pi\)
\(348\) −31721.2 22847.4i −0.261933 0.188659i
\(349\) 125769. 1.03258 0.516291 0.856413i \(-0.327312\pi\)
0.516291 + 0.856413i \(0.327312\pi\)
\(350\) 111379. 0.909214
\(351\) 46142.4 87344.4i 0.374530 0.708958i
\(352\) 39485.3 0.318677
\(353\) 22537.2i 0.180863i −0.995903 0.0904317i \(-0.971175\pi\)
0.995903 0.0904317i \(-0.0288247\pi\)
\(354\) −157883. 25804.0i −1.25988 0.205911i
\(355\) −10921.4 −0.0866605
\(356\) −25983.2 −0.205018
\(357\) 30825.3 188606.i 0.241864 1.47985i
\(358\) 112221.i 0.875601i
\(359\) 223306. 1.73265 0.866325 0.499480i \(-0.166476\pi\)
0.866325 + 0.499480i \(0.166476\pi\)
\(360\) −12290.6 + 36595.8i −0.0948348 + 0.282375i
\(361\) 101760. 0.780842
\(362\) −176568. −1.34740
\(363\) 15584.7 95355.8i 0.118273 0.723659i
\(364\) 40956.2 0.309113
\(365\) −47914.3 −0.359650
\(366\) −35524.4 5806.03i −0.265194 0.0433428i
\(367\) 3611.56i 0.0268141i −0.999910 0.0134070i \(-0.995732\pi\)
0.999910 0.0134070i \(-0.00426772\pi\)
\(368\) 130469.i 0.963413i
\(369\) 6977.15 + 2343.25i 0.0512419 + 0.0172094i
\(370\) −33692.7 −0.246112
\(371\) 163792.i 1.19000i
\(372\) 7158.21 + 1169.92i 0.0517272 + 0.00845417i
\(373\) −147889. −1.06296 −0.531480 0.847071i \(-0.678364\pi\)
−0.531480 + 0.847071i \(0.678364\pi\)
\(374\) 74641.0 0.533623
\(375\) 73110.1 + 11949.0i 0.519894 + 0.0849703i
\(376\) −142870. −1.01057
\(377\) 50815.5 102003.i 0.357531 0.717681i
\(378\) 65594.6 124166.i 0.459076 0.868998i
\(379\) 218265.i 1.51952i 0.650204 + 0.759760i \(0.274683\pi\)
−0.650204 + 0.759760i \(0.725317\pi\)
\(380\) −5971.24 −0.0413520
\(381\) −9492.01 1551.35i −0.0653895 0.0106871i
\(382\) 82834.0 0.567652
\(383\) 44333.7i 0.302229i 0.988516 + 0.151115i \(0.0482863\pi\)
−0.988516 + 0.151115i \(0.951714\pi\)
\(384\) 6477.69 39634.0i 0.0439296 0.268785i
\(385\) 25018.2i 0.168785i
\(386\) 55301.3i 0.371160i
\(387\) −70916.2 + 211156.i −0.473504 + 1.40988i
\(388\) 68657.9i 0.456065i
\(389\) 277875. 1.83633 0.918164 0.396201i \(-0.129672\pi\)
0.918164 + 0.396201i \(0.129672\pi\)
\(390\) −27102.8 4429.62i −0.178190 0.0291231i
\(391\) 322736.i 2.11103i
\(392\) 71313.5 0.464087
\(393\) −5163.54 + 31593.3i −0.0334320 + 0.204555i
\(394\) 128263.i 0.826247i
\(395\) −28932.1 −0.185433
\(396\) −24783.5 8323.47i −0.158042 0.0530779i
\(397\) −234013. −1.48477 −0.742385 0.669973i \(-0.766306\pi\)
−0.742385 + 0.669973i \(0.766306\pi\)
\(398\) −22747.2 −0.143602
\(399\) 87843.7 + 14357.0i 0.551779 + 0.0901815i
\(400\) −84814.5 −0.530091
\(401\) 55664.1i 0.346168i 0.984907 + 0.173084i \(0.0553731\pi\)
−0.984907 + 0.173084i \(0.944627\pi\)
\(402\) −11572.5 + 70806.6i −0.0716101 + 0.438149i
\(403\) 21144.0i 0.130190i
\(404\) −98164.5 −0.601439
\(405\) 27092.4 35785.1i 0.165173 0.218168i
\(406\) 72237.6 145005.i 0.438239 0.879690i
\(407\) 93503.0i 0.564465i
\(408\) −36697.3 + 224534.i −0.220452 + 1.34884i
\(409\) 286073.i 1.71013i −0.518519 0.855066i \(-0.673516\pi\)
0.518519 0.855066i \(-0.326484\pi\)
\(410\) 2046.16i 0.0121723i
\(411\) 9615.53 58833.0i 0.0569232 0.348287i
\(412\) −22718.7 −0.133841
\(413\) 316013.i 1.85270i
\(414\) 75501.0 224808.i 0.440506 1.31163i
\(415\) −72663.2 −0.421908
\(416\) −85617.6 −0.494739
\(417\) −15614.1 + 95535.3i −0.0897933 + 0.549404i
\(418\) 34764.3i 0.198967i
\(419\) 11486.2i 0.0654258i 0.999465 + 0.0327129i \(0.0104147\pi\)
−0.999465 + 0.0327129i \(0.989585\pi\)
\(420\) 18365.5 + 3001.61i 0.104113 + 0.0170159i
\(421\) 6592.84i 0.0371971i −0.999827 0.0185985i \(-0.994080\pi\)
0.999827 0.0185985i \(-0.00592044\pi\)
\(422\) 129042.i 0.724613i
\(423\) 157466. + 52884.3i 0.880046 + 0.295560i
\(424\) 194993.i 1.08465i
\(425\) 209802. 1.16153
\(426\) −46675.9 7628.60i −0.257201 0.0420364i
\(427\) 71104.5i 0.389979i
\(428\) 25856.0i 0.141148i
\(429\) 12292.9 75214.9i 0.0667946 0.408685i
\(430\) 61924.9 0.334910
\(431\) 106206.i 0.571735i 0.958269 + 0.285867i \(0.0922817\pi\)
−0.958269 + 0.285867i \(0.907718\pi\)
\(432\) −49950.0 + 94551.9i −0.267651 + 0.506644i
\(433\) 47436.0i 0.253007i −0.991966 0.126504i \(-0.959624\pi\)
0.991966 0.126504i \(-0.0403755\pi\)
\(434\) 30057.6i 0.159578i
\(435\) 30262.2 42015.9i 0.159927 0.222042i
\(436\) 23827.8 0.125346
\(437\) 150315. 0.787118
\(438\) −204777. 33468.2i −1.06741 0.174455i
\(439\) 7137.50 0.0370354 0.0185177 0.999829i \(-0.494105\pi\)
0.0185177 + 0.999829i \(0.494105\pi\)
\(440\) 29784.0i 0.153843i
\(441\) −78599.0 26397.2i −0.404147 0.135731i
\(442\) −161847. −0.828439
\(443\) −197515. −1.00645 −0.503225 0.864155i \(-0.667853\pi\)
−0.503225 + 0.864155i \(0.667853\pi\)
\(444\) 68639.1 + 11218.2i 0.348181 + 0.0569060i
\(445\) 34415.7i 0.173795i
\(446\) −222679. −1.11946
\(447\) −277243. 45311.9i −1.38754 0.226776i
\(448\) −259058. −1.29075
\(449\) 248523. 1.23275 0.616373 0.787454i \(-0.288601\pi\)
0.616373 + 0.787454i \(0.288601\pi\)
\(450\) 146142. + 49081.2i 0.721687 + 0.242376i
\(451\) 5678.44 0.0279175
\(452\) 28125.2 0.137664
\(453\) −44668.8 + 273308.i −0.217675 + 1.33185i
\(454\) 34892.6i 0.169286i
\(455\) 54248.0i 0.262036i
\(456\) −104577. 17091.9i −0.502930 0.0821977i
\(457\) 270855. 1.29689 0.648446 0.761261i \(-0.275419\pi\)
0.648446 + 0.761261i \(0.275419\pi\)
\(458\) 278530.i 1.32783i
\(459\) 123559. 233889.i 0.586475 1.11016i
\(460\) 31426.4 0.148518
\(461\) −263209. −1.23851 −0.619254 0.785191i \(-0.712565\pi\)
−0.619254 + 0.785191i \(0.712565\pi\)
\(462\) 17475.3 106923.i 0.0818728 0.500942i
\(463\) 214906. 1.00251 0.501253 0.865301i \(-0.332873\pi\)
0.501253 + 0.865301i \(0.332873\pi\)
\(464\) −55008.7 + 110420.i −0.255503 + 0.512877i
\(465\) −1549.61 + 9481.33i −0.00716664 + 0.0438494i
\(466\) 267025.i 1.22965i
\(467\) −344789. −1.58095 −0.790477 0.612492i \(-0.790167\pi\)
−0.790477 + 0.612492i \(0.790167\pi\)
\(468\) 53739.2 + 18048.1i 0.245357 + 0.0824025i
\(469\) 141724. 0.644315
\(470\) 46179.3i 0.209051i
\(471\) 106976. + 17484.0i 0.482221 + 0.0788130i
\(472\) 376210.i 1.68868i
\(473\) 171852.i 0.768127i
\(474\) −123650. 20209.1i −0.550349 0.0899479i
\(475\) 97715.8i 0.433089i
\(476\) 109671. 0.484038
\(477\) 72178.2 214914.i 0.317226 0.944557i
\(478\) 230422.i 1.00848i
\(479\) −212339. −0.925464 −0.462732 0.886498i \(-0.653131\pi\)
−0.462732 + 0.886498i \(0.653131\pi\)
\(480\) −38392.5 6274.78i −0.166634 0.0272343i
\(481\) 202746.i 0.876320i
\(482\) 198859. 0.855955
\(483\) −462318. 75560.2i −1.98174 0.323891i
\(484\) 55448.0 0.236698
\(485\) 90940.0 0.386609
\(486\) 140784. 134014.i 0.596046 0.567386i
\(487\) −168100. −0.708776 −0.354388 0.935099i \(-0.615311\pi\)
−0.354388 + 0.935099i \(0.615311\pi\)
\(488\) 84649.3i 0.355454i
\(489\) −230764. 37715.6i −0.965052 0.157726i
\(490\) 23050.4i 0.0960032i
\(491\) 16636.2 0.0690068 0.0345034 0.999405i \(-0.489015\pi\)
0.0345034 + 0.999405i \(0.489015\pi\)
\(492\) −681.282 + 4168.45i −0.00281447 + 0.0172205i
\(493\) 136072. 273142.i 0.559856 1.12381i
\(494\) 75380.7i 0.308892i
\(495\) 11024.8 32826.8i 0.0449944 0.133973i
\(496\) 22888.7i 0.0930375i
\(497\) 93424.9i 0.378225i
\(498\) −310548. 50755.3i −1.25219 0.204655i
\(499\) −284293. −1.14174 −0.570868 0.821042i \(-0.693393\pi\)
−0.570868 + 0.821042i \(0.693393\pi\)
\(500\) 42512.4i 0.170050i
\(501\) −120195. 19644.4i −0.478862 0.0782641i
\(502\) 266800. 1.05871
\(503\) −133654. −0.528257 −0.264128 0.964488i \(-0.585084\pi\)
−0.264128 + 0.964488i \(0.585084\pi\)
\(504\) 313052. + 105138.i 1.23241 + 0.413901i
\(505\) 130023.i 0.509843i
\(506\) 182963.i 0.714598i
\(507\) 14806.1 90591.7i 0.0576003 0.352430i
\(508\) 5519.46i 0.0213879i
\(509\) 61972.9i 0.239203i 0.992822 + 0.119601i \(0.0381617\pi\)
−0.992822 + 0.119601i \(0.961838\pi\)
\(510\) −72575.2 11861.5i −0.279028 0.0456037i
\(511\) 409874.i 1.56967i
\(512\) 256193. 0.977298
\(513\) 108934. + 57548.0i 0.413933 + 0.218673i
\(514\) 276303.i 1.04583i
\(515\) 30091.7i 0.113457i
\(516\) −126154. 20618.3i −0.473807 0.0774380i
\(517\) 128155. 0.479464
\(518\) 288218.i 1.07414i
\(519\) 213883. + 34956.6i 0.794040 + 0.129776i
\(520\) 64581.8i 0.238838i
\(521\) 420119.i 1.54773i −0.633348 0.773867i \(-0.718320\pi\)
0.633348 0.773867i \(-0.281680\pi\)
\(522\) 158683. 158430.i 0.582357 0.581427i
\(523\) −17899.9 −0.0654405 −0.0327203 0.999465i \(-0.510417\pi\)
−0.0327203 + 0.999465i \(0.510417\pi\)
\(524\) −18371.0 −0.0669069
\(525\) 49119.6 300540.i 0.178212 1.09040i
\(526\) 412264. 1.49006
\(527\) 56618.8i 0.203863i
\(528\) −13307.3 + 81421.5i −0.0477335 + 0.292059i
\(529\) −511261. −1.82697
\(530\) −63026.9 −0.224375
\(531\) −139257. + 414645.i −0.493887 + 1.47057i
\(532\) 51079.8i 0.180479i
\(533\) −12312.8 −0.0433413
\(534\) 24039.4 147086.i 0.0843026 0.515809i
\(535\) −34247.3 −0.119652
\(536\) −168722. −0.587274
\(537\) 302812. + 49490.9i 1.05008 + 0.171623i
\(538\) −47933.8 −0.165606
\(539\) −63968.8 −0.220186
\(540\) 22774.9 + 12031.6i 0.0781032 + 0.0412605i
\(541\) 74674.6i 0.255140i 0.991830 + 0.127570i \(0.0407177\pi\)
−0.991830 + 0.127570i \(0.959282\pi\)
\(542\) 354437.i 1.20654i
\(543\) −77869.2 + 476446.i −0.264099 + 1.61590i
\(544\) −229265. −0.774711
\(545\) 31560.8i 0.106256i
\(546\) −37892.3 + 231845.i −0.127106 + 0.777702i
\(547\) 312881. 1.04569 0.522847 0.852426i \(-0.324870\pi\)
0.522847 + 0.852426i \(0.324870\pi\)
\(548\) 34210.5 0.113919
\(549\) −31333.5 + 93297.2i −0.103960 + 0.309545i
\(550\) 118939. 0.393187
\(551\) 127217. + 63376.1i 0.419026 + 0.208748i
\(552\) 550386. + 89953.8i 1.80630 + 0.295217i
\(553\) 247494.i 0.809311i
\(554\) 425109. 1.38510
\(555\) −14859.0 + 90915.1i −0.0482395 + 0.295155i
\(556\) −55552.3 −0.179702
\(557\) 179993.i 0.580158i 0.957003 + 0.290079i \(0.0936816\pi\)
−0.957003 + 0.290079i \(0.906318\pi\)
\(558\) −13245.4 + 39438.9i −0.0425400 + 0.126665i
\(559\) 372634.i 1.19250i
\(560\) 58724.5i 0.187259i
\(561\) 32917.8 201409.i 0.104593 0.639959i
\(562\) 385573.i 1.22077i
\(563\) 237023. 0.747779 0.373889 0.927473i \(-0.378024\pi\)
0.373889 + 0.927473i \(0.378024\pi\)
\(564\) −15375.7 + 94076.9i −0.0483367 + 0.295750i
\(565\) 37253.0i 0.116698i
\(566\) −93673.2 −0.292404
\(567\) −306117. 231757.i −0.952184 0.720886i
\(568\) 111222.i 0.344741i
\(569\) 5731.38 0.0177025 0.00885124 0.999961i \(-0.497183\pi\)
0.00885124 + 0.999961i \(0.497183\pi\)
\(570\) 5524.54 33802.1i 0.0170038 0.104038i
\(571\) −545446. −1.67294 −0.836469 0.548015i \(-0.815384\pi\)
−0.836469 + 0.548015i \(0.815384\pi\)
\(572\) 43736.3 0.133675
\(573\) 36531.0 223516.i 0.111263 0.680769i
\(574\) −17503.5 −0.0531251
\(575\) 514274.i 1.55546i
\(576\) −339913. 114159.i −1.02453 0.344084i
\(577\) 494416.i 1.48505i −0.669819 0.742525i \(-0.733628\pi\)
0.669819 0.742525i \(-0.266372\pi\)
\(578\) −158466. −0.474329
\(579\) −149223. 24388.7i −0.445122 0.0727497i
\(580\) 26597.2 + 13250.0i 0.0790642 + 0.0393878i
\(581\) 621583.i 1.84140i
\(582\) 388660. + 63521.7i 1.14742 + 0.187532i
\(583\) 174911.i 0.514611i
\(584\) 487952.i 1.43071i
\(585\) −23905.4 + 71179.6i −0.0698530 + 0.207991i
\(586\) 57281.8 0.166810
\(587\) 428251.i 1.24286i −0.783470 0.621430i \(-0.786552\pi\)
0.783470 0.621430i \(-0.213448\pi\)
\(588\) 7674.78 46958.5i 0.0221979 0.135819i
\(589\) −26370.3 −0.0760125
\(590\) 121601. 0.349328
\(591\) 346101. + 56565.9i 0.990895 + 0.161950i
\(592\) 219477.i 0.626246i
\(593\) 356829.i 1.01473i 0.861731 + 0.507366i \(0.169381\pi\)
−0.861731 + 0.507366i \(0.830619\pi\)
\(594\) 70047.2 132594.i 0.198526 0.375796i
\(595\) 145264.i 0.410322i
\(596\) 161212.i 0.453844i
\(597\) −10031.8 + 61380.1i −0.0281470 + 0.172218i
\(598\) 396726.i 1.10940i
\(599\) 517685. 1.44282 0.721410 0.692508i \(-0.243494\pi\)
0.721410 + 0.692508i \(0.243494\pi\)
\(600\) −58476.5 + 357791.i −0.162435 + 0.993863i
\(601\) 619888.i 1.71619i 0.513494 + 0.858093i \(0.328351\pi\)
−0.513494 + 0.858093i \(0.671649\pi\)
\(602\) 529725.i 1.46170i
\(603\) 185958. + 62453.5i 0.511424 + 0.171760i
\(604\) −158924. −0.435629
\(605\) 73443.0i 0.200650i
\(606\) 90821.0 555691.i 0.247310 1.51317i
\(607\) 187769.i 0.509619i −0.966991 0.254810i \(-0.917987\pi\)
0.966991 0.254810i \(-0.0820128\pi\)
\(608\) 106781.i 0.288859i
\(609\) −359417. 258872.i −0.969090 0.697993i
\(610\) 27360.9 0.0735309
\(611\) −277885. −0.744359
\(612\) 143901. + 48328.8i 0.384204 + 0.129034i
\(613\) −189907. −0.505383 −0.252692 0.967547i \(-0.581316\pi\)
−0.252692 + 0.967547i \(0.581316\pi\)
\(614\) 349597.i 0.927324i
\(615\) −5521.28 902.385i −0.0145979 0.00238584i
\(616\) 254781. 0.671439
\(617\) 41392.7 0.108731 0.0543656 0.998521i \(-0.482686\pi\)
0.0543656 + 0.998521i \(0.482686\pi\)
\(618\) 21019.1 128606.i 0.0550348 0.336732i
\(619\) 195178.i 0.509390i 0.967021 + 0.254695i \(0.0819750\pi\)
−0.967021 + 0.254695i \(0.918025\pi\)
\(620\) −5513.25 −0.0143425
\(621\) −573317. 302873.i −1.48666 0.785375i
\(622\) −150100. −0.387972
\(623\) −294403. −0.758517
\(624\) 28854.9 176550.i 0.0741054 0.453417i
\(625\) 305066. 0.780969
\(626\) 66254.8 0.169071
\(627\) 93806.6 + 15331.5i 0.238615 + 0.0389988i
\(628\) 62205.1i 0.157727i
\(629\) 542909.i 1.37223i
\(630\) −33983.2 + 101187.i −0.0856215 + 0.254942i
\(631\) 544068. 1.36645 0.683227 0.730206i \(-0.260576\pi\)
0.683227 + 0.730206i \(0.260576\pi\)
\(632\) 294640.i 0.737663i
\(633\) 348202. + 56909.4i 0.869008 + 0.142029i
\(634\) 314443. 0.782282
\(635\) 7310.74 0.0181307
\(636\) 128399. + 20985.3i 0.317430 + 0.0518800i
\(637\) 138706. 0.341835
\(638\) 77141.2 154848.i 0.189516 0.380420i
\(639\) −41169.5 + 122584.i −0.100826 + 0.300215i
\(640\) 30526.1i 0.0745265i
\(641\) −474728. −1.15539 −0.577695 0.816253i \(-0.696048\pi\)
−0.577695 + 0.816253i \(0.696048\pi\)
\(642\) −146366. 23921.7i −0.355116 0.0580394i
\(643\) 552280. 1.33579 0.667893 0.744257i \(-0.267196\pi\)
0.667893 + 0.744257i \(0.267196\pi\)
\(644\) 268831.i 0.648198i
\(645\) 27309.8 167096.i 0.0656446 0.401649i
\(646\) 201853.i 0.483693i
\(647\) 234263.i 0.559624i 0.960055 + 0.279812i \(0.0902721\pi\)
−0.960055 + 0.279812i \(0.909728\pi\)
\(648\) 364429. + 275905.i 0.867887 + 0.657066i
\(649\) 337464.i 0.801194i
\(650\) −257901. −0.610416
\(651\) 81106.2 + 13255.8i 0.191378 + 0.0312784i
\(652\) 134186.i 0.315654i
\(653\) −504311. −1.18269 −0.591347 0.806417i \(-0.701403\pi\)
−0.591347 + 0.806417i \(0.701403\pi\)
\(654\) −22045.2 + 134885.i −0.0515418 + 0.315360i
\(655\) 24333.1i 0.0567173i
\(656\) 13328.8 0.0309731
\(657\) −180619. + 537802.i −0.418439 + 1.24592i
\(658\) −395032. −0.912390
\(659\) 623688. 1.43614 0.718070 0.695971i \(-0.245026\pi\)
0.718070 + 0.695971i \(0.245026\pi\)
\(660\) 19612.1 + 3205.37i 0.0450233 + 0.00735851i
\(661\) −293810. −0.672455 −0.336228 0.941781i \(-0.609151\pi\)
−0.336228 + 0.941781i \(0.609151\pi\)
\(662\) 576309.i 1.31504i
\(663\) −71376.9 + 436722.i −0.162379 + 0.993524i
\(664\) 739990.i 1.67838i
\(665\) −67657.2 −0.152993
\(666\) −127009. + 378174.i −0.286342 + 0.852597i
\(667\) −669536. 333546.i −1.50495 0.749728i
\(668\) 69891.4i 0.156629i
\(669\) −98204.6 + 600868.i −0.219422 + 1.34254i
\(670\) 54535.2i 0.121486i
\(671\) 75931.1i 0.168645i
\(672\) −53676.4 + 328421.i −0.118862 + 0.727265i
\(673\) −17987.3 −0.0397133 −0.0198566 0.999803i \(-0.506321\pi\)
−0.0198566 + 0.999803i \(0.506321\pi\)
\(674\) 152838.i 0.336444i
\(675\) 196889. 372698.i 0.432130 0.817992i
\(676\) 52677.7 0.115275
\(677\) −62501.1 −0.136367 −0.0681837 0.997673i \(-0.521720\pi\)
−0.0681837 + 0.997673i \(0.521720\pi\)
\(678\) −26021.2 + 159212.i −0.0566068 + 0.346351i
\(679\) 777929.i 1.68733i
\(680\) 172936.i 0.373996i
\(681\) 94152.9 + 15388.1i 0.203020 + 0.0331812i
\(682\) 32097.9i 0.0690093i
\(683\) 648548.i 1.39027i −0.718877 0.695137i \(-0.755344\pi\)
0.718877 0.695137i \(-0.244656\pi\)
\(684\) −22509.3 + 67022.5i −0.0481116 + 0.143255i
\(685\) 45313.1i 0.0965701i
\(686\) −265325. −0.563806
\(687\) 751575. + 122836.i 1.59242 + 0.260262i
\(688\) 403384.i 0.852200i
\(689\) 379266.i 0.798923i
\(690\) −29075.4 + 177899.i −0.0610700 + 0.373659i
\(691\) 31695.8 0.0663814 0.0331907 0.999449i \(-0.489433\pi\)
0.0331907 + 0.999449i \(0.489433\pi\)
\(692\) 124370.i 0.259719i
\(693\) −280810. 94309.2i −0.584718 0.196376i
\(694\) 389327.i 0.808342i
\(695\) 73581.2i 0.152334i
\(696\) 427883. + 308186.i 0.883297 + 0.636200i
\(697\) −32970.9 −0.0678680
\(698\) −413993. −0.849732
\(699\) 720531. + 117762.i 1.47468 + 0.241019i
\(700\) 174760. 0.356652
\(701\) 459917.i 0.935931i 0.883747 + 0.467965i \(0.155013\pi\)
−0.883747 + 0.467965i \(0.844987\pi\)
\(702\) −151886. + 287510.i −0.308208 + 0.583416i
\(703\) −252862. −0.511649
\(704\) −276643. −0.558180
\(705\) −124609. 20365.7i −0.250709 0.0409753i
\(706\) 74185.3i 0.148836i
\(707\) −1.11225e6 −2.22518
\(708\) −247727. 40487.9i −0.494204 0.0807716i
\(709\) 126864. 0.252374 0.126187 0.992006i \(-0.459726\pi\)
0.126187 + 0.992006i \(0.459726\pi\)
\(710\) 35949.7 0.0713146
\(711\) −109063. + 324741.i −0.215744 + 0.642389i
\(712\) 350484. 0.691366
\(713\) 138786. 0.273003
\(714\) −101467. + 620830.i −0.199035 + 1.21780i
\(715\) 57930.4i 0.113317i
\(716\) 176080.i 0.343467i
\(717\) −621762. 101619.i −1.20944 0.197669i
\(718\) −735051. −1.42583
\(719\) 786756.i 1.52189i 0.648819 + 0.760943i \(0.275263\pi\)
−0.648819 + 0.760943i \(0.724737\pi\)
\(720\) 25878.1 77053.2i 0.0499191 0.148637i
\(721\) −257414. −0.495178
\(722\) −334962. −0.642570
\(723\) 87699.6 536594.i 0.167773 1.02652i
\(724\) −277046. −0.528536
\(725\) 216829. 435247.i 0.412517 0.828057i
\(726\) −51300.0 + 313881.i −0.0973294 + 0.595514i
\(727\) 488110.i 0.923526i 0.887003 + 0.461763i \(0.152783\pi\)
−0.887003 + 0.461763i \(0.847217\pi\)
\(728\) −552453. −1.04240
\(729\) −299532. 438988.i −0.563622 0.826033i
\(730\) 157719. 0.295963
\(731\) 997831.i 1.86734i
\(732\) −55739.8 9109.99i −0.104026 0.0170018i
\(733\) 44492.3i 0.0828088i 0.999142 + 0.0414044i \(0.0131832\pi\)
−0.999142 + 0.0414044i \(0.986817\pi\)
\(734\) 11888.1i 0.0220658i
\(735\) 62198.3 + 10165.5i 0.115134 + 0.0188173i
\(736\) 561983.i 1.03745i
\(737\) 151345. 0.278633
\(738\) −22966.5 7713.23i −0.0421680 0.0141620i
\(739\) 76270.1i 0.139658i −0.997559 0.0698289i \(-0.977755\pi\)
0.997559 0.0698289i \(-0.0222453\pi\)
\(740\) −52865.8 −0.0965408
\(741\) −203405. 33244.0i −0.370446 0.0605448i
\(742\) 539152.i 0.979272i
\(743\) 918379. 1.66358 0.831791 0.555089i \(-0.187316\pi\)
0.831791 + 0.555089i \(0.187316\pi\)
\(744\) −96556.3 15780.9i −0.174435 0.0285093i
\(745\) 213532. 0.384725
\(746\) 486802. 0.874732
\(747\) −273913. + 815588.i −0.490875 + 1.46160i
\(748\) 117116. 0.209321
\(749\) 292962.i 0.522212i
\(750\) −240655. 39332.1i −0.427831 0.0699238i
\(751\) 482653.i 0.855766i 0.903834 + 0.427883i \(0.140740\pi\)
−0.903834 + 0.427883i \(0.859260\pi\)
\(752\) 300815. 0.531942
\(753\) 117663. 719923.i 0.207514 1.26968i
\(754\) −167268. + 335762.i −0.294219 + 0.590594i
\(755\) 210502.i 0.369285i
\(756\) 102922. 194823.i 0.180079 0.340877i
\(757\) 1.05634e6i 1.84337i −0.387935 0.921687i \(-0.626811\pi\)
0.387935 0.921687i \(-0.373189\pi\)
\(758\) 718459.i 1.25044i
\(759\) −493700. 80689.3i −0.856998 0.140066i
\(760\) 80545.3 0.139448
\(761\) 254574.i 0.439587i −0.975546 0.219793i \(-0.929462\pi\)
0.975546 0.219793i \(-0.0705383\pi\)
\(762\) 31244.7 + 5106.56i 0.0538104 + 0.00879464i
\(763\) 269981. 0.463750
\(764\) 129971. 0.222670
\(765\) −64013.4 + 190603.i −0.109383 + 0.325692i
\(766\) 145932.i 0.248711i
\(767\) 731736.i 1.24384i
\(768\) 81498.3 498651.i 0.138174 0.845423i
\(769\) 432584.i 0.731506i −0.930712 0.365753i \(-0.880811\pi\)
0.930712 0.365753i \(-0.119189\pi\)
\(770\) 82352.0i 0.138897i
\(771\) 745566. + 121854.i 1.25423 + 0.204989i
\(772\) 86771.0i 0.145593i
\(773\) −262908. −0.439992 −0.219996 0.975501i \(-0.570604\pi\)
−0.219996 + 0.975501i \(0.570604\pi\)
\(774\) 233433. 695060.i 0.389656 1.16022i
\(775\) 90221.1i 0.150212i
\(776\) 926118.i 1.53795i
\(777\) 777716. + 127108.i 1.28819 + 0.210538i
\(778\) −914676. −1.51115
\(779\) 15356.3i 0.0253053i
\(780\) −42525.8 6950.32i −0.0698978 0.0114239i
\(781\) 99766.6i 0.163562i
\(782\) 1.06234e6i 1.73721i
\(783\) −357519. 498054.i −0.583144 0.812369i
\(784\) −150152. −0.244286
\(785\) −82393.1 −0.133706
\(786\) 16996.7 103995.i 0.0275119 0.168332i
\(787\) −31127.4 −0.0502567 −0.0251283 0.999684i \(-0.507999\pi\)
−0.0251283 + 0.999684i \(0.507999\pi\)
\(788\) 201252.i 0.324107i
\(789\) 181814. 1.11244e6i 0.292062 1.78699i
\(790\) 95235.4 0.152596
\(791\) 318673. 0.509323
\(792\) 334302. + 112274.i 0.532953 + 0.178991i
\(793\) 164644.i 0.261819i
\(794\) 770297. 1.22185
\(795\) −27795.8 + 170070.i −0.0439789 + 0.269087i
\(796\) −35691.6 −0.0563300
\(797\) −494844. −0.779025 −0.389512 0.921021i \(-0.627356\pi\)
−0.389512 + 0.921021i \(0.627356\pi\)
\(798\) −289153. 47258.6i −0.454070 0.0742121i
\(799\) −744113. −1.16559
\(800\) −365330. −0.570828
\(801\) −386290. 129734.i −0.602072 0.202204i
\(802\) 183228.i 0.284868i
\(803\) 437697.i 0.678801i
\(804\) −18157.9 + 111100.i −0.0280901 + 0.171870i
\(805\) 356077. 0.549480
\(806\) 69599.1i 0.107136i
\(807\) −21139.5 + 129343.i −0.0324599 + 0.198607i
\(808\) 1.32413e6 2.02819
\(809\) 837412. 1.27951 0.639753 0.768581i \(-0.279037\pi\)
0.639753 + 0.768581i \(0.279037\pi\)
\(810\) −89179.6 + 117793.i −0.135924 + 0.179535i
\(811\) 546447. 0.830819 0.415410 0.909634i \(-0.363638\pi\)
0.415410 + 0.909634i \(0.363638\pi\)
\(812\) 113345. 227521.i 0.171906 0.345071i
\(813\) −956401. 156312.i −1.44697 0.236489i
\(814\) 307782.i 0.464509i
\(815\) 177734. 0.267582
\(816\) 77266.8 472760.i 0.116041 0.710003i
\(817\) 464743. 0.696255
\(818\) 941660.i 1.40730i
\(819\) 608892. + 204494.i 0.907764 + 0.304869i
\(820\) 3210.54i 0.00477475i
\(821\) 899223.i 1.33408i 0.745023 + 0.667039i \(0.232439\pi\)
−0.745023 + 0.667039i \(0.767561\pi\)
\(822\) −31651.2 + 193659.i −0.0468433 + 0.286612i
\(823\) 257868.i 0.380712i −0.981715 0.190356i \(-0.939036\pi\)
0.981715 0.190356i \(-0.0609643\pi\)
\(824\) 306449. 0.451340
\(825\) 52453.9 320941.i 0.0770673 0.471539i
\(826\) 1.04021e6i 1.52462i
\(827\) 979284. 1.43185 0.715925 0.698177i \(-0.246005\pi\)
0.715925 + 0.698177i \(0.246005\pi\)
\(828\) 118465. 352737.i 0.172795 0.514506i
\(829\) 498418.i 0.725245i 0.931936 + 0.362623i \(0.118119\pi\)
−0.931936 + 0.362623i \(0.881881\pi\)
\(830\) 239184. 0.347197
\(831\) 187479. 1.14710e6i 0.271488 1.66111i
\(832\) 599856. 0.866563
\(833\) 371424. 0.535278
\(834\) 51396.5 314472.i 0.0738927 0.452115i
\(835\) 92573.9 0.132775
\(836\) 54547.1i 0.0780476i
\(837\) 100579. + 53134.1i 0.143568 + 0.0758443i
\(838\) 37809.0i 0.0538402i
\(839\) −501245. −0.712076 −0.356038 0.934472i \(-0.615873\pi\)
−0.356038 + 0.934472i \(0.615873\pi\)
\(840\) −247730. 40488.4i −0.351091 0.0573815i
\(841\) −426020. 564582.i −0.602335 0.798243i
\(842\) 21701.5i 0.0306102i
\(843\) 1.04042e6 + 170043.i 1.46404 + 0.239279i
\(844\) 202474.i 0.284240i
\(845\) 69773.7i 0.0977188i
\(846\) −518327. 174078.i −0.724208 0.243223i
\(847\) 628254. 0.875726
\(848\) 410562.i 0.570936i
\(849\) −41311.2 + 252764.i −0.0573130 + 0.350672i
\(850\) −690600. −0.955848
\(851\) 1.33080e6 1.83761
\(852\) −73237.1 11969.7i −0.100891 0.0164894i
\(853\) 1.13716e6i 1.56288i 0.623983 + 0.781438i \(0.285513\pi\)
−0.623983 + 0.781438i \(0.714487\pi\)
\(854\) 234053.i 0.320922i
\(855\) −88773.9 29814.4i −0.121438 0.0407844i
\(856\) 348768.i 0.475981i
\(857\) 988346.i 1.34570i −0.739780 0.672848i \(-0.765071\pi\)
0.739780 0.672848i \(-0.234929\pi\)
\(858\) −40464.5 + 247583.i −0.0549666 + 0.336315i
\(859\) 1.02564e6i 1.38998i 0.719021 + 0.694989i \(0.244591\pi\)
−0.719021 + 0.694989i \(0.755409\pi\)
\(860\) 97163.8 0.131373
\(861\) −7719.28 + 47230.7i −0.0104129 + 0.0637115i
\(862\) 349596.i 0.470492i
\(863\) 551506.i 0.740507i −0.928931 0.370253i \(-0.879271\pi\)
0.928931 0.370253i \(-0.120729\pi\)
\(864\) −215155. + 407272.i −0.288219 + 0.545579i
\(865\) −164733. −0.220165
\(866\) 156144.i 0.208205i
\(867\) −69885.7 + 427598.i −0.0929716 + 0.568850i
\(868\) 47162.0i 0.0625969i
\(869\) 264295.i 0.349984i
\(870\) −99613.6 + 138303.i −0.131607 + 0.182723i
\(871\) −328167. −0.432572
\(872\) −321410. −0.422694
\(873\) 342809. 1.02073e6i 0.449805 1.33932i
\(874\) −494789. −0.647735
\(875\) 481688.i 0.629143i
\(876\) −321306. 52513.6i −0.418708 0.0684326i
\(877\) 190425. 0.247586 0.123793 0.992308i \(-0.460494\pi\)
0.123793 + 0.992308i \(0.460494\pi\)
\(878\) −23494.4 −0.0304772
\(879\) 25262.1 154567.i 0.0326958 0.200050i
\(880\) 62710.8i 0.0809798i
\(881\) 564525. 0.727329 0.363665 0.931530i \(-0.381525\pi\)
0.363665 + 0.931530i \(0.381525\pi\)
\(882\) 258723. + 86891.1i 0.332581 + 0.111696i
\(883\) 370331. 0.474972 0.237486 0.971391i \(-0.423677\pi\)
0.237486 + 0.971391i \(0.423677\pi\)
\(884\) −253947. −0.324967
\(885\) 53627.8 328124.i 0.0684705 0.418939i
\(886\) 650156. 0.828228
\(887\) −1.27730e6 −1.62348 −0.811740 0.584019i \(-0.801480\pi\)
−0.811740 + 0.584019i \(0.801480\pi\)
\(888\) −925865. 151321.i −1.17414 0.191900i
\(889\) 62538.3i 0.0791303i
\(890\) 113286.i 0.143019i
\(891\) −326896. 247489.i −0.411770 0.311746i
\(892\) −349396. −0.439125
\(893\) 346573.i 0.434602i
\(894\) 912595. + 149152.i 1.14183 + 0.186619i
\(895\) −233225. −0.291159
\(896\) 261129. 0.325267
\(897\) 1.07051e6 + 174962.i 1.33047 + 0.217450i
\(898\) −818058. −1.01445
\(899\) 117459. + 58515.3i 0.145334 + 0.0724019i
\(900\) 229305. + 77011.2i 0.283092 + 0.0950755i
\(901\) 1.01559e6i 1.25103i
\(902\) −18691.6 −0.0229738
\(903\) −1.42939e6 233616.i −1.75297 0.286502i
\(904\) −379378. −0.464232
\(905\) 366958.i 0.448043i
\(906\) 147035. 899642.i 0.179129 1.09601i
\(907\) 1.05109e6i 1.27769i −0.769335 0.638845i \(-0.779412\pi\)
0.769335 0.638845i \(-0.220588\pi\)
\(908\) 54748.5i 0.0664050i
\(909\) −1.45940e6 490136.i −1.76623 0.593183i
\(910\) 178567.i 0.215635i
\(911\) 446552. 0.538066 0.269033 0.963131i \(-0.413296\pi\)
0.269033 + 0.963131i \(0.413296\pi\)
\(912\) 220189. + 35987.2i 0.264732 + 0.0432672i
\(913\) 663777.i 0.796307i
\(914\) −891567. −1.06724
\(915\) 12066.5 73829.5i 0.0144125 0.0881836i
\(916\) 437030.i 0.520859i
\(917\) −208153. −0.247539
\(918\) −406717. + 769887.i −0.482622 + 0.913569i
\(919\) 441423. 0.522666 0.261333 0.965249i \(-0.415838\pi\)
0.261333 + 0.965249i \(0.415838\pi\)
\(920\) −423907. −0.500835
\(921\) −943341. 154178.i −1.11211 0.181761i
\(922\) 866400. 1.01919
\(923\) 216328.i 0.253927i
\(924\) 27419.7 167768.i 0.0321158 0.196502i
\(925\) 865117.i 1.01109i
\(926\) −707403. −0.824983
\(927\) −337757. 113434.i −0.393047 0.132003i
\(928\) −236944. + 475625.i −0.275138 + 0.552292i
\(929\) 1.59665e6i 1.85003i 0.379930 + 0.925015i \(0.375948\pi\)
−0.379930 + 0.925015i \(0.624052\pi\)
\(930\) 5100.81 31209.5i 0.00589757 0.0360845i
\(931\) 172992.i 0.199584i
\(932\) 418978.i 0.482347i
\(933\) −66196.3 + 405025.i −0.0760450 + 0.465284i
\(934\) 1.13493e6 1.30100
\(935\) 155125.i 0.177443i
\(936\) −724881. 243449.i −0.827400 0.277879i
\(937\) −1.55026e6 −1.76573 −0.882865 0.469627i \(-0.844389\pi\)
−0.882865 + 0.469627i \(0.844389\pi\)
\(938\) −466511. −0.530220
\(939\) 29219.3 178780.i 0.0331390 0.202762i
\(940\) 72458.0i 0.0820031i
\(941\) 938876.i 1.06030i 0.847904 + 0.530150i \(0.177865\pi\)
−0.847904 + 0.530150i \(0.822135\pi\)
\(942\) −352132. 57551.6i −0.396829 0.0648568i
\(943\) 80819.5i 0.0908851i
\(944\) 792118.i 0.888886i
\(945\) 258051. + 136324.i 0.288963 + 0.152654i
\(946\) 565683.i 0.632107i
\(947\) 447015. 0.498451 0.249225 0.968446i \(-0.419824\pi\)
0.249225 + 0.968446i \(0.419824\pi\)
\(948\) −194014. 31709.3i −0.215883 0.0352834i
\(949\) 949076.i 1.05382i
\(950\) 321649.i 0.356398i
\(951\) 138674. 848482.i 0.153332 0.938170i
\(952\) −1.47935e6 −1.63228
\(953\) 627403.i 0.690813i 0.938453 + 0.345407i \(0.112259\pi\)
−0.938453 + 0.345407i \(0.887741\pi\)
\(954\) −237587. + 707429.i −0.261052 + 0.777295i
\(955\) 172152.i 0.188758i
\(956\) 361545.i 0.395591i
\(957\) −383815. 276445.i −0.419081 0.301846i
\(958\) 698953. 0.761583
\(959\) 387622. 0.421475
\(960\) 268986. + 43962.5i 0.291869 + 0.0477024i
\(961\) 899173. 0.973636
\(962\) 667376.i 0.721142i
\(963\) −129099. + 384399.i −0.139210 + 0.414505i
\(964\) 312021. 0.335761
\(965\) 114932. 0.123420
\(966\) 1.52180e6 + 248720.i 1.63081 + 0.266536i
\(967\) 1.27111e6i 1.35935i 0.733514 + 0.679675i \(0.237879\pi\)
−0.733514 + 0.679675i \(0.762121\pi\)
\(968\) −747931. −0.798199
\(969\) −544672. 89020.0i −0.580080 0.0948069i
\(970\) −299346. −0.318148
\(971\) 835783. 0.886452 0.443226 0.896410i \(-0.353834\pi\)
0.443226 + 0.896410i \(0.353834\pi\)
\(972\) 220898. 210276.i 0.233808 0.222565i
\(973\) −629436. −0.664854
\(974\) 553330. 0.583266
\(975\) −113738. + 695910.i −0.119645 + 0.732055i
\(976\) 178231.i 0.187104i
\(977\) 193547.i 0.202767i −0.994847 0.101384i \(-0.967673\pi\)
0.994847 0.101384i \(-0.0323270\pi\)
\(978\) 759602. + 124148.i 0.794161 + 0.129796i
\(979\) −314387. −0.328019
\(980\) 36167.4i 0.0376587i
\(981\) 354246. + 118972.i 0.368101 + 0.123625i
\(982\) −54761.2 −0.0567871
\(983\) −473793. −0.490322 −0.245161 0.969482i \(-0.578841\pi\)
−0.245161 + 0.969482i \(0.578841\pi\)
\(984\) 9189.74 56227.8i 0.00949102 0.0580712i
\(985\) −266567. −0.274747
\(986\) −447907. + 899096.i −0.460717 + 0.924810i
\(987\) −174215. + 1.06594e6i −0.178834 + 1.09420i
\(988\) 118277.i 0.121167i
\(989\) −2.44592e6 −2.50063
\(990\) −36290.0 + 108055.i −0.0370268 + 0.110249i
\(991\) 872411. 0.888329 0.444164 0.895945i \(-0.353501\pi\)
0.444164 + 0.895945i \(0.353501\pi\)
\(992\) 98590.8i 0.100187i
\(993\) 1.55509e6 + 254161.i 1.57709 + 0.257757i
\(994\) 307525.i 0.311249i
\(995\) 47274.9i 0.0477512i
\(996\) −487268. 79638.0i −0.491190 0.0802789i
\(997\) 590291.i 0.593848i −0.954901 0.296924i \(-0.904039\pi\)
0.954901 0.296924i \(-0.0959609\pi\)
\(998\) 935802. 0.939557
\(999\) 964440. + 509496.i 0.966371 + 0.510516i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.5.d.c.86.12 yes 32
3.2 odd 2 inner 87.5.d.c.86.22 yes 32
29.28 even 2 inner 87.5.d.c.86.21 yes 32
87.86 odd 2 inner 87.5.d.c.86.11 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.5.d.c.86.11 32 87.86 odd 2 inner
87.5.d.c.86.12 yes 32 1.1 even 1 trivial
87.5.d.c.86.21 yes 32 29.28 even 2 inner
87.5.d.c.86.22 yes 32 3.2 odd 2 inner