Properties

Label 867.2.i.h.131.4
Level $867$
Weight $2$
Character 867.131
Analytic conductor $6.923$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(65,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.65"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.i (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,8,-16,0,8,16,0,-8,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 131.4
Character \(\chi\) \(=\) 867.131
Dual form 867.2.i.h.503.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34436 - 0.556851i) q^{2} +(0.961322 - 1.44078i) q^{3} +(0.0830021 - 0.0830021i) q^{4} +(-0.595296 + 2.99276i) q^{5} +(0.490059 - 2.47224i) q^{6} +(2.11533 - 0.420765i) q^{7} +(-1.04834 + 2.53091i) q^{8} +(-1.15172 - 2.77012i) q^{9} +(0.866229 + 4.35483i) q^{10} +(1.37013 + 0.915491i) q^{11} +(-0.0397964 - 0.199380i) q^{12} +(3.12551 + 3.12551i) q^{13} +(2.60946 - 1.74358i) q^{14} +(3.73965 + 3.73470i) q^{15} +4.22099i q^{16} +(-3.09087 - 3.08269i) q^{18} +(-0.330416 - 0.797694i) q^{19} +(0.198994 + 0.297816i) q^{20} +(1.42728 - 3.45222i) q^{21} +(2.35174 + 0.467790i) q^{22} +(-0.425893 + 0.637394i) q^{23} +(2.63871 + 3.94345i) q^{24} +(-3.98282 - 1.64974i) q^{25} +(5.94226 + 2.46136i) q^{26} +(-5.09831 - 1.00359i) q^{27} +(0.140652 - 0.210501i) q^{28} +(7.83789 + 1.55905i) q^{29} +(7.10709 + 2.93834i) q^{30} +(-1.60475 - 2.40167i) q^{31} +(0.253786 + 0.612694i) q^{32} +(2.63616 - 1.09398i) q^{33} +6.58114i q^{35} +(-0.325520 - 0.134330i) q^{36} +(1.98027 - 1.32318i) q^{37} +(-0.888394 - 0.888394i) q^{38} +(7.50782 - 1.49857i) q^{39} +(-6.95033 - 4.64406i) q^{40} +(-0.600791 - 3.02038i) q^{41} +(-0.00359897 - 5.43581i) q^{42} +(4.38037 - 10.5751i) q^{43} +(0.189711 - 0.0377359i) q^{44} +(8.97590 - 1.79778i) q^{45} +(-0.217619 + 1.09405i) q^{46} +(-2.21238 + 2.21238i) q^{47} +(6.08153 + 4.05773i) q^{48} +(-2.16958 + 0.898671i) q^{49} -6.27299 q^{50} +0.518848 q^{52} +(-5.88369 + 2.43710i) q^{53} +(-7.41281 + 1.48981i) q^{54} +(-3.55548 + 3.55548i) q^{55} +(-1.15266 + 5.79482i) q^{56} +(-1.46694 - 0.290783i) q^{57} +(11.4051 - 2.26861i) q^{58} +(2.33146 - 5.62864i) q^{59} +(0.620386 - 0.000410749i) q^{60} +(1.14061 + 5.73423i) q^{61} +(-3.49473 - 2.33510i) q^{62} +(-3.60183 - 5.37510i) q^{63} +(-5.28702 - 5.28702i) q^{64} +(-11.2145 + 7.49329i) q^{65} +(2.93476 - 2.93865i) q^{66} +7.19481i q^{67} +(0.508927 + 1.22636i) q^{69} +(3.66472 + 8.84742i) q^{70} +(-1.20808 - 1.80802i) q^{71} +(8.21831 - 0.0108825i) q^{72} +(-12.3377 - 2.45412i) q^{73} +(1.92538 - 2.88154i) q^{74} +(-6.20569 + 4.15245i) q^{75} +(-0.0936354 - 0.0387851i) q^{76} +(3.28348 + 1.36006i) q^{77} +(9.25872 - 6.19535i) q^{78} +(3.31013 - 4.95397i) q^{79} +(-12.6324 - 2.51274i) q^{80} +(-6.34708 + 6.38079i) q^{81} +(-2.48958 - 3.72592i) q^{82} +(-4.96993 - 11.9985i) q^{83} +(-0.168074 - 0.405009i) q^{84} -16.6560i q^{86} +(9.78099 - 9.79395i) q^{87} +(-3.75339 + 2.50793i) q^{88} +(3.42023 + 3.42023i) q^{89} +(11.0657 - 7.41510i) q^{90} +(7.92660 + 5.29638i) q^{91} +(0.0175550 + 0.0882551i) q^{92} +(-5.00297 + 0.00331239i) q^{93} +(-1.74226 + 4.20619i) q^{94} +(2.58400 - 0.513989i) q^{95} +(1.12673 + 0.223345i) q^{96} +(0.692072 - 3.47928i) q^{97} +(-2.41627 + 2.41627i) q^{98} +(0.958012 - 4.84981i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{3} - 16 q^{4} + 8 q^{6} + 16 q^{7} - 8 q^{9} + 16 q^{10} - 16 q^{12} - 16 q^{13} + 16 q^{15} + 16 q^{18} - 16 q^{19} + 16 q^{21} + 16 q^{22} - 16 q^{24} + 16 q^{25} + 8 q^{27} - 32 q^{28} - 8 q^{30}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(-1\) \(e\left(\frac{13}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34436 0.556851i 0.950605 0.393753i 0.147147 0.989115i \(-0.452991\pi\)
0.803458 + 0.595361i \(0.202991\pi\)
\(3\) 0.961322 1.44078i 0.555020 0.831837i
\(4\) 0.0830021 0.0830021i 0.0415010 0.0415010i
\(5\) −0.595296 + 2.99276i −0.266225 + 1.33840i 0.583902 + 0.811824i \(0.301525\pi\)
−0.850127 + 0.526578i \(0.823475\pi\)
\(6\) 0.490059 2.47224i 0.200066 1.00929i
\(7\) 2.11533 0.420765i 0.799519 0.159034i 0.221610 0.975135i \(-0.428869\pi\)
0.577909 + 0.816101i \(0.303869\pi\)
\(8\) −1.04834 + 2.53091i −0.370644 + 0.894813i
\(9\) −1.15172 2.77012i −0.383906 0.923372i
\(10\) 0.866229 + 4.35483i 0.273926 + 1.37712i
\(11\) 1.37013 + 0.915491i 0.413110 + 0.276031i 0.744709 0.667389i \(-0.232588\pi\)
−0.331599 + 0.943420i \(0.607588\pi\)
\(12\) −0.0397964 0.199380i −0.0114882 0.0575560i
\(13\) 3.12551 + 3.12551i 0.866861 + 0.866861i 0.992124 0.125262i \(-0.0399772\pi\)
−0.125262 + 0.992124i \(0.539977\pi\)
\(14\) 2.60946 1.74358i 0.697407 0.465992i
\(15\) 3.73965 + 3.73470i 0.965572 + 0.964295i
\(16\) 4.22099i 1.05525i
\(17\) 0 0
\(18\) −3.09087 3.08269i −0.728524 0.726597i
\(19\) −0.330416 0.797694i −0.0758025 0.183004i 0.881436 0.472304i \(-0.156577\pi\)
−0.957238 + 0.289300i \(0.906577\pi\)
\(20\) 0.198994 + 0.297816i 0.0444964 + 0.0665936i
\(21\) 1.42728 3.45222i 0.311458 0.753337i
\(22\) 2.35174 + 0.467790i 0.501392 + 0.0997331i
\(23\) −0.425893 + 0.637394i −0.0888049 + 0.132906i −0.873212 0.487340i \(-0.837967\pi\)
0.784407 + 0.620246i \(0.212967\pi\)
\(24\) 2.63871 + 3.94345i 0.538624 + 0.804954i
\(25\) −3.98282 1.64974i −0.796563 0.329947i
\(26\) 5.94226 + 2.46136i 1.16537 + 0.482713i
\(27\) −5.09831 1.00359i −0.981171 0.193142i
\(28\) 0.140652 0.210501i 0.0265808 0.0397810i
\(29\) 7.83789 + 1.55905i 1.45546 + 0.289509i 0.858521 0.512778i \(-0.171384\pi\)
0.596938 + 0.802287i \(0.296384\pi\)
\(30\) 7.10709 + 2.93834i 1.29757 + 0.536466i
\(31\) −1.60475 2.40167i −0.288221 0.431353i 0.658900 0.752231i \(-0.271022\pi\)
−0.947121 + 0.320878i \(0.896022\pi\)
\(32\) 0.253786 + 0.612694i 0.0448635 + 0.108310i
\(33\) 2.63616 1.09398i 0.458897 0.190437i
\(34\) 0 0
\(35\) 6.58114i 1.11242i
\(36\) −0.325520 0.134330i −0.0542534 0.0223884i
\(37\) 1.98027 1.32318i 0.325555 0.217529i −0.382042 0.924145i \(-0.624779\pi\)
0.707597 + 0.706616i \(0.249779\pi\)
\(38\) −0.888394 0.888394i −0.144117 0.144117i
\(39\) 7.50782 1.49857i 1.20221 0.239963i
\(40\) −6.95033 4.64406i −1.09894 0.734291i
\(41\) −0.600791 3.02038i −0.0938278 0.471704i −0.998919 0.0464865i \(-0.985198\pi\)
0.905091 0.425218i \(-0.139802\pi\)
\(42\) −0.00359897 5.43581i −0.000555333 0.838764i
\(43\) 4.38037 10.5751i 0.668000 1.61269i −0.116952 0.993138i \(-0.537312\pi\)
0.784952 0.619557i \(-0.212688\pi\)
\(44\) 0.189711 0.0377359i 0.0286000 0.00568890i
\(45\) 8.97590 1.79778i 1.33805 0.267997i
\(46\) −0.217619 + 1.09405i −0.0320862 + 0.161308i
\(47\) −2.21238 + 2.21238i −0.322708 + 0.322708i −0.849805 0.527097i \(-0.823281\pi\)
0.527097 + 0.849805i \(0.323281\pi\)
\(48\) 6.08153 + 4.05773i 0.877793 + 0.585683i
\(49\) −2.16958 + 0.898671i −0.309940 + 0.128382i
\(50\) −6.27299 −0.887135
\(51\) 0 0
\(52\) 0.518848 0.0719513
\(53\) −5.88369 + 2.43710i −0.808187 + 0.334762i −0.748230 0.663439i \(-0.769096\pi\)
−0.0599567 + 0.998201i \(0.519096\pi\)
\(54\) −7.41281 + 1.48981i −1.00876 + 0.202738i
\(55\) −3.55548 + 3.55548i −0.479420 + 0.479420i
\(56\) −1.15266 + 5.79482i −0.154031 + 0.774365i
\(57\) −1.46694 0.290783i −0.194301 0.0385152i
\(58\) 11.4051 2.26861i 1.49756 0.297884i
\(59\) 2.33146 5.62864i 0.303530 0.732786i −0.696356 0.717696i \(-0.745197\pi\)
0.999886 0.0150898i \(-0.00480343\pi\)
\(60\) 0.620386 0.000410749i 0.0800915 5.30274e-5i
\(61\) 1.14061 + 5.73423i 0.146040 + 0.734193i 0.982514 + 0.186187i \(0.0596130\pi\)
−0.836474 + 0.548006i \(0.815387\pi\)
\(62\) −3.49473 2.33510i −0.443831 0.296558i
\(63\) −3.60183 5.37510i −0.453788 0.677199i
\(64\) −5.28702 5.28702i −0.660877 0.660877i
\(65\) −11.2145 + 7.49329i −1.39099 + 0.929429i
\(66\) 2.93476 2.93865i 0.361244 0.361723i
\(67\) 7.19481i 0.878985i 0.898246 + 0.439493i \(0.144842\pi\)
−0.898246 + 0.439493i \(0.855158\pi\)
\(68\) 0 0
\(69\) 0.508927 + 1.22636i 0.0612676 + 0.147637i
\(70\) 3.66472 + 8.84742i 0.438018 + 1.05747i
\(71\) −1.20808 1.80802i −0.143373 0.214573i 0.752832 0.658212i \(-0.228687\pi\)
−0.896205 + 0.443639i \(0.853687\pi\)
\(72\) 8.21831 0.0108825i 0.968537 0.00128251i
\(73\) −12.3377 2.45412i −1.44402 0.287233i −0.589969 0.807426i \(-0.700860\pi\)
−0.854049 + 0.520193i \(0.825860\pi\)
\(74\) 1.92538 2.88154i 0.223821 0.334972i
\(75\) −6.20569 + 4.15245i −0.716571 + 0.479484i
\(76\) −0.0936354 0.0387851i −0.0107407 0.00444895i
\(77\) 3.28348 + 1.36006i 0.374187 + 0.154994i
\(78\) 9.25872 6.19535i 1.04834 0.701485i
\(79\) 3.31013 4.95397i 0.372419 0.557365i −0.597166 0.802117i \(-0.703707\pi\)
0.969586 + 0.244753i \(0.0787068\pi\)
\(80\) −12.6324 2.51274i −1.41234 0.280933i
\(81\) −6.34708 + 6.38079i −0.705232 + 0.708977i
\(82\) −2.48958 3.72592i −0.274928 0.411459i
\(83\) −4.96993 11.9985i −0.545521 1.31700i −0.920779 0.390084i \(-0.872446\pi\)
0.375258 0.926920i \(-0.377554\pi\)
\(84\) −0.168074 0.405009i −0.0183384 0.0441901i
\(85\) 0 0
\(86\) 16.6560i 1.79606i
\(87\) 9.78099 9.79395i 1.04863 1.05002i
\(88\) −3.75339 + 2.50793i −0.400112 + 0.267347i
\(89\) 3.42023 + 3.42023i 0.362544 + 0.362544i 0.864749 0.502205i \(-0.167478\pi\)
−0.502205 + 0.864749i \(0.667478\pi\)
\(90\) 11.0657 7.41510i 1.16643 0.781620i
\(91\) 7.92660 + 5.29638i 0.830933 + 0.555212i
\(92\) 0.0175550 + 0.0882551i 0.00183024 + 0.00920123i
\(93\) −5.00297 + 0.00331239i −0.518783 + 0.000343479i
\(94\) −1.74226 + 4.20619i −0.179701 + 0.433836i
\(95\) 2.58400 0.513989i 0.265113 0.0527342i
\(96\) 1.12673 + 0.223345i 0.114996 + 0.0227951i
\(97\) 0.692072 3.47928i 0.0702692 0.353267i −0.929614 0.368534i \(-0.879860\pi\)
0.999883 + 0.0152668i \(0.00485977\pi\)
\(98\) −2.41627 + 2.41627i −0.244080 + 0.244080i
\(99\) 0.958012 4.84981i 0.0962839 0.487424i
\(100\) −0.467514 + 0.193650i −0.0467514 + 0.0193650i
\(101\) −3.73948 −0.372092 −0.186046 0.982541i \(-0.559567\pi\)
−0.186046 + 0.982541i \(0.559567\pi\)
\(102\) 0 0
\(103\) 9.33404 0.919710 0.459855 0.887994i \(-0.347901\pi\)
0.459855 + 0.887994i \(0.347901\pi\)
\(104\) −11.1870 + 4.63380i −1.09698 + 0.454382i
\(105\) 9.48201 + 6.32660i 0.925350 + 0.617413i
\(106\) −6.55268 + 6.55268i −0.636453 + 0.636453i
\(107\) 0.368714 1.85365i 0.0356449 0.179199i −0.958862 0.283874i \(-0.908380\pi\)
0.994506 + 0.104675i \(0.0333802\pi\)
\(108\) −0.506471 + 0.339870i −0.0487352 + 0.0327040i
\(109\) −4.12226 + 0.819969i −0.394841 + 0.0785388i −0.388518 0.921441i \(-0.627013\pi\)
−0.00632347 + 0.999980i \(0.502013\pi\)
\(110\) −2.79996 + 6.75970i −0.266966 + 0.644513i
\(111\) −0.00273120 4.12515i −0.000259234 0.391542i
\(112\) 1.77604 + 8.92878i 0.167820 + 0.843690i
\(113\) −13.7072 9.15888i −1.28947 0.861595i −0.293917 0.955831i \(-0.594959\pi\)
−0.995550 + 0.0942363i \(0.969959\pi\)
\(114\) −2.13402 + 0.425951i −0.199869 + 0.0398940i
\(115\) −1.65403 1.65403i −0.154239 0.154239i
\(116\) 0.779965 0.521156i 0.0724180 0.0483881i
\(117\) 5.05832 12.2577i 0.467642 1.13323i
\(118\) 8.86518i 0.816106i
\(119\) 0 0
\(120\) −13.3726 + 5.54949i −1.22075 + 0.506597i
\(121\) −3.17039 7.65399i −0.288217 0.695817i
\(122\) 4.72650 + 7.07371i 0.427917 + 0.640424i
\(123\) −4.92927 2.03795i −0.444457 0.183756i
\(124\) −0.332541 0.0661465i −0.0298630 0.00594013i
\(125\) −1.16808 + 1.74816i −0.104477 + 0.156360i
\(126\) −7.83529 5.22038i −0.698023 0.465068i
\(127\) 11.3753 + 4.71179i 1.00939 + 0.418104i 0.825233 0.564792i \(-0.191044\pi\)
0.184159 + 0.982896i \(0.441044\pi\)
\(128\) −11.2771 4.67113i −0.996766 0.412874i
\(129\) −11.0256 16.4773i −0.970746 1.45074i
\(130\) −10.9037 + 16.3185i −0.956315 + 1.43123i
\(131\) 3.45873 + 0.687984i 0.302191 + 0.0601094i 0.343857 0.939022i \(-0.388267\pi\)
−0.0416661 + 0.999132i \(0.513267\pi\)
\(132\) 0.128004 0.309609i 0.0111413 0.0269480i
\(133\) −1.03458 1.54836i −0.0897094 0.134260i
\(134\) 4.00644 + 9.67240i 0.346103 + 0.835568i
\(135\) 6.03852 14.6606i 0.519713 1.26178i
\(136\) 0 0
\(137\) 14.6484i 1.25150i 0.780025 + 0.625748i \(0.215206\pi\)
−0.780025 + 0.625748i \(0.784794\pi\)
\(138\) 1.36708 + 1.36527i 0.116374 + 0.116220i
\(139\) 4.19445 2.80264i 0.355768 0.237717i −0.364823 0.931077i \(-0.618870\pi\)
0.720591 + 0.693360i \(0.243870\pi\)
\(140\) 0.546249 + 0.546249i 0.0461664 + 0.0461664i
\(141\) 1.06075 + 5.31437i 0.0893314 + 0.447550i
\(142\) −2.63090 1.75791i −0.220780 0.147520i
\(143\) 1.42098 + 7.14374i 0.118828 + 0.597389i
\(144\) 11.6926 4.86139i 0.974385 0.405116i
\(145\) −9.33173 + 22.5288i −0.774958 + 1.87091i
\(146\) −17.9529 + 3.57105i −1.48579 + 0.295542i
\(147\) −0.790878 + 3.98981i −0.0652305 + 0.329074i
\(148\) 0.0545404 0.274193i 0.00448319 0.0225385i
\(149\) 4.44785 4.44785i 0.364382 0.364382i −0.501041 0.865423i \(-0.667050\pi\)
0.865423 + 0.501041i \(0.167050\pi\)
\(150\) −6.03037 + 9.03803i −0.492377 + 0.737952i
\(151\) −14.0551 + 5.82179i −1.14378 + 0.473771i −0.872445 0.488713i \(-0.837467\pi\)
−0.271339 + 0.962484i \(0.587467\pi\)
\(152\) 2.36528 0.191850
\(153\) 0 0
\(154\) 5.17153 0.416734
\(155\) 8.14291 3.37291i 0.654055 0.270918i
\(156\) 0.498780 0.747548i 0.0399344 0.0598518i
\(157\) 1.74527 1.74527i 0.139287 0.139287i −0.634025 0.773312i \(-0.718598\pi\)
0.773312 + 0.634025i \(0.218598\pi\)
\(158\) 1.69138 8.50316i 0.134559 0.676475i
\(159\) −2.14478 + 10.8200i −0.170092 + 0.858080i
\(160\) −1.98472 + 0.394786i −0.156906 + 0.0312105i
\(161\) −0.632711 + 1.52750i −0.0498646 + 0.120384i
\(162\) −4.97960 + 12.1125i −0.391235 + 0.951644i
\(163\) 0.216722 + 1.08953i 0.0169749 + 0.0853388i 0.988344 0.152236i \(-0.0486474\pi\)
−0.971369 + 0.237575i \(0.923647\pi\)
\(164\) −0.300565 0.200831i −0.0234702 0.0156823i
\(165\) 1.70472 + 8.54063i 0.132712 + 0.664887i
\(166\) −13.3627 13.3627i −1.03715 1.03715i
\(167\) 16.5131 11.0337i 1.27782 0.853815i 0.283373 0.959010i \(-0.408547\pi\)
0.994452 + 0.105195i \(0.0335466\pi\)
\(168\) 7.24100 + 7.23142i 0.558655 + 0.557916i
\(169\) 6.53766i 0.502897i
\(170\) 0 0
\(171\) −1.82916 + 1.83401i −0.139879 + 0.140250i
\(172\) −0.514179 1.24134i −0.0392058 0.0946511i
\(173\) −6.46476 9.67520i −0.491507 0.735591i 0.499946 0.866056i \(-0.333353\pi\)
−0.991453 + 0.130465i \(0.958353\pi\)
\(174\) 7.69538 18.6131i 0.583385 1.41106i
\(175\) −9.11912 1.81391i −0.689341 0.137118i
\(176\) −3.86428 + 5.78330i −0.291281 + 0.435933i
\(177\) −5.86837 8.77006i −0.441094 0.659198i
\(178\) 6.50257 + 2.69345i 0.487389 + 0.201883i
\(179\) −0.782216 0.324004i −0.0584656 0.0242172i 0.353259 0.935526i \(-0.385073\pi\)
−0.411725 + 0.911308i \(0.635073\pi\)
\(180\) 0.595799 0.894237i 0.0444082 0.0666525i
\(181\) 0.796600 1.19220i 0.0592108 0.0886152i −0.800683 0.599088i \(-0.795530\pi\)
0.859894 + 0.510473i \(0.170530\pi\)
\(182\) 13.6055 + 2.70630i 1.00851 + 0.200604i
\(183\) 9.35828 + 3.86907i 0.691784 + 0.286010i
\(184\) −1.16671 1.74610i −0.0860109 0.128724i
\(185\) 2.78110 + 6.71416i 0.204470 + 0.493635i
\(186\) −6.72393 + 2.79036i −0.493023 + 0.204599i
\(187\) 0 0
\(188\) 0.367264i 0.0267855i
\(189\) −11.2069 + 0.0222598i −0.815181 + 0.00161916i
\(190\) 3.18760 2.12989i 0.231253 0.154518i
\(191\) 0.509849 + 0.509849i 0.0368914 + 0.0368914i 0.725312 0.688420i \(-0.241696\pi\)
−0.688420 + 0.725312i \(0.741696\pi\)
\(192\) −12.7000 + 2.53493i −0.916542 + 0.182942i
\(193\) 9.66292 + 6.45656i 0.695552 + 0.464753i 0.852414 0.522867i \(-0.175138\pi\)
−0.156862 + 0.987621i \(0.550138\pi\)
\(194\) −1.00705 5.06278i −0.0723019 0.363486i
\(195\) 0.0154671 + 23.3612i 0.00110762 + 1.67293i
\(196\) −0.105488 + 0.254671i −0.00753488 + 0.0181908i
\(197\) 22.8170 4.53858i 1.62564 0.323360i 0.703643 0.710553i \(-0.251555\pi\)
0.921999 + 0.387193i \(0.126555\pi\)
\(198\) −1.41271 7.05335i −0.100397 0.501260i
\(199\) −4.70456 + 23.6514i −0.333497 + 1.67661i 0.342357 + 0.939570i \(0.388775\pi\)
−0.675854 + 0.737035i \(0.736225\pi\)
\(200\) 8.35068 8.35068i 0.590482 0.590482i
\(201\) 10.3662 + 6.91653i 0.731173 + 0.487854i
\(202\) −5.02720 + 2.08233i −0.353712 + 0.146512i
\(203\) 17.2357 1.20971
\(204\) 0 0
\(205\) 9.39691 0.656309
\(206\) 12.5483 5.19767i 0.874281 0.362139i
\(207\) 2.25617 + 0.445674i 0.156814 + 0.0309765i
\(208\) −13.1927 + 13.1927i −0.914753 + 0.914753i
\(209\) 0.277570 1.39544i 0.0191999 0.0965244i
\(210\) 16.2702 + 3.22515i 1.12275 + 0.222556i
\(211\) −15.3100 + 3.04535i −1.05398 + 0.209651i −0.691528 0.722350i \(-0.743062\pi\)
−0.362457 + 0.932000i \(0.618062\pi\)
\(212\) −0.286074 + 0.690643i −0.0196476 + 0.0474336i
\(213\) −3.76633 + 0.00249363i −0.258065 + 0.000170861i
\(214\) −0.536524 2.69729i −0.0366760 0.184383i
\(215\) 29.0412 + 19.4047i 1.98059 + 1.32339i
\(216\) 7.88477 11.8513i 0.536490 0.806377i
\(217\) −4.40510 4.40510i −0.299038 0.299038i
\(218\) −5.08520 + 3.39782i −0.344413 + 0.230130i
\(219\) −15.3964 + 15.4168i −1.04039 + 1.04177i
\(220\) 0.590224i 0.0397929i
\(221\) 0 0
\(222\) −2.30077 5.54415i −0.154417 0.372099i
\(223\) 0.930718 + 2.24695i 0.0623255 + 0.150467i 0.951974 0.306179i \(-0.0990506\pi\)
−0.889648 + 0.456646i \(0.849051\pi\)
\(224\) 0.794641 + 1.18926i 0.0530942 + 0.0794611i
\(225\) 0.0171254 + 12.9329i 0.00114169 + 0.862193i
\(226\) −23.5276 4.67992i −1.56503 0.311304i
\(227\) 0.780250 1.16773i 0.0517870 0.0775048i −0.804673 0.593719i \(-0.797659\pi\)
0.856460 + 0.516214i \(0.172659\pi\)
\(228\) −0.145895 + 0.0976235i −0.00966211 + 0.00646527i
\(229\) −10.0488 4.16234i −0.664043 0.275055i 0.0250960 0.999685i \(-0.492011\pi\)
−0.689139 + 0.724630i \(0.742011\pi\)
\(230\) −3.14466 1.30256i −0.207353 0.0858884i
\(231\) 5.11604 3.42333i 0.336611 0.225239i
\(232\) −12.1626 + 18.2026i −0.798513 + 1.19506i
\(233\) −14.0608 2.79686i −0.921151 0.183228i −0.288334 0.957530i \(-0.593101\pi\)
−0.632817 + 0.774302i \(0.718101\pi\)
\(234\) −0.0255506 19.2955i −0.00167030 1.26139i
\(235\) −5.30409 7.93813i −0.346000 0.517826i
\(236\) −0.273673 0.660704i −0.0178146 0.0430082i
\(237\) −3.95549 9.53155i −0.256937 0.619140i
\(238\) 0 0
\(239\) 23.7093i 1.53362i −0.641872 0.766812i \(-0.721842\pi\)
0.641872 0.766812i \(-0.278158\pi\)
\(240\) −15.7641 + 15.7850i −1.01757 + 1.01892i
\(241\) −2.34007 + 1.56359i −0.150737 + 0.100719i −0.628652 0.777687i \(-0.716393\pi\)
0.477914 + 0.878406i \(0.341393\pi\)
\(242\) −8.52427 8.52427i −0.547961 0.547961i
\(243\) 3.09175 + 15.2788i 0.198336 + 0.980134i
\(244\) 0.570626 + 0.381280i 0.0365306 + 0.0244090i
\(245\) −1.39796 7.02801i −0.0893123 0.449003i
\(246\) −7.76154 + 0.00513881i −0.494858 + 0.000327638i
\(247\) 1.46048 3.52592i 0.0929284 0.224349i
\(248\) 7.76073 1.54371i 0.492807 0.0980254i
\(249\) −22.0649 4.37380i −1.39831 0.277178i
\(250\) −0.596858 + 3.00061i −0.0377486 + 0.189775i
\(251\) 10.7058 10.7058i 0.675745 0.675745i −0.283289 0.959034i \(-0.591426\pi\)
0.959034 + 0.283289i \(0.0914257\pi\)
\(252\) −0.745104 0.147185i −0.0469372 0.00927179i
\(253\) −1.16706 + 0.483411i −0.0733723 + 0.0303918i
\(254\) 17.9162 1.12416
\(255\) 0 0
\(256\) −2.80767 −0.175479
\(257\) 18.3799 7.61319i 1.14650 0.474898i 0.273145 0.961973i \(-0.411936\pi\)
0.873360 + 0.487075i \(0.161936\pi\)
\(258\) −23.9977 16.0118i −1.49403 0.996850i
\(259\) 3.63218 3.63218i 0.225693 0.225693i
\(260\) −0.308868 + 1.55279i −0.0191552 + 0.0962997i
\(261\) −4.70829 23.5074i −0.291436 1.45507i
\(262\) 5.03288 1.00110i 0.310932 0.0618482i
\(263\) −0.0501727 + 0.121128i −0.00309378 + 0.00746905i −0.925419 0.378946i \(-0.876287\pi\)
0.922325 + 0.386415i \(0.126287\pi\)
\(264\) 0.00517669 + 7.81875i 0.000318603 + 0.481211i
\(265\) −3.79112 19.0593i −0.232887 1.17080i
\(266\) −2.25305 1.50544i −0.138143 0.0923045i
\(267\) 8.21576 1.63987i 0.502796 0.100358i
\(268\) 0.597184 + 0.597184i 0.0364788 + 0.0364788i
\(269\) −4.94355 + 3.30317i −0.301413 + 0.201398i −0.697075 0.716999i \(-0.745515\pi\)
0.395661 + 0.918396i \(0.370515\pi\)
\(270\) −0.0458262 23.0716i −0.00278890 1.40409i
\(271\) 6.87483i 0.417616i −0.977957 0.208808i \(-0.933042\pi\)
0.977957 0.208808i \(-0.0669584\pi\)
\(272\) 0 0
\(273\) 15.2510 6.32899i 0.923030 0.383048i
\(274\) 8.15697 + 19.6927i 0.492781 + 1.18968i
\(275\) −3.94666 5.90659i −0.237992 0.356181i
\(276\) 0.144033 + 0.0595485i 0.00866974 + 0.00358440i
\(277\) 8.13797 + 1.61874i 0.488963 + 0.0972608i 0.433414 0.901195i \(-0.357309\pi\)
0.0555495 + 0.998456i \(0.482309\pi\)
\(278\) 4.07818 6.10344i 0.244593 0.366060i
\(279\) −4.80469 + 7.21138i −0.287649 + 0.431734i
\(280\) −16.6563 6.89927i −0.995404 0.412310i
\(281\) −12.2411 5.07041i −0.730240 0.302475i −0.0135893 0.999908i \(-0.504326\pi\)
−0.716651 + 0.697432i \(0.754326\pi\)
\(282\) 4.38534 + 6.55373i 0.261143 + 0.390269i
\(283\) 7.79633 11.6680i 0.463444 0.693593i −0.523972 0.851735i \(-0.675550\pi\)
0.987416 + 0.158142i \(0.0505505\pi\)
\(284\) −0.250343 0.0497963i −0.0148551 0.00295487i
\(285\) 1.74351 4.21709i 0.103276 0.249799i
\(286\) 5.88830 + 8.81247i 0.348183 + 0.521092i
\(287\) −2.54174 6.13631i −0.150034 0.362215i
\(288\) 1.40494 1.40867i 0.0827870 0.0830066i
\(289\) 0 0
\(290\) 35.4832i 2.08364i
\(291\) −4.34759 4.34183i −0.254860 0.254523i
\(292\) −1.22775 + 0.820357i −0.0718487 + 0.0480078i
\(293\) −18.6721 18.6721i −1.09083 1.09083i −0.995440 0.0953949i \(-0.969589\pi\)
−0.0953949 0.995440i \(-0.530411\pi\)
\(294\) 1.15851 + 5.80414i 0.0675657 + 0.338504i
\(295\) 15.4572 + 10.3282i 0.899955 + 0.601331i
\(296\) 1.27285 + 6.39904i 0.0739827 + 0.371936i
\(297\) −6.06657 6.04252i −0.352018 0.350622i
\(298\) 3.50271 8.45629i 0.202907 0.489860i
\(299\) −3.32332 + 0.661049i −0.192193 + 0.0382295i
\(300\) −0.170423 + 0.859747i −0.00983935 + 0.0496375i
\(301\) 4.81627 24.2130i 0.277605 1.39561i
\(302\) −15.6531 + 15.6531i −0.900738 + 0.900738i
\(303\) −3.59484 + 5.38778i −0.206518 + 0.309520i
\(304\) 3.36705 1.39468i 0.193114 0.0799904i
\(305\) −17.8402 −1.02152
\(306\) 0 0
\(307\) −24.4315 −1.39438 −0.697189 0.716887i \(-0.745566\pi\)
−0.697189 + 0.716887i \(0.745566\pi\)
\(308\) 0.385424 0.159648i 0.0219616 0.00909677i
\(309\) 8.97302 13.4483i 0.510457 0.765049i
\(310\) 9.06879 9.06879i 0.515073 0.515073i
\(311\) 4.55265 22.8877i 0.258157 1.29784i −0.606340 0.795206i \(-0.707363\pi\)
0.864497 0.502638i \(-0.167637\pi\)
\(312\) −4.07799 + 20.5726i −0.230871 + 1.16470i
\(313\) −1.58360 + 0.314998i −0.0895106 + 0.0178048i −0.239642 0.970861i \(-0.577030\pi\)
0.150132 + 0.988666i \(0.452030\pi\)
\(314\) 1.37441 3.31812i 0.0775624 0.187252i
\(315\) 18.2305 7.57963i 1.02717 0.427064i
\(316\) −0.136441 0.685937i −0.00767543 0.0385870i
\(317\) 20.2754 + 13.5476i 1.13878 + 0.760908i 0.974251 0.225464i \(-0.0723900\pi\)
0.164528 + 0.986372i \(0.447390\pi\)
\(318\) 3.14176 + 15.7402i 0.176181 + 0.882669i
\(319\) 9.31162 + 9.31162i 0.521351 + 0.521351i
\(320\) 18.9701 12.6754i 1.06046 0.708577i
\(321\) −2.31626 2.31319i −0.129281 0.129110i
\(322\) 2.40583i 0.134072i
\(323\) 0 0
\(324\) 0.00279782 + 1.05644i 0.000155435 + 0.0586911i
\(325\) −7.29207 17.6046i −0.404491 0.976529i
\(326\) 0.898060 + 1.34404i 0.0497389 + 0.0744396i
\(327\) −2.78143 + 6.72755i −0.153813 + 0.372034i
\(328\) 8.27415 + 1.64583i 0.456863 + 0.0908758i
\(329\) −3.74901 + 5.61080i −0.206690 + 0.309333i
\(330\) 7.04761 + 10.5324i 0.387958 + 0.579789i
\(331\) 28.1459 + 11.6584i 1.54704 + 0.640804i 0.982777 0.184793i \(-0.0591614\pi\)
0.564260 + 0.825597i \(0.309161\pi\)
\(332\) −1.40841 0.583384i −0.0772967 0.0320173i
\(333\) −5.94607 3.96166i −0.325843 0.217098i
\(334\) 16.0554 24.0286i 0.878514 1.31479i
\(335\) −21.5323 4.28304i −1.17644 0.234008i
\(336\) 14.5718 + 6.02453i 0.794956 + 0.328665i
\(337\) 9.57025 + 14.3229i 0.521325 + 0.780218i 0.994935 0.100517i \(-0.0320496\pi\)
−0.473611 + 0.880734i \(0.657050\pi\)
\(338\) 3.64051 + 8.78896i 0.198018 + 0.478057i
\(339\) −26.3730 + 10.9445i −1.43239 + 0.594425i
\(340\) 0 0
\(341\) 4.75973i 0.257754i
\(342\) −1.43777 + 3.48413i −0.0777459 + 0.188400i
\(343\) −16.7643 + 11.2015i −0.905186 + 0.604826i
\(344\) 22.1727 + 22.1727i 1.19547 + 1.19547i
\(345\) −3.97317 + 0.793047i −0.213908 + 0.0426962i
\(346\) −14.0786 9.40702i −0.756870 0.505724i
\(347\) −3.94759 19.8459i −0.211918 1.06538i −0.929476 0.368884i \(-0.879740\pi\)
0.717558 0.696499i \(-0.245260\pi\)
\(348\) −0.00107573 1.62476i −5.76652e−5 0.0870963i
\(349\) −2.90948 + 7.02410i −0.155741 + 0.375992i −0.982421 0.186681i \(-0.940227\pi\)
0.826680 + 0.562673i \(0.190227\pi\)
\(350\) −13.2694 + 2.63946i −0.709281 + 0.141085i
\(351\) −12.7981 19.0716i −0.683112 1.01797i
\(352\) −0.213196 + 1.07181i −0.0113634 + 0.0571276i
\(353\) −8.44344 + 8.44344i −0.449399 + 0.449399i −0.895155 0.445756i \(-0.852935\pi\)
0.445756 + 0.895155i \(0.352935\pi\)
\(354\) −12.7728 8.52230i −0.678867 0.452955i
\(355\) 6.13014 2.53919i 0.325354 0.134766i
\(356\) 0.567772 0.0300919
\(357\) 0 0
\(358\) −1.23200 −0.0651133
\(359\) −21.2469 + 8.80076i −1.12137 + 0.464487i −0.864839 0.502049i \(-0.832580\pi\)
−0.256531 + 0.966536i \(0.582580\pi\)
\(360\) −4.85976 + 24.6019i −0.256132 + 1.29663i
\(361\) 12.9079 12.9079i 0.679363 0.679363i
\(362\) 0.407040 2.04633i 0.0213935 0.107553i
\(363\) −14.0755 2.79011i −0.738773 0.146443i
\(364\) 1.09753 0.218313i 0.0575264 0.0114427i
\(365\) 14.6892 35.4628i 0.768866 1.85621i
\(366\) 14.7354 0.00975609i 0.770231 0.000509959i
\(367\) 3.20154 + 16.0952i 0.167119 + 0.840163i 0.969828 + 0.243792i \(0.0783914\pi\)
−0.802709 + 0.596371i \(0.796609\pi\)
\(368\) −2.69043 1.79769i −0.140249 0.0937111i
\(369\) −7.67486 + 5.14289i −0.399537 + 0.267728i
\(370\) 7.47758 + 7.47758i 0.388741 + 0.388741i
\(371\) −11.4205 + 7.63093i −0.592923 + 0.396178i
\(372\) −0.414982 + 0.415531i −0.0215158 + 0.0215443i
\(373\) 1.61824i 0.0837894i 0.999122 + 0.0418947i \(0.0133394\pi\)
−0.999122 + 0.0418947i \(0.986661\pi\)
\(374\) 0 0
\(375\) 1.39582 + 3.36351i 0.0720798 + 0.173691i
\(376\) −3.28001 7.91865i −0.169154 0.408373i
\(377\) 19.6246 + 29.3703i 1.01072 + 1.51265i
\(378\) −15.0537 + 6.27050i −0.774278 + 0.322520i
\(379\) 15.2311 + 3.02965i 0.782368 + 0.155623i 0.570085 0.821586i \(-0.306910\pi\)
0.212283 + 0.977208i \(0.431910\pi\)
\(380\) 0.171815 0.257139i 0.00881393 0.0131910i
\(381\) 17.7240 11.8598i 0.908027 0.607594i
\(382\) 0.969330 + 0.401510i 0.0495952 + 0.0205430i
\(383\) 20.4588 + 8.47433i 1.04540 + 0.433018i 0.838247 0.545291i \(-0.183581\pi\)
0.207151 + 0.978309i \(0.433581\pi\)
\(384\) −17.5710 + 11.7574i −0.896668 + 0.599994i
\(385\) −6.02498 + 9.01702i −0.307061 + 0.459550i
\(386\) 16.5858 + 3.29912i 0.844194 + 0.167921i
\(387\) −34.3393 + 0.0454712i −1.74557 + 0.00231143i
\(388\) −0.231344 0.346231i −0.0117447 0.0175772i
\(389\) 5.80572 + 14.0162i 0.294362 + 0.710652i 0.999998 + 0.00207747i \(0.000661280\pi\)
−0.705636 + 0.708574i \(0.749339\pi\)
\(390\) 13.0295 + 31.3972i 0.659774 + 1.58986i
\(391\) 0 0
\(392\) 6.43314i 0.324922i
\(393\) 4.31619 4.32191i 0.217723 0.218011i
\(394\) 28.1469 18.8071i 1.41802 0.947490i
\(395\) 12.8555 + 12.8555i 0.646831 + 0.646831i
\(396\) −0.323027 0.482061i −0.0162327 0.0242245i
\(397\) −31.2942 20.9101i −1.57061 1.04945i −0.967850 0.251526i \(-0.919068\pi\)
−0.602760 0.797922i \(-0.705932\pi\)
\(398\) 6.84571 + 34.4157i 0.343145 + 1.72510i
\(399\) −3.22541 + 0.00213550i −0.161473 + 0.000106909i
\(400\) 6.96352 16.8114i 0.348176 0.840571i
\(401\) −3.46595 + 0.689420i −0.173081 + 0.0344280i −0.280870 0.959746i \(-0.590623\pi\)
0.107789 + 0.994174i \(0.465623\pi\)
\(402\) 17.7873 + 3.52588i 0.887151 + 0.175855i
\(403\) 2.49080 12.5221i 0.124076 0.623770i
\(404\) −0.310384 + 0.310384i −0.0154422 + 0.0154422i
\(405\) −15.3178 22.7937i −0.761146 1.13263i
\(406\) 23.1710 9.59773i 1.14996 0.476327i
\(407\) 3.92459 0.194535
\(408\) 0 0
\(409\) 12.2079 0.603641 0.301820 0.953365i \(-0.402406\pi\)
0.301820 + 0.953365i \(0.402406\pi\)
\(410\) 12.6328 5.23268i 0.623890 0.258424i
\(411\) 21.1052 + 14.0818i 1.04104 + 0.694605i
\(412\) 0.774744 0.774744i 0.0381689 0.0381689i
\(413\) 2.56347 12.8874i 0.126140 0.634148i
\(414\) 3.28127 0.657203i 0.161266 0.0322998i
\(415\) 38.8671 7.73115i 1.90791 0.379507i
\(416\) −1.12177 + 2.70819i −0.0549993 + 0.132780i
\(417\) −0.00578500 8.73753i −0.000283293 0.427879i
\(418\) −0.403898 2.03053i −0.0197553 0.0993165i
\(419\) −26.1021 17.4409i −1.27517 0.852042i −0.280985 0.959712i \(-0.590661\pi\)
−0.994187 + 0.107670i \(0.965661\pi\)
\(420\) 1.31215 0.261906i 0.0640262 0.0127797i
\(421\) 10.7245 + 10.7245i 0.522682 + 0.522682i 0.918380 0.395699i \(-0.129498\pi\)
−0.395699 + 0.918380i \(0.629498\pi\)
\(422\) −18.8863 + 12.6194i −0.919373 + 0.614305i
\(423\) 8.67658 + 3.58050i 0.421870 + 0.174090i
\(424\) 17.4460i 0.847253i
\(425\) 0 0
\(426\) −5.06191 + 2.10064i −0.245250 + 0.101776i
\(427\) 4.82553 + 11.6499i 0.233524 + 0.563776i
\(428\) −0.123253 0.184461i −0.00595764 0.00891625i
\(429\) 11.6586 + 4.82011i 0.562883 + 0.232717i
\(430\) 49.8473 + 9.91525i 2.40385 + 0.478156i
\(431\) 6.36331 9.52337i 0.306510 0.458724i −0.645954 0.763376i \(-0.723540\pi\)
0.952464 + 0.304652i \(0.0985402\pi\)
\(432\) 4.23616 21.5199i 0.203812 1.03538i
\(433\) −24.7526 10.2528i −1.18953 0.492720i −0.301930 0.953330i \(-0.597631\pi\)
−0.887603 + 0.460610i \(0.847631\pi\)
\(434\) −8.37502 3.46905i −0.402014 0.166520i
\(435\) 23.4883 + 35.1024i 1.12618 + 1.68303i
\(436\) −0.274097 + 0.410216i −0.0131269 + 0.0196458i
\(437\) 0.649167 + 0.129127i 0.0310539 + 0.00617700i
\(438\) −12.1134 + 29.2991i −0.578799 + 1.39997i
\(439\) −4.73699 7.08940i −0.226084 0.338359i 0.701034 0.713128i \(-0.252722\pi\)
−0.927118 + 0.374769i \(0.877722\pi\)
\(440\) −5.27126 12.7259i −0.251297 0.606685i
\(441\) 4.98817 + 4.97498i 0.237532 + 0.236904i
\(442\) 0 0
\(443\) 18.8773i 0.896886i −0.893811 0.448443i \(-0.851979\pi\)
0.893811 0.448443i \(-0.148021\pi\)
\(444\) −0.342622 0.342169i −0.0162601 0.0162386i
\(445\) −12.2720 + 8.19987i −0.581747 + 0.388711i
\(446\) 2.50244 + 2.50244i 0.118494 + 0.118494i
\(447\) −2.13257 10.6842i −0.100867 0.505345i
\(448\) −13.4084 8.95919i −0.633486 0.423282i
\(449\) 5.31908 + 26.7408i 0.251023 + 1.26198i 0.876373 + 0.481633i \(0.159956\pi\)
−0.625350 + 0.780345i \(0.715044\pi\)
\(450\) 7.22473 + 17.3769i 0.340577 + 0.819156i
\(451\) 1.94197 4.68833i 0.0914438 0.220765i
\(452\) −1.89793 + 0.377522i −0.0892713 + 0.0177572i
\(453\) −5.12348 + 25.8469i −0.240722 + 1.21439i
\(454\) 0.398685 2.00433i 0.0187112 0.0940677i
\(455\) −20.5695 + 20.5695i −0.964311 + 0.964311i
\(456\) 2.27380 3.40786i 0.106480 0.159588i
\(457\) 9.73907 4.03405i 0.455574 0.188705i −0.143082 0.989711i \(-0.545701\pi\)
0.598657 + 0.801006i \(0.295701\pi\)
\(458\) −15.8270 −0.739546
\(459\) 0 0
\(460\) −0.274576 −0.0128022
\(461\) −9.13414 + 3.78349i −0.425419 + 0.176215i −0.585112 0.810952i \(-0.698950\pi\)
0.159693 + 0.987167i \(0.448950\pi\)
\(462\) 4.97150 7.45106i 0.231295 0.346655i
\(463\) −16.2123 + 16.2123i −0.753448 + 0.753448i −0.975121 0.221673i \(-0.928848\pi\)
0.221673 + 0.975121i \(0.428848\pi\)
\(464\) −6.58074 + 33.0836i −0.305503 + 1.53587i
\(465\) 2.96833 14.9746i 0.137653 0.694432i
\(466\) −20.4601 + 4.06977i −0.947797 + 0.188529i
\(467\) −9.89105 + 23.8791i −0.457703 + 1.10499i 0.511621 + 0.859211i \(0.329045\pi\)
−0.969325 + 0.245783i \(0.920955\pi\)
\(468\) −0.597567 1.43727i −0.0276226 0.0664378i
\(469\) 3.02732 + 15.2194i 0.139789 + 0.702766i
\(470\) −11.5509 7.71810i −0.532806 0.356009i
\(471\) −0.836789 4.19231i −0.0385572 0.193172i
\(472\) 11.8014 + 11.8014i 0.543205 + 0.543205i
\(473\) 15.6831 10.4791i 0.721111 0.481831i
\(474\) −10.6253 10.6112i −0.488034 0.487388i
\(475\) 3.72217i 0.170785i
\(476\) 0 0
\(477\) 13.5274 + 13.4916i 0.619378 + 0.617740i
\(478\) −13.2025 31.8737i −0.603870 1.45787i
\(479\) −4.81385 7.20443i −0.219950 0.329179i 0.705041 0.709166i \(-0.250928\pi\)
−0.924992 + 0.379987i \(0.875928\pi\)
\(480\) −1.33916 + 3.23907i −0.0611238 + 0.147843i
\(481\) 10.3250 + 2.05377i 0.470778 + 0.0936437i
\(482\) −2.27521 + 3.40509i −0.103633 + 0.155098i
\(483\) 1.59256 + 2.38002i 0.0724639 + 0.108295i
\(484\) −0.898446 0.372148i −0.0408384 0.0169158i
\(485\) 10.0006 + 4.14240i 0.454106 + 0.188097i
\(486\) 12.6644 + 18.8185i 0.574470 + 0.853625i
\(487\) 21.5656 32.2752i 0.977229 1.46253i 0.0928931 0.995676i \(-0.470389\pi\)
0.884336 0.466851i \(-0.154611\pi\)
\(488\) −15.7086 3.12463i −0.711094 0.141445i
\(489\) 1.77812 + 0.735143i 0.0804094 + 0.0332443i
\(490\) −5.79291 8.66971i −0.261697 0.391658i
\(491\) −4.84934 11.7073i −0.218848 0.528345i 0.775882 0.630878i \(-0.217305\pi\)
−0.994730 + 0.102533i \(0.967305\pi\)
\(492\) −0.578293 + 0.239986i −0.0260715 + 0.0108194i
\(493\) 0 0
\(494\) 5.55337i 0.249858i
\(495\) 13.9440 + 5.75417i 0.626736 + 0.258631i
\(496\) 10.1374 6.77361i 0.455184 0.304144i
\(497\) −3.31625 3.31625i −0.148754 0.148754i
\(498\) −32.0987 + 6.40693i −1.43838 + 0.287101i
\(499\) 30.8610 + 20.6206i 1.38153 + 0.923106i 0.999999 0.00125143i \(-0.000398342\pi\)
0.381527 + 0.924358i \(0.375398\pi\)
\(500\) 0.0481476 + 0.242054i 0.00215323 + 0.0108250i
\(501\) −0.0227750 34.3988i −0.00101751 1.53683i
\(502\) 8.43090 20.3540i 0.376290 0.908444i
\(503\) −31.3353 + 6.23297i −1.39717 + 0.277914i −0.835520 0.549460i \(-0.814833\pi\)
−0.561650 + 0.827375i \(0.689833\pi\)
\(504\) 17.3799 3.48100i 0.774160 0.155056i
\(505\) 2.22610 11.1913i 0.0990600 0.498008i
\(506\) −1.29976 + 1.29976i −0.0577812 + 0.0577812i
\(507\) 9.41937 + 6.28480i 0.418329 + 0.279118i
\(508\) 1.33526 0.553083i 0.0592426 0.0245391i
\(509\) 2.30289 0.102074 0.0510369 0.998697i \(-0.483747\pi\)
0.0510369 + 0.998697i \(0.483747\pi\)
\(510\) 0 0
\(511\) −27.1309 −1.20020
\(512\) 18.7797 7.77882i 0.829954 0.343778i
\(513\) 0.884001 + 4.39850i 0.0390296 + 0.194198i
\(514\) 20.4697 20.4697i 0.902880 0.902880i
\(515\) −5.55652 + 27.9345i −0.244849 + 1.23094i
\(516\) −2.28279 0.452505i −0.100494 0.0199204i
\(517\) −5.05666 + 1.00583i −0.222391 + 0.0442364i
\(518\) 2.86037 6.90554i 0.125677 0.303412i
\(519\) −20.1546 + 0.0133441i −0.884688 + 0.000585740i
\(520\) −7.20827 36.2384i −0.316104 1.58916i
\(521\) −2.28875 1.52929i −0.100272 0.0669995i 0.504423 0.863456i \(-0.331705\pi\)
−0.604695 + 0.796457i \(0.706705\pi\)
\(522\) −19.4198 28.9806i −0.849981 1.26845i
\(523\) 29.8001 + 29.8001i 1.30307 + 1.30307i 0.926313 + 0.376755i \(0.122960\pi\)
0.376755 + 0.926313i \(0.377040\pi\)
\(524\) 0.344186 0.229978i 0.0150358 0.0100466i
\(525\) −11.3799 + 11.3949i −0.496658 + 0.497316i
\(526\) 0.190778i 0.00831830i
\(527\) 0 0
\(528\) 4.61767 + 11.1272i 0.200958 + 0.484249i
\(529\) 8.57683 + 20.7063i 0.372906 + 0.900274i
\(530\) −15.7098 23.5114i −0.682390 1.02127i
\(531\) −18.2772 + 0.0242021i −0.793161 + 0.00105028i
\(532\) −0.214389 0.0426446i −0.00929494 0.00184888i
\(533\) 7.56246 11.3180i 0.327566 0.490238i
\(534\) 10.1318 6.77953i 0.438444 0.293379i
\(535\) 5.32803 + 2.20694i 0.230351 + 0.0954144i
\(536\) −18.2094 7.54259i −0.786527 0.325790i
\(537\) −1.21878 + 0.815532i −0.0525943 + 0.0351928i
\(538\) −4.80652 + 7.19347i −0.207224 + 0.310132i
\(539\) −3.79534 0.754939i −0.163477 0.0325175i
\(540\) −0.715648 1.71807i −0.0307966 0.0739339i
\(541\) 8.13164 + 12.1699i 0.349606 + 0.523223i 0.964044 0.265742i \(-0.0856171\pi\)
−0.614438 + 0.788965i \(0.710617\pi\)
\(542\) −3.82826 9.24223i −0.164438 0.396988i
\(543\) −0.951908 2.29381i −0.0408503 0.0984369i
\(544\) 0 0
\(545\) 12.8251i 0.549365i
\(546\) 16.9784 17.0009i 0.726610 0.727573i
\(547\) −22.8049 + 15.2378i −0.975068 + 0.651520i −0.937577 0.347777i \(-0.886937\pi\)
−0.0374912 + 0.999297i \(0.511937\pi\)
\(548\) 1.21585 + 1.21585i 0.0519384 + 0.0519384i
\(549\) 14.5708 9.76385i 0.621868 0.416711i
\(550\) −8.59481 5.74287i −0.366484 0.244877i
\(551\) −1.34611 6.76737i −0.0573464 0.288300i
\(552\) −3.63734 + 0.00240823i −0.154816 + 0.000102501i
\(553\) 4.91757 11.8721i 0.209116 0.504851i
\(554\) 11.8417 2.35547i 0.503107 0.100074i
\(555\) 12.3472 + 2.44751i 0.524109 + 0.103891i
\(556\) 0.115523 0.580773i 0.00489926 0.0246302i
\(557\) 31.0707 31.0707i 1.31651 1.31651i 0.399984 0.916522i \(-0.369016\pi\)
0.916522 0.399984i \(-0.130984\pi\)
\(558\) −2.44356 + 12.3702i −0.103444 + 0.523671i
\(559\) 46.7436 19.3619i 1.97705 0.818919i
\(560\) −27.7789 −1.17387
\(561\) 0 0
\(562\) −19.2798 −0.813270
\(563\) −33.9044 + 14.0437i −1.42890 + 0.591870i −0.957080 0.289825i \(-0.906403\pi\)
−0.471821 + 0.881695i \(0.656403\pi\)
\(564\) 0.529148 + 0.353059i 0.0222811 + 0.0148665i
\(565\) 35.5701 35.5701i 1.49645 1.49645i
\(566\) 3.98370 20.0274i 0.167448 0.841815i
\(567\) −10.7414 + 16.1681i −0.451095 + 0.678997i
\(568\) 5.84243 1.16213i 0.245143 0.0487620i
\(569\) −9.46803 + 22.8578i −0.396920 + 0.958251i 0.591472 + 0.806326i \(0.298547\pi\)
−0.988392 + 0.151925i \(0.951453\pi\)
\(570\) −0.00439636 6.64016i −0.000184143 0.278126i
\(571\) −0.384503 1.93303i −0.0160910 0.0808947i 0.971905 0.235372i \(-0.0756307\pi\)
−0.987996 + 0.154477i \(0.950631\pi\)
\(572\) 0.710889 + 0.475001i 0.0297238 + 0.0198608i
\(573\) 1.22471 0.244453i 0.0511631 0.0102122i
\(574\) −6.83402 6.83402i −0.285247 0.285247i
\(575\) 2.74779 1.83601i 0.114591 0.0765671i
\(576\) −8.55649 + 20.7348i −0.356520 + 0.863951i
\(577\) 26.8179i 1.11645i 0.829691 + 0.558223i \(0.188517\pi\)
−0.829691 + 0.558223i \(0.811483\pi\)
\(578\) 0 0
\(579\) 18.5917 7.71536i 0.772644 0.320639i
\(580\) 1.09538 + 2.64449i 0.0454833 + 0.109806i
\(581\) −15.5616 23.2896i −0.645603 0.966214i
\(582\) −8.26247 3.41602i −0.342490 0.141599i
\(583\) −10.2926 2.04732i −0.426275 0.0847913i
\(584\) 19.1452 28.6529i 0.792235 1.18566i
\(585\) 33.6733 + 22.4353i 1.39222 + 0.927586i
\(586\) −35.4995 14.7044i −1.46647 0.607433i
\(587\) 41.3023 + 17.1080i 1.70473 + 0.706122i 0.999994 0.00334911i \(-0.00106606\pi\)
0.704735 + 0.709471i \(0.251066\pi\)
\(588\) 0.265518 + 0.396807i 0.0109498 + 0.0163641i
\(589\) −1.38557 + 2.07364i −0.0570912 + 0.0854430i
\(590\) 26.5313 + 5.27741i 1.09228 + 0.217268i
\(591\) 15.3953 37.2374i 0.633280 1.53174i
\(592\) 5.58511 + 8.35871i 0.229547 + 0.343541i
\(593\) 8.44534 + 20.3889i 0.346809 + 0.837270i 0.996993 + 0.0774935i \(0.0246917\pi\)
−0.650184 + 0.759777i \(0.725308\pi\)
\(594\) −11.5204 4.74513i −0.472689 0.194695i
\(595\) 0 0
\(596\) 0.738361i 0.0302444i
\(597\) 29.5540 + 29.5149i 1.20956 + 1.20796i
\(598\) −4.09963 + 2.73928i −0.167646 + 0.112018i
\(599\) −16.9345 16.9345i −0.691926 0.691926i 0.270729 0.962655i \(-0.412735\pi\)
−0.962655 + 0.270729i \(0.912735\pi\)
\(600\) −4.00384 20.0592i −0.163456 0.818914i
\(601\) −2.19329 1.46551i −0.0894662 0.0597794i 0.510033 0.860155i \(-0.329633\pi\)
−0.599499 + 0.800376i \(0.704633\pi\)
\(602\) −7.00826 35.2329i −0.285635 1.43599i
\(603\) 19.9304 8.28640i 0.811630 0.337448i
\(604\) −0.683377 + 1.64982i −0.0278062 + 0.0671302i
\(605\) 24.7939 4.93180i 1.00801 0.200506i
\(606\) −1.83256 + 9.24490i −0.0744428 + 0.375548i
\(607\) −7.07635 + 35.5752i −0.287220 + 1.44395i 0.520234 + 0.854024i \(0.325845\pi\)
−0.807454 + 0.589930i \(0.799155\pi\)
\(608\) 0.404887 0.404887i 0.0164203 0.0164203i
\(609\) 16.5691 24.8329i 0.671412 1.00628i
\(610\) −23.9836 + 9.93432i −0.971066 + 0.402229i
\(611\) −13.8296 −0.559487
\(612\) 0 0
\(613\) −25.0887 −1.01333 −0.506663 0.862144i \(-0.669121\pi\)
−0.506663 + 0.862144i \(0.669121\pi\)
\(614\) −32.8447 + 13.6047i −1.32550 + 0.549041i
\(615\) 9.03346 13.5389i 0.364264 0.545942i
\(616\) −6.88440 + 6.88440i −0.277380 + 0.277380i
\(617\) −1.92552 + 9.68025i −0.0775186 + 0.389712i 0.922475 + 0.386057i \(0.126163\pi\)
−0.999993 + 0.00365472i \(0.998837\pi\)
\(618\) 4.57422 23.0760i 0.184002 0.928253i
\(619\) −31.6886 + 6.30326i −1.27367 + 0.253349i −0.785207 0.619233i \(-0.787443\pi\)
−0.488466 + 0.872583i \(0.662443\pi\)
\(620\) 0.395921 0.955837i 0.0159006 0.0383873i
\(621\) 2.81102 2.82221i 0.112802 0.113251i
\(622\) −6.62467 33.3044i −0.265625 1.33539i
\(623\) 8.67402 + 5.79580i 0.347517 + 0.232204i
\(624\) 6.32543 + 31.6904i 0.253220 + 1.26863i
\(625\) −19.7780 19.7780i −0.791122 0.791122i
\(626\) −1.95352 + 1.30530i −0.0780785 + 0.0521704i
\(627\) −1.74369 1.74138i −0.0696362 0.0695441i
\(628\) 0.289721i 0.0115611i
\(629\) 0 0
\(630\) 20.2876 20.3414i 0.808279 0.810422i
\(631\) −1.47845 3.56930i −0.0588563 0.142092i 0.891716 0.452596i \(-0.149502\pi\)
−0.950572 + 0.310504i \(0.899502\pi\)
\(632\) 9.06791 + 13.5711i 0.360702 + 0.539829i
\(633\) −10.3302 + 24.9860i −0.410587 + 0.993104i
\(634\) 34.8014 + 6.92242i 1.38214 + 0.274925i
\(635\) −20.8729 + 31.2385i −0.828316 + 1.23966i
\(636\) 0.720059 + 1.07610i 0.0285522 + 0.0426702i
\(637\) −9.58987 3.97225i −0.379964 0.157386i
\(638\) 17.7033 + 7.33297i 0.700882 + 0.290315i
\(639\) −3.61706 + 5.42887i −0.143089 + 0.214763i
\(640\) 20.6928 30.9690i 0.817955 1.22416i
\(641\) 36.7015 + 7.30038i 1.44962 + 0.288348i 0.856242 0.516575i \(-0.172793\pi\)
0.593380 + 0.804922i \(0.297793\pi\)
\(642\) −4.40198 1.81995i −0.173732 0.0718276i
\(643\) 23.5997 + 35.3195i 0.930682 + 1.39286i 0.919570 + 0.392925i \(0.128537\pi\)
0.0111111 + 0.999938i \(0.496463\pi\)
\(644\) 0.0742693 + 0.179302i 0.00292662 + 0.00706549i
\(645\) 55.8760 23.1879i 2.20011 0.913024i
\(646\) 0 0
\(647\) 48.3331i 1.90017i 0.311989 + 0.950086i \(0.399005\pi\)
−0.311989 + 0.950086i \(0.600995\pi\)
\(648\) −9.49533 22.7531i −0.373012 0.893828i
\(649\) 8.34737 5.57753i 0.327663 0.218937i
\(650\) −19.6063 19.6063i −0.769023 0.769023i
\(651\) −10.5815 + 2.11208i −0.414723 + 0.0827790i
\(652\) 0.108422 + 0.0724451i 0.00424613 + 0.00283717i
\(653\) 1.26227 + 6.34586i 0.0493965 + 0.248333i 0.997592 0.0693542i \(-0.0220939\pi\)
−0.948196 + 0.317687i \(0.897094\pi\)
\(654\) 0.00701353 + 10.5931i 0.000274251 + 0.414222i
\(655\) −4.11794 + 9.94158i −0.160901 + 0.388450i
\(656\) 12.7490 2.53593i 0.497764 0.0990114i
\(657\) 7.41136 + 37.0033i 0.289145 + 1.44364i
\(658\) −1.91564 + 9.63056i −0.0746794 + 0.375439i
\(659\) 17.7005 17.7005i 0.689515 0.689515i −0.272610 0.962125i \(-0.587887\pi\)
0.962125 + 0.272610i \(0.0878869\pi\)
\(660\) 0.850385 + 0.567395i 0.0331012 + 0.0220858i
\(661\) −23.0223 + 9.53615i −0.895464 + 0.370913i −0.782474 0.622683i \(-0.786043\pi\)
−0.112990 + 0.993596i \(0.536043\pi\)
\(662\) 44.3302 1.72294
\(663\) 0 0
\(664\) 35.5773 1.38067
\(665\) 5.24974 2.17451i 0.203576 0.0843240i
\(666\) −10.1997 2.01481i −0.395231 0.0780723i
\(667\) −4.33184 + 4.33184i −0.167729 + 0.167729i
\(668\) 0.454802 2.28645i 0.0175968 0.0884652i
\(669\) 4.13210 + 0.819081i 0.159756 + 0.0316675i
\(670\) −31.3321 + 6.23235i −1.21047 + 0.240777i
\(671\) −3.68686 + 8.90086i −0.142329 + 0.343614i
\(672\) 2.47738 0.00164024i 0.0955670 6.32736e-5i
\(673\) −3.66436 18.4220i −0.141251 0.710115i −0.984887 0.173200i \(-0.944589\pi\)
0.843636 0.536915i \(-0.180411\pi\)
\(674\) 20.8416 + 13.9259i 0.802787 + 0.536405i
\(675\) 18.6500 + 12.4080i 0.717838 + 0.477584i
\(676\) 0.542640 + 0.542640i 0.0208708 + 0.0208708i
\(677\) −8.24041 + 5.50607i −0.316705 + 0.211615i −0.703754 0.710444i \(-0.748494\pi\)
0.387049 + 0.922059i \(0.373494\pi\)
\(678\) −29.3603 + 29.3992i −1.12758 + 1.12907i
\(679\) 7.65102i 0.293619i
\(680\) 0 0
\(681\) −0.932371 2.24673i −0.0357285 0.0860950i
\(682\) −2.65046 6.39878i −0.101491 0.245022i
\(683\) −1.32660 1.98540i −0.0507610 0.0759692i 0.805221 0.592975i \(-0.202047\pi\)
−0.855982 + 0.517006i \(0.827047\pi\)
\(684\) 0.000402615 0.304050i 1.53944e−5 0.0116257i
\(685\) −43.8391 8.72013i −1.67500 0.333179i
\(686\) −16.2996 + 24.3941i −0.622322 + 0.931370i
\(687\) −15.6572 + 10.4768i −0.597358 + 0.399714i
\(688\) 44.6375 + 18.4895i 1.70179 + 0.704905i
\(689\) −26.0068 10.7724i −0.990779 0.410394i
\(690\) −4.89975 + 3.27860i −0.186530 + 0.124814i
\(691\) −18.1140 + 27.1095i −0.689088 + 1.03129i 0.307722 + 0.951476i \(0.400433\pi\)
−0.996810 + 0.0798165i \(0.974567\pi\)
\(692\) −1.33965 0.266473i −0.0509258 0.0101298i
\(693\) −0.0141184 10.6620i −0.000536313 0.405017i
\(694\) −16.3582 24.4818i −0.620948 0.929315i
\(695\) 5.89068 + 14.2214i 0.223446 + 0.539447i
\(696\) 14.5338 + 35.0222i 0.550904 + 1.32751i
\(697\) 0 0
\(698\) 11.0631i 0.418743i
\(699\) −17.5466 + 17.5698i −0.663673 + 0.664552i
\(700\) −0.907464 + 0.606348i −0.0342989 + 0.0229178i
\(701\) 31.7150 + 31.7150i 1.19786 + 1.19786i 0.974807 + 0.223051i \(0.0716016\pi\)
0.223051 + 0.974807i \(0.428398\pi\)
\(702\) −27.8253 18.5124i −1.05020 0.698706i
\(703\) −1.70980 1.14245i −0.0644864 0.0430885i
\(704\) −2.40368 12.0841i −0.0905921 0.455437i
\(705\) −16.5361 + 0.0109483i −0.622784 + 0.000412337i
\(706\) −6.64926 + 16.0527i −0.250248 + 0.604153i
\(707\) −7.91022 + 1.57344i −0.297495 + 0.0591753i
\(708\) −1.21502 0.240846i −0.0456633 0.00905156i
\(709\) 7.70314 38.7263i 0.289297 1.45440i −0.513472 0.858106i \(-0.671641\pi\)
0.802769 0.596290i \(-0.203359\pi\)
\(710\) 6.82716 6.82716i 0.256219 0.256219i
\(711\) −17.5354 3.46388i −0.657629 0.129906i
\(712\) −12.2419 + 5.07074i −0.458783 + 0.190034i
\(713\) 2.21426 0.0829248
\(714\) 0 0
\(715\) −22.2254 −0.831182
\(716\) −0.0918186 + 0.0380325i −0.00343142 + 0.00142134i
\(717\) −34.1599 22.7922i −1.27573 0.851191i
\(718\) −23.6628 + 23.6628i −0.883086 + 0.883086i
\(719\) −8.57373 + 43.1030i −0.319746 + 1.60747i 0.402220 + 0.915543i \(0.368239\pi\)
−0.721966 + 0.691929i \(0.756761\pi\)
\(720\) 7.58839 + 37.8871i 0.282803 + 1.41197i
\(721\) 19.7446 3.92744i 0.735326 0.146265i
\(722\) 10.1650 24.5406i 0.378304 0.913307i
\(723\) 0.00322743 + 4.87465i 0.000120030 + 0.181290i
\(724\) −0.0328353 0.165074i −0.00122031 0.00613493i
\(725\) −28.6448 19.1399i −1.06384 0.710837i
\(726\) −20.4762 + 4.08707i −0.759943 + 0.151685i
\(727\) −0.0802760 0.0802760i −0.00297727 0.00297727i 0.705617 0.708594i \(-0.250670\pi\)
−0.708594 + 0.705617i \(0.750670\pi\)
\(728\) −21.7144 + 14.5091i −0.804790 + 0.537744i
\(729\) 24.9856 + 10.2333i 0.925392 + 0.379010i
\(730\) 55.8544i 2.06726i
\(731\) 0 0
\(732\) 1.09790 0.455616i 0.0405795 0.0168400i
\(733\) −3.12587 7.54651i −0.115457 0.278737i 0.855579 0.517673i \(-0.173201\pi\)
−0.971035 + 0.238936i \(0.923201\pi\)
\(734\) 13.2667 + 19.8549i 0.489681 + 0.732860i
\(735\) −11.4697 4.74203i −0.423068 0.174912i
\(736\) −0.498613 0.0991804i −0.0183791 0.00365584i
\(737\) −6.58678 + 9.85781i −0.242627 + 0.363117i
\(738\) −7.45394 + 11.1876i −0.274383 + 0.411823i
\(739\) −10.8531 4.49550i −0.399237 0.165370i 0.174025 0.984741i \(-0.444323\pi\)
−0.573263 + 0.819372i \(0.694323\pi\)
\(740\) 0.788126 + 0.326452i 0.0289721 + 0.0120006i
\(741\) −3.67610 5.49379i −0.135045 0.201819i
\(742\) −11.1039 + 16.6182i −0.407639 + 0.610074i
\(743\) 40.2557 + 8.00737i 1.47684 + 0.293762i 0.866819 0.498623i \(-0.166161\pi\)
0.610021 + 0.792385i \(0.291161\pi\)
\(744\) 5.23642 12.6655i 0.191976 0.464341i
\(745\) 10.6635 + 15.9591i 0.390682 + 0.584697i
\(746\) 0.901121 + 2.17550i 0.0329924 + 0.0796507i
\(747\) −27.5132 + 27.5862i −1.00666 + 1.00933i
\(748\) 0 0
\(749\) 4.07622i 0.148942i
\(750\) 3.74945 + 3.74449i 0.136911 + 0.136730i
\(751\) 1.40436 0.938366i 0.0512460 0.0342414i −0.529683 0.848195i \(-0.677689\pi\)
0.580929 + 0.813954i \(0.302689\pi\)
\(752\) −9.33841 9.33841i −0.340537 0.340537i
\(753\) −5.13303 25.7165i −0.187058 0.937162i
\(754\) 42.7373 + 28.5562i 1.55640 + 1.03995i
\(755\) −9.05629 45.5290i −0.329592 1.65697i
\(756\) −0.928347 + 0.932042i −0.0337637 + 0.0338980i
\(757\) −20.8300 + 50.2881i −0.757080 + 1.82775i −0.242954 + 0.970038i \(0.578116\pi\)
−0.514126 + 0.857715i \(0.671884\pi\)
\(758\) 22.1631 4.40851i 0.805000 0.160124i
\(759\) −0.425427 + 2.14619i −0.0154420 + 0.0779019i
\(760\) −1.40804 + 7.07871i −0.0510751 + 0.256772i
\(761\) −24.1395 + 24.1395i −0.875055 + 0.875055i −0.993018 0.117963i \(-0.962364\pi\)
0.117963 + 0.993018i \(0.462364\pi\)
\(762\) 17.2233 25.8134i 0.623933 0.935121i
\(763\) −8.37493 + 3.46901i −0.303193 + 0.125587i
\(764\) 0.0846370 0.00306206
\(765\) 0 0
\(766\) 32.2229 1.16426
\(767\) 24.8794 10.3054i 0.898343 0.372106i
\(768\) −2.69907 + 4.04525i −0.0973944 + 0.145970i
\(769\) 31.3211 31.3211i 1.12947 1.12947i 0.139204 0.990264i \(-0.455546\pi\)
0.990264 0.139204i \(-0.0444544\pi\)
\(770\) −3.07859 + 15.4771i −0.110945 + 0.557757i
\(771\) 6.70001 33.8002i 0.241295 1.21728i
\(772\) 1.33795 0.266135i 0.0481539 0.00957840i
\(773\) −5.31114 + 12.8222i −0.191028 + 0.461184i −0.990154 0.139980i \(-0.955296\pi\)
0.799126 + 0.601164i \(0.205296\pi\)
\(774\) −46.1390 + 19.1830i −1.65843 + 0.689520i
\(775\) 2.42928 + 12.2128i 0.0872624 + 0.438698i
\(776\) 8.08023 + 5.39903i 0.290063 + 0.193814i
\(777\) −1.74150 8.72489i −0.0624758 0.313004i
\(778\) 15.6099 + 15.6099i 0.559643 + 0.559643i
\(779\) −2.21083 + 1.47723i −0.0792111 + 0.0529272i
\(780\) 1.94031 + 1.93774i 0.0694742 + 0.0693822i
\(781\) 3.58322i 0.128218i
\(782\) 0 0
\(783\) −38.3954 15.8146i −1.37214 0.565168i
\(784\) −3.79328 9.15778i −0.135474 0.327064i
\(785\) 4.18421 + 6.26211i 0.149341 + 0.223504i
\(786\) 3.39584 8.21367i 0.121126 0.292972i
\(787\) 23.4782 + 4.67010i 0.836907 + 0.166471i 0.594896 0.803802i \(-0.297193\pi\)
0.242011 + 0.970274i \(0.422193\pi\)
\(788\) 1.51714 2.27057i 0.0540460 0.0808856i
\(789\) 0.126287 + 0.188731i 0.00449593 + 0.00671899i
\(790\) 24.4410 + 10.1238i 0.869572 + 0.360189i
\(791\) −32.8490 13.6065i −1.16798 0.483792i
\(792\) 11.2701 + 7.50888i 0.400466 + 0.266817i
\(793\) −14.3574 + 21.4874i −0.509847 + 0.763040i
\(794\) −53.7144 10.6845i −1.90625 0.379178i
\(795\) −31.1048 12.8599i −1.10317 0.456094i
\(796\) 1.57263 + 2.35361i 0.0557403 + 0.0834213i
\(797\) −17.9210 43.2651i −0.634795 1.53253i −0.833529 0.552476i \(-0.813683\pi\)
0.198734 0.980053i \(-0.436317\pi\)
\(798\) −4.33492 + 1.79895i −0.153455 + 0.0636820i
\(799\) 0 0
\(800\) 2.85893i 0.101078i
\(801\) 5.53529 13.4136i 0.195580 0.473945i
\(802\) −4.27557 + 2.85685i −0.150976 + 0.100879i
\(803\) −14.6575 14.6575i −0.517252 0.517252i
\(804\) 1.43450 0.286327i 0.0505909 0.0100980i
\(805\) −4.19478 2.80287i −0.147847 0.0987880i
\(806\) −3.62442 18.2212i −0.127665 0.641814i
\(807\) 0.00681816 + 10.2980i 0.000240011 + 0.362507i
\(808\) 3.92024 9.46429i 0.137913 0.332952i
\(809\) −11.4907 + 2.28565i −0.403993 + 0.0803592i −0.392904 0.919579i \(-0.628530\pi\)
−0.0110886 + 0.999939i \(0.503530\pi\)
\(810\) −33.2853 22.1132i −1.16953 0.776980i
\(811\) −3.67314 + 18.4661i −0.128982 + 0.648434i 0.861157 + 0.508340i \(0.169741\pi\)
−0.990138 + 0.140094i \(0.955259\pi\)
\(812\) 1.43060 1.43060i 0.0502042 0.0502042i
\(813\) −9.90514 6.60892i −0.347389 0.231785i
\(814\) 5.27605 2.18541i 0.184926 0.0765987i
\(815\) −3.38972 −0.118737
\(816\) 0 0
\(817\) −9.88307 −0.345765
\(818\) 16.4118 6.79797i 0.573824 0.237686i
\(819\) 5.54238 28.0575i 0.193666 0.980410i
\(820\) 0.779963 0.779963i 0.0272375 0.0272375i
\(821\) 5.91006 29.7119i 0.206263 1.03695i −0.729408 0.684079i \(-0.760205\pi\)
0.935671 0.352874i \(-0.114795\pi\)
\(822\) 36.2144 + 7.17857i 1.26312 + 0.250381i
\(823\) −22.5083 + 4.47717i −0.784589 + 0.156064i −0.571099 0.820881i \(-0.693483\pi\)
−0.213489 + 0.976945i \(0.568483\pi\)
\(824\) −9.78523 + 23.6236i −0.340884 + 0.822968i
\(825\) −12.3041 + 0.00814639i −0.428375 + 0.000283621i
\(826\) −3.73016 18.7528i −0.129789 0.652493i
\(827\) −14.5585 9.72768i −0.506249 0.338265i 0.276076 0.961136i \(-0.410966\pi\)
−0.782324 + 0.622871i \(0.785966\pi\)
\(828\) 0.224258 0.150275i 0.00779351 0.00522240i
\(829\) −31.1358 31.1358i −1.08139 1.08139i −0.996380 0.0850121i \(-0.972907\pi\)
−0.0850121 0.996380i \(-0.527093\pi\)
\(830\) 47.9462 32.0366i 1.66424 1.11201i
\(831\) 10.1555 10.1689i 0.352289 0.352756i
\(832\) 33.0493i 1.14578i
\(833\) 0 0
\(834\) −4.87328 11.7432i −0.168748 0.406632i
\(835\) 23.1910 + 55.9881i 0.802559 + 1.93755i
\(836\) −0.0927852 0.138863i −0.00320904 0.00480267i
\(837\) 5.77119 + 13.8550i 0.199481 + 0.478898i
\(838\) −44.8026 8.91178i −1.54768 0.307852i
\(839\) 10.9879 16.4446i 0.379346 0.567731i −0.591840 0.806056i \(-0.701598\pi\)
0.971186 + 0.238325i \(0.0765982\pi\)
\(840\) −25.9524 + 17.3657i −0.895444 + 0.599174i
\(841\) 32.2093 + 13.3415i 1.11067 + 0.460053i
\(842\) 20.3896 + 8.44564i 0.702671 + 0.291056i
\(843\) −19.0730 + 12.7624i −0.656908 + 0.439561i
\(844\) −1.01799 + 1.52353i −0.0350407 + 0.0524422i
\(845\) −19.5656 3.89185i −0.673078 0.133884i
\(846\) 13.6582 0.0180859i 0.469580 0.000621805i
\(847\) −9.92694 14.8567i −0.341094 0.510483i
\(848\) −10.2870 24.8350i −0.353257 0.852837i
\(849\) −9.31634 22.4496i −0.319736 0.770468i
\(850\) 0 0
\(851\) 1.82575i 0.0625858i
\(852\) −0.312406 + 0.312820i −0.0107029 + 0.0107170i
\(853\) 5.13456 3.43080i 0.175804 0.117469i −0.464555 0.885544i \(-0.653786\pi\)
0.640359 + 0.768076i \(0.278786\pi\)
\(854\) 12.9745 + 12.9745i 0.443977 + 0.443977i
\(855\) −4.39985 6.56600i −0.150472 0.224553i
\(856\) 4.30489 + 2.87643i 0.147138 + 0.0983145i
\(857\) 5.07296 + 25.5035i 0.173289 + 0.871184i 0.965393 + 0.260798i \(0.0839856\pi\)
−0.792104 + 0.610386i \(0.791014\pi\)
\(858\) 18.3574 0.0121542i 0.626712 0.000414937i
\(859\) −1.25664 + 3.03380i −0.0428761 + 0.103512i −0.943867 0.330326i \(-0.892841\pi\)
0.900991 + 0.433838i \(0.142841\pi\)
\(860\) 4.02111 0.799849i 0.137119 0.0272746i
\(861\) −11.2845 2.23687i −0.384576 0.0762322i
\(862\) 3.25147 16.3462i 0.110745 0.556755i
\(863\) −10.3922 + 10.3922i −0.353754 + 0.353754i −0.861504 0.507750i \(-0.830477\pi\)
0.507750 + 0.861504i \(0.330477\pi\)
\(864\) −0.678985 3.37840i −0.0230995 0.114936i
\(865\) 32.8040 13.5878i 1.11537 0.462000i
\(866\) −38.9856 −1.32479
\(867\) 0 0
\(868\) −0.731265 −0.0248208
\(869\) 9.07062 3.75718i 0.307700 0.127453i
\(870\) 51.1236 + 34.1107i 1.73325 + 1.15646i
\(871\) −22.4875 + 22.4875i −0.761958 + 0.761958i
\(872\) 2.24626 11.2927i 0.0760679 0.382419i
\(873\) −10.4351 + 2.09003i −0.353174 + 0.0707370i
\(874\) 0.944618 0.187896i 0.0319522 0.00635569i
\(875\) −1.73532 + 4.18943i −0.0586644 + 0.141629i
\(876\) 0.00169332 + 2.55755i 5.72119e−5 + 0.0864117i
\(877\) −2.60180 13.0801i −0.0878565 0.441684i −0.999527 0.0307618i \(-0.990207\pi\)
0.911670 0.410923i \(-0.134793\pi\)
\(878\) −10.3160 6.89290i −0.348146 0.232624i
\(879\) −44.8523 + 8.95256i −1.51283 + 0.301962i
\(880\) −15.0076 15.0076i −0.505907 0.505907i
\(881\) −16.3958 + 10.9553i −0.552389 + 0.369094i −0.800218 0.599709i \(-0.795283\pi\)
0.247829 + 0.968804i \(0.420283\pi\)
\(882\) 9.47622 + 3.91048i 0.319081 + 0.131673i
\(883\) 44.5932i 1.50068i −0.661051 0.750341i \(-0.729889\pi\)
0.661051 0.750341i \(-0.270111\pi\)
\(884\) 0 0
\(885\) 29.7401 12.3418i 0.999702 0.414866i
\(886\) −10.5118 25.3778i −0.353152 0.852584i
\(887\) 9.28722 + 13.8993i 0.311834 + 0.466693i 0.953972 0.299896i \(-0.0969521\pi\)
−0.642137 + 0.766590i \(0.721952\pi\)
\(888\) 10.4432 + 4.31764i 0.350452 + 0.144890i
\(889\) 26.0450 + 5.18067i 0.873522 + 0.173754i
\(890\) −11.9318 + 17.8572i −0.399955 + 0.598575i
\(891\) −14.5379 + 2.93181i −0.487038 + 0.0982194i
\(892\) 0.263753 + 0.109250i 0.00883111 + 0.00365797i
\(893\) 2.49580 + 1.03380i 0.0835189 + 0.0345947i
\(894\) −8.81646 13.1759i −0.294866 0.440667i
\(895\) 1.43532 2.14810i 0.0479773 0.0718032i
\(896\) −25.8203 5.13597i −0.862594 0.171581i
\(897\) −2.24235 + 5.42367i −0.0748699 + 0.181091i
\(898\) 22.0414 + 32.9873i 0.735532 + 1.10080i
\(899\) −8.83348 21.3259i −0.294613 0.711259i
\(900\) 1.07488 + 1.07204i 0.0358293 + 0.0357345i
\(901\) 0 0
\(902\) 7.38418i 0.245866i
\(903\) −30.2557 30.2157i −1.00685 1.00552i
\(904\) 37.5501 25.0902i 1.24890 0.834487i
\(905\) 3.09374 + 3.09374i 0.102839 + 0.102839i
\(906\) 7.50509 + 37.6005i 0.249340 + 1.24919i
\(907\) −7.66078 5.11877i −0.254372 0.169966i 0.421846 0.906668i \(-0.361382\pi\)
−0.676218 + 0.736702i \(0.736382\pi\)
\(908\) −0.0321614 0.161686i −0.00106731 0.00536574i
\(909\) 4.30683 + 10.3588i 0.142848 + 0.343579i
\(910\) −16.1986 + 39.1068i −0.536978 + 1.29638i
\(911\) 1.96677 0.391215i 0.0651621 0.0129615i −0.162402 0.986725i \(-0.551924\pi\)
0.227564 + 0.973763i \(0.426924\pi\)
\(912\) 1.22739 6.19194i 0.0406430 0.205036i
\(913\) 4.17505 20.9894i 0.138174 0.694648i
\(914\) 10.8464 10.8464i 0.358768 0.358768i
\(915\) −17.1501 + 25.7038i −0.566966 + 0.849742i
\(916\) −1.17955 + 0.488587i −0.0389735 + 0.0161434i
\(917\) 7.60583 0.251167
\(918\) 0 0
\(919\) 4.18774 0.138141 0.0690703 0.997612i \(-0.477997\pi\)
0.0690703 + 0.997612i \(0.477997\pi\)
\(920\) 5.92020 2.45223i 0.195183 0.0808475i
\(921\) −23.4865 + 35.2005i −0.773907 + 1.15990i
\(922\) −10.1727 + 10.1727i −0.335021 + 0.335021i
\(923\) 1.87512 9.42688i 0.0617204 0.310290i
\(924\) 0.140498 0.708785i 0.00462206 0.0233173i
\(925\) −10.0700 + 2.00304i −0.331098 + 0.0658595i
\(926\) −12.7673 + 30.8229i −0.419558 + 1.01290i
\(927\) −10.7502 25.8564i −0.353083 0.849234i
\(928\) 1.03392 + 5.19789i 0.0339402 + 0.170629i
\(929\) −20.3321 13.5854i −0.667073 0.445724i 0.175375 0.984502i \(-0.443886\pi\)
−0.842448 + 0.538778i \(0.818886\pi\)
\(930\) −4.34814 21.7842i −0.142581 0.714332i
\(931\) 1.43373 + 1.43373i 0.0469885 + 0.0469885i
\(932\) −1.39922 + 0.934927i −0.0458329 + 0.0306245i
\(933\) −28.5997 28.5619i −0.936312 0.935073i
\(934\) 37.6099i 1.23063i
\(935\) 0 0
\(936\) 25.7205 + 25.6524i 0.840699 + 0.838476i
\(937\) −19.3663 46.7545i −0.632671 1.52740i −0.836252 0.548345i \(-0.815258\pi\)
0.203582 0.979058i \(-0.434742\pi\)
\(938\) 12.5447 + 18.7745i 0.409600 + 0.613010i
\(939\) −1.06851 + 2.58445i −0.0348695 + 0.0843403i
\(940\) −1.09913 0.218631i −0.0358497 0.00713095i
\(941\) −2.00221 + 2.99651i −0.0652701 + 0.0976836i −0.862669 0.505769i \(-0.831209\pi\)
0.797399 + 0.603453i \(0.206209\pi\)
\(942\) −3.45944 5.17001i −0.112715 0.168448i
\(943\) 2.18105 + 0.903419i 0.0710246 + 0.0294194i
\(944\) 23.7584 + 9.84105i 0.773270 + 0.320299i
\(945\) 6.60480 33.5527i 0.214854 1.09147i
\(946\) 15.2484 22.8209i 0.495769 0.741970i
\(947\) −26.2908 5.22957i −0.854336 0.169938i −0.251554 0.967843i \(-0.580941\pi\)
−0.602783 + 0.797905i \(0.705941\pi\)
\(948\) −1.11945 0.462824i −0.0363581 0.0150318i
\(949\) −30.8912 46.2320i −1.00277 1.50075i
\(950\) 2.07269 + 5.00393i 0.0672471 + 0.162349i
\(951\) 39.0103 16.1889i 1.26500 0.524960i
\(952\) 0 0
\(953\) 24.2594i 0.785838i 0.919573 + 0.392919i \(0.128535\pi\)
−0.919573 + 0.392919i \(0.871465\pi\)
\(954\) 25.6985 + 10.6048i 0.832021 + 0.343344i
\(955\) −1.82937 + 1.22234i −0.0591969 + 0.0395541i
\(956\) −1.96792 1.96792i −0.0636470 0.0636470i
\(957\) 22.3675 4.46457i 0.723039 0.144319i
\(958\) −10.4833 7.00474i −0.338701 0.226313i
\(959\) 6.16353 + 30.9862i 0.199031 + 1.00060i
\(960\) −0.0261636 39.5170i −0.000844428 1.27541i
\(961\) 8.67037 20.9321i 0.279689 0.675230i
\(962\) 15.0241 2.98848i 0.484397 0.0963525i
\(963\) −5.55948 + 1.11350i −0.179152 + 0.0358822i
\(964\) −0.0644499 + 0.324012i −0.00207579 + 0.0104357i
\(965\) −25.0752 + 25.0752i −0.807200 + 0.807200i
\(966\) 3.46629 + 2.31278i 0.111526 + 0.0744125i
\(967\) −12.2636 + 5.07976i −0.394372 + 0.163354i −0.571051 0.820914i \(-0.693464\pi\)
0.176680 + 0.984268i \(0.443464\pi\)
\(968\) 22.6952 0.729452
\(969\) 0 0
\(970\) 15.7512 0.505739
\(971\) −14.2905 + 5.91933i −0.458605 + 0.189960i −0.600012 0.799991i \(-0.704837\pi\)
0.141407 + 0.989952i \(0.454837\pi\)
\(972\) 1.52479 + 1.01155i 0.0489077 + 0.0324454i
\(973\) 7.69338 7.69338i 0.246638 0.246638i
\(974\) 11.0194 55.3982i 0.353084 1.77507i
\(975\) −32.3745 6.41741i −1.03681 0.205522i
\(976\) −24.2041 + 4.81450i −0.774755 + 0.154108i
\(977\) 7.72995 18.6618i 0.247303 0.597042i −0.750670 0.660677i \(-0.770269\pi\)
0.997973 + 0.0636347i \(0.0202693\pi\)
\(978\) 2.79980 0.00185371i 0.0895277 5.92750e-5i
\(979\) 1.55497 + 7.81735i 0.0496970 + 0.249844i
\(980\) −0.699373 0.467306i −0.0223406 0.0149275i
\(981\) 7.01910 + 10.4748i 0.224103 + 0.334434i
\(982\) −13.0385 13.0385i −0.416075 0.416075i
\(983\) −21.6898 + 14.4927i −0.691797 + 0.462244i −0.851112 0.524984i \(-0.824071\pi\)
0.159315 + 0.987228i \(0.449071\pi\)
\(984\) 10.3254 10.3391i 0.329162 0.329598i
\(985\) 70.9874i 2.26185i
\(986\) 0 0
\(987\) 4.47994 + 10.7953i 0.142598 + 0.343618i
\(988\) −0.171435 0.413882i −0.00545409 0.0131673i
\(989\) 4.87497 + 7.29590i 0.155015 + 0.231996i
\(990\) 21.9499 0.0290655i 0.697615 0.000923762i
\(991\) −35.4161 7.04470i −1.12503 0.223782i −0.402701 0.915332i \(-0.631928\pi\)
−0.722329 + 0.691549i \(0.756928\pi\)
\(992\) 1.06423 1.59273i 0.0337892 0.0505692i
\(993\) 43.8545 29.3447i 1.39168 0.931225i
\(994\) −6.30488 2.61157i −0.199979 0.0828339i
\(995\) −67.9824 28.1592i −2.15519 0.892707i
\(996\) −2.19447 + 1.46840i −0.0695344 + 0.0465280i
\(997\) −8.20777 + 12.2838i −0.259943 + 0.389032i −0.938368 0.345638i \(-0.887663\pi\)
0.678425 + 0.734669i \(0.262663\pi\)
\(998\) 52.9708 + 10.5365i 1.67676 + 0.333529i
\(999\) −11.4240 + 4.75858i −0.361439 + 0.150555i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.i.h.131.4 32
3.2 odd 2 inner 867.2.i.h.131.1 32
17.2 even 8 867.2.i.b.65.4 32
17.3 odd 16 867.2.i.f.329.4 32
17.4 even 4 867.2.i.c.158.1 32
17.5 odd 16 867.2.i.b.827.1 32
17.6 odd 16 867.2.i.d.653.4 32
17.7 odd 16 51.2.i.a.44.1 yes 32
17.8 even 8 867.2.i.g.224.1 32
17.9 even 8 867.2.i.f.224.1 32
17.10 odd 16 inner 867.2.i.h.503.1 32
17.11 odd 16 867.2.i.c.653.4 32
17.12 odd 16 867.2.i.i.827.1 32
17.13 even 4 867.2.i.d.158.1 32
17.14 odd 16 867.2.i.g.329.4 32
17.15 even 8 867.2.i.i.65.4 32
17.16 even 2 51.2.i.a.29.4 yes 32
51.2 odd 8 867.2.i.b.65.1 32
51.5 even 16 867.2.i.b.827.4 32
51.8 odd 8 867.2.i.g.224.4 32
51.11 even 16 867.2.i.c.653.1 32
51.14 even 16 867.2.i.g.329.1 32
51.20 even 16 867.2.i.f.329.1 32
51.23 even 16 867.2.i.d.653.1 32
51.26 odd 8 867.2.i.f.224.4 32
51.29 even 16 867.2.i.i.827.4 32
51.32 odd 8 867.2.i.i.65.1 32
51.38 odd 4 867.2.i.c.158.4 32
51.41 even 16 51.2.i.a.44.4 yes 32
51.44 even 16 inner 867.2.i.h.503.4 32
51.47 odd 4 867.2.i.d.158.4 32
51.50 odd 2 51.2.i.a.29.1 32
68.7 even 16 816.2.cj.c.401.4 32
68.67 odd 2 816.2.cj.c.641.3 32
204.143 odd 16 816.2.cj.c.401.3 32
204.203 even 2 816.2.cj.c.641.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.i.a.29.1 32 51.50 odd 2
51.2.i.a.29.4 yes 32 17.16 even 2
51.2.i.a.44.1 yes 32 17.7 odd 16
51.2.i.a.44.4 yes 32 51.41 even 16
816.2.cj.c.401.3 32 204.143 odd 16
816.2.cj.c.401.4 32 68.7 even 16
816.2.cj.c.641.3 32 68.67 odd 2
816.2.cj.c.641.4 32 204.203 even 2
867.2.i.b.65.1 32 51.2 odd 8
867.2.i.b.65.4 32 17.2 even 8
867.2.i.b.827.1 32 17.5 odd 16
867.2.i.b.827.4 32 51.5 even 16
867.2.i.c.158.1 32 17.4 even 4
867.2.i.c.158.4 32 51.38 odd 4
867.2.i.c.653.1 32 51.11 even 16
867.2.i.c.653.4 32 17.11 odd 16
867.2.i.d.158.1 32 17.13 even 4
867.2.i.d.158.4 32 51.47 odd 4
867.2.i.d.653.1 32 51.23 even 16
867.2.i.d.653.4 32 17.6 odd 16
867.2.i.f.224.1 32 17.9 even 8
867.2.i.f.224.4 32 51.26 odd 8
867.2.i.f.329.1 32 51.20 even 16
867.2.i.f.329.4 32 17.3 odd 16
867.2.i.g.224.1 32 17.8 even 8
867.2.i.g.224.4 32 51.8 odd 8
867.2.i.g.329.1 32 51.14 even 16
867.2.i.g.329.4 32 17.14 odd 16
867.2.i.h.131.1 32 3.2 odd 2 inner
867.2.i.h.131.4 32 1.1 even 1 trivial
867.2.i.h.503.1 32 17.10 odd 16 inner
867.2.i.h.503.4 32 51.44 even 16 inner
867.2.i.i.65.1 32 51.32 odd 8
867.2.i.i.65.4 32 17.15 even 8
867.2.i.i.827.1 32 17.12 odd 16
867.2.i.i.827.4 32 51.29 even 16