Properties

Label 867.2.e.i.829.4
Level $867$
Weight $2$
Character 867.829
Analytic conductor $6.923$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(616,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.616"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.e (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 829.4
Root \(0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 867.829
Dual form 867.2.e.i.616.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.84776i q^{2} +(0.707107 + 0.707107i) q^{3} -1.41421 q^{4} +(-1.14065 - 1.14065i) q^{5} +(-1.30656 + 1.30656i) q^{6} +(0.107651 - 0.107651i) q^{7} +1.08239i q^{8} +1.00000i q^{9} +(2.10765 - 2.10765i) q^{10} +(-3.55487 + 3.55487i) q^{11} +(-1.00000 - 1.00000i) q^{12} +3.94495 q^{13} +(0.198912 + 0.198912i) q^{14} -1.61313i q^{15} -4.82843 q^{16} -1.84776 q^{18} +6.57900i q^{19} +(1.61313 + 1.61313i) q^{20} +0.152241 q^{21} +(-6.56854 - 6.56854i) q^{22} +(-2.43835 + 2.43835i) q^{23} +(-0.765367 + 0.765367i) q^{24} -2.39782i q^{25} +7.28931i q^{26} +(-0.707107 + 0.707107i) q^{27} +(-0.152241 + 0.152241i) q^{28} +(-1.58579 - 1.58579i) q^{29} +2.98067 q^{30} +(1.82042 + 1.82042i) q^{31} -6.75699i q^{32} -5.02734 q^{33} -0.245584 q^{35} -1.41421i q^{36} +(-7.54920 - 7.54920i) q^{37} -12.1564 q^{38} +(2.78950 + 2.78950i) q^{39} +(1.23463 - 1.23463i) q^{40} +(-0.195705 + 0.195705i) q^{41} +0.281305i q^{42} +6.34277i q^{43} +(5.02734 - 5.02734i) q^{44} +(1.14065 - 1.14065i) q^{45} +(-4.50548 - 4.50548i) q^{46} -9.82164 q^{47} +(-3.41421 - 3.41421i) q^{48} +6.97682i q^{49} +4.43060 q^{50} -5.57900 q^{52} +2.12612i q^{53} +(-1.30656 - 1.30656i) q^{54} +8.10973 q^{55} +(0.116520 + 0.116520i) q^{56} +(-4.65205 + 4.65205i) q^{57} +(2.93015 - 2.93015i) q^{58} +1.32381i q^{59} +2.28130i q^{60} +(5.85369 - 5.85369i) q^{61} +(-3.36370 + 3.36370i) q^{62} +(0.107651 + 0.107651i) q^{63} +2.82843 q^{64} +(-4.49981 - 4.49981i) q^{65} -9.28931i q^{66} +7.10973 q^{67} -3.44834 q^{69} -0.453780i q^{70} +(4.62951 + 4.62951i) q^{71} -1.08239 q^{72} +(5.88764 + 5.88764i) q^{73} +(13.9491 - 13.9491i) q^{74} +(1.69552 - 1.69552i) q^{75} -9.30411i q^{76} +0.765367i q^{77} +(-5.15432 + 5.15432i) q^{78} +(-0.376412 + 0.376412i) q^{79} +(5.50756 + 5.50756i) q^{80} -1.00000 q^{81} +(-0.361616 - 0.361616i) q^{82} -2.20345i q^{83} -0.215301 q^{84} -11.7199 q^{86} -2.24264i q^{87} +(-3.84776 - 3.84776i) q^{88} +7.64847 q^{89} +(2.10765 + 2.10765i) q^{90} +(0.424676 - 0.424676i) q^{91} +(3.44834 - 3.44834i) q^{92} +2.57446i q^{93} -18.1480i q^{94} +(7.50435 - 7.50435i) q^{95} +(4.77791 - 4.77791i) q^{96} +(2.55007 + 2.55007i) q^{97} -12.8915 q^{98} +(-3.55487 - 3.55487i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{10} - 8 q^{11} - 8 q^{12} + 8 q^{13} - 8 q^{14} - 16 q^{16} - 8 q^{20} + 16 q^{21} - 16 q^{22} - 16 q^{28} - 24 q^{29} + 16 q^{30} + 32 q^{31} - 8 q^{33} + 32 q^{35} - 16 q^{37} - 32 q^{38}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.84776i 1.30656i 0.757115 + 0.653281i \(0.226608\pi\)
−0.757115 + 0.653281i \(0.773392\pi\)
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) −1.41421 −0.707107
\(5\) −1.14065 1.14065i −0.510115 0.510115i 0.404446 0.914562i \(-0.367464\pi\)
−0.914562 + 0.404446i \(0.867464\pi\)
\(6\) −1.30656 + 1.30656i −0.533402 + 0.533402i
\(7\) 0.107651 0.107651i 0.0406881 0.0406881i −0.686470 0.727158i \(-0.740841\pi\)
0.727158 + 0.686470i \(0.240841\pi\)
\(8\) 1.08239i 0.382683i
\(9\) 1.00000i 0.333333i
\(10\) 2.10765 2.10765i 0.666498 0.666498i
\(11\) −3.55487 + 3.55487i −1.07183 + 1.07183i −0.0746204 + 0.997212i \(0.523774\pi\)
−0.997212 + 0.0746204i \(0.976226\pi\)
\(12\) −1.00000 1.00000i −0.288675 0.288675i
\(13\) 3.94495 1.09413 0.547066 0.837090i \(-0.315745\pi\)
0.547066 + 0.837090i \(0.315745\pi\)
\(14\) 0.198912 + 0.198912i 0.0531616 + 0.0531616i
\(15\) 1.61313i 0.416507i
\(16\) −4.82843 −1.20711
\(17\) 0 0
\(18\) −1.84776 −0.435521
\(19\) 6.57900i 1.50933i 0.656113 + 0.754663i \(0.272200\pi\)
−0.656113 + 0.754663i \(0.727800\pi\)
\(20\) 1.61313 + 1.61313i 0.360706 + 0.360706i
\(21\) 0.152241 0.0332217
\(22\) −6.56854 6.56854i −1.40042 1.40042i
\(23\) −2.43835 + 2.43835i −0.508430 + 0.508430i −0.914044 0.405614i \(-0.867058\pi\)
0.405614 + 0.914044i \(0.367058\pi\)
\(24\) −0.765367 + 0.765367i −0.156230 + 0.156230i
\(25\) 2.39782i 0.479565i
\(26\) 7.28931i 1.42955i
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) −0.152241 + 0.152241i −0.0287708 + 0.0287708i
\(29\) −1.58579 1.58579i −0.294473 0.294473i 0.544371 0.838844i \(-0.316768\pi\)
−0.838844 + 0.544371i \(0.816768\pi\)
\(30\) 2.98067 0.544193
\(31\) 1.82042 + 1.82042i 0.326957 + 0.326957i 0.851428 0.524471i \(-0.175737\pi\)
−0.524471 + 0.851428i \(0.675737\pi\)
\(32\) 6.75699i 1.19448i
\(33\) −5.02734 −0.875147
\(34\) 0 0
\(35\) −0.245584 −0.0415112
\(36\) 1.41421i 0.235702i
\(37\) −7.54920 7.54920i −1.24108 1.24108i −0.959553 0.281529i \(-0.909159\pi\)
−0.281529 0.959553i \(-0.590841\pi\)
\(38\) −12.1564 −1.97203
\(39\) 2.78950 + 2.78950i 0.446677 + 0.446677i
\(40\) 1.23463 1.23463i 0.195213 0.195213i
\(41\) −0.195705 + 0.195705i −0.0305640 + 0.0305640i −0.722224 0.691660i \(-0.756880\pi\)
0.691660 + 0.722224i \(0.256880\pi\)
\(42\) 0.281305i 0.0434062i
\(43\) 6.34277i 0.967264i 0.875272 + 0.483632i \(0.160683\pi\)
−0.875272 + 0.483632i \(0.839317\pi\)
\(44\) 5.02734 5.02734i 0.757900 0.757900i
\(45\) 1.14065 1.14065i 0.170038 0.170038i
\(46\) −4.50548 4.50548i −0.664296 0.664296i
\(47\) −9.82164 −1.43263 −0.716317 0.697775i \(-0.754173\pi\)
−0.716317 + 0.697775i \(0.754173\pi\)
\(48\) −3.41421 3.41421i −0.492799 0.492799i
\(49\) 6.97682i 0.996689i
\(50\) 4.43060 0.626582
\(51\) 0 0
\(52\) −5.57900 −0.773668
\(53\) 2.12612i 0.292045i 0.989281 + 0.146023i \(0.0466472\pi\)
−0.989281 + 0.146023i \(0.953353\pi\)
\(54\) −1.30656 1.30656i −0.177801 0.177801i
\(55\) 8.10973 1.09352
\(56\) 0.116520 + 0.116520i 0.0155707 + 0.0155707i
\(57\) −4.65205 + 4.65205i −0.616180 + 0.616180i
\(58\) 2.93015 2.93015i 0.384748 0.384748i
\(59\) 1.32381i 0.172346i 0.996280 + 0.0861729i \(0.0274638\pi\)
−0.996280 + 0.0861729i \(0.972536\pi\)
\(60\) 2.28130i 0.294515i
\(61\) 5.85369 5.85369i 0.749488 0.749488i −0.224895 0.974383i \(-0.572204\pi\)
0.974383 + 0.224895i \(0.0722040\pi\)
\(62\) −3.36370 + 3.36370i −0.427190 + 0.427190i
\(63\) 0.107651 + 0.107651i 0.0135627 + 0.0135627i
\(64\) 2.82843 0.353553
\(65\) −4.49981 4.49981i −0.558133 0.558133i
\(66\) 9.28931i 1.14344i
\(67\) 7.10973 0.868592 0.434296 0.900770i \(-0.356997\pi\)
0.434296 + 0.900770i \(0.356997\pi\)
\(68\) 0 0
\(69\) −3.44834 −0.415132
\(70\) 0.453780i 0.0542370i
\(71\) 4.62951 + 4.62951i 0.549422 + 0.549422i 0.926274 0.376851i \(-0.122993\pi\)
−0.376851 + 0.926274i \(0.622993\pi\)
\(72\) −1.08239 −0.127561
\(73\) 5.88764 + 5.88764i 0.689096 + 0.689096i 0.962032 0.272936i \(-0.0879947\pi\)
−0.272936 + 0.962032i \(0.587995\pi\)
\(74\) 13.9491 13.9491i 1.62155 1.62155i
\(75\) 1.69552 1.69552i 0.195782 0.195782i
\(76\) 9.30411i 1.06725i
\(77\) 0.765367i 0.0872216i
\(78\) −5.15432 + 5.15432i −0.583612 + 0.583612i
\(79\) −0.376412 + 0.376412i −0.0423496 + 0.0423496i −0.727964 0.685615i \(-0.759533\pi\)
0.685615 + 0.727964i \(0.259533\pi\)
\(80\) 5.50756 + 5.50756i 0.615764 + 0.615764i
\(81\) −1.00000 −0.111111
\(82\) −0.361616 0.361616i −0.0399338 0.0399338i
\(83\) 2.20345i 0.241860i −0.992661 0.120930i \(-0.961412\pi\)
0.992661 0.120930i \(-0.0385876\pi\)
\(84\) −0.215301 −0.0234913
\(85\) 0 0
\(86\) −11.7199 −1.26379
\(87\) 2.24264i 0.240436i
\(88\) −3.84776 3.84776i −0.410172 0.410172i
\(89\) 7.64847 0.810737 0.405368 0.914153i \(-0.367143\pi\)
0.405368 + 0.914153i \(0.367143\pi\)
\(90\) 2.10765 + 2.10765i 0.222166 + 0.222166i
\(91\) 0.424676 0.424676i 0.0445181 0.0445181i
\(92\) 3.44834 3.44834i 0.359514 0.359514i
\(93\) 2.57446i 0.266959i
\(94\) 18.1480i 1.87183i
\(95\) 7.50435 7.50435i 0.769930 0.769930i
\(96\) 4.77791 4.77791i 0.487643 0.487643i
\(97\) 2.55007 + 2.55007i 0.258920 + 0.258920i 0.824615 0.565695i \(-0.191392\pi\)
−0.565695 + 0.824615i \(0.691392\pi\)
\(98\) −12.8915 −1.30224
\(99\) −3.55487 3.55487i −0.357277 0.357277i
\(100\) 3.39104i 0.339104i
\(101\) 9.13707 0.909173 0.454586 0.890703i \(-0.349787\pi\)
0.454586 + 0.890703i \(0.349787\pi\)
\(102\) 0 0
\(103\) 7.57862 0.746744 0.373372 0.927682i \(-0.378202\pi\)
0.373372 + 0.927682i \(0.378202\pi\)
\(104\) 4.26998i 0.418706i
\(105\) −0.173654 0.173654i −0.0169469 0.0169469i
\(106\) −3.92856 −0.381575
\(107\) 13.0579 + 13.0579i 1.26235 + 1.26235i 0.949949 + 0.312404i \(0.101134\pi\)
0.312404 + 0.949949i \(0.398866\pi\)
\(108\) 1.00000 1.00000i 0.0962250 0.0962250i
\(109\) 7.59379 7.59379i 0.727354 0.727354i −0.242738 0.970092i \(-0.578046\pi\)
0.970092 + 0.242738i \(0.0780456\pi\)
\(110\) 14.9848i 1.42875i
\(111\) 10.6762i 1.01334i
\(112\) −0.519783 + 0.519783i −0.0491149 + 0.0491149i
\(113\) −1.18438 + 1.18438i −0.111417 + 0.111417i −0.760617 0.649200i \(-0.775104\pi\)
0.649200 + 0.760617i \(0.275104\pi\)
\(114\) −8.59588 8.59588i −0.805077 0.805077i
\(115\) 5.56261 0.518716
\(116\) 2.24264 + 2.24264i 0.208224 + 0.208224i
\(117\) 3.94495i 0.364711i
\(118\) −2.44609 −0.225181
\(119\) 0 0
\(120\) 1.74603 0.159390
\(121\) 14.2741i 1.29765i
\(122\) 10.8162 + 10.8162i 0.979253 + 0.979253i
\(123\) −0.276769 −0.0249554
\(124\) −2.57446 2.57446i −0.231194 0.231194i
\(125\) −8.43835 + 8.43835i −0.754749 + 0.754749i
\(126\) −0.198912 + 0.198912i −0.0177205 + 0.0177205i
\(127\) 12.1812i 1.08090i −0.841375 0.540452i \(-0.818253\pi\)
0.841375 0.540452i \(-0.181747\pi\)
\(128\) 8.28772i 0.732538i
\(129\) −4.48502 + 4.48502i −0.394884 + 0.394884i
\(130\) 8.31457 8.31457i 0.729236 0.729236i
\(131\) 7.39008 + 7.39008i 0.645674 + 0.645674i 0.951945 0.306270i \(-0.0990811\pi\)
−0.306270 + 0.951945i \(0.599081\pi\)
\(132\) 7.10973 0.618823
\(133\) 0.708233 + 0.708233i 0.0614116 + 0.0614116i
\(134\) 13.1371i 1.13487i
\(135\) 1.61313 0.138836
\(136\) 0 0
\(137\) 13.4928 1.15276 0.576382 0.817180i \(-0.304464\pi\)
0.576382 + 0.817180i \(0.304464\pi\)
\(138\) 6.37170i 0.542395i
\(139\) −3.76745 3.76745i −0.319551 0.319551i 0.529044 0.848595i \(-0.322551\pi\)
−0.848595 + 0.529044i \(0.822551\pi\)
\(140\) 0.347308 0.0293529
\(141\) −6.94495 6.94495i −0.584870 0.584870i
\(142\) −8.55423 + 8.55423i −0.717855 + 0.717855i
\(143\) −14.0238 + 14.0238i −1.17273 + 1.17273i
\(144\) 4.82843i 0.402369i
\(145\) 3.61766i 0.300430i
\(146\) −10.8789 + 10.8789i −0.900348 + 0.900348i
\(147\) −4.93336 + 4.93336i −0.406897 + 0.406897i
\(148\) 10.6762 + 10.6762i 0.877577 + 0.877577i
\(149\) −9.31890 −0.763434 −0.381717 0.924279i \(-0.624667\pi\)
−0.381717 + 0.924279i \(0.624667\pi\)
\(150\) 3.13291 + 3.13291i 0.255801 + 0.255801i
\(151\) 11.9632i 0.973555i −0.873526 0.486778i \(-0.838172\pi\)
0.873526 0.486778i \(-0.161828\pi\)
\(152\) −7.12106 −0.577594
\(153\) 0 0
\(154\) −1.41421 −0.113961
\(155\) 4.15293i 0.333571i
\(156\) −3.94495 3.94495i −0.315849 0.315849i
\(157\) 18.1548 1.44891 0.724456 0.689321i \(-0.242091\pi\)
0.724456 + 0.689321i \(0.242091\pi\)
\(158\) −0.695518 0.695518i −0.0553325 0.0553325i
\(159\) −1.50339 + 1.50339i −0.119227 + 0.119227i
\(160\) −7.70737 + 7.70737i −0.609321 + 0.609321i
\(161\) 0.524979i 0.0413741i
\(162\) 1.84776i 0.145174i
\(163\) −14.6530 + 14.6530i −1.14771 + 1.14771i −0.160711 + 0.987002i \(0.551379\pi\)
−0.987002 + 0.160711i \(0.948621\pi\)
\(164\) 0.276769 0.276769i 0.0216120 0.0216120i
\(165\) 5.73445 + 5.73445i 0.446426 + 0.446426i
\(166\) 4.07144 0.316005
\(167\) 5.71965 + 5.71965i 0.442600 + 0.442600i 0.892885 0.450285i \(-0.148678\pi\)
−0.450285 + 0.892885i \(0.648678\pi\)
\(168\) 0.164784i 0.0127134i
\(169\) 2.56261 0.197124
\(170\) 0 0
\(171\) −6.57900 −0.503109
\(172\) 8.97003i 0.683959i
\(173\) −0.820684 0.820684i −0.0623954 0.0623954i 0.675221 0.737616i \(-0.264048\pi\)
−0.737616 + 0.675221i \(0.764048\pi\)
\(174\) 4.14386 0.314145
\(175\) −0.258127 0.258127i −0.0195126 0.0195126i
\(176\) 17.1644 17.1644i 1.29382 1.29382i
\(177\) −0.936078 + 0.936078i −0.0703599 + 0.0703599i
\(178\) 14.1325i 1.05928i
\(179\) 2.89668i 0.216508i 0.994123 + 0.108254i \(0.0345260\pi\)
−0.994123 + 0.108254i \(0.965474\pi\)
\(180\) −1.61313 + 1.61313i −0.120235 + 0.120235i
\(181\) −0.595875 + 0.595875i −0.0442910 + 0.0442910i −0.728905 0.684614i \(-0.759971\pi\)
0.684614 + 0.728905i \(0.259971\pi\)
\(182\) 0.784699 + 0.784699i 0.0581657 + 0.0581657i
\(183\) 8.27836 0.611954
\(184\) −2.63925 2.63925i −0.194568 0.194568i
\(185\) 17.2220i 1.26619i
\(186\) −4.75699 −0.348799
\(187\) 0 0
\(188\) 13.8899 1.01302
\(189\) 0.152241i 0.0110739i
\(190\) 13.8662 + 13.8662i 1.00596 + 1.00596i
\(191\) −9.97069 −0.721454 −0.360727 0.932671i \(-0.617471\pi\)
−0.360727 + 0.932671i \(0.617471\pi\)
\(192\) 2.00000 + 2.00000i 0.144338 + 0.144338i
\(193\) 2.64047 2.64047i 0.190065 0.190065i −0.605659 0.795724i \(-0.707091\pi\)
0.795724 + 0.605659i \(0.207091\pi\)
\(194\) −4.71191 + 4.71191i −0.338295 + 0.338295i
\(195\) 6.36370i 0.455714i
\(196\) 9.86672i 0.704766i
\(197\) 11.4589 11.4589i 0.816413 0.816413i −0.169174 0.985586i \(-0.554110\pi\)
0.985586 + 0.169174i \(0.0541099\pi\)
\(198\) 6.56854 6.56854i 0.466805 0.466805i
\(199\) −11.6485 11.6485i −0.825738 0.825738i 0.161186 0.986924i \(-0.448468\pi\)
−0.986924 + 0.161186i \(0.948468\pi\)
\(200\) 2.59539 0.183522
\(201\) 5.02734 + 5.02734i 0.354601 + 0.354601i
\(202\) 16.8831i 1.18789i
\(203\) −0.341422 −0.0239631
\(204\) 0 0
\(205\) 0.446463 0.0311823
\(206\) 14.0035i 0.975668i
\(207\) −2.43835 2.43835i −0.169477 0.169477i
\(208\) −19.0479 −1.32073
\(209\) −23.3875 23.3875i −1.61774 1.61774i
\(210\) 0.320871 0.320871i 0.0221422 0.0221422i
\(211\) −7.55807 + 7.55807i −0.520319 + 0.520319i −0.917668 0.397349i \(-0.869930\pi\)
0.397349 + 0.917668i \(0.369930\pi\)
\(212\) 3.00679i 0.206507i
\(213\) 6.54712i 0.448601i
\(214\) −24.1278 + 24.1278i −1.64934 + 1.64934i
\(215\) 7.23490 7.23490i 0.493416 0.493416i
\(216\) −0.765367 0.765367i −0.0520766 0.0520766i
\(217\) 0.391939 0.0266065
\(218\) 14.0315 + 14.0315i 0.950333 + 0.950333i
\(219\) 8.32638i 0.562645i
\(220\) −11.4689 −0.773233
\(221\) 0 0
\(222\) 19.7270 1.32399
\(223\) 5.41650i 0.362715i −0.983417 0.181358i \(-0.941951\pi\)
0.983417 0.181358i \(-0.0580492\pi\)
\(224\) −0.727394 0.727394i −0.0486010 0.0486010i
\(225\) 2.39782 0.159855
\(226\) −2.18845 2.18845i −0.145574 0.145574i
\(227\) −8.69647 + 8.69647i −0.577205 + 0.577205i −0.934132 0.356927i \(-0.883824\pi\)
0.356927 + 0.934132i \(0.383824\pi\)
\(228\) 6.57900 6.57900i 0.435705 0.435705i
\(229\) 30.1158i 1.99011i 0.0993441 + 0.995053i \(0.468326\pi\)
−0.0993441 + 0.995053i \(0.531674\pi\)
\(230\) 10.2784i 0.677735i
\(231\) −0.541196 + 0.541196i −0.0356081 + 0.0356081i
\(232\) 1.71644 1.71644i 0.112690 0.112690i
\(233\) 6.21209 + 6.21209i 0.406968 + 0.406968i 0.880680 0.473712i \(-0.157086\pi\)
−0.473712 + 0.880680i \(0.657086\pi\)
\(234\) −7.28931 −0.476517
\(235\) 11.2031 + 11.2031i 0.730808 + 0.730808i
\(236\) 1.87216i 0.121867i
\(237\) −0.532327 −0.0345783
\(238\) 0 0
\(239\) 14.6501 0.947634 0.473817 0.880623i \(-0.342876\pi\)
0.473817 + 0.880623i \(0.342876\pi\)
\(240\) 7.78886i 0.502769i
\(241\) 11.9892 + 11.9892i 0.772290 + 0.772290i 0.978506 0.206216i \(-0.0661151\pi\)
−0.206216 + 0.978506i \(0.566115\pi\)
\(242\) 26.3752 1.69546
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) −8.27836 + 8.27836i −0.529968 + 0.529968i
\(245\) 7.95813 7.95813i 0.508426 0.508426i
\(246\) 0.511402i 0.0326058i
\(247\) 25.9538i 1.65140i
\(248\) −1.97041 + 1.97041i −0.125121 + 0.125121i
\(249\) 1.55807 1.55807i 0.0987389 0.0987389i
\(250\) −15.5920 15.5920i −0.986127 0.986127i
\(251\) 13.9453 0.880217 0.440109 0.897945i \(-0.354940\pi\)
0.440109 + 0.897945i \(0.354940\pi\)
\(252\) −0.152241 0.152241i −0.00959028 0.00959028i
\(253\) 17.3360i 1.08990i
\(254\) 22.5079 1.41227
\(255\) 0 0
\(256\) 20.9706 1.31066
\(257\) 19.6603i 1.22638i −0.789936 0.613189i \(-0.789887\pi\)
0.789936 0.613189i \(-0.210113\pi\)
\(258\) −8.28723 8.28723i −0.515940 0.515940i
\(259\) −1.62535 −0.100994
\(260\) 6.36370 + 6.36370i 0.394660 + 0.394660i
\(261\) 1.58579 1.58579i 0.0981577 0.0981577i
\(262\) −13.6551 + 13.6551i −0.843614 + 0.843614i
\(263\) 27.8721i 1.71867i −0.511415 0.859334i \(-0.670879\pi\)
0.511415 0.859334i \(-0.329121\pi\)
\(264\) 5.44155i 0.334904i
\(265\) 2.42516 2.42516i 0.148977 0.148977i
\(266\) −1.30864 + 1.30864i −0.0802381 + 0.0802381i
\(267\) 5.40829 + 5.40829i 0.330982 + 0.330982i
\(268\) −10.0547 −0.614187
\(269\) −0.145188 0.145188i −0.00885228 0.00885228i 0.702667 0.711519i \(-0.251992\pi\)
−0.711519 + 0.702667i \(0.751992\pi\)
\(270\) 2.98067i 0.181398i
\(271\) −8.21077 −0.498768 −0.249384 0.968405i \(-0.580228\pi\)
−0.249384 + 0.968405i \(0.580228\pi\)
\(272\) 0 0
\(273\) 0.600582 0.0363489
\(274\) 24.9314i 1.50616i
\(275\) 8.52395 + 8.52395i 0.514013 + 0.514013i
\(276\) 4.87669 0.293542
\(277\) 16.6649 + 16.6649i 1.00129 + 1.00129i 0.999999 + 0.00129534i \(0.000412320\pi\)
0.00129534 + 0.999999i \(0.499588\pi\)
\(278\) 6.96134 6.96134i 0.417513 0.417513i
\(279\) −1.82042 + 1.82042i −0.108986 + 0.108986i
\(280\) 0.265818i 0.0158857i
\(281\) 10.1532i 0.605690i −0.953040 0.302845i \(-0.902064\pi\)
0.953040 0.302845i \(-0.0979365\pi\)
\(282\) 12.8326 12.8326i 0.764170 0.764170i
\(283\) 6.70279 6.70279i 0.398440 0.398440i −0.479243 0.877682i \(-0.659089\pi\)
0.877682 + 0.479243i \(0.159089\pi\)
\(284\) −6.54712 6.54712i −0.388500 0.388500i
\(285\) 10.6128 0.628645
\(286\) −25.9125 25.9125i −1.53224 1.53224i
\(287\) 0.0421355i 0.00248718i
\(288\) 6.75699 0.398159
\(289\) 0 0
\(290\) −6.68457 −0.392531
\(291\) 3.60634i 0.211407i
\(292\) −8.32638 8.32638i −0.487265 0.487265i
\(293\) −9.28515 −0.542444 −0.271222 0.962517i \(-0.587428\pi\)
−0.271222 + 0.962517i \(0.587428\pi\)
\(294\) −9.11566 9.11566i −0.531636 0.531636i
\(295\) 1.51001 1.51001i 0.0879163 0.0879163i
\(296\) 8.17120 8.17120i 0.474941 0.474941i
\(297\) 5.02734i 0.291716i
\(298\) 17.2191i 0.997475i
\(299\) −9.61915 + 9.61915i −0.556290 + 0.556290i
\(300\) −2.39782 + 2.39782i −0.138438 + 0.138438i
\(301\) 0.682803 + 0.682803i 0.0393561 + 0.0393561i
\(302\) 22.1052 1.27201
\(303\) 6.46088 + 6.46088i 0.371168 + 0.371168i
\(304\) 31.7662i 1.82192i
\(305\) −13.3540 −0.764650
\(306\) 0 0
\(307\) −27.1418 −1.54906 −0.774531 0.632536i \(-0.782014\pi\)
−0.774531 + 0.632536i \(0.782014\pi\)
\(308\) 1.08239i 0.0616750i
\(309\) 5.35890 + 5.35890i 0.304857 + 0.304857i
\(310\) 7.67362 0.435832
\(311\) −1.82843 1.82843i −0.103681 0.103681i 0.653364 0.757044i \(-0.273357\pi\)
−0.757044 + 0.653364i \(0.773357\pi\)
\(312\) −3.01933 + 3.01933i −0.170936 + 0.170936i
\(313\) 18.1094 18.1094i 1.02360 1.02360i 0.0238868 0.999715i \(-0.492396\pi\)
0.999715 0.0238868i \(-0.00760412\pi\)
\(314\) 33.5457i 1.89309i
\(315\) 0.245584i 0.0138371i
\(316\) 0.532327 0.532327i 0.0299457 0.0299457i
\(317\) −18.1007 + 18.1007i −1.01663 + 1.01663i −0.0167751 + 0.999859i \(0.505340\pi\)
−0.999859 + 0.0167751i \(0.994660\pi\)
\(318\) −2.77791 2.77791i −0.155777 0.155777i
\(319\) 11.2745 0.631252
\(320\) −3.22625 3.22625i −0.180353 0.180353i
\(321\) 18.4666i 1.03071i
\(322\) −0.970034 −0.0540579
\(323\) 0 0
\(324\) 1.41421 0.0785674
\(325\) 9.45929i 0.524707i
\(326\) −27.0752 27.0752i −1.49956 1.49956i
\(327\) 10.7392 0.593882
\(328\) −0.211830 0.211830i −0.0116963 0.0116963i
\(329\) −1.05731 + 1.05731i −0.0582911 + 0.0582911i
\(330\) −10.5959 + 10.5959i −0.583284 + 0.583284i
\(331\) 0.333172i 0.0183128i −0.999958 0.00915639i \(-0.997085\pi\)
0.999958 0.00915639i \(-0.00291461\pi\)
\(332\) 3.11615i 0.171021i
\(333\) 7.54920 7.54920i 0.413694 0.413694i
\(334\) −10.5685 + 10.5685i −0.578285 + 0.578285i
\(335\) −8.10973 8.10973i −0.443082 0.443082i
\(336\) −0.735084 −0.0401021
\(337\) 2.65546 + 2.65546i 0.144652 + 0.144652i 0.775724 0.631072i \(-0.217385\pi\)
−0.631072 + 0.775724i \(0.717385\pi\)
\(338\) 4.73508i 0.257555i
\(339\) −1.67497 −0.0909717
\(340\) 0 0
\(341\) −12.9427 −0.700886
\(342\) 12.1564i 0.657343i
\(343\) 1.50461 + 1.50461i 0.0812415 + 0.0812415i
\(344\) −6.86537 −0.370156
\(345\) 3.93336 + 3.93336i 0.211765 + 0.211765i
\(346\) 1.51643 1.51643i 0.0815236 0.0815236i
\(347\) 2.34052 2.34052i 0.125646 0.125646i −0.641488 0.767133i \(-0.721682\pi\)
0.767133 + 0.641488i \(0.221682\pi\)
\(348\) 3.17157i 0.170014i
\(349\) 2.58488i 0.138366i 0.997604 + 0.0691828i \(0.0220392\pi\)
−0.997604 + 0.0691828i \(0.977961\pi\)
\(350\) 0.476957 0.476957i 0.0254944 0.0254944i
\(351\) −2.78950 + 2.78950i −0.148892 + 0.148892i
\(352\) 24.0202 + 24.0202i 1.28028 + 1.28028i
\(353\) −13.2848 −0.707079 −0.353539 0.935420i \(-0.615022\pi\)
−0.353539 + 0.935420i \(0.615022\pi\)
\(354\) −1.72965 1.72965i −0.0919297 0.0919297i
\(355\) 10.5613i 0.560537i
\(356\) −10.8166 −0.573277
\(357\) 0 0
\(358\) −5.35237 −0.282882
\(359\) 14.7281i 0.777319i 0.921382 + 0.388659i \(0.127062\pi\)
−0.921382 + 0.388659i \(0.872938\pi\)
\(360\) 1.23463 + 1.23463i 0.0650709 + 0.0650709i
\(361\) −24.2832 −1.27806
\(362\) −1.10103 1.10103i −0.0578690 0.0578690i
\(363\) 10.0933 10.0933i 0.529763 0.529763i
\(364\) −0.600582 + 0.600582i −0.0314791 + 0.0314791i
\(365\) 13.4315i 0.703037i
\(366\) 15.2964i 0.799557i
\(367\) 0.311099 0.311099i 0.0162392 0.0162392i −0.698941 0.715180i \(-0.746345\pi\)
0.715180 + 0.698941i \(0.246345\pi\)
\(368\) 11.7734 11.7734i 0.613730 0.613730i
\(369\) −0.195705 0.195705i −0.0101880 0.0101880i
\(370\) −31.8222 −1.65436
\(371\) 0.228878 + 0.228878i 0.0118828 + 0.0118828i
\(372\) 3.64084i 0.188769i
\(373\) −0.827899 −0.0428670 −0.0214335 0.999770i \(-0.506823\pi\)
−0.0214335 + 0.999770i \(0.506823\pi\)
\(374\) 0 0
\(375\) −11.9336 −0.616250
\(376\) 10.6309i 0.548245i
\(377\) −6.25584 6.25584i −0.322192 0.322192i
\(378\) −0.281305 −0.0144687
\(379\) 14.0066 + 14.0066i 0.719472 + 0.719472i 0.968497 0.249025i \(-0.0801103\pi\)
−0.249025 + 0.968497i \(0.580110\pi\)
\(380\) −10.6128 + 10.6128i −0.544423 + 0.544423i
\(381\) 8.61339 8.61339i 0.441277 0.441277i
\(382\) 18.4234i 0.942625i
\(383\) 16.6828i 0.852453i −0.904616 0.426227i \(-0.859843\pi\)
0.904616 0.426227i \(-0.140157\pi\)
\(384\) 5.86030 5.86030i 0.299057 0.299057i
\(385\) 0.873017 0.873017i 0.0444931 0.0444931i
\(386\) 4.87894 + 4.87894i 0.248332 + 0.248332i
\(387\) −6.34277 −0.322421
\(388\) −3.60634 3.60634i −0.183084 0.183084i
\(389\) 17.2980i 0.877042i −0.898721 0.438521i \(-0.855502\pi\)
0.898721 0.438521i \(-0.144498\pi\)
\(390\) 11.7586 0.595419
\(391\) 0 0
\(392\) −7.55166 −0.381416
\(393\) 10.4512i 0.527191i
\(394\) 21.1733 + 21.1733i 1.06669 + 1.06669i
\(395\) 0.858710 0.0432064
\(396\) 5.02734 + 5.02734i 0.252633 + 0.252633i
\(397\) −4.55423 + 4.55423i −0.228570 + 0.228570i −0.812095 0.583525i \(-0.801673\pi\)
0.583525 + 0.812095i \(0.301673\pi\)
\(398\) 21.5236 21.5236i 1.07888 1.07888i
\(399\) 1.00159i 0.0501424i
\(400\) 11.5777i 0.578886i
\(401\) 14.9004 14.9004i 0.744093 0.744093i −0.229270 0.973363i \(-0.573634\pi\)
0.973363 + 0.229270i \(0.0736339\pi\)
\(402\) −9.28931 + 9.28931i −0.463309 + 0.463309i
\(403\) 7.18146 + 7.18146i 0.357734 + 0.357734i
\(404\) −12.9218 −0.642882
\(405\) 1.14065 + 1.14065i 0.0566795 + 0.0566795i
\(406\) 0.630865i 0.0313093i
\(407\) 53.6728 2.66046
\(408\) 0 0
\(409\) −27.6232 −1.36588 −0.682939 0.730475i \(-0.739299\pi\)
−0.682939 + 0.730475i \(0.739299\pi\)
\(410\) 0.824955i 0.0407416i
\(411\) 9.54082 + 9.54082i 0.470614 + 0.470614i
\(412\) −10.7178 −0.528028
\(413\) 0.142509 + 0.142509i 0.00701243 + 0.00701243i
\(414\) 4.50548 4.50548i 0.221432 0.221432i
\(415\) −2.51337 + 2.51337i −0.123376 + 0.123376i
\(416\) 26.6560i 1.30692i
\(417\) 5.32798i 0.260912i
\(418\) 43.2144 43.2144i 2.11368 2.11368i
\(419\) 8.52132 8.52132i 0.416294 0.416294i −0.467630 0.883924i \(-0.654892\pi\)
0.883924 + 0.467630i \(0.154892\pi\)
\(420\) 0.245584 + 0.245584i 0.0119833 + 0.0119833i
\(421\) −14.0183 −0.683210 −0.341605 0.939844i \(-0.610971\pi\)
−0.341605 + 0.939844i \(0.610971\pi\)
\(422\) −13.9655 13.9655i −0.679830 0.679830i
\(423\) 9.82164i 0.477544i
\(424\) −2.30130 −0.111761
\(425\) 0 0
\(426\) −12.0975 −0.586126
\(427\) 1.26031i 0.0609905i
\(428\) −18.4666 18.4666i −0.892619 0.892619i
\(429\) −19.8326 −0.957526
\(430\) 13.3683 + 13.3683i 0.644679 + 0.644679i
\(431\) 2.43514 2.43514i 0.117296 0.117296i −0.646022 0.763319i \(-0.723569\pi\)
0.763319 + 0.646022i \(0.223569\pi\)
\(432\) 3.41421 3.41421i 0.164266 0.164266i
\(433\) 5.56579i 0.267475i 0.991017 + 0.133738i \(0.0426979\pi\)
−0.991017 + 0.133738i \(0.957302\pi\)
\(434\) 0.724208i 0.0347631i
\(435\) −2.55807 + 2.55807i −0.122650 + 0.122650i
\(436\) −10.7392 + 10.7392i −0.514317 + 0.514317i
\(437\) −16.0419 16.0419i −0.767387 0.767387i
\(438\) −15.3852 −0.735131
\(439\) −12.4355 12.4355i −0.593512 0.593512i 0.345066 0.938578i \(-0.387856\pi\)
−0.938578 + 0.345066i \(0.887856\pi\)
\(440\) 8.77791i 0.418470i
\(441\) −6.97682 −0.332230
\(442\) 0 0
\(443\) 5.87632 0.279192 0.139596 0.990209i \(-0.455420\pi\)
0.139596 + 0.990209i \(0.455420\pi\)
\(444\) 15.0984i 0.716539i
\(445\) −8.72425 8.72425i −0.413569 0.413569i
\(446\) 10.0084 0.473911
\(447\) −6.58946 6.58946i −0.311671 0.311671i
\(448\) 0.304482 0.304482i 0.0143854 0.0143854i
\(449\) −28.2710 + 28.2710i −1.33419 + 1.33419i −0.432606 + 0.901583i \(0.642406\pi\)
−0.901583 + 0.432606i \(0.857594\pi\)
\(450\) 4.43060i 0.208861i
\(451\) 1.39141i 0.0655189i
\(452\) 1.67497 1.67497i 0.0787838 0.0787838i
\(453\) 8.45929 8.45929i 0.397452 0.397452i
\(454\) −16.0690 16.0690i −0.754155 0.754155i
\(455\) −0.968815 −0.0454188
\(456\) −5.03535 5.03535i −0.235802 0.235802i
\(457\) 17.6906i 0.827533i 0.910383 + 0.413767i \(0.135787\pi\)
−0.910383 + 0.413767i \(0.864213\pi\)
\(458\) −55.6467 −2.60020
\(459\) 0 0
\(460\) −7.86672 −0.366788
\(461\) 29.8662i 1.39101i −0.718522 0.695504i \(-0.755181\pi\)
0.718522 0.695504i \(-0.244819\pi\)
\(462\) −1.00000 1.00000i −0.0465242 0.0465242i
\(463\) −9.45213 −0.439278 −0.219639 0.975581i \(-0.570488\pi\)
−0.219639 + 0.975581i \(0.570488\pi\)
\(464\) 7.65685 + 7.65685i 0.355461 + 0.355461i
\(465\) 2.93657 2.93657i 0.136180 0.136180i
\(466\) −11.4785 + 11.4785i −0.531729 + 0.531729i
\(467\) 20.0094i 0.925923i −0.886378 0.462961i \(-0.846787\pi\)
0.886378 0.462961i \(-0.153213\pi\)
\(468\) 5.57900i 0.257889i
\(469\) 0.765367 0.765367i 0.0353414 0.0353414i
\(470\) −20.7006 + 20.7006i −0.954847 + 0.954847i
\(471\) 12.8374 + 12.8374i 0.591516 + 0.591516i
\(472\) −1.43289 −0.0659539
\(473\) −22.5477 22.5477i −1.03674 1.03674i
\(474\) 0.983611i 0.0451788i
\(475\) 15.7753 0.723820
\(476\) 0 0
\(477\) −2.12612 −0.0973484
\(478\) 27.0698i 1.23814i
\(479\) 0.852559 + 0.852559i 0.0389544 + 0.0389544i 0.726316 0.687361i \(-0.241231\pi\)
−0.687361 + 0.726316i \(0.741231\pi\)
\(480\) −10.8999 −0.497509
\(481\) −29.7812 29.7812i −1.35791 1.35791i
\(482\) −22.1531 + 22.1531i −1.00905 + 1.00905i
\(483\) −0.371216 + 0.371216i −0.0168909 + 0.0168909i
\(484\) 20.1867i 0.917577i
\(485\) 5.81748i 0.264158i
\(486\) 1.30656 1.30656i 0.0592669 0.0592669i
\(487\) −8.45790 + 8.45790i −0.383264 + 0.383264i −0.872277 0.489013i \(-0.837357\pi\)
0.489013 + 0.872277i \(0.337357\pi\)
\(488\) 6.33598 + 6.33598i 0.286816 + 0.286816i
\(489\) −20.7225 −0.937103
\(490\) 14.7047 + 14.7047i 0.664291 + 0.664291i
\(491\) 31.2632i 1.41089i −0.708766 0.705444i \(-0.750748\pi\)
0.708766 0.705444i \(-0.249252\pi\)
\(492\) 0.391410 0.0176461
\(493\) 0 0
\(494\) −47.9564 −2.15766
\(495\) 8.10973i 0.364505i
\(496\) −8.78976 8.78976i −0.394672 0.394672i
\(497\) 0.996740 0.0447099
\(498\) 2.87894 + 2.87894i 0.129009 + 0.129009i
\(499\) 29.2452 29.2452i 1.30920 1.30920i 0.387199 0.921996i \(-0.373442\pi\)
0.921996 0.387199i \(-0.126558\pi\)
\(500\) 11.9336 11.9336i 0.533688 0.533688i
\(501\) 8.08881i 0.361381i
\(502\) 25.7675i 1.15006i
\(503\) 2.17984 2.17984i 0.0971945 0.0971945i −0.656838 0.754032i \(-0.728106\pi\)
0.754032 + 0.656838i \(0.228106\pi\)
\(504\) −0.116520 + 0.116520i −0.00519022 + 0.00519022i
\(505\) −10.4222 10.4222i −0.463783 0.463783i
\(506\) 32.0327 1.42403
\(507\) 1.81204 + 1.81204i 0.0804754 + 0.0804754i
\(508\) 17.2268i 0.764315i
\(509\) −33.8077 −1.49850 −0.749249 0.662288i \(-0.769585\pi\)
−0.749249 + 0.662288i \(0.769585\pi\)
\(510\) 0 0
\(511\) 1.26762 0.0560760
\(512\) 22.1731i 0.979922i
\(513\) −4.65205 4.65205i −0.205393 0.205393i
\(514\) 36.3275 1.60234
\(515\) −8.64458 8.64458i −0.380925 0.380925i
\(516\) 6.34277 6.34277i 0.279225 0.279225i
\(517\) 34.9146 34.9146i 1.53554 1.53554i
\(518\) 3.00326i 0.131956i
\(519\) 1.16062i 0.0509457i
\(520\) 4.87056 4.87056i 0.213588 0.213588i
\(521\) 28.9600 28.9600i 1.26876 1.26876i 0.322034 0.946728i \(-0.395633\pi\)
0.946728 0.322034i \(-0.104367\pi\)
\(522\) 2.93015 + 2.93015i 0.128249 + 0.128249i
\(523\) 9.06788 0.396511 0.198255 0.980150i \(-0.436472\pi\)
0.198255 + 0.980150i \(0.436472\pi\)
\(524\) −10.4512 10.4512i −0.456561 0.456561i
\(525\) 0.365047i 0.0159320i
\(526\) 51.5009 2.24555
\(527\) 0 0
\(528\) 24.2741 1.05640
\(529\) 11.1089i 0.482997i
\(530\) 4.48112 + 4.48112i 0.194647 + 0.194647i
\(531\) −1.32381 −0.0574486
\(532\) −1.00159 1.00159i −0.0434246 0.0434246i
\(533\) −0.772046 + 0.772046i −0.0334410 + 0.0334410i
\(534\) −9.99321 + 9.99321i −0.432449 + 0.432449i
\(535\) 29.7890i 1.28789i
\(536\) 7.69552i 0.332396i
\(537\) −2.04826 + 2.04826i −0.0883891 + 0.0883891i
\(538\) 0.268273 0.268273i 0.0115661 0.0115661i
\(539\) −24.8017 24.8017i −1.06828 1.06828i
\(540\) −2.28130 −0.0981717
\(541\) −9.15138 9.15138i −0.393449 0.393449i 0.482466 0.875915i \(-0.339741\pi\)
−0.875915 + 0.482466i \(0.839741\pi\)
\(542\) 15.1715i 0.651672i
\(543\) −0.842695 −0.0361635
\(544\) 0 0
\(545\) −17.3238 −0.742068
\(546\) 1.10973i 0.0474921i
\(547\) 7.53764 + 7.53764i 0.322286 + 0.322286i 0.849644 0.527357i \(-0.176817\pi\)
−0.527357 + 0.849644i \(0.676817\pi\)
\(548\) −19.0816 −0.815127
\(549\) 5.85369 + 5.85369i 0.249829 + 0.249829i
\(550\) −15.7502 + 15.7502i −0.671591 + 0.671591i
\(551\) 10.4329 10.4329i 0.444456 0.444456i
\(552\) 3.73246i 0.158864i
\(553\) 0.0810419i 0.00344625i
\(554\) −30.7926 + 30.7926i −1.30825 + 1.30825i
\(555\) −12.1778 + 12.1778i −0.516920 + 0.516920i
\(556\) 5.32798 + 5.32798i 0.225957 + 0.225957i
\(557\) 30.1933 1.27933 0.639667 0.768653i \(-0.279072\pi\)
0.639667 + 0.768653i \(0.279072\pi\)
\(558\) −3.36370 3.36370i −0.142397 0.142397i
\(559\) 25.0219i 1.05831i
\(560\) 1.18578 0.0501085
\(561\) 0 0
\(562\) 18.7607 0.791372
\(563\) 29.9236i 1.26113i 0.776136 + 0.630566i \(0.217177\pi\)
−0.776136 + 0.630566i \(0.782823\pi\)
\(564\) 9.82164 + 9.82164i 0.413566 + 0.413566i
\(565\) 2.70193 0.113671
\(566\) 12.3852 + 12.3852i 0.520587 + 0.520587i
\(567\) −0.107651 + 0.107651i −0.00452090 + 0.00452090i
\(568\) −5.01095 + 5.01095i −0.210255 + 0.210255i
\(569\) 25.6952i 1.07720i 0.842562 + 0.538599i \(0.181046\pi\)
−0.842562 + 0.538599i \(0.818954\pi\)
\(570\) 19.6098i 0.821365i
\(571\) 19.8091 19.8091i 0.828985 0.828985i −0.158392 0.987376i \(-0.550631\pi\)
0.987376 + 0.158392i \(0.0506308\pi\)
\(572\) 19.8326 19.8326i 0.829242 0.829242i
\(573\) −7.05035 7.05035i −0.294532 0.294532i
\(574\) −0.0778563 −0.00324966
\(575\) 5.84673 + 5.84673i 0.243825 + 0.243825i
\(576\) 2.82843i 0.117851i
\(577\) −11.8072 −0.491538 −0.245769 0.969328i \(-0.579041\pi\)
−0.245769 + 0.969328i \(0.579041\pi\)
\(578\) 0 0
\(579\) 3.73418 0.155187
\(580\) 5.11615i 0.212436i
\(581\) −0.237203 0.237203i −0.00984082 0.00984082i
\(582\) −6.66364 −0.276217
\(583\) −7.55807 7.55807i −0.313023 0.313023i
\(584\) −6.37274 + 6.37274i −0.263706 + 0.263706i
\(585\) 4.49981 4.49981i 0.186044 0.186044i
\(586\) 17.1567i 0.708738i
\(587\) 7.44230i 0.307177i 0.988135 + 0.153588i \(0.0490830\pi\)
−0.988135 + 0.153588i \(0.950917\pi\)
\(588\) 6.97682 6.97682i 0.287719 0.287719i
\(589\) −11.9765 + 11.9765i −0.493485 + 0.493485i
\(590\) 2.79014 + 2.79014i 0.114868 + 0.114868i
\(591\) 16.2053 0.666598
\(592\) 36.4508 + 36.4508i 1.49812 + 1.49812i
\(593\) 7.65194i 0.314228i −0.987580 0.157114i \(-0.949781\pi\)
0.987580 0.157114i \(-0.0502190\pi\)
\(594\) 9.28931 0.381145
\(595\) 0 0
\(596\) 13.1789 0.539830
\(597\) 16.4734i 0.674213i
\(598\) −17.7739 17.7739i −0.726827 0.726827i
\(599\) −16.1547 −0.660062 −0.330031 0.943970i \(-0.607059\pi\)
−0.330031 + 0.943970i \(0.607059\pi\)
\(600\) 1.83522 + 1.83522i 0.0749224 + 0.0749224i
\(601\) −20.3064 + 20.3064i −0.828315 + 0.828315i −0.987284 0.158969i \(-0.949183\pi\)
0.158969 + 0.987284i \(0.449183\pi\)
\(602\) −1.26166 + 1.26166i −0.0514213 + 0.0514213i
\(603\) 7.10973i 0.289531i
\(604\) 16.9186i 0.688407i
\(605\) −16.2818 + 16.2818i −0.661951 + 0.661951i
\(606\) −11.9382 + 11.9382i −0.484955 + 0.484955i
\(607\) 18.2524 + 18.2524i 0.740844 + 0.740844i 0.972740 0.231897i \(-0.0744931\pi\)
−0.231897 + 0.972740i \(0.574493\pi\)
\(608\) 44.4542 1.80286
\(609\) −0.241422 0.241422i −0.00978290 0.00978290i
\(610\) 24.6750i 0.999063i
\(611\) −38.7458 −1.56749
\(612\) 0 0
\(613\) 49.1769 1.98623 0.993117 0.117123i \(-0.0373670\pi\)
0.993117 + 0.117123i \(0.0373670\pi\)
\(614\) 50.1514i 2.02395i
\(615\) 0.315697 + 0.315697i 0.0127301 + 0.0127301i
\(616\) −0.828427 −0.0333783
\(617\) 2.51074 + 2.51074i 0.101079 + 0.101079i 0.755838 0.654759i \(-0.227230\pi\)
−0.654759 + 0.755838i \(0.727230\pi\)
\(618\) −9.90195 + 9.90195i −0.398315 + 0.398315i
\(619\) −24.8909 + 24.8909i −1.00045 + 1.00045i −0.000451537 1.00000i \(0.500144\pi\)
−1.00000 0.000451537i \(0.999856\pi\)
\(620\) 5.87313i 0.235871i
\(621\) 3.44834i 0.138377i
\(622\) 3.37849 3.37849i 0.135465 0.135465i
\(623\) 0.823363 0.823363i 0.0329873 0.0329873i
\(624\) −13.4689 13.4689i −0.539187 0.539187i
\(625\) 7.26131 0.290453
\(626\) 33.4617 + 33.4617i 1.33740 + 1.33740i
\(627\) 33.0749i 1.32088i
\(628\) −25.6748 −1.02454
\(629\) 0 0
\(630\) 0.453780 0.0180790
\(631\) 31.4131i 1.25054i 0.780410 + 0.625268i \(0.215010\pi\)
−0.780410 + 0.625268i \(0.784990\pi\)
\(632\) −0.407425 0.407425i −0.0162065 0.0162065i
\(633\) −10.6887 −0.424839
\(634\) −33.4457 33.4457i −1.32830 1.32830i
\(635\) −13.8945 + 13.8945i −0.551386 + 0.551386i
\(636\) 2.12612 2.12612i 0.0843062 0.0843062i
\(637\) 27.5232i 1.09051i
\(638\) 20.8326i 0.824770i
\(639\) −4.62951 + 4.62951i −0.183141 + 0.183141i
\(640\) −9.45341 + 9.45341i −0.373679 + 0.373679i
\(641\) −18.7917 18.7917i −0.742227 0.742227i 0.230779 0.973006i \(-0.425873\pi\)
−0.973006 + 0.230779i \(0.925873\pi\)
\(642\) −34.1219 −1.34668
\(643\) 11.3312 + 11.3312i 0.446857 + 0.446857i 0.894308 0.447451i \(-0.147668\pi\)
−0.447451 + 0.894308i \(0.647668\pi\)
\(644\) 0.742432i 0.0292559i
\(645\) 10.2317 0.402872
\(646\) 0 0
\(647\) 41.6554 1.63764 0.818822 0.574048i \(-0.194628\pi\)
0.818822 + 0.574048i \(0.194628\pi\)
\(648\) 1.08239i 0.0425204i
\(649\) −4.70598 4.70598i −0.184726 0.184726i
\(650\) 17.4785 0.685563
\(651\) 0.277142 + 0.277142i 0.0108621 + 0.0108621i
\(652\) 20.7225 20.7225i 0.811555 0.811555i
\(653\) −8.71609 + 8.71609i −0.341087 + 0.341087i −0.856776 0.515689i \(-0.827536\pi\)
0.515689 + 0.856776i \(0.327536\pi\)
\(654\) 19.8435i 0.775944i
\(655\) 16.8590i 0.658737i
\(656\) 0.944947 0.944947i 0.0368940 0.0368940i
\(657\) −5.88764 + 5.88764i −0.229699 + 0.229699i
\(658\) −1.95365 1.95365i −0.0761610 0.0761610i
\(659\) −3.46449 −0.134957 −0.0674786 0.997721i \(-0.521495\pi\)
−0.0674786 + 0.997721i \(0.521495\pi\)
\(660\) −8.10973 8.10973i −0.315671 0.315671i
\(661\) 28.3233i 1.10165i 0.834621 + 0.550825i \(0.185687\pi\)
−0.834621 + 0.550825i \(0.814313\pi\)
\(662\) 0.615621 0.0239268
\(663\) 0 0
\(664\) 2.38500 0.0925558
\(665\) 1.61570i 0.0626540i
\(666\) 13.9491 + 13.9491i 0.540517 + 0.540517i
\(667\) 7.73339 0.299438
\(668\) −8.08881 8.08881i −0.312965 0.312965i
\(669\) 3.83004 3.83004i 0.148078 0.148078i
\(670\) 14.9848 14.9848i 0.578914 0.578914i
\(671\) 41.6181i 1.60665i
\(672\) 1.02869i 0.0396826i
\(673\) −20.0879 + 20.0879i −0.774332 + 0.774332i −0.978861 0.204529i \(-0.934434\pi\)
0.204529 + 0.978861i \(0.434434\pi\)
\(674\) −4.90666 + 4.90666i −0.188997 + 0.188997i
\(675\) 1.69552 + 1.69552i 0.0652605 + 0.0652605i
\(676\) −3.62408 −0.139388
\(677\) −13.6459 13.6459i −0.524456 0.524456i 0.394458 0.918914i \(-0.370932\pi\)
−0.918914 + 0.394458i \(0.870932\pi\)
\(678\) 3.09494i 0.118860i
\(679\) 0.549032 0.0210699
\(680\) 0 0
\(681\) −12.2987 −0.471286
\(682\) 23.9150i 0.915752i
\(683\) 13.7740 + 13.7740i 0.527046 + 0.527046i 0.919690 0.392645i \(-0.128440\pi\)
−0.392645 + 0.919690i \(0.628440\pi\)
\(684\) 9.30411 0.355751
\(685\) −15.3905 15.3905i −0.588043 0.588043i
\(686\) −2.78016 + 2.78016i −0.106147 + 0.106147i
\(687\) −21.2951 + 21.2951i −0.812457 + 0.812457i
\(688\) 30.6256i 1.16759i
\(689\) 8.38743i 0.319536i
\(690\) −7.26790 + 7.26790i −0.276684 + 0.276684i
\(691\) 5.33116 5.33116i 0.202807 0.202807i −0.598395 0.801202i \(-0.704194\pi\)
0.801202 + 0.598395i \(0.204194\pi\)
\(692\) 1.16062 + 1.16062i 0.0441202 + 0.0441202i
\(693\) −0.765367 −0.0290739
\(694\) 4.32472 + 4.32472i 0.164164 + 0.164164i
\(695\) 8.59470i 0.326015i
\(696\) 2.42742 0.0920110
\(697\) 0 0
\(698\) −4.77624 −0.180783
\(699\) 8.78523i 0.332288i
\(700\) 0.365047 + 0.365047i 0.0137975 + 0.0137975i
\(701\) 39.0875 1.47632 0.738158 0.674628i \(-0.235696\pi\)
0.738158 + 0.674628i \(0.235696\pi\)
\(702\) −5.15432 5.15432i −0.194537 0.194537i
\(703\) 49.6662 49.6662i 1.87320 1.87320i
\(704\) −10.0547 + 10.0547i −0.378950 + 0.378950i
\(705\) 15.8435i 0.596702i
\(706\) 24.5471i 0.923843i
\(707\) 0.983611 0.983611i 0.0369925 0.0369925i
\(708\) 1.32381 1.32381i 0.0497520 0.0497520i
\(709\) 4.74669 + 4.74669i 0.178266 + 0.178266i 0.790599 0.612334i \(-0.209769\pi\)
−0.612334 + 0.790599i \(0.709769\pi\)
\(710\) 19.5148 0.732377
\(711\) −0.376412 0.376412i −0.0141165 0.0141165i
\(712\) 8.27865i 0.310255i
\(713\) −8.87762 −0.332470
\(714\) 0 0
\(715\) 31.9925 1.19645
\(716\) 4.09653i 0.153094i
\(717\) 10.3592 + 10.3592i 0.386870 + 0.386870i
\(718\) −27.2140 −1.01562
\(719\) 5.23700 + 5.23700i 0.195307 + 0.195307i 0.797985 0.602678i \(-0.205900\pi\)
−0.602678 + 0.797985i \(0.705900\pi\)
\(720\) −5.50756 + 5.50756i −0.205255 + 0.205255i
\(721\) 0.815843 0.815843i 0.0303836 0.0303836i
\(722\) 44.8695i 1.66987i
\(723\) 16.9552i 0.630572i
\(724\) 0.842695 0.842695i 0.0313185 0.0313185i
\(725\) −3.80244 + 3.80244i −0.141219 + 0.141219i
\(726\) 18.6501 + 18.6501i 0.692169 + 0.692169i
\(727\) 6.36054 0.235899 0.117950 0.993020i \(-0.462368\pi\)
0.117950 + 0.993020i \(0.462368\pi\)
\(728\) 0.459666 + 0.459666i 0.0170364 + 0.0170364i
\(729\) 1.00000i 0.0370370i
\(730\) 24.8182 0.918562
\(731\) 0 0
\(732\) −11.7074 −0.432717
\(733\) 41.3337i 1.52670i 0.645988 + 0.763348i \(0.276446\pi\)
−0.645988 + 0.763348i \(0.723554\pi\)
\(734\) 0.574836 + 0.574836i 0.0212176 + 0.0212176i
\(735\) 11.2545 0.415128
\(736\) 16.4759 + 16.4759i 0.607309 + 0.607309i
\(737\) −25.2741 + 25.2741i −0.930985 + 0.930985i
\(738\) 0.361616 0.361616i 0.0133113 0.0133113i
\(739\) 23.1653i 0.852150i 0.904688 + 0.426075i \(0.140104\pi\)
−0.904688 + 0.426075i \(0.859896\pi\)
\(740\) 24.3556i 0.895331i
\(741\) −18.3521 + 18.3521i −0.674182 + 0.674182i
\(742\) −0.422912 + 0.422912i −0.0155256 + 0.0155256i
\(743\) 26.9764 + 26.9764i 0.989670 + 0.989670i 0.999947 0.0102773i \(-0.00327141\pi\)
−0.0102773 + 0.999947i \(0.503271\pi\)
\(744\) −2.78658 −0.102161
\(745\) 10.6296 + 10.6296i 0.389439 + 0.389439i
\(746\) 1.52976i 0.0560084i
\(747\) 2.20345 0.0806200
\(748\) 0 0
\(749\) 2.81138 0.102726
\(750\) 22.0505i 0.805169i
\(751\) −24.1882 24.1882i −0.882640 0.882640i 0.111163 0.993802i \(-0.464543\pi\)
−0.993802 + 0.111163i \(0.964543\pi\)
\(752\) 47.4231 1.72934
\(753\) 9.86079 + 9.86079i 0.359347 + 0.359347i
\(754\) 11.5593 11.5593i 0.420965 0.420965i
\(755\) −13.6459 + 13.6459i −0.496625 + 0.496625i
\(756\) 0.215301i 0.00783043i
\(757\) 7.02190i 0.255215i −0.991825 0.127608i \(-0.959270\pi\)
0.991825 0.127608i \(-0.0407298\pi\)
\(758\) −25.8809 + 25.8809i −0.940035 + 0.940035i
\(759\) 12.2584 12.2584i 0.444951 0.444951i
\(760\) 8.12265 + 8.12265i 0.294639 + 0.294639i
\(761\) −47.2917 −1.71432 −0.857161 0.515048i \(-0.827774\pi\)
−0.857161 + 0.515048i \(0.827774\pi\)
\(762\) 15.9155 + 15.9155i 0.576557 + 0.576557i
\(763\) 1.63495i 0.0591893i
\(764\) 14.1007 0.510145
\(765\) 0 0
\(766\) 30.8259 1.11378
\(767\) 5.22238i 0.188569i
\(768\) 14.8284 + 14.8284i 0.535075 + 0.535075i
\(769\) −6.39156 −0.230486 −0.115243 0.993337i \(-0.536765\pi\)
−0.115243 + 0.993337i \(0.536765\pi\)
\(770\) 1.61313 + 1.61313i 0.0581330 + 0.0581330i
\(771\) 13.9019 13.9019i 0.500666 0.500666i
\(772\) −3.73418 + 3.73418i −0.134396 + 0.134396i
\(773\) 3.67729i 0.132263i 0.997811 + 0.0661315i \(0.0210657\pi\)
−0.997811 + 0.0661315i \(0.978934\pi\)
\(774\) 11.7199i 0.421264i
\(775\) 4.36505 4.36505i 0.156797 0.156797i
\(776\) −2.76017 + 2.76017i −0.0990844 + 0.0990844i
\(777\) −1.14930 1.14930i −0.0412308 0.0412308i
\(778\) 31.9625 1.14591
\(779\) −1.28754 1.28754i −0.0461310 0.0461310i
\(780\) 8.99963i 0.322238i
\(781\) −32.9146 −1.17778
\(782\) 0 0
\(783\) 2.24264 0.0801454
\(784\) 33.6871i 1.20311i
\(785\) −20.7083 20.7083i −0.739112 0.739112i
\(786\) −19.3112 −0.688808
\(787\) −2.87375 2.87375i −0.102438 0.102438i 0.654030 0.756468i \(-0.273077\pi\)
−0.756468 + 0.654030i \(0.773077\pi\)
\(788\) −16.2053 + 16.2053i −0.577291 + 0.577291i
\(789\) 19.7085 19.7085i 0.701643 0.701643i
\(790\) 1.58669i 0.0564519i
\(791\) 0.254999i 0.00906670i
\(792\) 3.84776 3.84776i 0.136724 0.136724i
\(793\) 23.0925 23.0925i 0.820038 0.820038i
\(794\) −8.41512 8.41512i −0.298641 0.298641i
\(795\) 3.42970 0.121639
\(796\) 16.4734 + 16.4734i 0.583885 + 0.583885i
\(797\) 13.8056i 0.489020i 0.969647 + 0.244510i \(0.0786271\pi\)
−0.969647 + 0.244510i \(0.921373\pi\)
\(798\) −1.85070 −0.0655141
\(799\) 0 0
\(800\) −16.2021 −0.572830
\(801\) 7.64847i 0.270246i
\(802\) 27.5324 + 27.5324i 0.972204 + 0.972204i
\(803\) −41.8596 −1.47719
\(804\) −7.10973 7.10973i −0.250741 0.250741i
\(805\) 0.598818 0.598818i 0.0211056 0.0211056i
\(806\) −13.2696 + 13.2696i −0.467402 + 0.467402i
\(807\) 0.205327i 0.00722786i
\(808\) 9.88989i 0.347925i
\(809\) −13.3282 + 13.3282i −0.468596 + 0.468596i −0.901459 0.432864i \(-0.857503\pi\)
0.432864 + 0.901459i \(0.357503\pi\)
\(810\) −2.10765 + 2.10765i −0.0740553 + 0.0740553i
\(811\) 1.83816 + 1.83816i 0.0645465 + 0.0645465i 0.738643 0.674097i \(-0.235467\pi\)
−0.674097 + 0.738643i \(0.735467\pi\)
\(812\) 0.482843 0.0169445
\(813\) −5.80589 5.80589i −0.203621 0.203621i
\(814\) 99.1744i 3.47606i
\(815\) 33.4280 1.17093
\(816\) 0 0
\(817\) −41.7291 −1.45992
\(818\) 51.0410i 1.78461i
\(819\) 0.424676 + 0.424676i 0.0148394 + 0.0148394i
\(820\) −0.631394 −0.0220492
\(821\) 9.19758 + 9.19758i 0.320998 + 0.320998i 0.849150 0.528152i \(-0.177115\pi\)
−0.528152 + 0.849150i \(0.677115\pi\)
\(822\) −17.6291 + 17.6291i −0.614887 + 0.614887i
\(823\) −15.3119 + 15.3119i −0.533741 + 0.533741i −0.921684 0.387943i \(-0.873186\pi\)
0.387943 + 0.921684i \(0.373186\pi\)
\(824\) 8.20304i 0.285767i
\(825\) 12.0547i 0.419690i
\(826\) −0.263323 + 0.263323i −0.00916218 + 0.00916218i
\(827\) 33.8522 33.8522i 1.17716 1.17716i 0.196690 0.980466i \(-0.436981\pi\)
0.980466 0.196690i \(-0.0630193\pi\)
\(828\) 3.44834 + 3.44834i 0.119838 + 0.119838i
\(829\) −12.9906 −0.451181 −0.225590 0.974222i \(-0.572431\pi\)
−0.225590 + 0.974222i \(0.572431\pi\)
\(830\) −4.64410 4.64410i −0.161199 0.161199i
\(831\) 23.5677i 0.817554i
\(832\) 11.1580 0.386834
\(833\) 0 0
\(834\) 9.84482 0.340898
\(835\) 13.0483i 0.451554i
\(836\) 33.0749 + 33.0749i 1.14392 + 1.14392i
\(837\) −2.57446 −0.0889864
\(838\) 15.7453 + 15.7453i 0.543914 + 0.543914i
\(839\) 13.3450 13.3450i 0.460721 0.460721i −0.438171 0.898892i \(-0.644374\pi\)
0.898892 + 0.438171i \(0.144374\pi\)
\(840\) 0.187962 0.187962i 0.00648529 0.00648529i
\(841\) 23.9706i 0.826571i
\(842\) 25.9024i 0.892657i
\(843\) 7.17941 7.17941i 0.247272 0.247272i
\(844\) 10.6887 10.6887i 0.367921 0.367921i
\(845\) −2.92305 2.92305i −0.100556 0.100556i
\(846\) 18.1480 0.623942
\(847\) −1.53662 1.53662i −0.0527989 0.0527989i
\(848\) 10.2658i 0.352530i
\(849\) 9.47918 0.325325
\(850\) 0 0
\(851\) 36.8151 1.26201
\(852\) 9.25903i 0.317209i
\(853\) 4.26803 + 4.26803i 0.146135 + 0.146135i 0.776389 0.630254i \(-0.217049\pi\)
−0.630254 + 0.776389i \(0.717049\pi\)
\(854\) 2.32874 0.0796879
\(855\) 7.50435 + 7.50435i 0.256643 + 0.256643i
\(856\) −14.1338 + 14.1338i −0.483082 + 0.483082i
\(857\) 11.3727 11.3727i 0.388485 0.388485i −0.485662 0.874147i \(-0.661421\pi\)
0.874147 + 0.485662i \(0.161421\pi\)
\(858\) 36.6458i 1.25107i
\(859\) 57.8556i 1.97401i −0.160699 0.987003i \(-0.551375\pi\)
0.160699 0.987003i \(-0.448625\pi\)
\(860\) −10.2317 + 10.2317i −0.348898 + 0.348898i
\(861\) −0.0297943 + 0.0297943i −0.00101539 + 0.00101539i
\(862\) 4.49955 + 4.49955i 0.153255 + 0.153255i
\(863\) 7.56067 0.257368 0.128684 0.991686i \(-0.458925\pi\)
0.128684 + 0.991686i \(0.458925\pi\)
\(864\) 4.77791 + 4.77791i 0.162548 + 0.162548i
\(865\) 1.87223i 0.0636577i
\(866\) −10.2842 −0.349473
\(867\) 0 0
\(868\) −0.554285 −0.0188137
\(869\) 2.67619i 0.0907834i
\(870\) −4.72670 4.72670i −0.160250 0.160250i
\(871\) 28.0475 0.950354
\(872\) 8.21946 + 8.21946i 0.278346 + 0.278346i
\(873\) −2.55007 + 2.55007i −0.0863066 + 0.0863066i
\(874\) 29.6415 29.6415i 1.00264 1.00264i
\(875\) 1.81679i 0.0614186i
\(876\) 11.7753i 0.397850i
\(877\) −12.2796 + 12.2796i −0.414653 + 0.414653i −0.883356 0.468703i \(-0.844721\pi\)
0.468703 + 0.883356i \(0.344721\pi\)
\(878\) 22.9777 22.9777i 0.775461 0.775461i
\(879\) −6.56559 6.56559i −0.221452 0.221452i
\(880\) −39.1572 −1.31999
\(881\) −29.0634 29.0634i −0.979170 0.979170i 0.0206174 0.999787i \(-0.493437\pi\)
−0.999787 + 0.0206174i \(0.993437\pi\)
\(882\) 12.8915i 0.434079i
\(883\) 28.3729 0.954824 0.477412 0.878680i \(-0.341575\pi\)
0.477412 + 0.878680i \(0.341575\pi\)
\(884\) 0 0
\(885\) 2.13548 0.0717833
\(886\) 10.8580i 0.364782i
\(887\) −15.2031 15.2031i −0.510470 0.510470i 0.404200 0.914670i \(-0.367550\pi\)
−0.914670 + 0.404200i \(0.867550\pi\)
\(888\) 11.5558 0.387788
\(889\) −1.31131 1.31131i −0.0439799 0.0439799i
\(890\) 16.1203 16.1203i 0.540354 0.540354i
\(891\) 3.55487 3.55487i 0.119092 0.119092i
\(892\) 7.66008i 0.256479i
\(893\) 64.6165i 2.16231i
\(894\) 12.1757 12.1757i 0.407217 0.407217i
\(895\) 3.30411 3.30411i 0.110444 0.110444i
\(896\) −0.892178 0.892178i −0.0298056 0.0298056i
\(897\) −13.6035 −0.454208
\(898\) −52.2379 52.2379i −1.74320 1.74320i
\(899\) 5.77359i 0.192560i
\(900\) −3.39104 −0.113035
\(901\) 0 0
\(902\) 2.57099 0.0856046
\(903\) 0.965630i 0.0321341i
\(904\) −1.28196 1.28196i −0.0426375 0.0426375i
\(905\) 1.35937 0.0451871
\(906\) 15.6307 + 15.6307i 0.519296 + 0.519296i
\(907\) −10.4700 + 10.4700i −0.347652 + 0.347652i −0.859234 0.511582i \(-0.829060\pi\)
0.511582 + 0.859234i \(0.329060\pi\)
\(908\) 12.2987 12.2987i 0.408146 0.408146i
\(909\) 9.13707i 0.303058i
\(910\) 1.79014i 0.0593425i
\(911\) −33.6024 + 33.6024i −1.11330 + 1.11330i −0.120595 + 0.992702i \(0.538480\pi\)
−0.992702 + 0.120595i \(0.961520\pi\)
\(912\) 22.4621 22.4621i 0.743795 0.743795i
\(913\) 7.83296 + 7.83296i 0.259233 + 0.259233i
\(914\) −32.6880 −1.08122
\(915\) −9.44273 9.44273i −0.312167 0.312167i
\(916\) 42.5901i 1.40722i
\(917\) 1.59109 0.0525425
\(918\) 0 0
\(919\) −52.4090 −1.72881 −0.864407 0.502793i \(-0.832306\pi\)
−0.864407 + 0.502793i \(0.832306\pi\)
\(920\) 6.02092i 0.198504i
\(921\) −19.1921 19.1921i −0.632402 0.632402i
\(922\) 55.1856 1.81744
\(923\) 18.2632 + 18.2632i 0.601140 + 0.601140i
\(924\) 0.765367 0.765367i 0.0251787 0.0251787i
\(925\) −18.1017 + 18.1017i −0.595179 + 0.595179i
\(926\) 17.4653i 0.573944i
\(927\) 7.57862i 0.248915i
\(928\) −10.7151 + 10.7151i −0.351742 + 0.351742i
\(929\) −32.4544 + 32.4544i −1.06480 + 1.06480i −0.0670456 + 0.997750i \(0.521357\pi\)
−0.997750 + 0.0670456i \(0.978643\pi\)
\(930\) 5.42607 + 5.42607i 0.177928 + 0.177928i
\(931\) −45.9005 −1.50433
\(932\) −8.78523 8.78523i −0.287770 0.287770i
\(933\) 2.58579i 0.0846548i
\(934\) 36.9725 1.20978
\(935\) 0 0
\(936\) −4.26998 −0.139569
\(937\) 21.7579i 0.710799i −0.934714 0.355400i \(-0.884345\pi\)
0.934714 0.355400i \(-0.115655\pi\)
\(938\) 1.41421 + 1.41421i 0.0461757 + 0.0461757i
\(939\) 25.6105 0.835767
\(940\) −15.8435 15.8435i −0.516759 0.516759i
\(941\) 38.2560 38.2560i 1.24711 1.24711i 0.290121 0.956990i \(-0.406304\pi\)
0.956990 0.290121i \(-0.0936955\pi\)
\(942\) −23.7204 + 23.7204i −0.772852 + 0.772852i
\(943\) 0.954393i 0.0310793i
\(944\) 6.39194i 0.208040i
\(945\) 0.173654 0.173654i 0.00564896 0.00564896i
\(946\) 41.6627 41.6627i 1.35457 1.35457i
\(947\) −4.08430 4.08430i −0.132722 0.132722i 0.637625 0.770347i \(-0.279917\pi\)
−0.770347 + 0.637625i \(0.779917\pi\)
\(948\) 0.752823 0.0244506
\(949\) 23.2264 + 23.2264i 0.753962 + 0.753962i
\(950\) 29.1489i 0.945716i
\(951\) −25.5982 −0.830078
\(952\) 0 0
\(953\) −31.4698 −1.01941 −0.509704 0.860350i \(-0.670245\pi\)
−0.509704 + 0.860350i \(0.670245\pi\)
\(954\) 3.92856i 0.127192i
\(955\) 11.3731 + 11.3731i 0.368025 + 0.368025i
\(956\) −20.7183 −0.670078
\(957\) 7.97229 + 7.97229i 0.257707 + 0.257707i
\(958\) −1.57532 + 1.57532i −0.0508964 + 0.0508964i
\(959\) 1.45250 1.45250i 0.0469038 0.0469038i
\(960\) 4.56261i 0.147258i
\(961\) 24.3721i 0.786198i
\(962\) 55.0285 55.0285i 1.77419 1.77419i
\(963\) −13.0579 + 13.0579i −0.420785 + 0.420785i
\(964\) −16.9552 16.9552i −0.546091 0.546091i
\(965\) −6.02371 −0.193910
\(966\) −0.685918 0.685918i −0.0220690 0.0220690i
\(967\) 5.82126i 0.187199i 0.995610 + 0.0935996i \(0.0298374\pi\)
−0.995610 + 0.0935996i \(0.970163\pi\)
\(968\) 15.4502 0.496589
\(969\) 0 0
\(970\) 10.7493 0.345139
\(971\) 21.9049i 0.702963i −0.936195 0.351481i \(-0.885678\pi\)
0.936195 0.351481i \(-0.114322\pi\)
\(972\) 1.00000 + 1.00000i 0.0320750 + 0.0320750i
\(973\) −0.811136 −0.0260038
\(974\) −15.6282 15.6282i −0.500759 0.500759i
\(975\) 6.68873 6.68873i 0.214211 0.214211i
\(976\) −28.2641 + 28.2641i −0.904712 + 0.904712i
\(977\) 28.0473i 0.897312i −0.893705 0.448656i \(-0.851903\pi\)
0.893705 0.448656i \(-0.148097\pi\)
\(978\) 38.2902i 1.22438i
\(979\) −27.1893 + 27.1893i −0.868974 + 0.868974i
\(980\) −11.2545 + 11.2545i −0.359512 + 0.359512i
\(981\) 7.59379 + 7.59379i 0.242451 + 0.242451i
\(982\) 57.7668 1.84341
\(983\) 22.1516 + 22.1516i 0.706526 + 0.706526i 0.965803 0.259277i \(-0.0834842\pi\)
−0.259277 + 0.965803i \(0.583484\pi\)
\(984\) 0.299572i 0.00955001i
\(985\) −26.1412 −0.832929
\(986\) 0 0
\(987\) −1.49526 −0.0475945
\(988\) 36.7042i 1.16772i
\(989\) −15.4659 15.4659i −0.491786 0.491786i
\(990\) −14.9848 −0.476249
\(991\) 12.7274 + 12.7274i 0.404299 + 0.404299i 0.879745 0.475446i \(-0.157713\pi\)
−0.475446 + 0.879745i \(0.657713\pi\)
\(992\) 12.3005 12.3005i 0.390543 0.390543i
\(993\) 0.235588 0.235588i 0.00747616 0.00747616i
\(994\) 1.84174i 0.0584163i
\(995\) 26.5737i 0.842443i
\(996\) −2.20345 + 2.20345i −0.0698189 + 0.0698189i
\(997\) −39.2915 + 39.2915i −1.24438 + 1.24438i −0.286208 + 0.958167i \(0.592395\pi\)
−0.958167 + 0.286208i \(0.907605\pi\)
\(998\) 54.0381 + 54.0381i 1.71055 + 1.71055i
\(999\) 10.6762 0.337780
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.e.i.829.4 8
17.2 even 8 867.2.a.n.1.1 4
17.3 odd 16 867.2.h.f.712.2 8
17.4 even 4 inner 867.2.e.i.616.1 8
17.5 odd 16 867.2.h.g.733.1 8
17.6 odd 16 51.2.h.a.43.1 yes 8
17.7 odd 16 867.2.h.f.688.2 8
17.8 even 8 867.2.d.e.577.7 8
17.9 even 8 867.2.d.e.577.8 8
17.10 odd 16 867.2.h.b.688.2 8
17.11 odd 16 867.2.h.g.757.1 8
17.12 odd 16 51.2.h.a.19.1 8
17.13 even 4 867.2.e.h.616.1 8
17.14 odd 16 867.2.h.b.712.2 8
17.15 even 8 867.2.a.m.1.1 4
17.16 even 2 867.2.e.h.829.4 8
51.2 odd 8 2601.2.a.bd.1.4 4
51.23 even 16 153.2.l.e.145.2 8
51.29 even 16 153.2.l.e.19.2 8
51.32 odd 8 2601.2.a.bc.1.4 4
68.23 even 16 816.2.bq.a.145.1 8
68.63 even 16 816.2.bq.a.529.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.h.a.19.1 8 17.12 odd 16
51.2.h.a.43.1 yes 8 17.6 odd 16
153.2.l.e.19.2 8 51.29 even 16
153.2.l.e.145.2 8 51.23 even 16
816.2.bq.a.145.1 8 68.23 even 16
816.2.bq.a.529.1 8 68.63 even 16
867.2.a.m.1.1 4 17.15 even 8
867.2.a.n.1.1 4 17.2 even 8
867.2.d.e.577.7 8 17.8 even 8
867.2.d.e.577.8 8 17.9 even 8
867.2.e.h.616.1 8 17.13 even 4
867.2.e.h.829.4 8 17.16 even 2
867.2.e.i.616.1 8 17.4 even 4 inner
867.2.e.i.829.4 8 1.1 even 1 trivial
867.2.h.b.688.2 8 17.10 odd 16
867.2.h.b.712.2 8 17.14 odd 16
867.2.h.f.688.2 8 17.7 odd 16
867.2.h.f.712.2 8 17.3 odd 16
867.2.h.g.733.1 8 17.5 odd 16
867.2.h.g.757.1 8 17.11 odd 16
2601.2.a.bc.1.4 4 51.32 odd 8
2601.2.a.bd.1.4 4 51.2 odd 8