Properties

Label 867.2.i.c.653.1
Level $867$
Weight $2$
Character 867.653
Analytic conductor $6.923$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(65,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.65"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.i (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,-16,0,0,0,0,8,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 653.1
Character \(\chi\) \(=\) 867.653
Dual form 867.2.i.c.158.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34436 - 0.556851i) q^{2} +(-1.44078 + 0.961322i) q^{3} +(0.0830021 + 0.0830021i) q^{4} +(2.99276 - 0.595296i) q^{5} +(2.47224 - 0.490059i) q^{6} +(0.420765 - 2.11533i) q^{7} +(1.04834 + 2.53091i) q^{8} +(1.15172 - 2.77012i) q^{9} +(-4.35483 - 0.866229i) q^{10} +(-0.915491 - 1.37013i) q^{11} +(-0.199380 - 0.0397964i) q^{12} +(3.12551 - 3.12551i) q^{13} +(-1.74358 + 2.60946i) q^{14} +(-3.73965 + 3.73470i) q^{15} -4.22099i q^{16} +(-3.09087 + 3.08269i) q^{18} +(0.330416 - 0.797694i) q^{19} +(0.297816 + 0.198994i) q^{20} +(1.42728 + 3.45222i) q^{21} +(0.467790 + 2.35174i) q^{22} +(-0.637394 + 0.425893i) q^{23} +(-3.94345 - 2.63871i) q^{24} +(3.98282 - 1.64974i) q^{25} +(-5.94226 + 2.46136i) q^{26} +(1.00359 + 5.09831i) q^{27} +(0.210501 - 0.140652i) q^{28} +(1.55905 + 7.83789i) q^{29} +(7.10709 - 2.93834i) q^{30} +(-2.40167 - 1.60475i) q^{31} +(-0.253786 + 0.612694i) q^{32} +(2.63616 + 1.09398i) q^{33} -6.58114i q^{35} +(0.325520 - 0.134330i) q^{36} +(-1.32318 + 1.98027i) q^{37} +(-0.888394 + 0.888394i) q^{38} +(-1.49857 + 7.50782i) q^{39} +(4.64406 + 6.95033i) q^{40} +(3.02038 + 0.600791i) q^{41} +(0.00359897 - 5.43581i) q^{42} +(-4.38037 - 10.5751i) q^{43} +(0.0377359 - 0.189711i) q^{44} +(1.79778 - 8.97590i) q^{45} +(1.09405 - 0.217619i) q^{46} +(-2.21238 - 2.21238i) q^{47} +(4.05773 + 6.08153i) q^{48} +(2.16958 + 0.898671i) q^{49} -6.27299 q^{50} +0.518848 q^{52} +(5.88369 + 2.43710i) q^{53} +(1.48981 - 7.41281i) q^{54} +(-3.55548 - 3.55548i) q^{55} +(5.79482 - 1.15266i) q^{56} +(0.290783 + 1.46694i) q^{57} +(2.26861 - 11.4051i) q^{58} +(-2.33146 - 5.62864i) q^{59} +(-0.620386 - 0.000410749i) q^{60} +(-5.73423 - 1.14061i) q^{61} +(2.33510 + 3.49473i) q^{62} +(-5.37510 - 3.60183i) q^{63} +(-5.28702 + 5.28702i) q^{64} +(7.49329 - 11.2145i) q^{65} +(-2.93476 - 2.93865i) q^{66} -7.19481i q^{67} +(0.508927 - 1.22636i) q^{69} +(-3.66472 + 8.84742i) q^{70} +(-1.80802 - 1.20808i) q^{71} +(8.21831 + 0.0108825i) q^{72} +(-2.45412 - 12.3377i) q^{73} +(2.88154 - 1.92538i) q^{74} +(-4.15245 + 6.20569i) q^{75} +(0.0936354 - 0.0387851i) q^{76} +(-3.28348 + 1.36006i) q^{77} +(6.19535 - 9.25872i) q^{78} +(4.95397 - 3.31013i) q^{79} +(-2.51274 - 12.6324i) q^{80} +(-6.34708 - 6.38079i) q^{81} +(-3.72592 - 2.48958i) q^{82} +(4.96993 - 11.9985i) q^{83} +(-0.168074 + 0.405009i) q^{84} +16.6560i q^{86} +(-9.78099 - 9.79395i) q^{87} +(2.50793 - 3.75339i) q^{88} +(3.42023 - 3.42023i) q^{89} +(-7.41510 + 11.0657i) q^{90} +(-5.29638 - 7.92660i) q^{91} +(-0.0882551 - 0.0175550i) q^{92} +(5.00297 + 0.00331239i) q^{93} +(1.74226 + 4.20619i) q^{94} +(0.513989 - 2.58400i) q^{95} +(-0.223345 - 1.12673i) q^{96} +(-3.47928 + 0.692072i) q^{97} +(-2.41627 - 2.41627i) q^{98} +(-4.84981 + 0.958012i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{4} + 8 q^{9} - 32 q^{10} - 24 q^{12} - 16 q^{13} - 16 q^{15} + 16 q^{18} + 16 q^{19} + 16 q^{21} + 48 q^{22} - 8 q^{24} - 16 q^{25} + 48 q^{27} + 64 q^{28} - 8 q^{30} - 16 q^{31} - 8 q^{36}+ \cdots - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34436 0.556851i −0.950605 0.393753i −0.147147 0.989115i \(-0.547009\pi\)
−0.803458 + 0.595361i \(0.797009\pi\)
\(3\) −1.44078 + 0.961322i −0.831837 + 0.555020i
\(4\) 0.0830021 + 0.0830021i 0.0415010 + 0.0415010i
\(5\) 2.99276 0.595296i 1.33840 0.266225i 0.526578 0.850127i \(-0.323475\pi\)
0.811824 + 0.583902i \(0.198475\pi\)
\(6\) 2.47224 0.490059i 1.00929 0.200066i
\(7\) 0.420765 2.11533i 0.159034 0.799519i −0.816101 0.577909i \(-0.803869\pi\)
0.975135 0.221610i \(-0.0711312\pi\)
\(8\) 1.04834 + 2.53091i 0.370644 + 0.894813i
\(9\) 1.15172 2.77012i 0.383906 0.923372i
\(10\) −4.35483 0.866229i −1.37712 0.273926i
\(11\) −0.915491 1.37013i −0.276031 0.413110i 0.667389 0.744709i \(-0.267412\pi\)
−0.943420 + 0.331599i \(0.892412\pi\)
\(12\) −0.199380 0.0397964i −0.0575560 0.0114882i
\(13\) 3.12551 3.12551i 0.866861 0.866861i −0.125262 0.992124i \(-0.539977\pi\)
0.992124 + 0.125262i \(0.0399772\pi\)
\(14\) −1.74358 + 2.60946i −0.465992 + 0.697407i
\(15\) −3.73965 + 3.73470i −0.965572 + 0.964295i
\(16\) 4.22099i 1.05525i
\(17\) 0 0
\(18\) −3.09087 + 3.08269i −0.728524 + 0.726597i
\(19\) 0.330416 0.797694i 0.0758025 0.183004i −0.881436 0.472304i \(-0.843423\pi\)
0.957238 + 0.289300i \(0.0934226\pi\)
\(20\) 0.297816 + 0.198994i 0.0665936 + 0.0444964i
\(21\) 1.42728 + 3.45222i 0.311458 + 0.753337i
\(22\) 0.467790 + 2.35174i 0.0997331 + 0.501392i
\(23\) −0.637394 + 0.425893i −0.132906 + 0.0888049i −0.620246 0.784407i \(-0.712967\pi\)
0.487340 + 0.873212i \(0.337967\pi\)
\(24\) −3.94345 2.63871i −0.804954 0.538624i
\(25\) 3.98282 1.64974i 0.796563 0.329947i
\(26\) −5.94226 + 2.46136i −1.16537 + 0.482713i
\(27\) 1.00359 + 5.09831i 0.193142 + 0.981171i
\(28\) 0.210501 0.140652i 0.0397810 0.0265808i
\(29\) 1.55905 + 7.83789i 0.289509 + 1.45546i 0.802287 + 0.596938i \(0.203616\pi\)
−0.512778 + 0.858521i \(0.671384\pi\)
\(30\) 7.10709 2.93834i 1.29757 0.536466i
\(31\) −2.40167 1.60475i −0.431353 0.288221i 0.320878 0.947121i \(-0.396022\pi\)
−0.752231 + 0.658900i \(0.771022\pi\)
\(32\) −0.253786 + 0.612694i −0.0448635 + 0.108310i
\(33\) 2.63616 + 1.09398i 0.458897 + 0.190437i
\(34\) 0 0
\(35\) 6.58114i 1.11242i
\(36\) 0.325520 0.134330i 0.0542534 0.0223884i
\(37\) −1.32318 + 1.98027i −0.217529 + 0.325555i −0.924145 0.382042i \(-0.875221\pi\)
0.706616 + 0.707597i \(0.250221\pi\)
\(38\) −0.888394 + 0.888394i −0.144117 + 0.144117i
\(39\) −1.49857 + 7.50782i −0.239963 + 1.20221i
\(40\) 4.64406 + 6.95033i 0.734291 + 1.09894i
\(41\) 3.02038 + 0.600791i 0.471704 + 0.0938278i 0.425218 0.905091i \(-0.360198\pi\)
0.0464865 + 0.998919i \(0.485198\pi\)
\(42\) 0.00359897 5.43581i 0.000555333 0.838764i
\(43\) −4.38037 10.5751i −0.668000 1.61269i −0.784952 0.619557i \(-0.787312\pi\)
0.116952 0.993138i \(-0.462688\pi\)
\(44\) 0.0377359 0.189711i 0.00568890 0.0286000i
\(45\) 1.79778 8.97590i 0.267997 1.33805i
\(46\) 1.09405 0.217619i 0.161308 0.0320862i
\(47\) −2.21238 2.21238i −0.322708 0.322708i 0.527097 0.849805i \(-0.323281\pi\)
−0.849805 + 0.527097i \(0.823281\pi\)
\(48\) 4.05773 + 6.08153i 0.585683 + 0.877793i
\(49\) 2.16958 + 0.898671i 0.309940 + 0.128382i
\(50\) −6.27299 −0.887135
\(51\) 0 0
\(52\) 0.518848 0.0719513
\(53\) 5.88369 + 2.43710i 0.808187 + 0.334762i 0.748230 0.663439i \(-0.230904\pi\)
0.0599567 + 0.998201i \(0.480904\pi\)
\(54\) 1.48981 7.41281i 0.202738 1.00876i
\(55\) −3.55548 3.55548i −0.479420 0.479420i
\(56\) 5.79482 1.15266i 0.774365 0.154031i
\(57\) 0.290783 + 1.46694i 0.0385152 + 0.194301i
\(58\) 2.26861 11.4051i 0.297884 1.49756i
\(59\) −2.33146 5.62864i −0.303530 0.732786i −0.999886 0.0150898i \(-0.995197\pi\)
0.696356 0.717696i \(-0.254803\pi\)
\(60\) −0.620386 0.000410749i −0.0800915 5.30274e-5i
\(61\) −5.73423 1.14061i −0.734193 0.146040i −0.186187 0.982514i \(-0.559613\pi\)
−0.548006 + 0.836474i \(0.684613\pi\)
\(62\) 2.33510 + 3.49473i 0.296558 + 0.443831i
\(63\) −5.37510 3.60183i −0.677199 0.453788i
\(64\) −5.28702 + 5.28702i −0.660877 + 0.660877i
\(65\) 7.49329 11.2145i 0.929429 1.39099i
\(66\) −2.93476 2.93865i −0.361244 0.361723i
\(67\) 7.19481i 0.878985i −0.898246 0.439493i \(-0.855158\pi\)
0.898246 0.439493i \(-0.144842\pi\)
\(68\) 0 0
\(69\) 0.508927 1.22636i 0.0612676 0.147637i
\(70\) −3.66472 + 8.84742i −0.438018 + 1.05747i
\(71\) −1.80802 1.20808i −0.214573 0.143373i 0.443639 0.896205i \(-0.353687\pi\)
−0.658212 + 0.752832i \(0.728687\pi\)
\(72\) 8.21831 + 0.0108825i 0.968537 + 0.00128251i
\(73\) −2.45412 12.3377i −0.287233 1.44402i −0.807426 0.589969i \(-0.799140\pi\)
0.520193 0.854049i \(-0.325860\pi\)
\(74\) 2.88154 1.92538i 0.334972 0.223821i
\(75\) −4.15245 + 6.20569i −0.479484 + 0.716571i
\(76\) 0.0936354 0.0387851i 0.0107407 0.00444895i
\(77\) −3.28348 + 1.36006i −0.374187 + 0.154994i
\(78\) 6.19535 9.25872i 0.701485 1.04834i
\(79\) 4.95397 3.31013i 0.557365 0.372419i −0.244753 0.969586i \(-0.578707\pi\)
0.802117 + 0.597166i \(0.203707\pi\)
\(80\) −2.51274 12.6324i −0.280933 1.41234i
\(81\) −6.34708 6.38079i −0.705232 0.708977i
\(82\) −3.72592 2.48958i −0.411459 0.274928i
\(83\) 4.96993 11.9985i 0.545521 1.31700i −0.375258 0.926920i \(-0.622446\pi\)
0.920779 0.390084i \(-0.127554\pi\)
\(84\) −0.168074 + 0.405009i −0.0183384 + 0.0441901i
\(85\) 0 0
\(86\) 16.6560i 1.79606i
\(87\) −9.78099 9.79395i −1.04863 1.05002i
\(88\) 2.50793 3.75339i 0.267347 0.400112i
\(89\) 3.42023 3.42023i 0.362544 0.362544i −0.502205 0.864749i \(-0.667478\pi\)
0.864749 + 0.502205i \(0.167478\pi\)
\(90\) −7.41510 + 11.0657i −0.781620 + 1.16643i
\(91\) −5.29638 7.92660i −0.555212 0.830933i
\(92\) −0.0882551 0.0175550i −0.00920123 0.00183024i
\(93\) 5.00297 + 0.00331239i 0.518783 + 0.000343479i
\(94\) 1.74226 + 4.20619i 0.179701 + 0.433836i
\(95\) 0.513989 2.58400i 0.0527342 0.265113i
\(96\) −0.223345 1.12673i −0.0227951 0.114996i
\(97\) −3.47928 + 0.692072i −0.353267 + 0.0702692i −0.368534 0.929614i \(-0.620140\pi\)
0.0152668 + 0.999883i \(0.495140\pi\)
\(98\) −2.41627 2.41627i −0.244080 0.244080i
\(99\) −4.84981 + 0.958012i −0.487424 + 0.0962839i
\(100\) 0.467514 + 0.193650i 0.0467514 + 0.0193650i
\(101\) −3.73948 −0.372092 −0.186046 0.982541i \(-0.559567\pi\)
−0.186046 + 0.982541i \(0.559567\pi\)
\(102\) 0 0
\(103\) 9.33404 0.919710 0.459855 0.887994i \(-0.347901\pi\)
0.459855 + 0.887994i \(0.347901\pi\)
\(104\) 11.1870 + 4.63380i 1.09698 + 0.454382i
\(105\) 6.32660 + 9.48201i 0.617413 + 0.925350i
\(106\) −6.55268 6.55268i −0.636453 0.636453i
\(107\) −1.85365 + 0.368714i −0.179199 + 0.0356449i −0.283874 0.958862i \(-0.591620\pi\)
0.104675 + 0.994506i \(0.466620\pi\)
\(108\) −0.339870 + 0.506471i −0.0327040 + 0.0487352i
\(109\) −0.819969 + 4.12226i −0.0785388 + 0.394841i 0.921441 + 0.388518i \(0.127013\pi\)
−0.999980 + 0.00632347i \(0.997987\pi\)
\(110\) 2.79996 + 6.75970i 0.266966 + 0.644513i
\(111\) 0.00273120 4.12515i 0.000259234 0.391542i
\(112\) −8.92878 1.77604i −0.843690 0.167820i
\(113\) 9.15888 + 13.7072i 0.861595 + 1.28947i 0.955831 + 0.293917i \(0.0949591\pi\)
−0.0942363 + 0.995550i \(0.530041\pi\)
\(114\) 0.425951 2.13402i 0.0398940 0.199869i
\(115\) −1.65403 + 1.65403i −0.154239 + 0.154239i
\(116\) −0.521156 + 0.779965i −0.0483881 + 0.0724180i
\(117\) −5.05832 12.2577i −0.467642 1.13323i
\(118\) 8.86518i 0.816106i
\(119\) 0 0
\(120\) −13.3726 5.54949i −1.22075 0.506597i
\(121\) 3.17039 7.65399i 0.288217 0.695817i
\(122\) 7.07371 + 4.72650i 0.640424 + 0.427917i
\(123\) −4.92927 + 2.03795i −0.444457 + 0.183756i
\(124\) −0.0661465 0.332541i −0.00594013 0.0298630i
\(125\) −1.74816 + 1.16808i −0.156360 + 0.104477i
\(126\) 5.22038 + 7.83529i 0.465068 + 0.698023i
\(127\) −11.3753 + 4.71179i −1.00939 + 0.418104i −0.825233 0.564792i \(-0.808956\pi\)
−0.184159 + 0.982896i \(0.558956\pi\)
\(128\) 11.2771 4.67113i 0.996766 0.412874i
\(129\) 16.4773 + 11.0256i 1.45074 + 0.970746i
\(130\) −16.3185 + 10.9037i −1.43123 + 0.956315i
\(131\) 0.687984 + 3.45873i 0.0601094 + 0.302191i 0.999132 0.0416661i \(-0.0132666\pi\)
−0.939022 + 0.343857i \(0.888267\pi\)
\(132\) 0.128004 + 0.309609i 0.0111413 + 0.0269480i
\(133\) −1.54836 1.03458i −0.134260 0.0897094i
\(134\) −4.00644 + 9.67240i −0.346103 + 0.835568i
\(135\) 6.03852 + 14.6606i 0.519713 + 1.26178i
\(136\) 0 0
\(137\) 14.6484i 1.25150i −0.780025 0.625748i \(-0.784794\pi\)
0.780025 0.625748i \(-0.215206\pi\)
\(138\) −1.36708 + 1.36527i −0.116374 + 0.116220i
\(139\) −2.80264 + 4.19445i −0.237717 + 0.355768i −0.931077 0.364823i \(-0.881130\pi\)
0.693360 + 0.720591i \(0.256130\pi\)
\(140\) 0.546249 0.546249i 0.0461664 0.0461664i
\(141\) 5.31437 + 1.06075i 0.447550 + 0.0893314i
\(142\) 1.75791 + 2.63090i 0.147520 + 0.220780i
\(143\) −7.14374 1.42098i −0.597389 0.118828i
\(144\) −11.6926 4.86139i −0.974385 0.405116i
\(145\) 9.33173 + 22.5288i 0.774958 + 1.87091i
\(146\) −3.57105 + 17.9529i −0.295542 + 1.48579i
\(147\) −3.98981 + 0.790878i −0.329074 + 0.0652305i
\(148\) −0.274193 + 0.0545404i −0.0225385 + 0.00448319i
\(149\) 4.44785 + 4.44785i 0.364382 + 0.364382i 0.865423 0.501041i \(-0.167050\pi\)
−0.501041 + 0.865423i \(0.667050\pi\)
\(150\) 9.03803 6.03037i 0.737952 0.492377i
\(151\) 14.0551 + 5.82179i 1.14378 + 0.473771i 0.872445 0.488713i \(-0.162533\pi\)
0.271339 + 0.962484i \(0.412533\pi\)
\(152\) 2.36528 0.191850
\(153\) 0 0
\(154\) 5.17153 0.416734
\(155\) −8.14291 3.37291i −0.654055 0.270918i
\(156\) −0.747548 + 0.498780i −0.0598518 + 0.0399344i
\(157\) 1.74527 + 1.74527i 0.139287 + 0.139287i 0.773312 0.634025i \(-0.218598\pi\)
−0.634025 + 0.773312i \(0.718598\pi\)
\(158\) −8.50316 + 1.69138i −0.676475 + 0.134559i
\(159\) −10.8200 + 2.14478i −0.858080 + 0.170092i
\(160\) −0.394786 + 1.98472i −0.0312105 + 0.156906i
\(161\) 0.632711 + 1.52750i 0.0498646 + 0.120384i
\(162\) 4.97960 + 12.1125i 0.391235 + 0.951644i
\(163\) −1.08953 0.216722i −0.0853388 0.0169749i 0.152236 0.988344i \(-0.451353\pi\)
−0.237575 + 0.971369i \(0.576353\pi\)
\(164\) 0.200831 + 0.300565i 0.0156823 + 0.0234702i
\(165\) 8.54063 + 1.70472i 0.664887 + 0.132712i
\(166\) −13.3627 + 13.3627i −1.03715 + 1.03715i
\(167\) −11.0337 + 16.5131i −0.853815 + 1.27782i 0.105195 + 0.994452i \(0.466453\pi\)
−0.959010 + 0.283373i \(0.908547\pi\)
\(168\) −7.24100 + 7.23142i −0.558655 + 0.557916i
\(169\) 6.53766i 0.502897i
\(170\) 0 0
\(171\) −1.82916 1.83401i −0.139879 0.140250i
\(172\) 0.514179 1.24134i 0.0392058 0.0946511i
\(173\) −9.67520 6.46476i −0.735591 0.491507i 0.130465 0.991453i \(-0.458353\pi\)
−0.866056 + 0.499946i \(0.833353\pi\)
\(174\) 7.69538 + 18.6131i 0.583385 + 1.41106i
\(175\) −1.81391 9.11912i −0.137118 0.689341i
\(176\) −5.78330 + 3.86428i −0.435933 + 0.291281i
\(177\) 8.77006 + 5.86837i 0.659198 + 0.441094i
\(178\) −6.50257 + 2.69345i −0.487389 + 0.201883i
\(179\) 0.782216 0.324004i 0.0584656 0.0242172i −0.353259 0.935526i \(-0.614927\pi\)
0.411725 + 0.911308i \(0.364927\pi\)
\(180\) 0.894237 0.595799i 0.0666525 0.0444082i
\(181\) 1.19220 0.796600i 0.0886152 0.0592108i −0.510473 0.859894i \(-0.670530\pi\)
0.599088 + 0.800683i \(0.295530\pi\)
\(182\) 2.70630 + 13.6055i 0.200604 + 1.00851i
\(183\) 9.35828 3.86907i 0.691784 0.286010i
\(184\) −1.74610 1.16671i −0.128724 0.0860109i
\(185\) −2.78110 + 6.71416i −0.204470 + 0.493635i
\(186\) −6.72393 2.79036i −0.493023 0.204599i
\(187\) 0 0
\(188\) 0.367264i 0.0267855i
\(189\) 11.2069 + 0.0222598i 0.815181 + 0.00161916i
\(190\) −2.12989 + 3.18760i −0.154518 + 0.231253i
\(191\) 0.509849 0.509849i 0.0368914 0.0368914i −0.688420 0.725312i \(-0.741696\pi\)
0.725312 + 0.688420i \(0.241696\pi\)
\(192\) 2.53493 12.7000i 0.182942 0.916542i
\(193\) −6.45656 9.66292i −0.464753 0.695552i 0.522867 0.852414i \(-0.324862\pi\)
−0.987621 + 0.156862i \(0.949862\pi\)
\(194\) 5.06278 + 1.00705i 0.363486 + 0.0723019i
\(195\) −0.0154671 + 23.3612i −0.00110762 + 1.67293i
\(196\) 0.105488 + 0.254671i 0.00753488 + 0.0181908i
\(197\) 4.53858 22.8170i 0.323360 1.62564i −0.387193 0.921999i \(-0.626555\pi\)
0.710553 0.703643i \(-0.248445\pi\)
\(198\) 7.05335 + 1.41271i 0.501260 + 0.100397i
\(199\) 23.6514 4.70456i 1.67661 0.333497i 0.737035 0.675854i \(-0.236225\pi\)
0.939570 + 0.342357i \(0.111225\pi\)
\(200\) 8.35068 + 8.35068i 0.590482 + 0.590482i
\(201\) 6.91653 + 10.3662i 0.487854 + 0.731173i
\(202\) 5.02720 + 2.08233i 0.353712 + 0.146512i
\(203\) 17.2357 1.20971
\(204\) 0 0
\(205\) 9.39691 0.656309
\(206\) −12.5483 5.19767i −0.874281 0.362139i
\(207\) 0.445674 + 2.25617i 0.0309765 + 0.156814i
\(208\) −13.1927 13.1927i −0.914753 0.914753i
\(209\) −1.39544 + 0.277570i −0.0965244 + 0.0191999i
\(210\) −3.22515 16.2702i −0.222556 1.12275i
\(211\) −3.04535 + 15.3100i −0.209651 + 1.05398i 0.722350 + 0.691528i \(0.243062\pi\)
−0.932000 + 0.362457i \(0.881938\pi\)
\(212\) 0.286074 + 0.690643i 0.0196476 + 0.0474336i
\(213\) 3.76633 + 0.00249363i 0.258065 + 0.000170861i
\(214\) 2.69729 + 0.536524i 0.184383 + 0.0366760i
\(215\) −19.4047 29.0412i −1.32339 1.98059i
\(216\) −11.8513 + 7.88477i −0.806377 + 0.536490i
\(217\) −4.40510 + 4.40510i −0.299038 + 0.299038i
\(218\) 3.39782 5.08520i 0.230130 0.344413i
\(219\) 15.3964 + 15.4168i 1.04039 + 1.04177i
\(220\) 0.590224i 0.0397929i
\(221\) 0 0
\(222\) −2.30077 + 5.54415i −0.154417 + 0.372099i
\(223\) −0.930718 + 2.24695i −0.0623255 + 0.150467i −0.951974 0.306179i \(-0.900949\pi\)
0.889648 + 0.456646i \(0.150949\pi\)
\(224\) 1.18926 + 0.794641i 0.0794611 + 0.0530942i
\(225\) 0.0171254 12.9329i 0.00114169 0.862193i
\(226\) −4.67992 23.5276i −0.311304 1.56503i
\(227\) 1.16773 0.780250i 0.0775048 0.0517870i −0.516214 0.856460i \(-0.672659\pi\)
0.593719 + 0.804673i \(0.297659\pi\)
\(228\) −0.0976235 + 0.145895i −0.00646527 + 0.00966211i
\(229\) 10.0488 4.16234i 0.664043 0.275055i −0.0250960 0.999685i \(-0.507989\pi\)
0.689139 + 0.724630i \(0.257989\pi\)
\(230\) 3.14466 1.30256i 0.207353 0.0858884i
\(231\) 3.42333 5.11604i 0.225239 0.336611i
\(232\) −18.2026 + 12.1626i −1.19506 + 0.798513i
\(233\) −2.79686 14.0608i −0.183228 0.921151i −0.957530 0.288334i \(-0.906899\pi\)
0.774302 0.632817i \(-0.218101\pi\)
\(234\) −0.0255506 + 19.2955i −0.00167030 + 1.26139i
\(235\) −7.93813 5.30409i −0.517826 0.346000i
\(236\) 0.273673 0.660704i 0.0178146 0.0430082i
\(237\) −3.95549 + 9.53155i −0.256937 + 0.619140i
\(238\) 0 0
\(239\) 23.7093i 1.53362i 0.641872 + 0.766812i \(0.278158\pi\)
−0.641872 + 0.766812i \(0.721842\pi\)
\(240\) 15.7641 + 15.7850i 1.01757 + 1.01892i
\(241\) 1.56359 2.34007i 0.100719 0.150737i −0.777687 0.628652i \(-0.783607\pi\)
0.878406 + 0.477914i \(0.158607\pi\)
\(242\) −8.52427 + 8.52427i −0.547961 + 0.547961i
\(243\) 15.2788 + 3.09175i 0.980134 + 0.198336i
\(244\) −0.381280 0.570626i −0.0244090 0.0365306i
\(245\) 7.02801 + 1.39796i 0.449003 + 0.0893123i
\(246\) 7.76154 + 0.00513881i 0.494858 + 0.000327638i
\(247\) −1.46048 3.52592i −0.0929284 0.224349i
\(248\) 1.54371 7.76073i 0.0980254 0.492807i
\(249\) 4.37380 + 22.0649i 0.277178 + 1.39831i
\(250\) 3.00061 0.596858i 0.189775 0.0377486i
\(251\) 10.7058 + 10.7058i 0.675745 + 0.675745i 0.959034 0.283289i \(-0.0914257\pi\)
−0.283289 + 0.959034i \(0.591426\pi\)
\(252\) −0.147185 0.745104i −0.00927179 0.0469372i
\(253\) 1.16706 + 0.483411i 0.0733723 + 0.0303918i
\(254\) 17.9162 1.12416
\(255\) 0 0
\(256\) −2.80767 −0.175479
\(257\) −18.3799 7.61319i −1.14650 0.474898i −0.273145 0.961973i \(-0.588064\pi\)
−0.873360 + 0.487075i \(0.838064\pi\)
\(258\) −16.0118 23.9977i −0.996850 1.49403i
\(259\) 3.63218 + 3.63218i 0.225693 + 0.225693i
\(260\) 1.55279 0.308868i 0.0962997 0.0191552i
\(261\) 23.5074 + 4.70829i 1.45507 + 0.291436i
\(262\) 1.00110 5.03288i 0.0618482 0.310932i
\(263\) 0.0501727 + 0.121128i 0.00309378 + 0.00746905i 0.925419 0.378946i \(-0.123713\pi\)
−0.922325 + 0.386415i \(0.873713\pi\)
\(264\) −0.00517669 + 7.81875i −0.000318603 + 0.481211i
\(265\) 19.0593 + 3.79112i 1.17080 + 0.232887i
\(266\) 1.50544 + 2.25305i 0.0923045 + 0.138143i
\(267\) −1.63987 + 8.21576i −0.100358 + 0.502796i
\(268\) 0.597184 0.597184i 0.0364788 0.0364788i
\(269\) 3.30317 4.94355i 0.201398 0.301413i −0.716999 0.697075i \(-0.754485\pi\)
0.918396 + 0.395661i \(0.129485\pi\)
\(270\) 0.0458262 23.0716i 0.00278890 1.40409i
\(271\) 6.87483i 0.417616i 0.977957 + 0.208808i \(0.0669584\pi\)
−0.977957 + 0.208808i \(0.933042\pi\)
\(272\) 0 0
\(273\) 15.2510 + 6.32899i 0.923030 + 0.383048i
\(274\) −8.15697 + 19.6927i −0.492781 + 1.18968i
\(275\) −5.90659 3.94666i −0.356181 0.237992i
\(276\) 0.144033 0.0595485i 0.00866974 0.00358440i
\(277\) 1.61874 + 8.13797i 0.0972608 + 0.488963i 0.998456 + 0.0555495i \(0.0176911\pi\)
−0.901195 + 0.433414i \(0.857309\pi\)
\(278\) 6.10344 4.07818i 0.366060 0.244593i
\(279\) −7.21138 + 4.80469i −0.431734 + 0.287649i
\(280\) 16.6563 6.89927i 0.995404 0.412310i
\(281\) 12.2411 5.07041i 0.730240 0.302475i 0.0135893 0.999908i \(-0.495674\pi\)
0.716651 + 0.697432i \(0.245674\pi\)
\(282\) −6.55373 4.38534i −0.390269 0.261143i
\(283\) 11.6680 7.79633i 0.693593 0.463444i −0.158142 0.987416i \(-0.550550\pi\)
0.851735 + 0.523972i \(0.175550\pi\)
\(284\) −0.0497963 0.250343i −0.00295487 0.0148551i
\(285\) 1.74351 + 4.21709i 0.103276 + 0.249799i
\(286\) 8.81247 + 5.88830i 0.521092 + 0.348183i
\(287\) 2.54174 6.13631i 0.150034 0.362215i
\(288\) 1.40494 + 1.40867i 0.0827870 + 0.0830066i
\(289\) 0 0
\(290\) 35.4832i 2.08364i
\(291\) 4.34759 4.34183i 0.254860 0.254523i
\(292\) 0.820357 1.22775i 0.0480078 0.0718487i
\(293\) −18.6721 + 18.6721i −1.09083 + 1.09083i −0.0953949 + 0.995440i \(0.530411\pi\)
−0.995440 + 0.0953949i \(0.969589\pi\)
\(294\) 5.80414 + 1.15851i 0.338504 + 0.0675657i
\(295\) −10.3282 15.4572i −0.601331 0.899955i
\(296\) −6.39904 1.27285i −0.371936 0.0739827i
\(297\) 6.06657 6.04252i 0.352018 0.350622i
\(298\) −3.50271 8.45629i −0.202907 0.489860i
\(299\) −0.661049 + 3.32332i −0.0382295 + 0.192193i
\(300\) −0.859747 + 0.170423i −0.0496375 + 0.00983935i
\(301\) −24.2130 + 4.81627i −1.39561 + 0.277605i
\(302\) −15.6531 15.6531i −0.900738 0.900738i
\(303\) 5.38778 3.59484i 0.309520 0.206518i
\(304\) −3.36705 1.39468i −0.193114 0.0799904i
\(305\) −17.8402 −1.02152
\(306\) 0 0
\(307\) −24.4315 −1.39438 −0.697189 0.716887i \(-0.745566\pi\)
−0.697189 + 0.716887i \(0.745566\pi\)
\(308\) −0.385424 0.159648i −0.0219616 0.00909677i
\(309\) −13.4483 + 8.97302i −0.765049 + 0.510457i
\(310\) 9.06879 + 9.06879i 0.515073 + 0.515073i
\(311\) −22.8877 + 4.55265i −1.29784 + 0.258157i −0.795206 0.606340i \(-0.792637\pi\)
−0.502638 + 0.864497i \(0.667637\pi\)
\(312\) −20.5726 + 4.07799i −1.16470 + 0.230871i
\(313\) −0.314998 + 1.58360i −0.0178048 + 0.0895106i −0.988666 0.150132i \(-0.952030\pi\)
0.970861 + 0.239642i \(0.0770302\pi\)
\(314\) −1.37441 3.31812i −0.0775624 0.187252i
\(315\) −18.2305 7.57963i −1.02717 0.427064i
\(316\) 0.685937 + 0.136441i 0.0385870 + 0.00767543i
\(317\) −13.5476 20.2754i −0.760908 1.13878i −0.986372 0.164528i \(-0.947390\pi\)
0.225464 0.974251i \(-0.427610\pi\)
\(318\) 15.7402 + 3.14176i 0.882669 + 0.176181i
\(319\) 9.31162 9.31162i 0.521351 0.521351i
\(320\) −12.6754 + 18.9701i −0.708577 + 1.06046i
\(321\) 2.31626 2.31319i 0.129281 0.129110i
\(322\) 2.40583i 0.134072i
\(323\) 0 0
\(324\) 0.00279782 1.05644i 0.000155435 0.0586911i
\(325\) 7.29207 17.6046i 0.404491 0.976529i
\(326\) 1.34404 + 0.898060i 0.0744396 + 0.0497389i
\(327\) −2.78143 6.72755i −0.153813 0.372034i
\(328\) 1.64583 + 8.27415i 0.0908758 + 0.456863i
\(329\) −5.61080 + 3.74901i −0.309333 + 0.206690i
\(330\) −10.5324 7.04761i −0.579789 0.387958i
\(331\) −28.1459 + 11.6584i −1.54704 + 0.640804i −0.982777 0.184793i \(-0.940839\pi\)
−0.564260 + 0.825597i \(0.690839\pi\)
\(332\) 1.40841 0.583384i 0.0772967 0.0320173i
\(333\) 3.96166 + 5.94607i 0.217098 + 0.325843i
\(334\) 24.0286 16.0554i 1.31479 0.878514i
\(335\) −4.28304 21.5323i −0.234008 1.17644i
\(336\) 14.5718 6.02453i 0.794956 0.328665i
\(337\) 14.3229 + 9.57025i 0.780218 + 0.521325i 0.880734 0.473611i \(-0.157050\pi\)
−0.100517 + 0.994935i \(0.532050\pi\)
\(338\) −3.64051 + 8.78896i −0.198018 + 0.478057i
\(339\) −26.3730 10.9445i −1.43239 0.594425i
\(340\) 0 0
\(341\) 4.75973i 0.257754i
\(342\) 1.43777 + 3.48413i 0.0777459 + 0.188400i
\(343\) 11.2015 16.7643i 0.604826 0.905186i
\(344\) 22.1727 22.1727i 1.19547 1.19547i
\(345\) 0.793047 3.97317i 0.0426962 0.213908i
\(346\) 9.40702 + 14.0786i 0.505724 + 0.756870i
\(347\) 19.8459 + 3.94759i 1.06538 + 0.211918i 0.696499 0.717558i \(-0.254740\pi\)
0.368884 + 0.929476i \(0.379740\pi\)
\(348\) 0.00107573 1.62476i 5.76652e−5 0.0870963i
\(349\) 2.90948 + 7.02410i 0.155741 + 0.375992i 0.982421 0.186681i \(-0.0597731\pi\)
−0.826680 + 0.562673i \(0.809773\pi\)
\(350\) −2.63946 + 13.2694i −0.141085 + 0.709281i
\(351\) 19.0716 + 12.7981i 1.01797 + 0.683112i
\(352\) 1.07181 0.213196i 0.0571276 0.0113634i
\(353\) −8.44344 8.44344i −0.449399 0.449399i 0.445756 0.895155i \(-0.352935\pi\)
−0.895155 + 0.445756i \(0.852935\pi\)
\(354\) −8.52230 12.7728i −0.452955 0.678867i
\(355\) −6.13014 2.53919i −0.325354 0.134766i
\(356\) 0.567772 0.0300919
\(357\) 0 0
\(358\) −1.23200 −0.0651133
\(359\) 21.2469 + 8.80076i 1.12137 + 0.464487i 0.864839 0.502049i \(-0.167420\pi\)
0.256531 + 0.966536i \(0.417420\pi\)
\(360\) 24.6019 4.85976i 1.29663 0.256132i
\(361\) 12.9079 + 12.9079i 0.679363 + 0.679363i
\(362\) −2.04633 + 0.407040i −0.107553 + 0.0213935i
\(363\) 2.79011 + 14.0755i 0.146443 + 0.738773i
\(364\) 0.218313 1.09753i 0.0114427 0.0575264i
\(365\) −14.6892 35.4628i −0.768866 1.85621i
\(366\) −14.7354 0.00975609i −0.770231 0.000509959i
\(367\) −16.0952 3.20154i −0.840163 0.167119i −0.243792 0.969828i \(-0.578391\pi\)
−0.596371 + 0.802709i \(0.703391\pi\)
\(368\) 1.79769 + 2.69043i 0.0937111 + 0.140249i
\(369\) 5.14289 7.67486i 0.267728 0.399537i
\(370\) 7.47758 7.47758i 0.388741 0.388741i
\(371\) 7.63093 11.4205i 0.396178 0.592923i
\(372\) 0.414982 + 0.415531i 0.0215158 + 0.0215443i
\(373\) 1.61824i 0.0837894i −0.999122 0.0418947i \(-0.986661\pi\)
0.999122 0.0418947i \(-0.0133394\pi\)
\(374\) 0 0
\(375\) 1.39582 3.36351i 0.0720798 0.173691i
\(376\) 3.28001 7.91865i 0.169154 0.408373i
\(377\) 29.3703 + 19.6246i 1.51265 + 1.01072i
\(378\) −15.0537 6.27050i −0.774278 0.322520i
\(379\) 3.02965 + 15.2311i 0.155623 + 0.782368i 0.977208 + 0.212283i \(0.0680898\pi\)
−0.821586 + 0.570085i \(0.806910\pi\)
\(380\) 0.257139 0.171815i 0.0131910 0.00881393i
\(381\) 11.8598 17.7240i 0.607594 0.908027i
\(382\) −0.969330 + 0.401510i −0.0495952 + 0.0205430i
\(383\) −20.4588 + 8.47433i −1.04540 + 0.433018i −0.838247 0.545291i \(-0.816419\pi\)
−0.207151 + 0.978309i \(0.566419\pi\)
\(384\) −11.7574 + 17.5710i −0.599994 + 0.896668i
\(385\) −9.01702 + 6.02498i −0.459550 + 0.307061i
\(386\) 3.29912 + 16.5858i 0.167921 + 0.844194i
\(387\) −34.3393 0.0454712i −1.74557 0.00231143i
\(388\) −0.346231 0.231344i −0.0175772 0.0117447i
\(389\) −5.80572 + 14.0162i −0.294362 + 0.710652i 0.705636 + 0.708574i \(0.250661\pi\)
−0.999998 + 0.00207747i \(0.999339\pi\)
\(390\) 13.0295 31.3972i 0.659774 1.58986i
\(391\) 0 0
\(392\) 6.43314i 0.324922i
\(393\) −4.31619 4.32191i −0.217723 0.218011i
\(394\) −18.8071 + 28.1469i −0.947490 + 1.41802i
\(395\) 12.8555 12.8555i 0.646831 0.646831i
\(396\) −0.482061 0.323027i −0.0242245 0.0162327i
\(397\) 20.9101 + 31.2942i 1.04945 + 1.57061i 0.797922 + 0.602760i \(0.205932\pi\)
0.251526 + 0.967850i \(0.419068\pi\)
\(398\) −34.4157 6.84571i −1.72510 0.343145i
\(399\) 3.22541 + 0.00213550i 0.161473 + 0.000106909i
\(400\) −6.96352 16.8114i −0.348176 0.840571i
\(401\) −0.689420 + 3.46595i −0.0344280 + 0.173081i −0.994174 0.107789i \(-0.965623\pi\)
0.959746 + 0.280870i \(0.0906230\pi\)
\(402\) −3.52588 17.7873i −0.175855 0.887151i
\(403\) −12.5221 + 2.49080i −0.623770 + 0.124076i
\(404\) −0.310384 0.310384i −0.0154422 0.0154422i
\(405\) −22.7937 15.3178i −1.13263 0.761146i
\(406\) −23.1710 9.59773i −1.14996 0.476327i
\(407\) 3.92459 0.194535
\(408\) 0 0
\(409\) 12.2079 0.603641 0.301820 0.953365i \(-0.402406\pi\)
0.301820 + 0.953365i \(0.402406\pi\)
\(410\) −12.6328 5.23268i −0.623890 0.258424i
\(411\) 14.0818 + 21.1052i 0.694605 + 1.04104i
\(412\) 0.774744 + 0.774744i 0.0381689 + 0.0381689i
\(413\) −12.8874 + 2.56347i −0.634148 + 0.126140i
\(414\) 0.657203 3.28127i 0.0322998 0.161266i
\(415\) 7.73115 38.8671i 0.379507 1.90791i
\(416\) 1.12177 + 2.70819i 0.0549993 + 0.132780i
\(417\) 0.00578500 8.73753i 0.000283293 0.427879i
\(418\) 2.03053 + 0.403898i 0.0993165 + 0.0197553i
\(419\) 17.4409 + 26.1021i 0.852042 + 1.27517i 0.959712 + 0.280985i \(0.0906611\pi\)
−0.107670 + 0.994187i \(0.534339\pi\)
\(420\) −0.261906 + 1.31215i −0.0127797 + 0.0640262i
\(421\) 10.7245 10.7245i 0.522682 0.522682i −0.395699 0.918380i \(-0.629498\pi\)
0.918380 + 0.395699i \(0.129498\pi\)
\(422\) 12.6194 18.8863i 0.614305 0.919373i
\(423\) −8.67658 + 3.58050i −0.421870 + 0.174090i
\(424\) 17.4460i 0.847253i
\(425\) 0 0
\(426\) −5.06191 2.10064i −0.245250 0.101776i
\(427\) −4.82553 + 11.6499i −0.233524 + 0.563776i
\(428\) −0.184461 0.123253i −0.00891625 0.00595764i
\(429\) 11.6586 4.82011i 0.562883 0.232717i
\(430\) 9.91525 + 49.8473i 0.478156 + 2.40385i
\(431\) 9.52337 6.36331i 0.458724 0.306510i −0.304652 0.952464i \(-0.598540\pi\)
0.763376 + 0.645954i \(0.223540\pi\)
\(432\) 21.5199 4.23616i 1.03538 0.203812i
\(433\) 24.7526 10.2528i 1.18953 0.492720i 0.301930 0.953330i \(-0.402369\pi\)
0.887603 + 0.460610i \(0.152369\pi\)
\(434\) 8.37502 3.46905i 0.402014 0.166520i
\(435\) −35.1024 23.4883i −1.68303 1.12618i
\(436\) −0.410216 + 0.274097i −0.0196458 + 0.0131269i
\(437\) 0.129127 + 0.649167i 0.00617700 + 0.0310539i
\(438\) −12.1134 29.2991i −0.578799 1.39997i
\(439\) −7.08940 4.73699i −0.338359 0.226084i 0.374769 0.927118i \(-0.377722\pi\)
−0.713128 + 0.701034i \(0.752722\pi\)
\(440\) 5.27126 12.7259i 0.251297 0.606685i
\(441\) 4.98817 4.97498i 0.237532 0.236904i
\(442\) 0 0
\(443\) 18.8773i 0.896886i 0.893811 + 0.448443i \(0.148021\pi\)
−0.893811 + 0.448443i \(0.851979\pi\)
\(444\) 0.342622 0.342169i 0.0162601 0.0162386i
\(445\) 8.19987 12.2720i 0.388711 0.581747i
\(446\) 2.50244 2.50244i 0.118494 0.118494i
\(447\) −10.6842 2.13257i −0.505345 0.100867i
\(448\) 8.95919 + 13.4084i 0.423282 + 0.633486i
\(449\) −26.7408 5.31908i −1.26198 0.251023i −0.481633 0.876373i \(-0.659956\pi\)
−0.780345 + 0.625350i \(0.784956\pi\)
\(450\) −7.22473 + 17.3769i −0.340577 + 0.819156i
\(451\) −1.94197 4.68833i −0.0914438 0.220765i
\(452\) −0.377522 + 1.89793i −0.0177572 + 0.0892713i
\(453\) −25.8469 + 5.12348i −1.21439 + 0.240722i
\(454\) −2.00433 + 0.398685i −0.0940677 + 0.0187112i
\(455\) −20.5695 20.5695i −0.964311 0.964311i
\(456\) −3.40786 + 2.27380i −0.159588 + 0.106480i
\(457\) −9.73907 4.03405i −0.455574 0.188705i 0.143082 0.989711i \(-0.454299\pi\)
−0.598657 + 0.801006i \(0.704299\pi\)
\(458\) −15.8270 −0.739546
\(459\) 0 0
\(460\) −0.274576 −0.0128022
\(461\) 9.13414 + 3.78349i 0.425419 + 0.176215i 0.585112 0.810952i \(-0.301050\pi\)
−0.159693 + 0.987167i \(0.551050\pi\)
\(462\) −7.45106 + 4.97150i −0.346655 + 0.231295i
\(463\) −16.2123 16.2123i −0.753448 0.753448i 0.221673 0.975121i \(-0.428848\pi\)
−0.975121 + 0.221673i \(0.928848\pi\)
\(464\) 33.0836 6.58074i 1.53587 0.305503i
\(465\) 14.9746 2.96833i 0.694432 0.137653i
\(466\) −4.06977 + 20.4601i −0.188529 + 0.947797i
\(467\) 9.89105 + 23.8791i 0.457703 + 1.10499i 0.969325 + 0.245783i \(0.0790450\pi\)
−0.511621 + 0.859211i \(0.670955\pi\)
\(468\) 0.597567 1.43727i 0.0276226 0.0664378i
\(469\) −15.2194 3.02732i −0.702766 0.139789i
\(470\) 7.71810 + 11.5509i 0.356009 + 0.532806i
\(471\) −4.19231 0.836789i −0.193172 0.0385572i
\(472\) 11.8014 11.8014i 0.543205 0.543205i
\(473\) −10.4791 + 15.6831i −0.481831 + 0.721111i
\(474\) 10.6253 10.6112i 0.488034 0.487388i
\(475\) 3.72217i 0.170785i
\(476\) 0 0
\(477\) 13.5274 13.4916i 0.619378 0.617740i
\(478\) 13.2025 31.8737i 0.603870 1.45787i
\(479\) −7.20443 4.81385i −0.329179 0.219950i 0.379987 0.924992i \(-0.375928\pi\)
−0.709166 + 0.705041i \(0.750928\pi\)
\(480\) −1.33916 3.23907i −0.0611238 0.147843i
\(481\) 2.05377 + 10.3250i 0.0936437 + 0.470778i
\(482\) −3.40509 + 2.27521i −0.155098 + 0.103633i
\(483\) −2.38002 1.59256i −0.108295 0.0724639i
\(484\) 0.898446 0.372148i 0.0408384 0.0169158i
\(485\) −10.0006 + 4.14240i −0.454106 + 0.188097i
\(486\) −18.8185 12.6644i −0.853625 0.574470i
\(487\) 32.2752 21.5656i 1.46253 0.977229i 0.466851 0.884336i \(-0.345389\pi\)
0.995676 0.0928931i \(-0.0296115\pi\)
\(488\) −3.12463 15.7086i −0.141445 0.711094i
\(489\) 1.77812 0.735143i 0.0804094 0.0332443i
\(490\) −8.66971 5.79291i −0.391658 0.261697i
\(491\) 4.84934 11.7073i 0.218848 0.528345i −0.775882 0.630878i \(-0.782695\pi\)
0.994730 + 0.102533i \(0.0326948\pi\)
\(492\) −0.578293 0.239986i −0.0260715 0.0108194i
\(493\) 0 0
\(494\) 5.55337i 0.249858i
\(495\) −13.9440 + 5.75417i −0.626736 + 0.258631i
\(496\) −6.77361 + 10.1374i −0.304144 + 0.455184i
\(497\) −3.31625 + 3.31625i −0.148754 + 0.148754i
\(498\) 6.40693 32.0987i 0.287101 1.43838i
\(499\) −20.6206 30.8610i −0.923106 1.38153i −0.924358 0.381527i \(-0.875398\pi\)
0.00125143 0.999999i \(-0.499602\pi\)
\(500\) −0.242054 0.0481476i −0.0108250 0.00215323i
\(501\) 0.0227750 34.3988i 0.00101751 1.53683i
\(502\) −8.43090 20.3540i −0.376290 0.908444i
\(503\) −6.23297 + 31.3353i −0.277914 + 1.39717i 0.549460 + 0.835520i \(0.314833\pi\)
−0.827375 + 0.561650i \(0.810167\pi\)
\(504\) 3.48100 17.3799i 0.155056 0.774160i
\(505\) −11.1913 + 2.22610i −0.498008 + 0.0990600i
\(506\) −1.29976 1.29976i −0.0577812 0.0577812i
\(507\) 6.28480 + 9.41937i 0.279118 + 0.418329i
\(508\) −1.33526 0.553083i −0.0592426 0.0245391i
\(509\) 2.30289 0.102074 0.0510369 0.998697i \(-0.483747\pi\)
0.0510369 + 0.998697i \(0.483747\pi\)
\(510\) 0 0
\(511\) −27.1309 −1.20020
\(512\) −18.7797 7.77882i −0.829954 0.343778i
\(513\) 4.39850 + 0.884001i 0.194198 + 0.0390296i
\(514\) 20.4697 + 20.4697i 0.902880 + 0.902880i
\(515\) 27.9345 5.55652i 1.23094 0.244849i
\(516\) 0.452505 + 2.28279i 0.0199204 + 0.100494i
\(517\) −1.00583 + 5.05666i −0.0442364 + 0.222391i
\(518\) −2.86037 6.90554i −0.125677 0.303412i
\(519\) 20.1546 + 0.0133441i 0.884688 + 0.000585740i
\(520\) 36.2384 + 7.20827i 1.58916 + 0.316104i
\(521\) 1.52929 + 2.28875i 0.0669995 + 0.100272i 0.863456 0.504423i \(-0.168295\pi\)
−0.796457 + 0.604695i \(0.793295\pi\)
\(522\) −28.9806 19.4198i −1.26845 0.849981i
\(523\) 29.8001 29.8001i 1.30307 1.30307i 0.376755 0.926313i \(-0.377040\pi\)
0.926313 0.376755i \(-0.122960\pi\)
\(524\) −0.229978 + 0.344186i −0.0100466 + 0.0150358i
\(525\) 11.3799 + 11.3949i 0.496658 + 0.497316i
\(526\) 0.190778i 0.00831830i
\(527\) 0 0
\(528\) 4.61767 11.1272i 0.200958 0.484249i
\(529\) −8.57683 + 20.7063i −0.372906 + 0.900274i
\(530\) −23.5114 15.7098i −1.02127 0.682390i
\(531\) −18.2772 0.0242021i −0.793161 0.00105028i
\(532\) −0.0426446 0.214389i −0.00184888 0.00929494i
\(533\) 11.3180 7.56246i 0.490238 0.327566i
\(534\) 6.77953 10.1318i 0.293379 0.438444i
\(535\) −5.32803 + 2.20694i −0.230351 + 0.0954144i
\(536\) 18.2094 7.54259i 0.786527 0.325790i
\(537\) −0.815532 + 1.21878i −0.0351928 + 0.0525943i
\(538\) −7.19347 + 4.80652i −0.310132 + 0.207224i
\(539\) −0.754939 3.79534i −0.0325175 0.163477i
\(540\) −0.715648 + 1.71807i −0.0307966 + 0.0739339i
\(541\) 12.1699 + 8.13164i 0.523223 + 0.349606i 0.788965 0.614438i \(-0.210617\pi\)
−0.265742 + 0.964044i \(0.585617\pi\)
\(542\) 3.82826 9.24223i 0.164438 0.396988i
\(543\) −0.951908 + 2.29381i −0.0408503 + 0.0984369i
\(544\) 0 0
\(545\) 12.8251i 0.549365i
\(546\) −16.9784 17.0009i −0.726610 0.727573i
\(547\) 15.2378 22.8049i 0.651520 0.975068i −0.347777 0.937577i \(-0.613063\pi\)
0.999297 0.0374912i \(-0.0119366\pi\)
\(548\) 1.21585 1.21585i 0.0519384 0.0519384i
\(549\) −9.76385 + 14.5708i −0.416711 + 0.621868i
\(550\) 5.74287 + 8.59481i 0.244877 + 0.366484i
\(551\) 6.76737 + 1.34611i 0.288300 + 0.0573464i
\(552\) 3.63734 + 0.00240823i 0.154816 + 0.000102501i
\(553\) −4.91757 11.8721i −0.209116 0.504851i
\(554\) 2.35547 11.8417i 0.100074 0.503107i
\(555\) −2.44751 12.3472i −0.103891 0.524109i
\(556\) −0.580773 + 0.115523i −0.0246302 + 0.00489926i
\(557\) 31.0707 + 31.0707i 1.31651 + 1.31651i 0.916522 + 0.399984i \(0.130984\pi\)
0.399984 + 0.916522i \(0.369016\pi\)
\(558\) 12.3702 2.44356i 0.523671 0.103444i
\(559\) −46.7436 19.3619i −1.97705 0.818919i
\(560\) −27.7789 −1.17387
\(561\) 0 0
\(562\) −19.2798 −0.813270
\(563\) 33.9044 + 14.0437i 1.42890 + 0.591870i 0.957080 0.289825i \(-0.0935970\pi\)
0.471821 + 0.881695i \(0.343597\pi\)
\(564\) 0.353059 + 0.529148i 0.0148665 + 0.0222811i
\(565\) 35.5701 + 35.5701i 1.49645 + 1.49645i
\(566\) −20.0274 + 3.98370i −0.841815 + 0.167448i
\(567\) −16.1681 + 10.7414i −0.678997 + 0.451095i
\(568\) 1.16213 5.84243i 0.0487620 0.245143i
\(569\) 9.46803 + 22.8578i 0.396920 + 0.958251i 0.988392 + 0.151925i \(0.0485472\pi\)
−0.591472 + 0.806326i \(0.701453\pi\)
\(570\) 0.00439636 6.64016i 0.000184143 0.278126i
\(571\) 1.93303 + 0.384503i 0.0808947 + 0.0160910i 0.235372 0.971905i \(-0.424369\pi\)
−0.154477 + 0.987996i \(0.549369\pi\)
\(572\) −0.475001 0.710889i −0.0198608 0.0297238i
\(573\) −0.244453 + 1.22471i −0.0102122 + 0.0511631i
\(574\) −6.83402 + 6.83402i −0.285247 + 0.285247i
\(575\) −1.83601 + 2.74779i −0.0765671 + 0.114591i
\(576\) 8.55649 + 20.7348i 0.356520 + 0.863951i
\(577\) 26.8179i 1.11645i −0.829691 0.558223i \(-0.811483\pi\)
0.829691 0.558223i \(-0.188517\pi\)
\(578\) 0 0
\(579\) 18.5917 + 7.71536i 0.772644 + 0.320639i
\(580\) −1.09538 + 2.64449i −0.0454833 + 0.109806i
\(581\) −23.2896 15.5616i −0.966214 0.645603i
\(582\) −8.26247 + 3.41602i −0.342490 + 0.141599i
\(583\) −2.04732 10.2926i −0.0847913 0.426275i
\(584\) 28.6529 19.1452i 1.18566 0.792235i
\(585\) −22.4353 33.6733i −0.927586 1.39222i
\(586\) 35.4995 14.7044i 1.46647 0.607433i
\(587\) −41.3023 + 17.1080i −1.70473 + 0.706122i −0.999994 0.00334911i \(-0.998934\pi\)
−0.704735 + 0.709471i \(0.748934\pi\)
\(588\) −0.396807 0.265518i −0.0163641 0.0109498i
\(589\) −2.07364 + 1.38557i −0.0854430 + 0.0570912i
\(590\) 5.27741 + 26.5313i 0.217268 + 1.09228i
\(591\) 15.3953 + 37.2374i 0.633280 + 1.53174i
\(592\) 8.35871 + 5.58511i 0.343541 + 0.229547i
\(593\) −8.44534 + 20.3889i −0.346809 + 0.837270i 0.650184 + 0.759777i \(0.274692\pi\)
−0.996993 + 0.0774935i \(0.975308\pi\)
\(594\) −11.5204 + 4.74513i −0.472689 + 0.194695i
\(595\) 0 0
\(596\) 0.738361i 0.0302444i
\(597\) −29.5540 + 29.5149i −1.20956 + 1.20796i
\(598\) 2.73928 4.09963i 0.112018 0.167646i
\(599\) −16.9345 + 16.9345i −0.691926 + 0.691926i −0.962655 0.270729i \(-0.912735\pi\)
0.270729 + 0.962655i \(0.412735\pi\)
\(600\) −20.0592 4.00384i −0.818914 0.163456i
\(601\) 1.46551 + 2.19329i 0.0597794 + 0.0894662i 0.860155 0.510033i \(-0.170367\pi\)
−0.800376 + 0.599499i \(0.795367\pi\)
\(602\) 35.2329 + 7.00826i 1.43599 + 0.285635i
\(603\) −19.9304 8.28640i −0.811630 0.337448i
\(604\) 0.683377 + 1.64982i 0.0278062 + 0.0671302i
\(605\) 4.93180 24.7939i 0.200506 1.00801i
\(606\) −9.24490 + 1.83256i −0.375548 + 0.0744428i
\(607\) 35.5752 7.07635i 1.44395 0.287220i 0.589930 0.807454i \(-0.299155\pi\)
0.854024 + 0.520234i \(0.174155\pi\)
\(608\) 0.404887 + 0.404887i 0.0164203 + 0.0164203i
\(609\) −24.8329 + 16.5691i −1.00628 + 0.671412i
\(610\) 23.9836 + 9.93432i 0.971066 + 0.402229i
\(611\) −13.8296 −0.559487
\(612\) 0 0
\(613\) −25.0887 −1.01333 −0.506663 0.862144i \(-0.669121\pi\)
−0.506663 + 0.862144i \(0.669121\pi\)
\(614\) 32.8447 + 13.6047i 1.32550 + 0.549041i
\(615\) −13.5389 + 9.03346i −0.545942 + 0.364264i
\(616\) −6.88440 6.88440i −0.277380 0.277380i
\(617\) 9.68025 1.92552i 0.389712 0.0775186i 0.00365472 0.999993i \(-0.498837\pi\)
0.386057 + 0.922475i \(0.373837\pi\)
\(618\) 23.0760 4.57422i 0.928253 0.184002i
\(619\) −6.30326 + 31.6886i −0.253349 + 1.27367i 0.619233 + 0.785207i \(0.287443\pi\)
−0.872583 + 0.488466i \(0.837557\pi\)
\(620\) −0.395921 0.955837i −0.0159006 0.0383873i
\(621\) −2.81102 2.82221i −0.112802 0.113251i
\(622\) 33.3044 + 6.62467i 1.33539 + 0.265625i
\(623\) −5.79580 8.67402i −0.232204 0.347517i
\(624\) 31.6904 + 6.32543i 1.26863 + 0.253220i
\(625\) −19.7780 + 19.7780i −0.791122 + 0.791122i
\(626\) 1.30530 1.95352i 0.0521704 0.0780785i
\(627\) 1.74369 1.74138i 0.0696362 0.0695441i
\(628\) 0.289721i 0.0115611i
\(629\) 0 0
\(630\) 20.2876 + 20.3414i 0.808279 + 0.810422i
\(631\) 1.47845 3.56930i 0.0588563 0.142092i −0.891716 0.452596i \(-0.850498\pi\)
0.950572 + 0.310504i \(0.100498\pi\)
\(632\) 13.5711 + 9.06791i 0.539829 + 0.360702i
\(633\) −10.3302 24.9860i −0.410587 0.993104i
\(634\) 6.92242 + 34.8014i 0.274925 + 1.38214i
\(635\) −31.2385 + 20.8729i −1.23966 + 0.828316i
\(636\) −1.07610 0.720059i −0.0426702 0.0285522i
\(637\) 9.58987 3.97225i 0.379964 0.157386i
\(638\) −17.7033 + 7.33297i −0.700882 + 0.290315i
\(639\) −5.42887 + 3.61706i −0.214763 + 0.143089i
\(640\) 30.9690 20.6928i 1.22416 0.817955i
\(641\) 7.30038 + 36.7015i 0.288348 + 1.44962i 0.804922 + 0.593380i \(0.202207\pi\)
−0.516575 + 0.856242i \(0.672793\pi\)
\(642\) −4.40198 + 1.81995i −0.173732 + 0.0718276i
\(643\) 35.3195 + 23.5997i 1.39286 + 0.930682i 0.999938 + 0.0111111i \(0.00353683\pi\)
0.392925 + 0.919570i \(0.371463\pi\)
\(644\) −0.0742693 + 0.179302i −0.00292662 + 0.00706549i
\(645\) 55.8760 + 23.1879i 2.20011 + 0.913024i
\(646\) 0 0
\(647\) 48.3331i 1.90017i −0.311989 0.950086i \(-0.600995\pi\)
0.311989 0.950086i \(-0.399005\pi\)
\(648\) 9.49533 22.7531i 0.373012 0.893828i
\(649\) −5.57753 + 8.34737i −0.218937 + 0.327663i
\(650\) −19.6063 + 19.6063i −0.769023 + 0.769023i
\(651\) 2.11208 10.5815i 0.0827790 0.414723i
\(652\) −0.0724451 0.108422i −0.00283717 0.00424613i
\(653\) −6.34586 1.26227i −0.248333 0.0493965i 0.0693542 0.997592i \(-0.477906\pi\)
−0.317687 + 0.948196i \(0.602906\pi\)
\(654\) −0.00701353 + 10.5931i −0.000274251 + 0.414222i
\(655\) 4.11794 + 9.94158i 0.160901 + 0.388450i
\(656\) 2.53593 12.7490i 0.0990114 0.497764i
\(657\) −37.0033 7.41136i −1.44364 0.289145i
\(658\) 9.63056 1.91564i 0.375439 0.0746794i
\(659\) 17.7005 + 17.7005i 0.689515 + 0.689515i 0.962125 0.272610i \(-0.0878869\pi\)
−0.272610 + 0.962125i \(0.587887\pi\)
\(660\) 0.567395 + 0.850385i 0.0220858 + 0.0331012i
\(661\) 23.0223 + 9.53615i 0.895464 + 0.370913i 0.782474 0.622683i \(-0.213957\pi\)
0.112990 + 0.993596i \(0.463957\pi\)
\(662\) 44.3302 1.72294
\(663\) 0 0
\(664\) 35.5773 1.38067
\(665\) −5.24974 2.17451i −0.203576 0.0843240i
\(666\) −2.01481 10.1997i −0.0780723 0.395231i
\(667\) −4.33184 4.33184i −0.167729 0.167729i
\(668\) −2.28645 + 0.454802i −0.0884652 + 0.0175968i
\(669\) −0.819081 4.13210i −0.0316675 0.159756i
\(670\) −6.23235 + 31.3321i −0.240777 + 1.21047i
\(671\) 3.68686 + 8.90086i 0.142329 + 0.343614i
\(672\) −2.47738 0.00164024i −0.0955670 6.32736e-5i
\(673\) 18.4220 + 3.66436i 0.710115 + 0.141251i 0.536915 0.843636i \(-0.319589\pi\)
0.173200 + 0.984887i \(0.444589\pi\)
\(674\) −13.9259 20.8416i −0.536405 0.802787i
\(675\) 12.4080 + 18.6500i 0.477584 + 0.717838i
\(676\) 0.542640 0.542640i 0.0208708 0.0208708i
\(677\) 5.50607 8.24041i 0.211615 0.316705i −0.710444 0.703754i \(-0.751506\pi\)
0.922059 + 0.387049i \(0.126506\pi\)
\(678\) 29.3603 + 29.3992i 1.12758 + 1.12907i
\(679\) 7.65102i 0.293619i
\(680\) 0 0
\(681\) −0.932371 + 2.24673i −0.0357285 + 0.0860950i
\(682\) 2.65046 6.39878i 0.101491 0.245022i
\(683\) −1.98540 1.32660i −0.0759692 0.0507610i 0.517006 0.855982i \(-0.327047\pi\)
−0.592975 + 0.805221i \(0.702047\pi\)
\(684\) 0.000402615 0.304050i 1.53944e−5 0.0116257i
\(685\) −8.72013 43.8391i −0.333179 1.67500i
\(686\) −24.3941 + 16.2996i −0.931370 + 0.622322i
\(687\) −10.4768 + 15.6572i −0.399714 + 0.597358i
\(688\) −44.6375 + 18.4895i −1.70179 + 0.704905i
\(689\) 26.0068 10.7724i 0.990779 0.410394i
\(690\) −3.27860 + 4.89975i −0.124814 + 0.186530i
\(691\) −27.1095 + 18.1140i −1.03129 + 0.689088i −0.951476 0.307722i \(-0.900433\pi\)
−0.0798165 + 0.996810i \(0.525433\pi\)
\(692\) −0.266473 1.33965i −0.0101298 0.0509258i
\(693\) −0.0141184 + 10.6620i −0.000536313 + 0.405017i
\(694\) −24.4818 16.3582i −0.929315 0.620948i
\(695\) −5.89068 + 14.2214i −0.223446 + 0.539447i
\(696\) 14.5338 35.0222i 0.550904 1.32751i
\(697\) 0 0
\(698\) 11.0631i 0.418743i
\(699\) 17.5466 + 17.5698i 0.663673 + 0.664552i
\(700\) 0.606348 0.907464i 0.0229178 0.0342989i
\(701\) 31.7150 31.7150i 1.19786 1.19786i 0.223051 0.974807i \(-0.428398\pi\)
0.974807 0.223051i \(-0.0716016\pi\)
\(702\) −18.5124 27.8253i −0.698706 1.05020i
\(703\) 1.14245 + 1.70980i 0.0430885 + 0.0644864i
\(704\) 12.0841 + 2.40368i 0.455437 + 0.0905921i
\(705\) 16.5361 + 0.0109483i 0.622784 + 0.000412337i
\(706\) 6.64926 + 16.0527i 0.250248 + 0.604153i
\(707\) −1.57344 + 7.91022i −0.0591753 + 0.297495i
\(708\) 0.240846 + 1.21502i 0.00905156 + 0.0456633i
\(709\) −38.7263 + 7.70314i −1.45440 + 0.289297i −0.858106 0.513472i \(-0.828359\pi\)
−0.596290 + 0.802769i \(0.703359\pi\)
\(710\) 6.82716 + 6.82716i 0.256219 + 0.256219i
\(711\) −3.46388 17.5354i −0.129906 0.657629i
\(712\) 12.2419 + 5.07074i 0.458783 + 0.190034i
\(713\) 2.21426 0.0829248
\(714\) 0 0
\(715\) −22.2254 −0.831182
\(716\) 0.0918186 + 0.0380325i 0.00343142 + 0.00142134i
\(717\) −22.7922 34.1599i −0.851191 1.27573i
\(718\) −23.6628 23.6628i −0.883086 0.883086i
\(719\) 43.1030 8.57373i 1.60747 0.319746i 0.691929 0.721966i \(-0.256761\pi\)
0.915543 + 0.402220i \(0.131761\pi\)
\(720\) −37.8871 7.58839i −1.41197 0.282803i
\(721\) 3.92744 19.7446i 0.146265 0.735326i
\(722\) −10.1650 24.5406i −0.378304 0.913307i
\(723\) −0.00322743 + 4.87465i −0.000120030 + 0.181290i
\(724\) 0.165074 + 0.0328353i 0.00613493 + 0.00122031i
\(725\) 19.1399 + 28.6448i 0.710837 + 1.06384i
\(726\) 4.08707 20.4762i 0.151685 0.759943i
\(727\) −0.0802760 + 0.0802760i −0.00297727 + 0.00297727i −0.708594 0.705617i \(-0.750670\pi\)
0.705617 + 0.708594i \(0.250670\pi\)
\(728\) 14.5091 21.7144i 0.537744 0.804790i
\(729\) −24.9856 + 10.2333i −0.925392 + 0.379010i
\(730\) 55.8544i 2.06726i
\(731\) 0 0
\(732\) 1.09790 + 0.455616i 0.0405795 + 0.0168400i
\(733\) 3.12587 7.54651i 0.115457 0.278737i −0.855579 0.517673i \(-0.826799\pi\)
0.971035 + 0.238936i \(0.0767986\pi\)
\(734\) 19.8549 + 13.2667i 0.732860 + 0.489681i
\(735\) −11.4697 + 4.74203i −0.423068 + 0.174912i
\(736\) −0.0991804 0.498613i −0.00365584 0.0183791i
\(737\) −9.85781 + 6.58678i −0.363117 + 0.242627i
\(738\) −11.1876 + 7.45394i −0.411823 + 0.274383i
\(739\) 10.8531 4.49550i 0.399237 0.165370i −0.174025 0.984741i \(-0.555677\pi\)
0.573263 + 0.819372i \(0.305677\pi\)
\(740\) −0.788126 + 0.326452i −0.0289721 + 0.0120006i
\(741\) 5.49379 + 3.67610i 0.201819 + 0.135045i
\(742\) −16.6182 + 11.1039i −0.610074 + 0.407639i
\(743\) 8.00737 + 40.2557i 0.293762 + 1.47684i 0.792385 + 0.610021i \(0.208839\pi\)
−0.498623 + 0.866819i \(0.666161\pi\)
\(744\) 5.23642 + 12.6655i 0.191976 + 0.464341i
\(745\) 15.9591 + 10.6635i 0.584697 + 0.390682i
\(746\) −0.901121 + 2.17550i −0.0329924 + 0.0796507i
\(747\) −27.5132 27.5862i −1.00666 1.00933i
\(748\) 0 0
\(749\) 4.07622i 0.148942i
\(750\) −3.74945 + 3.74449i −0.136911 + 0.136730i
\(751\) −0.938366 + 1.40436i −0.0342414 + 0.0512460i −0.848195 0.529683i \(-0.822311\pi\)
0.813954 + 0.580929i \(0.197311\pi\)
\(752\) −9.33841 + 9.33841i −0.340537 + 0.340537i
\(753\) −25.7165 5.13303i −0.937162 0.187058i
\(754\) −28.5562 42.7373i −1.03995 1.55640i
\(755\) 45.5290 + 9.05629i 1.65697 + 0.329592i
\(756\) 0.928347 + 0.932042i 0.0337637 + 0.0338980i
\(757\) 20.8300 + 50.2881i 0.757080 + 1.82775i 0.514126 + 0.857715i \(0.328116\pi\)
0.242954 + 0.970038i \(0.421884\pi\)
\(758\) 4.40851 22.1631i 0.160124 0.805000i
\(759\) −2.14619 + 0.425427i −0.0779019 + 0.0154420i
\(760\) 7.07871 1.40804i 0.256772 0.0510751i
\(761\) −24.1395 24.1395i −0.875055 0.875055i 0.117963 0.993018i \(-0.462364\pi\)
−0.993018 + 0.117963i \(0.962364\pi\)
\(762\) −25.8134 + 17.2233i −0.935121 + 0.623933i
\(763\) 8.37493 + 3.46901i 0.303193 + 0.125587i
\(764\) 0.0846370 0.00306206
\(765\) 0 0
\(766\) 32.2229 1.16426
\(767\) −24.8794 10.3054i −0.898343 0.372106i
\(768\) 4.04525 2.69907i 0.145970 0.0973944i
\(769\) 31.3211 + 31.3211i 1.12947 + 1.12947i 0.990264 + 0.139204i \(0.0444544\pi\)
0.139204 + 0.990264i \(0.455546\pi\)
\(770\) 15.4771 3.07859i 0.557757 0.110945i
\(771\) 33.8002 6.70001i 1.21728 0.241295i
\(772\) 0.266135 1.33795i 0.00957840 0.0481539i
\(773\) 5.31114 + 12.8222i 0.191028 + 0.461184i 0.990154 0.139980i \(-0.0447039\pi\)
−0.799126 + 0.601164i \(0.794704\pi\)
\(774\) 46.1390 + 19.1830i 1.65843 + 0.689520i
\(775\) −12.2128 2.42928i −0.438698 0.0872624i
\(776\) −5.39903 8.08023i −0.193814 0.290063i
\(777\) −8.72489 1.74150i −0.313004 0.0624758i
\(778\) 15.6099 15.6099i 0.559643 0.559643i
\(779\) 1.47723 2.21083i 0.0529272 0.0792111i
\(780\) −1.94031 + 1.93774i −0.0694742 + 0.0693822i
\(781\) 3.58322i 0.128218i
\(782\) 0 0
\(783\) −38.3954 + 15.8146i −1.37214 + 0.565168i
\(784\) 3.79328 9.15778i 0.135474 0.327064i
\(785\) 6.26211 + 4.18421i 0.223504 + 0.149341i
\(786\) 3.39584 + 8.21367i 0.121126 + 0.292972i
\(787\) 4.67010 + 23.4782i 0.166471 + 0.836907i 0.970274 + 0.242011i \(0.0778069\pi\)
−0.803802 + 0.594896i \(0.797193\pi\)
\(788\) 2.27057 1.51714i 0.0808856 0.0540460i
\(789\) −0.188731 0.126287i −0.00671899 0.00449593i
\(790\) −24.4410 + 10.1238i −0.869572 + 0.360189i
\(791\) 32.8490 13.6065i 1.16798 0.483792i
\(792\) −7.50888 11.2701i −0.266817 0.400466i
\(793\) −21.4874 + 14.3574i −0.763040 + 0.509847i
\(794\) −10.6845 53.7144i −0.379178 1.90625i
\(795\) −31.1048 + 12.8599i −1.10317 + 0.456094i
\(796\) 2.35361 + 1.57263i 0.0834213 + 0.0557403i
\(797\) 17.9210 43.2651i 0.634795 1.53253i −0.198734 0.980053i \(-0.563683\pi\)
0.833529 0.552476i \(-0.186317\pi\)
\(798\) −4.33492 1.79895i −0.153455 0.0636820i
\(799\) 0 0
\(800\) 2.85893i 0.101078i
\(801\) −5.53529 13.4136i −0.195580 0.473945i
\(802\) 2.85685 4.27557i 0.100879 0.150976i
\(803\) −14.6575 + 14.6575i −0.517252 + 0.517252i
\(804\) −0.286327 + 1.43450i −0.0100980 + 0.0505909i
\(805\) 2.80287 + 4.19478i 0.0987880 + 0.147847i
\(806\) 18.2212 + 3.62442i 0.641814 + 0.127665i
\(807\) −0.00681816 + 10.2980i −0.000240011 + 0.362507i
\(808\) −3.92024 9.46429i −0.137913 0.332952i
\(809\) −2.28565 + 11.4907i −0.0803592 + 0.403993i 0.919579 + 0.392904i \(0.128530\pi\)
−0.999939 + 0.0110886i \(0.996470\pi\)
\(810\) 22.1132 + 33.2853i 0.776980 + 1.16953i
\(811\) 18.4661 3.67314i 0.648434 0.128982i 0.140094 0.990138i \(-0.455259\pi\)
0.508340 + 0.861157i \(0.330259\pi\)
\(812\) 1.43060 + 1.43060i 0.0502042 + 0.0502042i
\(813\) −6.60892 9.90514i −0.231785 0.347389i
\(814\) −5.27605 2.18541i −0.184926 0.0765987i
\(815\) −3.38972 −0.118737
\(816\) 0 0
\(817\) −9.88307 −0.345765
\(818\) −16.4118 6.79797i −0.573824 0.237686i
\(819\) −28.0575 + 5.54238i −0.980410 + 0.193666i
\(820\) 0.779963 + 0.779963i 0.0272375 + 0.0272375i
\(821\) −29.7119 + 5.91006i −1.03695 + 0.206263i −0.684079 0.729408i \(-0.739795\pi\)
−0.352874 + 0.935671i \(0.614795\pi\)
\(822\) −7.17857 36.2144i −0.250381 1.26312i
\(823\) −4.47717 + 22.5083i −0.156064 + 0.784589i 0.820881 + 0.571099i \(0.193483\pi\)
−0.976945 + 0.213489i \(0.931517\pi\)
\(824\) 9.78523 + 23.6236i 0.340884 + 0.822968i
\(825\) 12.3041 + 0.00814639i 0.428375 + 0.000283621i
\(826\) 18.7528 + 3.73016i 0.652493 + 0.129789i
\(827\) 9.72768 + 14.5585i 0.338265 + 0.506249i 0.961136 0.276076i \(-0.0890340\pi\)
−0.622871 + 0.782324i \(0.714034\pi\)
\(828\) −0.150275 + 0.224258i −0.00522240 + 0.00779351i
\(829\) −31.1358 + 31.1358i −1.08139 + 1.08139i −0.0850121 + 0.996380i \(0.527093\pi\)
−0.996380 + 0.0850121i \(0.972907\pi\)
\(830\) −32.0366 + 47.9462i −1.11201 + 1.66424i
\(831\) −10.1555 10.1689i −0.352289 0.352756i
\(832\) 33.0493i 1.14578i
\(833\) 0 0
\(834\) −4.87328 + 11.7432i −0.168748 + 0.406632i
\(835\) −23.1910 + 55.9881i −0.802559 + 1.93755i
\(836\) −0.138863 0.0927852i −0.00480267 0.00320904i
\(837\) 5.77119 13.8550i 0.199481 0.478898i
\(838\) −8.91178 44.8026i −0.307852 1.54768i
\(839\) 16.4446 10.9879i 0.567731 0.379346i −0.238325 0.971186i \(-0.576598\pi\)
0.806056 + 0.591840i \(0.201598\pi\)
\(840\) −17.3657 + 25.9524i −0.599174 + 0.895444i
\(841\) −32.2093 + 13.3415i −1.11067 + 0.460053i
\(842\) −20.3896 + 8.44564i −0.702671 + 0.291056i
\(843\) −12.7624 + 19.0730i −0.439561 + 0.656908i
\(844\) −1.52353 + 1.01799i −0.0524422 + 0.0350407i
\(845\) −3.89185 19.5656i −0.133884 0.673078i
\(846\) 13.6582 + 0.0180859i 0.469580 + 0.000621805i
\(847\) −14.8567 9.92694i −0.510483 0.341094i
\(848\) 10.2870 24.8350i 0.353257 0.852837i
\(849\) −9.31634 + 22.4496i −0.319736 + 0.770468i
\(850\) 0 0
\(851\) 1.82575i 0.0625858i
\(852\) 0.312406 + 0.312820i 0.0107029 + 0.0107170i
\(853\) −3.43080 + 5.13456i −0.117469 + 0.175804i −0.885544 0.464555i \(-0.846214\pi\)
0.768076 + 0.640359i \(0.221214\pi\)
\(854\) 12.9745 12.9745i 0.443977 0.443977i
\(855\) −6.56600 4.39985i −0.224553 0.150472i
\(856\) −2.87643 4.30489i −0.0983145 0.147138i
\(857\) −25.5035 5.07296i −0.871184 0.173289i −0.260798 0.965393i \(-0.583986\pi\)
−0.610386 + 0.792104i \(0.708986\pi\)
\(858\) −18.3574 0.0121542i −0.626712 0.000414937i
\(859\) 1.25664 + 3.03380i 0.0428761 + 0.103512i 0.943867 0.330326i \(-0.107159\pi\)
−0.900991 + 0.433838i \(0.857159\pi\)
\(860\) 0.799849 4.02111i 0.0272746 0.137119i
\(861\) 2.23687 + 11.2845i 0.0762322 + 0.384576i
\(862\) −16.3462 + 3.25147i −0.556755 + 0.110745i
\(863\) −10.3922 10.3922i −0.353754 0.353754i 0.507750 0.861504i \(-0.330477\pi\)
−0.861504 + 0.507750i \(0.830477\pi\)
\(864\) −3.37840 0.678985i −0.114936 0.0230995i
\(865\) −32.8040 13.5878i −1.11537 0.462000i
\(866\) −38.9856 −1.32479
\(867\) 0 0
\(868\) −0.731265 −0.0248208
\(869\) −9.07062 3.75718i −0.307700 0.127453i
\(870\) 34.1107 + 51.1236i 1.15646 + 1.73325i
\(871\) −22.4875 22.4875i −0.761958 0.761958i
\(872\) −11.2927 + 2.24626i −0.382419 + 0.0760679i
\(873\) −2.09003 + 10.4351i −0.0707370 + 0.353174i
\(874\) 0.187896 0.944618i 0.00635569 0.0319522i
\(875\) 1.73532 + 4.18943i 0.0586644 + 0.141629i
\(876\) −0.00169332 + 2.55755i −5.72119e−5 + 0.0864117i
\(877\) 13.0801 + 2.60180i 0.441684 + 0.0878565i 0.410923 0.911670i \(-0.365207\pi\)
0.0307618 + 0.999527i \(0.490207\pi\)
\(878\) 6.89290 + 10.3160i 0.232624 + 0.348146i
\(879\) 8.95256 44.8523i 0.301962 1.51283i
\(880\) −15.0076 + 15.0076i −0.505907 + 0.505907i
\(881\) 10.9553 16.3958i 0.369094 0.552389i −0.599709 0.800218i \(-0.704717\pi\)
0.968804 + 0.247829i \(0.0797172\pi\)
\(882\) −9.47622 + 3.91048i −0.319081 + 0.131673i
\(883\) 44.5932i 1.50068i 0.661051 + 0.750341i \(0.270111\pi\)
−0.661051 + 0.750341i \(0.729889\pi\)
\(884\) 0 0
\(885\) 29.7401 + 12.3418i 0.999702 + 0.414866i
\(886\) 10.5118 25.3778i 0.353152 0.852584i
\(887\) 13.8993 + 9.28722i 0.466693 + 0.311834i 0.766590 0.642137i \(-0.221952\pi\)
−0.299896 + 0.953972i \(0.596952\pi\)
\(888\) 10.4432 4.31764i 0.350452 0.144890i
\(889\) 5.18067 + 26.0450i 0.173754 + 0.873522i
\(890\) −17.8572 + 11.9318i −0.598575 + 0.399955i
\(891\) −2.93181 + 14.5379i −0.0982194 + 0.487038i
\(892\) −0.263753 + 0.109250i −0.00883111 + 0.00365797i
\(893\) −2.49580 + 1.03380i −0.0835189 + 0.0345947i
\(894\) 13.1759 + 8.81646i 0.440667 + 0.294866i
\(895\) 2.14810 1.43532i 0.0718032 0.0479773i
\(896\) −5.13597 25.8203i −0.171581 0.862594i
\(897\) −2.24235 5.42367i −0.0748699 0.181091i
\(898\) 32.9873 + 22.0414i 1.10080 + 0.735532i
\(899\) 8.83348 21.3259i 0.294613 0.711259i
\(900\) 1.07488 1.07204i 0.0358293 0.0357345i
\(901\) 0 0
\(902\) 7.38418i 0.245866i
\(903\) 30.2557 30.2157i 1.00685 1.00552i
\(904\) −25.0902 + 37.5501i −0.834487 + 1.24890i
\(905\) 3.09374 3.09374i 0.102839 0.102839i
\(906\) 37.6005 + 7.50509i 1.24919 + 0.249340i
\(907\) 5.11877 + 7.66078i 0.169966 + 0.254372i 0.906668 0.421846i \(-0.138618\pi\)
−0.736702 + 0.676218i \(0.763618\pi\)
\(908\) 0.161686 + 0.0321614i 0.00536574 + 0.00106731i
\(909\) −4.30683 + 10.3588i −0.142848 + 0.343579i
\(910\) 16.1986 + 39.1068i 0.536978 + 1.29638i
\(911\) 0.391215 1.96677i 0.0129615 0.0651621i −0.973763 0.227564i \(-0.926924\pi\)
0.986725 + 0.162402i \(0.0519240\pi\)
\(912\) 6.19194 1.22739i 0.205036 0.0406430i
\(913\) −20.9894 + 4.17505i −0.694648 + 0.138174i
\(914\) 10.8464 + 10.8464i 0.358768 + 0.358768i
\(915\) 25.7038 17.1501i 0.849742 0.566966i
\(916\) 1.17955 + 0.488587i 0.0389735 + 0.0161434i
\(917\) 7.60583 0.251167
\(918\) 0 0
\(919\) 4.18774 0.138141 0.0690703 0.997612i \(-0.477997\pi\)
0.0690703 + 0.997612i \(0.477997\pi\)
\(920\) −5.92020 2.45223i −0.195183 0.0808475i
\(921\) 35.2005 23.4865i 1.15990 0.773907i
\(922\) −10.1727 10.1727i −0.335021 0.335021i
\(923\) −9.42688 + 1.87512i −0.310290 + 0.0617204i
\(924\) 0.708785 0.140498i 0.0233173 0.00462206i
\(925\) −2.00304 + 10.0700i −0.0658595 + 0.331098i
\(926\) 12.7673 + 30.8229i 0.419558 + 1.01290i
\(927\) 10.7502 25.8564i 0.353083 0.849234i
\(928\) −5.19789 1.03392i −0.170629 0.0339402i
\(929\) 13.5854 + 20.3321i 0.445724 + 0.667073i 0.984502 0.175375i \(-0.0561137\pi\)
−0.538778 + 0.842448i \(0.681114\pi\)
\(930\) −21.7842 4.34814i −0.714332 0.142581i
\(931\) 1.43373 1.43373i 0.0469885 0.0469885i
\(932\) 0.934927 1.39922i 0.0306245 0.0458329i
\(933\) 28.5997 28.5619i 0.936312 0.935073i
\(934\) 37.6099i 1.23063i
\(935\) 0 0
\(936\) 25.7205 25.6524i 0.840699 0.838476i
\(937\) 19.3663 46.7545i 0.632671 1.52740i −0.203582 0.979058i \(-0.565258\pi\)
0.836252 0.548345i \(-0.184742\pi\)
\(938\) 18.7745 + 12.5447i 0.613010 + 0.409600i
\(939\) −1.06851 2.58445i −0.0348695 0.0843403i
\(940\) −0.218631 1.09913i −0.00713095 0.0358497i
\(941\) −2.99651 + 2.00221i −0.0976836 + 0.0652701i −0.603453 0.797399i \(-0.706209\pi\)
0.505769 + 0.862669i \(0.331209\pi\)
\(942\) 5.17001 + 3.45944i 0.168448 + 0.112715i
\(943\) −2.18105 + 0.903419i −0.0710246 + 0.0294194i
\(944\) −23.7584 + 9.84105i −0.773270 + 0.320299i
\(945\) 33.5527 6.60480i 1.09147 0.214854i
\(946\) 22.8209 15.2484i 0.741970 0.495769i
\(947\) −5.22957 26.2908i −0.169938 0.854336i −0.967843 0.251554i \(-0.919059\pi\)
0.797905 0.602783i \(-0.205941\pi\)
\(948\) −1.11945 + 0.462824i −0.0363581 + 0.0150318i
\(949\) −46.2320 30.8912i −1.50075 1.00277i
\(950\) −2.07269 + 5.00393i −0.0672471 + 0.162349i
\(951\) 39.0103 + 16.1889i 1.26500 + 0.524960i
\(952\) 0 0
\(953\) 24.2594i 0.785838i −0.919573 0.392919i \(-0.871465\pi\)
0.919573 0.392919i \(-0.128535\pi\)
\(954\) −25.6985 + 10.6048i −0.832021 + 0.343344i
\(955\) 1.22234 1.82937i 0.0395541 0.0591969i
\(956\) −1.96792 + 1.96792i −0.0636470 + 0.0636470i
\(957\) −4.46457 + 22.3675i −0.144319 + 0.723039i
\(958\) 7.00474 + 10.4833i 0.226313 + 0.338701i
\(959\) −30.9862 6.16353i −1.00060 0.199031i
\(960\) 0.0261636 39.5170i 0.000844428 1.27541i
\(961\) −8.67037 20.9321i −0.279689 0.675230i
\(962\) 2.98848 15.0241i 0.0963525 0.484397i
\(963\) −1.11350 + 5.55948i −0.0358822 + 0.179152i
\(964\) 0.324012 0.0644499i 0.0104357 0.00207579i
\(965\) −25.0752 25.0752i −0.807200 0.807200i
\(966\) 2.31278 + 3.46629i 0.0744125 + 0.111526i
\(967\) 12.2636 + 5.07976i 0.394372 + 0.163354i 0.571051 0.820914i \(-0.306536\pi\)
−0.176680 + 0.984268i \(0.556536\pi\)
\(968\) 22.6952 0.729452
\(969\) 0 0
\(970\) 15.7512 0.505739
\(971\) 14.2905 + 5.91933i 0.458605 + 0.189960i 0.600012 0.799991i \(-0.295163\pi\)
−0.141407 + 0.989952i \(0.545163\pi\)
\(972\) 1.01155 + 1.52479i 0.0324454 + 0.0489077i
\(973\) 7.69338 + 7.69338i 0.246638 + 0.246638i
\(974\) −55.3982 + 11.0194i −1.77507 + 0.353084i
\(975\) 6.41741 + 32.3745i 0.205522 + 1.03681i
\(976\) −4.81450 + 24.2041i −0.154108 + 0.774755i
\(977\) −7.72995 18.6618i −0.247303 0.597042i 0.750670 0.660677i \(-0.229731\pi\)
−0.997973 + 0.0636347i \(0.979731\pi\)
\(978\) −2.79980 0.00185371i −0.0895277 5.92750e-5i
\(979\) −7.81735 1.55497i −0.249844 0.0496970i
\(980\) 0.467306 + 0.699373i 0.0149275 + 0.0223406i
\(981\) 10.4748 + 7.01910i 0.334434 + 0.224103i
\(982\) −13.0385 + 13.0385i −0.416075 + 0.416075i
\(983\) 14.4927 21.6898i 0.462244 0.691797i −0.524984 0.851112i \(-0.675929\pi\)
0.987228 + 0.159315i \(0.0509286\pi\)
\(984\) −10.3254 10.3391i −0.329162 0.329598i
\(985\) 70.9874i 2.26185i
\(986\) 0 0
\(987\) 4.47994 10.7953i 0.142598 0.343618i
\(988\) 0.171435 0.413882i 0.00545409 0.0131673i
\(989\) 7.29590 + 4.87497i 0.231996 + 0.155015i
\(990\) 21.9499 + 0.0290655i 0.697615 + 0.000923762i
\(991\) −7.04470 35.4161i −0.223782 1.12503i −0.915332 0.402701i \(-0.868072\pi\)
0.691549 0.722329i \(-0.256928\pi\)
\(992\) 1.59273 1.06423i 0.0505692 0.0337892i
\(993\) 29.3447 43.8545i 0.931225 1.39168i
\(994\) 6.30488 2.61157i 0.199979 0.0828339i
\(995\) 67.9824 28.1592i 2.15519 0.892707i
\(996\) −1.46840 + 2.19447i −0.0465280 + 0.0695344i
\(997\) −12.2838 + 8.20777i −0.389032 + 0.259943i −0.734669 0.678425i \(-0.762663\pi\)
0.345638 + 0.938368i \(0.387663\pi\)
\(998\) 10.5365 + 52.9708i 0.333529 + 1.67676i
\(999\) −11.4240 4.75858i −0.361439 0.150555i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.i.c.653.1 32
3.2 odd 2 inner 867.2.i.c.653.4 32
17.2 even 8 867.2.i.b.827.4 32
17.3 odd 16 51.2.i.a.29.1 32
17.4 even 4 867.2.i.h.503.4 32
17.5 odd 16 inner 867.2.i.c.158.4 32
17.6 odd 16 867.2.i.i.65.1 32
17.7 odd 16 867.2.i.f.224.4 32
17.8 even 8 867.2.i.f.329.1 32
17.9 even 8 867.2.i.g.329.1 32
17.10 odd 16 867.2.i.g.224.4 32
17.11 odd 16 867.2.i.b.65.1 32
17.12 odd 16 867.2.i.d.158.4 32
17.13 even 4 51.2.i.a.44.4 yes 32
17.14 odd 16 867.2.i.h.131.1 32
17.15 even 8 867.2.i.i.827.4 32
17.16 even 2 867.2.i.d.653.1 32
51.2 odd 8 867.2.i.b.827.1 32
51.5 even 16 inner 867.2.i.c.158.1 32
51.8 odd 8 867.2.i.f.329.4 32
51.11 even 16 867.2.i.b.65.4 32
51.14 even 16 867.2.i.h.131.4 32
51.20 even 16 51.2.i.a.29.4 yes 32
51.23 even 16 867.2.i.i.65.4 32
51.26 odd 8 867.2.i.g.329.4 32
51.29 even 16 867.2.i.d.158.1 32
51.32 odd 8 867.2.i.i.827.1 32
51.38 odd 4 867.2.i.h.503.1 32
51.41 even 16 867.2.i.f.224.1 32
51.44 even 16 867.2.i.g.224.1 32
51.47 odd 4 51.2.i.a.44.1 yes 32
51.50 odd 2 867.2.i.d.653.4 32
68.3 even 16 816.2.cj.c.641.4 32
68.47 odd 4 816.2.cj.c.401.3 32
204.47 even 4 816.2.cj.c.401.4 32
204.71 odd 16 816.2.cj.c.641.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.i.a.29.1 32 17.3 odd 16
51.2.i.a.29.4 yes 32 51.20 even 16
51.2.i.a.44.1 yes 32 51.47 odd 4
51.2.i.a.44.4 yes 32 17.13 even 4
816.2.cj.c.401.3 32 68.47 odd 4
816.2.cj.c.401.4 32 204.47 even 4
816.2.cj.c.641.3 32 204.71 odd 16
816.2.cj.c.641.4 32 68.3 even 16
867.2.i.b.65.1 32 17.11 odd 16
867.2.i.b.65.4 32 51.11 even 16
867.2.i.b.827.1 32 51.2 odd 8
867.2.i.b.827.4 32 17.2 even 8
867.2.i.c.158.1 32 51.5 even 16 inner
867.2.i.c.158.4 32 17.5 odd 16 inner
867.2.i.c.653.1 32 1.1 even 1 trivial
867.2.i.c.653.4 32 3.2 odd 2 inner
867.2.i.d.158.1 32 51.29 even 16
867.2.i.d.158.4 32 17.12 odd 16
867.2.i.d.653.1 32 17.16 even 2
867.2.i.d.653.4 32 51.50 odd 2
867.2.i.f.224.1 32 51.41 even 16
867.2.i.f.224.4 32 17.7 odd 16
867.2.i.f.329.1 32 17.8 even 8
867.2.i.f.329.4 32 51.8 odd 8
867.2.i.g.224.1 32 51.44 even 16
867.2.i.g.224.4 32 17.10 odd 16
867.2.i.g.329.1 32 17.9 even 8
867.2.i.g.329.4 32 51.26 odd 8
867.2.i.h.131.1 32 17.14 odd 16
867.2.i.h.131.4 32 51.14 even 16
867.2.i.h.503.1 32 51.38 odd 4
867.2.i.h.503.4 32 17.4 even 4
867.2.i.i.65.1 32 17.6 odd 16
867.2.i.i.65.4 32 51.23 even 16
867.2.i.i.827.1 32 51.32 odd 8
867.2.i.i.827.4 32 17.15 even 8