Properties

Label 816.2.bq.a.529.1
Level $816$
Weight $2$
Character 816.529
Analytic conductor $6.516$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [816,2,Mod(49,816)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(816, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("816.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 816.bq (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-8,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.51579280494\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 529.1
Root \(-0.923880 - 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 816.529
Dual form 816.2.bq.a.145.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.923880 + 0.382683i) q^{3} +(-0.617317 - 1.49033i) q^{5} +(-0.0582601 + 0.140652i) q^{7} +(0.707107 - 0.707107i) q^{9} +(-4.64466 - 1.92388i) q^{11} +3.94495i q^{13} +(1.14065 + 1.14065i) q^{15} +(-1.26616 + 3.92388i) q^{17} +(4.65205 + 4.65205i) q^{19} -0.152241i q^{21} +(3.18585 + 1.31962i) q^{23} +(1.69552 - 1.69552i) q^{25} +(-0.382683 + 0.923880i) q^{27} +(0.858221 + 2.07193i) q^{29} +(2.37849 - 0.985204i) q^{31} +5.02734 q^{33} +0.245584 q^{35} +(-9.86351 + 4.08560i) q^{37} +(-1.50967 - 3.64466i) q^{39} +(-0.105915 + 0.255701i) q^{41} +(-4.48502 + 4.48502i) q^{43} +(-1.49033 - 0.617317i) q^{45} +9.82164i q^{47} +(4.93336 + 4.93336i) q^{49} +(-0.331821 - 4.10973i) q^{51} +(-1.50339 - 1.50339i) q^{53} +8.10973i q^{55} +(-6.07820 - 2.51767i) q^{57} +(0.936078 - 0.936078i) q^{59} +(-3.16799 + 7.64821i) q^{61} +(0.0582601 + 0.140652i) q^{63} +(5.87929 - 2.43528i) q^{65} +7.10973 q^{67} -3.44834 q^{69} +(-6.04875 + 2.50548i) q^{71} +(3.18637 + 7.69258i) q^{73} +(-0.917608 + 2.21530i) q^{75} +(0.541196 - 0.541196i) q^{77} +(-0.491806 - 0.203713i) q^{79} -1.00000i q^{81} +(1.55807 + 1.55807i) q^{83} +(6.62951 - 0.535270i) q^{85} +(-1.58579 - 1.58579i) q^{87} -7.64847i q^{89} +(-0.554866 - 0.229833i) q^{91} +(-1.82042 + 1.82042i) q^{93} +(4.06132 - 9.80490i) q^{95} +(-1.38009 - 3.33182i) q^{97} +(-4.64466 + 1.92388i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} - 8 q^{11} - 8 q^{17} + 8 q^{19} - 8 q^{23} - 16 q^{25} - 8 q^{31} + 8 q^{33} - 32 q^{35} - 8 q^{37} - 16 q^{39} - 24 q^{41} + 8 q^{43} - 8 q^{45} - 8 q^{49} - 32 q^{53} - 16 q^{57} - 16 q^{59}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/816\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(545\) \(613\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.923880 + 0.382683i −0.533402 + 0.220942i
\(4\) 0 0
\(5\) −0.617317 1.49033i −0.276072 0.666498i 0.723647 0.690170i \(-0.242464\pi\)
−0.999720 + 0.0236722i \(0.992464\pi\)
\(6\) 0 0
\(7\) −0.0582601 + 0.140652i −0.0220202 + 0.0531616i −0.934507 0.355944i \(-0.884159\pi\)
0.912487 + 0.409106i \(0.134159\pi\)
\(8\) 0 0
\(9\) 0.707107 0.707107i 0.235702 0.235702i
\(10\) 0 0
\(11\) −4.64466 1.92388i −1.40042 0.580072i −0.450557 0.892748i \(-0.648774\pi\)
−0.949860 + 0.312676i \(0.898774\pi\)
\(12\) 0 0
\(13\) 3.94495i 1.09413i 0.837090 + 0.547066i \(0.184255\pi\)
−0.837090 + 0.547066i \(0.815745\pi\)
\(14\) 0 0
\(15\) 1.14065 + 1.14065i 0.294515 + 0.294515i
\(16\) 0 0
\(17\) −1.26616 + 3.92388i −0.307090 + 0.951681i
\(18\) 0 0
\(19\) 4.65205 + 4.65205i 1.06725 + 1.06725i 0.997569 + 0.0696854i \(0.0221995\pi\)
0.0696854 + 0.997569i \(0.477800\pi\)
\(20\) 0 0
\(21\) 0.152241i 0.0332217i
\(22\) 0 0
\(23\) 3.18585 + 1.31962i 0.664296 + 0.275160i 0.689245 0.724528i \(-0.257942\pi\)
−0.0249490 + 0.999689i \(0.507942\pi\)
\(24\) 0 0
\(25\) 1.69552 1.69552i 0.339104 0.339104i
\(26\) 0 0
\(27\) −0.382683 + 0.923880i −0.0736475 + 0.177801i
\(28\) 0 0
\(29\) 0.858221 + 2.07193i 0.159368 + 0.384748i 0.983313 0.181922i \(-0.0582317\pi\)
−0.823945 + 0.566669i \(0.808232\pi\)
\(30\) 0 0
\(31\) 2.37849 0.985204i 0.427190 0.176948i −0.158721 0.987324i \(-0.550737\pi\)
0.585911 + 0.810376i \(0.300737\pi\)
\(32\) 0 0
\(33\) 5.02734 0.875147
\(34\) 0 0
\(35\) 0.245584 0.0415112
\(36\) 0 0
\(37\) −9.86351 + 4.08560i −1.62155 + 0.671668i −0.994248 0.107106i \(-0.965841\pi\)
−0.627303 + 0.778775i \(0.715841\pi\)
\(38\) 0 0
\(39\) −1.50967 3.64466i −0.241740 0.583612i
\(40\) 0 0
\(41\) −0.105915 + 0.255701i −0.0165411 + 0.0399338i −0.931934 0.362627i \(-0.881880\pi\)
0.915393 + 0.402561i \(0.131880\pi\)
\(42\) 0 0
\(43\) −4.48502 + 4.48502i −0.683959 + 0.683959i −0.960890 0.276931i \(-0.910683\pi\)
0.276931 + 0.960890i \(0.410683\pi\)
\(44\) 0 0
\(45\) −1.49033 0.617317i −0.222166 0.0920241i
\(46\) 0 0
\(47\) 9.82164i 1.43263i 0.697775 + 0.716317i \(0.254173\pi\)
−0.697775 + 0.716317i \(0.745827\pi\)
\(48\) 0 0
\(49\) 4.93336 + 4.93336i 0.704766 + 0.704766i
\(50\) 0 0
\(51\) −0.331821 4.10973i −0.0464643 0.575478i
\(52\) 0 0
\(53\) −1.50339 1.50339i −0.206507 0.206507i 0.596274 0.802781i \(-0.296647\pi\)
−0.802781 + 0.596274i \(0.796647\pi\)
\(54\) 0 0
\(55\) 8.10973i 1.09352i
\(56\) 0 0
\(57\) −6.07820 2.51767i −0.805077 0.333474i
\(58\) 0 0
\(59\) 0.936078 0.936078i 0.121867 0.121867i −0.643543 0.765410i \(-0.722536\pi\)
0.765410 + 0.643543i \(0.222536\pi\)
\(60\) 0 0
\(61\) −3.16799 + 7.64821i −0.405620 + 0.979253i 0.580656 + 0.814149i \(0.302796\pi\)
−0.986276 + 0.165104i \(0.947204\pi\)
\(62\) 0 0
\(63\) 0.0582601 + 0.140652i 0.00734008 + 0.0177205i
\(64\) 0 0
\(65\) 5.87929 2.43528i 0.729236 0.302059i
\(66\) 0 0
\(67\) 7.10973 0.868592 0.434296 0.900770i \(-0.356997\pi\)
0.434296 + 0.900770i \(0.356997\pi\)
\(68\) 0 0
\(69\) −3.44834 −0.415132
\(70\) 0 0
\(71\) −6.04875 + 2.50548i −0.717855 + 0.297345i −0.711551 0.702635i \(-0.752007\pi\)
−0.00630431 + 0.999980i \(0.502007\pi\)
\(72\) 0 0
\(73\) 3.18637 + 7.69258i 0.372936 + 0.900348i 0.993250 + 0.115994i \(0.0370053\pi\)
−0.620314 + 0.784354i \(0.712995\pi\)
\(74\) 0 0
\(75\) −0.917608 + 2.21530i −0.105956 + 0.255801i
\(76\) 0 0
\(77\) 0.541196 0.541196i 0.0616750 0.0616750i
\(78\) 0 0
\(79\) −0.491806 0.203713i −0.0553325 0.0229195i 0.354846 0.934925i \(-0.384533\pi\)
−0.410178 + 0.912005i \(0.634533\pi\)
\(80\) 0 0
\(81\) 1.00000i 0.111111i
\(82\) 0 0
\(83\) 1.55807 + 1.55807i 0.171021 + 0.171021i 0.787428 0.616407i \(-0.211412\pi\)
−0.616407 + 0.787428i \(0.711412\pi\)
\(84\) 0 0
\(85\) 6.62951 0.535270i 0.719072 0.0580581i
\(86\) 0 0
\(87\) −1.58579 1.58579i −0.170014 0.170014i
\(88\) 0 0
\(89\) 7.64847i 0.810737i −0.914153 0.405368i \(-0.867143\pi\)
0.914153 0.405368i \(-0.132857\pi\)
\(90\) 0 0
\(91\) −0.554866 0.229833i −0.0581657 0.0240930i
\(92\) 0 0
\(93\) −1.82042 + 1.82042i −0.188769 + 0.188769i
\(94\) 0 0
\(95\) 4.06132 9.80490i 0.416683 1.00596i
\(96\) 0 0
\(97\) −1.38009 3.33182i −0.140126 0.338295i 0.838200 0.545363i \(-0.183608\pi\)
−0.978327 + 0.207067i \(0.933608\pi\)
\(98\) 0 0
\(99\) −4.64466 + 1.92388i −0.466805 + 0.193357i
\(100\) 0 0
\(101\) −9.13707 −0.909173 −0.454586 0.890703i \(-0.650213\pi\)
−0.454586 + 0.890703i \(0.650213\pi\)
\(102\) 0 0
\(103\) −7.57862 −0.746744 −0.373372 0.927682i \(-0.621798\pi\)
−0.373372 + 0.927682i \(0.621798\pi\)
\(104\) 0 0
\(105\) −0.226890 + 0.0939809i −0.0221422 + 0.00917159i
\(106\) 0 0
\(107\) −7.06688 17.0610i −0.683181 1.64934i −0.758087 0.652154i \(-0.773866\pi\)
0.0749059 0.997191i \(-0.476134\pi\)
\(108\) 0 0
\(109\) 4.10973 9.92177i 0.393641 0.950333i −0.595499 0.803356i \(-0.703046\pi\)
0.989140 0.146977i \(-0.0469544\pi\)
\(110\) 0 0
\(111\) 7.54920 7.54920i 0.716539 0.716539i
\(112\) 0 0
\(113\) 1.54747 + 0.640982i 0.145574 + 0.0602985i 0.454281 0.890859i \(-0.349896\pi\)
−0.308707 + 0.951157i \(0.599896\pi\)
\(114\) 0 0
\(115\) 5.56261i 0.518716i
\(116\) 0 0
\(117\) 2.78950 + 2.78950i 0.257889 + 0.257889i
\(118\) 0 0
\(119\) −0.478136 0.406694i −0.0438306 0.0372816i
\(120\) 0 0
\(121\) 10.0933 + 10.0933i 0.917577 + 0.917577i
\(122\) 0 0
\(123\) 0.276769i 0.0249554i
\(124\) 0 0
\(125\) −11.0252 4.56680i −0.986127 0.408467i
\(126\) 0 0
\(127\) −8.61339 + 8.61339i −0.764315 + 0.764315i −0.977099 0.212784i \(-0.931747\pi\)
0.212784 + 0.977099i \(0.431747\pi\)
\(128\) 0 0
\(129\) 2.42727 5.85996i 0.213710 0.515940i
\(130\) 0 0
\(131\) 3.99948 + 9.65561i 0.349436 + 0.843614i 0.996687 + 0.0813367i \(0.0259189\pi\)
−0.647250 + 0.762278i \(0.724081\pi\)
\(132\) 0 0
\(133\) −0.925351 + 0.383293i −0.0802381 + 0.0332357i
\(134\) 0 0
\(135\) 1.61313 0.138836
\(136\) 0 0
\(137\) 13.4928 1.15276 0.576382 0.817180i \(-0.304464\pi\)
0.576382 + 0.817180i \(0.304464\pi\)
\(138\) 0 0
\(139\) 4.92241 2.03893i 0.417513 0.172940i −0.164030 0.986455i \(-0.552449\pi\)
0.581543 + 0.813516i \(0.302449\pi\)
\(140\) 0 0
\(141\) −3.75858 9.07401i −0.316529 0.764170i
\(142\) 0 0
\(143\) 7.58960 18.3229i 0.634675 1.53224i
\(144\) 0 0
\(145\) 2.55807 2.55807i 0.212436 0.212436i
\(146\) 0 0
\(147\) −6.44574 2.66991i −0.531636 0.220211i
\(148\) 0 0
\(149\) 9.31890i 0.763434i −0.924279 0.381717i \(-0.875333\pi\)
0.924279 0.381717i \(-0.124667\pi\)
\(150\) 0 0
\(151\) 8.45929 + 8.45929i 0.688407 + 0.688407i 0.961880 0.273472i \(-0.0881722\pi\)
−0.273472 + 0.961880i \(0.588172\pi\)
\(152\) 0 0
\(153\) 1.87929 + 3.66991i 0.151932 + 0.296695i
\(154\) 0 0
\(155\) −2.93657 2.93657i −0.235871 0.235871i
\(156\) 0 0
\(157\) 18.1548i 1.44891i −0.689321 0.724456i \(-0.742091\pi\)
0.689321 0.724456i \(-0.257909\pi\)
\(158\) 0 0
\(159\) 1.96428 + 0.813631i 0.155777 + 0.0645251i
\(160\) 0 0
\(161\) −0.371216 + 0.371216i −0.0292559 + 0.0292559i
\(162\) 0 0
\(163\) −7.93015 + 19.1451i −0.621137 + 1.49956i 0.229232 + 0.973372i \(0.426379\pi\)
−0.850369 + 0.526186i \(0.823621\pi\)
\(164\) 0 0
\(165\) −3.10346 7.49242i −0.241604 0.583284i
\(166\) 0 0
\(167\) 7.47308 3.09545i 0.578285 0.239533i −0.0743169 0.997235i \(-0.523678\pi\)
0.652601 + 0.757701i \(0.273678\pi\)
\(168\) 0 0
\(169\) −2.56261 −0.197124
\(170\) 0 0
\(171\) 6.57900 0.503109
\(172\) 0 0
\(173\) −1.07228 + 0.444151i −0.0815236 + 0.0337682i −0.423073 0.906096i \(-0.639048\pi\)
0.341549 + 0.939864i \(0.389048\pi\)
\(174\) 0 0
\(175\) 0.139697 + 0.337260i 0.0105601 + 0.0254944i
\(176\) 0 0
\(177\) −0.506602 + 1.22304i −0.0380785 + 0.0919297i
\(178\) 0 0
\(179\) −2.04826 + 2.04826i −0.153094 + 0.153094i −0.779499 0.626404i \(-0.784526\pi\)
0.626404 + 0.779499i \(0.284526\pi\)
\(180\) 0 0
\(181\) 0.778548 + 0.322485i 0.0578690 + 0.0239701i 0.411430 0.911441i \(-0.365029\pi\)
−0.353561 + 0.935411i \(0.615029\pi\)
\(182\) 0 0
\(183\) 8.27836i 0.611954i
\(184\) 0 0
\(185\) 12.1778 + 12.1778i 0.895331 + 0.895331i
\(186\) 0 0
\(187\) 13.4300 15.7891i 0.982096 1.15462i
\(188\) 0 0
\(189\) −0.107651 0.107651i −0.00783043 0.00783043i
\(190\) 0 0
\(191\) 9.97069i 0.721454i −0.932671 0.360727i \(-0.882529\pi\)
0.932671 0.360727i \(-0.117471\pi\)
\(192\) 0 0
\(193\) 3.44993 + 1.42901i 0.248332 + 0.102862i 0.503377 0.864067i \(-0.332091\pi\)
−0.255046 + 0.966929i \(0.582091\pi\)
\(194\) 0 0
\(195\) −4.49981 + 4.49981i −0.322238 + 0.322238i
\(196\) 0 0
\(197\) −6.20151 + 14.9718i −0.441839 + 1.06669i 0.533464 + 0.845823i \(0.320890\pi\)
−0.975303 + 0.220871i \(0.929110\pi\)
\(198\) 0 0
\(199\) −6.30411 15.2195i −0.446886 1.07888i −0.973482 0.228763i \(-0.926532\pi\)
0.526596 0.850116i \(-0.323468\pi\)
\(200\) 0 0
\(201\) −6.56854 + 2.72078i −0.463309 + 0.191909i
\(202\) 0 0
\(203\) −0.341422 −0.0239631
\(204\) 0 0
\(205\) 0.446463 0.0311823
\(206\) 0 0
\(207\) 3.18585 1.31962i 0.221432 0.0917202i
\(208\) 0 0
\(209\) −12.6572 30.5572i −0.875517 2.11368i
\(210\) 0 0
\(211\) 4.09040 9.87510i 0.281595 0.679830i −0.718278 0.695756i \(-0.755070\pi\)
0.999873 + 0.0159259i \(0.00506960\pi\)
\(212\) 0 0
\(213\) 4.62951 4.62951i 0.317209 0.317209i
\(214\) 0 0
\(215\) 9.45285 + 3.91550i 0.644679 + 0.267035i
\(216\) 0 0
\(217\) 0.391939i 0.0266065i
\(218\) 0 0
\(219\) −5.88764 5.88764i −0.397850 0.397850i
\(220\) 0 0
\(221\) −15.4795 4.99495i −1.04126 0.335997i
\(222\) 0 0
\(223\) −3.83004 3.83004i −0.256479 0.256479i 0.567142 0.823620i \(-0.308049\pi\)
−0.823620 + 0.567142i \(0.808049\pi\)
\(224\) 0 0
\(225\) 2.39782i 0.159855i
\(226\) 0 0
\(227\) 11.3625 + 4.70650i 0.754155 + 0.312381i 0.726436 0.687235i \(-0.241176\pi\)
0.0277193 + 0.999616i \(0.491176\pi\)
\(228\) 0 0
\(229\) −21.2951 + 21.2951i −1.40722 + 1.40722i −0.633362 + 0.773856i \(0.718326\pi\)
−0.773856 + 0.633362i \(0.781674\pi\)
\(230\) 0 0
\(231\) −0.292893 + 0.707107i −0.0192710 + 0.0465242i
\(232\) 0 0
\(233\) −3.36196 8.11649i −0.220249 0.531729i 0.774674 0.632360i \(-0.217914\pi\)
−0.994924 + 0.100631i \(0.967914\pi\)
\(234\) 0 0
\(235\) 14.6375 6.06306i 0.954847 0.395510i
\(236\) 0 0
\(237\) 0.532327 0.0345783
\(238\) 0 0
\(239\) −14.6501 −0.947634 −0.473817 0.880623i \(-0.657124\pi\)
−0.473817 + 0.880623i \(0.657124\pi\)
\(240\) 0 0
\(241\) 15.6646 6.48849i 1.00905 0.417960i 0.183939 0.982938i \(-0.441115\pi\)
0.825106 + 0.564977i \(0.191115\pi\)
\(242\) 0 0
\(243\) 0.382683 + 0.923880i 0.0245492 + 0.0592669i
\(244\) 0 0
\(245\) 4.30691 10.3978i 0.275158 0.664291i
\(246\) 0 0
\(247\) −18.3521 + 18.3521i −1.16772 + 1.16772i
\(248\) 0 0
\(249\) −2.03572 0.843223i −0.129009 0.0534371i
\(250\) 0 0
\(251\) 13.9453i 0.880217i −0.897945 0.440109i \(-0.854940\pi\)
0.897945 0.440109i \(-0.145060\pi\)
\(252\) 0 0
\(253\) −12.2584 12.2584i −0.770678 0.770678i
\(254\) 0 0
\(255\) −5.92003 + 3.03153i −0.370727 + 0.189842i
\(256\) 0 0
\(257\) 13.9019 + 13.9019i 0.867180 + 0.867180i 0.992159 0.124980i \(-0.0398865\pi\)
−0.124980 + 0.992159i \(0.539887\pi\)
\(258\) 0 0
\(259\) 1.62535i 0.100994i
\(260\) 0 0
\(261\) 2.07193 + 0.858221i 0.128249 + 0.0531226i
\(262\) 0 0
\(263\) −19.7085 + 19.7085i −1.21528 + 1.21528i −0.246015 + 0.969266i \(0.579121\pi\)
−0.969266 + 0.246015i \(0.920879\pi\)
\(264\) 0 0
\(265\) −1.31249 + 3.16863i −0.0806256 + 0.194647i
\(266\) 0 0
\(267\) 2.92694 + 7.06627i 0.179126 + 0.432449i
\(268\) 0 0
\(269\) 0.189698 0.0785753i 0.0115661 0.00479082i −0.376893 0.926257i \(-0.623008\pi\)
0.388459 + 0.921466i \(0.373008\pi\)
\(270\) 0 0
\(271\) −8.21077 −0.498768 −0.249384 0.968405i \(-0.580228\pi\)
−0.249384 + 0.968405i \(0.580228\pi\)
\(272\) 0 0
\(273\) 0.600582 0.0363489
\(274\) 0 0
\(275\) −11.1371 + 4.61313i −0.671591 + 0.278182i
\(276\) 0 0
\(277\) 9.01896 + 21.7737i 0.541897 + 1.30825i 0.923383 + 0.383880i \(0.125412\pi\)
−0.381486 + 0.924374i \(0.624588\pi\)
\(278\) 0 0
\(279\) 0.985204 2.37849i 0.0589826 0.142397i
\(280\) 0 0
\(281\) −7.17941 + 7.17941i −0.428288 + 0.428288i −0.888045 0.459757i \(-0.847936\pi\)
0.459757 + 0.888045i \(0.347936\pi\)
\(282\) 0 0
\(283\) 8.75762 + 3.62753i 0.520587 + 0.215634i 0.627475 0.778637i \(-0.284089\pi\)
−0.106888 + 0.994271i \(0.534089\pi\)
\(284\) 0 0
\(285\) 10.6128i 0.628645i
\(286\) 0 0
\(287\) −0.0297943 0.0297943i −0.00175870 0.00175870i
\(288\) 0 0
\(289\) −13.7937 9.93654i −0.811392 0.584503i
\(290\) 0 0
\(291\) 2.55007 + 2.55007i 0.149487 + 0.149487i
\(292\) 0 0
\(293\) 9.28515i 0.542444i 0.962517 + 0.271222i \(0.0874278\pi\)
−0.962517 + 0.271222i \(0.912572\pi\)
\(294\) 0 0
\(295\) −1.97292 0.817212i −0.114868 0.0475799i
\(296\) 0 0
\(297\) 3.55487 3.55487i 0.206274 0.206274i
\(298\) 0 0
\(299\) −5.20584 + 12.5680i −0.301062 + 0.726827i
\(300\) 0 0
\(301\) −0.369530 0.892125i −0.0212994 0.0514213i
\(302\) 0 0
\(303\) 8.44155 3.49661i 0.484955 0.200875i
\(304\) 0 0
\(305\) 13.3540 0.764650
\(306\) 0 0
\(307\) 27.1418 1.54906 0.774531 0.632536i \(-0.217986\pi\)
0.774531 + 0.632536i \(0.217986\pi\)
\(308\) 0 0
\(309\) 7.00174 2.90021i 0.398315 0.164987i
\(310\) 0 0
\(311\) 0.989538 + 2.38896i 0.0561115 + 0.135465i 0.949449 0.313921i \(-0.101643\pi\)
−0.893338 + 0.449386i \(0.851643\pi\)
\(312\) 0 0
\(313\) 9.80071 23.6610i 0.553969 1.33740i −0.360506 0.932757i \(-0.617396\pi\)
0.914475 0.404643i \(-0.132604\pi\)
\(314\) 0 0
\(315\) 0.173654 0.173654i 0.00978429 0.00978429i
\(316\) 0 0
\(317\) 23.6497 + 9.79601i 1.32830 + 0.550199i 0.930169 0.367131i \(-0.119660\pi\)
0.398128 + 0.917330i \(0.369660\pi\)
\(318\) 0 0
\(319\) 11.2745i 0.631252i
\(320\) 0 0
\(321\) 13.0579 + 13.0579i 0.728820 + 0.728820i
\(322\) 0 0
\(323\) −24.1444 + 12.3638i −1.34343 + 0.687942i
\(324\) 0 0
\(325\) 6.68873 + 6.68873i 0.371024 + 0.371024i
\(326\) 0 0
\(327\) 10.7392i 0.593882i
\(328\) 0 0
\(329\) −1.38144 0.572209i −0.0761610 0.0315469i
\(330\) 0 0
\(331\) −0.235588 + 0.235588i −0.0129491 + 0.0129491i −0.713552 0.700603i \(-0.752915\pi\)
0.700603 + 0.713552i \(0.252915\pi\)
\(332\) 0 0
\(333\) −4.08560 + 9.86351i −0.223889 + 0.540517i
\(334\) 0 0
\(335\) −4.38896 10.5959i −0.239794 0.578914i
\(336\) 0 0
\(337\) −3.46953 + 1.43713i −0.188997 + 0.0782853i −0.475175 0.879891i \(-0.657615\pi\)
0.286178 + 0.958177i \(0.407615\pi\)
\(338\) 0 0
\(339\) −1.67497 −0.0909717
\(340\) 0 0
\(341\) −12.9427 −0.700886
\(342\) 0 0
\(343\) −1.96587 + 0.814291i −0.106147 + 0.0439676i
\(344\) 0 0
\(345\) 2.12872 + 5.13918i 0.114606 + 0.276684i
\(346\) 0 0
\(347\) −1.26668 + 3.05804i −0.0679989 + 0.164164i −0.954225 0.299088i \(-0.903318\pi\)
0.886227 + 0.463252i \(0.153318\pi\)
\(348\) 0 0
\(349\) 1.82779 1.82779i 0.0978393 0.0978393i −0.656493 0.754332i \(-0.727961\pi\)
0.754332 + 0.656493i \(0.227961\pi\)
\(350\) 0 0
\(351\) −3.64466 1.50967i −0.194537 0.0805800i
\(352\) 0 0
\(353\) 13.2848i 0.707079i −0.935420 0.353539i \(-0.884978\pi\)
0.935420 0.353539i \(-0.115022\pi\)
\(354\) 0 0
\(355\) 7.46799 + 7.46799i 0.396360 + 0.396360i
\(356\) 0 0
\(357\) 0.597375 + 0.192762i 0.0316164 + 0.0102020i
\(358\) 0 0
\(359\) 10.4143 + 10.4143i 0.549647 + 0.549647i 0.926339 0.376692i \(-0.122938\pi\)
−0.376692 + 0.926339i \(0.622938\pi\)
\(360\) 0 0
\(361\) 24.2832i 1.27806i
\(362\) 0 0
\(363\) −13.1876 5.46248i −0.692169 0.286706i
\(364\) 0 0
\(365\) 9.49751 9.49751i 0.497122 0.497122i
\(366\) 0 0
\(367\) 0.168365 0.406470i 0.00878861 0.0212176i −0.919424 0.393267i \(-0.871345\pi\)
0.928213 + 0.372049i \(0.121345\pi\)
\(368\) 0 0
\(369\) 0.105915 + 0.255701i 0.00551370 + 0.0133113i
\(370\) 0 0
\(371\) 0.299044 0.123868i 0.0155256 0.00643090i
\(372\) 0 0
\(373\) 0.827899 0.0428670 0.0214335 0.999770i \(-0.493177\pi\)
0.0214335 + 0.999770i \(0.493177\pi\)
\(374\) 0 0
\(375\) 11.9336 0.616250
\(376\) 0 0
\(377\) −8.17365 + 3.38564i −0.420965 + 0.174369i
\(378\) 0 0
\(379\) −7.58033 18.3005i −0.389375 0.940035i −0.990072 0.140558i \(-0.955110\pi\)
0.600697 0.799477i \(-0.294890\pi\)
\(380\) 0 0
\(381\) 4.66153 11.2539i 0.238818 0.576557i
\(382\) 0 0
\(383\) 11.7966 11.7966i 0.602776 0.602776i −0.338273 0.941048i \(-0.609843\pi\)
0.941048 + 0.338273i \(0.109843\pi\)
\(384\) 0 0
\(385\) −1.14065 0.472474i −0.0581330 0.0240795i
\(386\) 0 0
\(387\) 6.34277i 0.322421i
\(388\) 0 0
\(389\) −12.2315 12.2315i −0.620163 0.620163i 0.325410 0.945573i \(-0.394498\pi\)
−0.945573 + 0.325410i \(0.894498\pi\)
\(390\) 0 0
\(391\) −9.21185 + 10.8300i −0.465863 + 0.547699i
\(392\) 0 0
\(393\) −7.39008 7.39008i −0.372780 0.372780i
\(394\) 0 0
\(395\) 0.858710i 0.0432064i
\(396\) 0 0
\(397\) −5.95039 2.46473i −0.298641 0.123701i 0.228331 0.973583i \(-0.426673\pi\)
−0.526973 + 0.849882i \(0.676673\pi\)
\(398\) 0 0
\(399\) 0.708233 0.708233i 0.0354560 0.0354560i
\(400\) 0 0
\(401\) −8.06407 + 19.4684i −0.402700 + 0.972204i 0.584308 + 0.811532i \(0.301366\pi\)
−0.987008 + 0.160672i \(0.948634\pi\)
\(402\) 0 0
\(403\) 3.88658 + 9.38303i 0.193604 + 0.467402i
\(404\) 0 0
\(405\) −1.49033 + 0.617317i −0.0740553 + 0.0306747i
\(406\) 0 0
\(407\) 53.6728 2.66046
\(408\) 0 0
\(409\) −27.6232 −1.36588 −0.682939 0.730475i \(-0.739299\pi\)
−0.682939 + 0.730475i \(0.739299\pi\)
\(410\) 0 0
\(411\) −12.4657 + 5.16346i −0.614887 + 0.254694i
\(412\) 0 0
\(413\) 0.0771255 + 0.186197i 0.00379510 + 0.00916218i
\(414\) 0 0
\(415\) 1.36023 3.28387i 0.0667708 0.161199i
\(416\) 0 0
\(417\) −3.76745 + 3.76745i −0.184493 + 0.184493i
\(418\) 0 0
\(419\) 11.1336 + 4.61170i 0.543914 + 0.225297i 0.637685 0.770297i \(-0.279892\pi\)
−0.0937711 + 0.995594i \(0.529892\pi\)
\(420\) 0 0
\(421\) 14.0183i 0.683210i −0.939844 0.341605i \(-0.889029\pi\)
0.939844 0.341605i \(-0.110971\pi\)
\(422\) 0 0
\(423\) 6.94495 + 6.94495i 0.337675 + 0.337675i
\(424\) 0 0
\(425\) 4.50621 + 8.79981i 0.218583 + 0.426854i
\(426\) 0 0
\(427\) −0.891171 0.891171i −0.0431268 0.0431268i
\(428\) 0 0
\(429\) 19.8326i 0.957526i
\(430\) 0 0
\(431\) −3.18166 1.31789i −0.153255 0.0634804i 0.304737 0.952436i \(-0.401431\pi\)
−0.457992 + 0.888956i \(0.651431\pi\)
\(432\) 0 0
\(433\) −3.93561 + 3.93561i −0.189133 + 0.189133i −0.795321 0.606188i \(-0.792698\pi\)
0.606188 + 0.795321i \(0.292698\pi\)
\(434\) 0 0
\(435\) −1.38442 + 3.34228i −0.0663778 + 0.160250i
\(436\) 0 0
\(437\) 8.68180 + 20.9597i 0.415307 + 1.00264i
\(438\) 0 0
\(439\) −16.2477 + 6.73002i −0.775461 + 0.321206i −0.735082 0.677978i \(-0.762856\pi\)
−0.0403786 + 0.999184i \(0.512856\pi\)
\(440\) 0 0
\(441\) 6.97682 0.332230
\(442\) 0 0
\(443\) −5.87632 −0.279192 −0.139596 0.990209i \(-0.544580\pi\)
−0.139596 + 0.990209i \(0.544580\pi\)
\(444\) 0 0
\(445\) −11.3988 + 4.72153i −0.540354 + 0.223822i
\(446\) 0 0
\(447\) 3.56619 + 8.60954i 0.168675 + 0.407217i
\(448\) 0 0
\(449\) −15.3001 + 36.9378i −0.722058 + 1.74320i −0.0546546 + 0.998505i \(0.517406\pi\)
−0.667403 + 0.744697i \(0.732594\pi\)
\(450\) 0 0
\(451\) 0.983875 0.983875i 0.0463289 0.0463289i
\(452\) 0 0
\(453\) −11.0526 4.57814i −0.519296 0.215100i
\(454\) 0 0
\(455\) 0.968815i 0.0454188i
\(456\) 0 0
\(457\) 12.5092 + 12.5092i 0.585154 + 0.585154i 0.936315 0.351161i \(-0.114213\pi\)
−0.351161 + 0.936315i \(0.614213\pi\)
\(458\) 0 0
\(459\) −3.14065 2.67139i −0.146593 0.124690i
\(460\) 0 0
\(461\) 21.1186 + 21.1186i 0.983591 + 0.983591i 0.999868 0.0162762i \(-0.00518111\pi\)
−0.0162762 + 0.999868i \(0.505181\pi\)
\(462\) 0 0
\(463\) 9.45213i 0.439278i −0.975581 0.219639i \(-0.929512\pi\)
0.975581 0.219639i \(-0.0704879\pi\)
\(464\) 0 0
\(465\) 3.83681 + 1.58926i 0.177928 + 0.0737001i
\(466\) 0 0
\(467\) −14.1488 + 14.1488i −0.654726 + 0.654726i −0.954127 0.299401i \(-0.903213\pi\)
0.299401 + 0.954127i \(0.403213\pi\)
\(468\) 0 0
\(469\) −0.414214 + 1.00000i −0.0191266 + 0.0461757i
\(470\) 0 0
\(471\) 6.94755 + 16.7729i 0.320126 + 0.772852i
\(472\) 0 0
\(473\) 29.4600 12.2027i 1.35457 0.561082i
\(474\) 0 0
\(475\) 15.7753 0.723820
\(476\) 0 0
\(477\) −2.12612 −0.0973484
\(478\) 0 0
\(479\) −1.11392 + 0.461402i −0.0508964 + 0.0210820i −0.407986 0.912988i \(-0.633769\pi\)
0.357090 + 0.934070i \(0.383769\pi\)
\(480\) 0 0
\(481\) −16.1175 38.9110i −0.734894 1.77419i
\(482\) 0 0
\(483\) 0.200901 0.485017i 0.00914130 0.0220690i
\(484\) 0 0
\(485\) −4.11358 + 4.11358i −0.186788 + 0.186788i
\(486\) 0 0
\(487\) −11.0508 4.57738i −0.500759 0.207421i 0.117983 0.993016i \(-0.462357\pi\)
−0.618742 + 0.785595i \(0.712357\pi\)
\(488\) 0 0
\(489\) 20.7225i 0.937103i
\(490\) 0 0
\(491\) 22.1064 + 22.1064i 0.997649 + 0.997649i 0.999997 0.00234871i \(-0.000747617\pi\)
−0.00234871 + 0.999997i \(0.500748\pi\)
\(492\) 0 0
\(493\) −9.21665 + 0.744156i −0.415097 + 0.0335151i
\(494\) 0 0
\(495\) 5.73445 + 5.73445i 0.257744 + 0.257744i
\(496\) 0 0
\(497\) 0.996740i 0.0447099i
\(498\) 0 0
\(499\) −38.2107 15.8274i −1.71055 0.708531i −0.999988 0.00489302i \(-0.998442\pi\)
−0.710558 0.703638i \(-0.751558\pi\)
\(500\) 0 0
\(501\) −5.71965 + 5.71965i −0.255535 + 0.255535i
\(502\) 0 0
\(503\) 1.17972 2.84810i 0.0526013 0.126991i −0.895394 0.445274i \(-0.853106\pi\)
0.947996 + 0.318283i \(0.103106\pi\)
\(504\) 0 0
\(505\) 5.64047 + 13.6173i 0.250997 + 0.605961i
\(506\) 0 0
\(507\) 2.36754 0.980668i 0.105146 0.0435530i
\(508\) 0 0
\(509\) 33.8077 1.49850 0.749249 0.662288i \(-0.230415\pi\)
0.749249 + 0.662288i \(0.230415\pi\)
\(510\) 0 0
\(511\) −1.26762 −0.0560760
\(512\) 0 0
\(513\) −6.07820 + 2.51767i −0.268359 + 0.111158i
\(514\) 0 0
\(515\) 4.67841 + 11.2947i 0.206155 + 0.497703i
\(516\) 0 0
\(517\) 18.8956 45.6181i 0.831030 2.00628i
\(518\) 0 0
\(519\) 0.820684 0.820684i 0.0360240 0.0360240i
\(520\) 0 0
\(521\) −37.8381 15.6731i −1.65772 0.686649i −0.659818 0.751425i \(-0.729367\pi\)
−0.997900 + 0.0647762i \(0.979367\pi\)
\(522\) 0 0
\(523\) 9.06788i 0.396511i −0.980150 0.198255i \(-0.936472\pi\)
0.980150 0.198255i \(-0.0635275\pi\)
\(524\) 0 0
\(525\) −0.258127 0.258127i −0.0112656 0.0112656i
\(526\) 0 0
\(527\) 0.854262 + 10.5803i 0.0372122 + 0.460887i
\(528\) 0 0
\(529\) −7.85521 7.85521i −0.341531 0.341531i
\(530\) 0 0
\(531\) 1.32381i 0.0574486i
\(532\) 0 0
\(533\) −1.00873 0.417828i −0.0436928 0.0180981i
\(534\) 0 0
\(535\) −21.0640 + 21.0640i −0.910677 + 0.910677i
\(536\) 0 0
\(537\) 1.10851 2.67619i 0.0478359 0.115486i
\(538\) 0 0
\(539\) −13.4226 32.4049i −0.578151 1.39578i
\(540\) 0 0
\(541\) 11.9569 4.95269i 0.514065 0.212933i −0.110543 0.993871i \(-0.535259\pi\)
0.624608 + 0.780939i \(0.285259\pi\)
\(542\) 0 0
\(543\) −0.842695 −0.0361635
\(544\) 0 0
\(545\) −17.3238 −0.742068
\(546\) 0 0
\(547\) −9.84840 + 4.07934i −0.421087 + 0.174420i −0.583157 0.812359i \(-0.698183\pi\)
0.162070 + 0.986779i \(0.448183\pi\)
\(548\) 0 0
\(549\) 3.16799 + 7.64821i 0.135207 + 0.326418i
\(550\) 0 0
\(551\) −5.64624 + 13.6312i −0.240538 + 0.580710i
\(552\) 0 0
\(553\) 0.0573053 0.0573053i 0.00243687 0.00243687i
\(554\) 0 0
\(555\) −15.9111 6.59059i −0.675388 0.279755i
\(556\) 0 0
\(557\) 30.1933i 1.27933i 0.768653 + 0.639667i \(0.220928\pi\)
−0.768653 + 0.639667i \(0.779072\pi\)
\(558\) 0 0
\(559\) −17.6932 17.6932i −0.748341 0.748341i
\(560\) 0 0
\(561\) −6.36543 + 19.7267i −0.268749 + 0.832861i
\(562\) 0 0
\(563\) 21.1592 + 21.1592i 0.891755 + 0.891755i 0.994688 0.102934i \(-0.0328229\pi\)
−0.102934 + 0.994688i \(0.532823\pi\)
\(564\) 0 0
\(565\) 2.70193i 0.113671i
\(566\) 0 0
\(567\) 0.140652 + 0.0582601i 0.00590684 + 0.00244669i
\(568\) 0 0
\(569\) −18.1692 + 18.1692i −0.761694 + 0.761694i −0.976628 0.214935i \(-0.931046\pi\)
0.214935 + 0.976628i \(0.431046\pi\)
\(570\) 0 0
\(571\) 10.7206 25.8818i 0.448643 1.08312i −0.524187 0.851603i \(-0.675631\pi\)
0.972831 0.231518i \(-0.0743692\pi\)
\(572\) 0 0
\(573\) 3.81562 + 9.21172i 0.159400 + 0.384825i
\(574\) 0 0
\(575\) 7.63912 3.16423i 0.318573 0.131957i
\(576\) 0 0
\(577\) 11.8072 0.491538 0.245769 0.969328i \(-0.420959\pi\)
0.245769 + 0.969328i \(0.420959\pi\)
\(578\) 0 0
\(579\) −3.73418 −0.155187
\(580\) 0 0
\(581\) −0.309920 + 0.128373i −0.0128576 + 0.00532581i
\(582\) 0 0
\(583\) 4.09040 + 9.87510i 0.169407 + 0.408985i
\(584\) 0 0
\(585\) 2.43528 5.87929i 0.100686 0.243079i
\(586\) 0 0
\(587\) −5.26250 + 5.26250i −0.217207 + 0.217207i −0.807320 0.590114i \(-0.799083\pi\)
0.590114 + 0.807320i \(0.299083\pi\)
\(588\) 0 0
\(589\) 15.6481 + 6.48165i 0.644769 + 0.267072i
\(590\) 0 0
\(591\) 16.2053i 0.666598i
\(592\) 0 0
\(593\) −5.41074 5.41074i −0.222193 0.222193i 0.587229 0.809421i \(-0.300219\pi\)
−0.809421 + 0.587229i \(0.800219\pi\)
\(594\) 0 0
\(595\) −0.310949 + 0.963641i −0.0127477 + 0.0395054i
\(596\) 0 0
\(597\) 11.6485 + 11.6485i 0.476740 + 0.476740i
\(598\) 0 0
\(599\) 16.1547i 0.660062i −0.943970 0.330031i \(-0.892941\pi\)
0.943970 0.330031i \(-0.107059\pi\)
\(600\) 0 0
\(601\) −26.5316 10.9897i −1.08225 0.448281i −0.230949 0.972966i \(-0.574183\pi\)
−0.851296 + 0.524685i \(0.824183\pi\)
\(602\) 0 0
\(603\) 5.02734 5.02734i 0.204729 0.204729i
\(604\) 0 0
\(605\) 8.81166 21.2732i 0.358245 0.864880i
\(606\) 0 0
\(607\) 9.87815 + 23.8480i 0.400942 + 0.967959i 0.987438 + 0.158007i \(0.0505069\pi\)
−0.586496 + 0.809952i \(0.699493\pi\)
\(608\) 0 0
\(609\) 0.315433 0.130656i 0.0127820 0.00529447i
\(610\) 0 0
\(611\) −38.7458 −1.56749
\(612\) 0 0
\(613\) 49.1769 1.98623 0.993117 0.117123i \(-0.0373670\pi\)
0.993117 + 0.117123i \(0.0373670\pi\)
\(614\) 0 0
\(615\) −0.412478 + 0.170854i −0.0166327 + 0.00688949i
\(616\) 0 0
\(617\) 1.35880 + 3.28044i 0.0547034 + 0.132066i 0.948868 0.315672i \(-0.102230\pi\)
−0.894165 + 0.447738i \(0.852230\pi\)
\(618\) 0 0
\(619\) 13.4709 32.5216i 0.541440 1.30715i −0.382266 0.924052i \(-0.624856\pi\)
0.923707 0.383101i \(-0.125144\pi\)
\(620\) 0 0
\(621\) −2.43835 + 2.43835i −0.0978474 + 0.0978474i
\(622\) 0 0
\(623\) 1.07578 + 0.445601i 0.0431000 + 0.0178526i
\(624\) 0 0
\(625\) 7.26131i 0.290453i
\(626\) 0 0
\(627\) 23.3875 + 23.3875i 0.934005 + 0.934005i
\(628\) 0 0
\(629\) −3.54259 43.8763i −0.141252 1.74946i
\(630\) 0 0
\(631\) 22.2124 + 22.2124i 0.884262 + 0.884262i 0.993964 0.109702i \(-0.0349898\pi\)
−0.109702 + 0.993964i \(0.534990\pi\)
\(632\) 0 0
\(633\) 10.6887i 0.424839i
\(634\) 0 0
\(635\) 18.1540 + 7.51964i 0.720420 + 0.298408i
\(636\) 0 0
\(637\) −19.4618 + 19.4618i −0.771106 + 0.771106i
\(638\) 0 0
\(639\) −2.50548 + 6.04875i −0.0991151 + 0.239285i
\(640\) 0 0
\(641\) 10.1700 + 24.5525i 0.401691 + 0.969767i 0.987256 + 0.159141i \(0.0508726\pi\)
−0.585565 + 0.810625i \(0.699127\pi\)
\(642\) 0 0
\(643\) 14.8049 6.13238i 0.583847 0.241837i −0.0711538 0.997465i \(-0.522668\pi\)
0.655001 + 0.755628i \(0.272668\pi\)
\(644\) 0 0
\(645\) −10.2317 −0.402872
\(646\) 0 0
\(647\) −41.6554 −1.63764 −0.818822 0.574048i \(-0.805372\pi\)
−0.818822 + 0.574048i \(0.805372\pi\)
\(648\) 0 0
\(649\) −6.14866 + 2.54686i −0.241356 + 0.0999729i
\(650\) 0 0
\(651\) −0.149988 0.362104i −0.00587851 0.0141920i
\(652\) 0 0
\(653\) −4.71711 + 11.3881i −0.184595 + 0.445652i −0.988903 0.148560i \(-0.952536\pi\)
0.804308 + 0.594212i \(0.202536\pi\)
\(654\) 0 0
\(655\) 11.9211 11.9211i 0.465797 0.465797i
\(656\) 0 0
\(657\) 7.69258 + 3.18637i 0.300116 + 0.124312i
\(658\) 0 0
\(659\) 3.46449i 0.134957i 0.997721 + 0.0674786i \(0.0214955\pi\)
−0.997721 + 0.0674786i \(0.978505\pi\)
\(660\) 0 0
\(661\) 20.0276 + 20.0276i 0.778984 + 0.778984i 0.979658 0.200674i \(-0.0643134\pi\)
−0.200674 + 0.979658i \(0.564313\pi\)
\(662\) 0 0
\(663\) 16.2127 1.30902i 0.629648 0.0508380i
\(664\) 0 0
\(665\) 1.14247 + 1.14247i 0.0443031 + 0.0443031i
\(666\) 0 0
\(667\) 7.73339i 0.299438i
\(668\) 0 0
\(669\) 5.00419 + 2.07280i 0.193473 + 0.0801392i
\(670\) 0 0
\(671\) 29.4285 29.4285i 1.13607 1.13607i
\(672\) 0 0
\(673\) 10.8715 26.2461i 0.419065 1.01171i −0.563554 0.826079i \(-0.690566\pi\)
0.982619 0.185634i \(-0.0594338\pi\)
\(674\) 0 0
\(675\) 0.917608 + 2.21530i 0.0353187 + 0.0852670i
\(676\) 0 0
\(677\) 17.8293 7.38512i 0.685234 0.283833i −0.0127789 0.999918i \(-0.504068\pi\)
0.698013 + 0.716085i \(0.254068\pi\)
\(678\) 0 0
\(679\) 0.549032 0.0210699
\(680\) 0 0
\(681\) −12.2987 −0.471286
\(682\) 0 0
\(683\) −17.9965 + 7.45441i −0.688618 + 0.285235i −0.699424 0.714707i \(-0.746560\pi\)
0.0108060 + 0.999942i \(0.496560\pi\)
\(684\) 0 0
\(685\) −8.32930 20.1087i −0.318246 0.768315i
\(686\) 0 0
\(687\) 11.5248 27.8233i 0.439699 1.06153i
\(688\) 0 0
\(689\) 5.93081 5.93081i 0.225946 0.225946i
\(690\) 0 0
\(691\) 6.96550 + 2.88520i 0.264980 + 0.109758i 0.511218 0.859451i \(-0.329194\pi\)
−0.246238 + 0.969209i \(0.579194\pi\)
\(692\) 0 0
\(693\) 0.765367i 0.0290739i
\(694\) 0 0
\(695\) −6.07737 6.07737i −0.230528 0.230528i
\(696\) 0 0
\(697\) −0.869234 0.739356i −0.0329246 0.0280051i
\(698\) 0 0
\(699\) 6.21209 + 6.21209i 0.234963 + 0.234963i
\(700\) 0 0
\(701\) 39.0875i 1.47632i −0.674628 0.738158i \(-0.735696\pi\)
0.674628 0.738158i \(-0.264304\pi\)
\(702\) 0 0
\(703\) −64.8920 26.8792i −2.44745 1.01377i
\(704\) 0 0
\(705\) −11.2031 + 11.2031i −0.421932 + 0.421932i
\(706\) 0 0
\(707\) 0.532327 1.28515i 0.0200202 0.0483330i
\(708\) 0 0
\(709\) −2.56889 6.20186i −0.0964768 0.232916i 0.868272 0.496089i \(-0.165231\pi\)
−0.964749 + 0.263173i \(0.915231\pi\)
\(710\) 0 0
\(711\) −0.491806 + 0.203713i −0.0184442 + 0.00763982i
\(712\) 0 0
\(713\) 8.87762 0.332470
\(714\) 0 0
\(715\) −31.9925 −1.19645
\(716\) 0 0
\(717\) 13.5349 5.60634i 0.505470 0.209373i
\(718\) 0 0
\(719\) −2.83424 6.84246i −0.105699 0.255181i 0.862177 0.506607i \(-0.169100\pi\)
−0.967876 + 0.251426i \(0.919100\pi\)
\(720\) 0 0
\(721\) 0.441531 1.06595i 0.0164435 0.0396981i
\(722\) 0 0
\(723\) −11.9892 + 11.9892i −0.445882 + 0.445882i
\(724\) 0 0
\(725\) 4.96812 + 2.05786i 0.184512 + 0.0764272i
\(726\) 0 0
\(727\) 6.36054i 0.235899i −0.993020 0.117950i \(-0.962368\pi\)
0.993020 0.117950i \(-0.0376322\pi\)
\(728\) 0 0
\(729\) −0.707107 0.707107i −0.0261891 0.0261891i
\(730\) 0 0
\(731\) −11.9199 23.2774i −0.440874 0.860947i
\(732\) 0 0
\(733\) −29.2273 29.2273i −1.07954 1.07954i −0.996551 0.0829857i \(-0.973554\pi\)
−0.0829857 0.996551i \(-0.526446\pi\)
\(734\) 0 0
\(735\) 11.2545i 0.415128i
\(736\) 0 0
\(737\) −33.0223 13.6783i −1.21639 0.503845i
\(738\) 0 0
\(739\) 16.3803 16.3803i 0.602561 0.602561i −0.338430 0.940991i \(-0.609896\pi\)
0.940991 + 0.338430i \(0.109896\pi\)
\(740\) 0 0
\(741\) 9.93209 23.9782i 0.364864 0.880861i
\(742\) 0 0
\(743\) 14.5995 + 35.2464i 0.535606 + 1.29307i 0.927764 + 0.373168i \(0.121729\pi\)
−0.392158 + 0.919898i \(0.628271\pi\)
\(744\) 0 0
\(745\) −13.8883 + 5.75271i −0.508827 + 0.210763i
\(746\) 0 0
\(747\) 2.20345 0.0806200
\(748\) 0 0
\(749\) 2.81138 0.102726
\(750\) 0 0
\(751\) 31.6034 13.0906i 1.15322 0.477681i 0.277611 0.960694i \(-0.410457\pi\)
0.875613 + 0.483013i \(0.160457\pi\)
\(752\) 0 0
\(753\) 5.33662 + 12.8837i 0.194477 + 0.469510i
\(754\) 0 0
\(755\) 7.38511 17.8292i 0.268772 0.648872i
\(756\) 0 0
\(757\) −4.96523 + 4.96523i −0.180465 + 0.180465i −0.791558 0.611094i \(-0.790730\pi\)
0.611094 + 0.791558i \(0.290730\pi\)
\(758\) 0 0
\(759\) 16.0164 + 6.63419i 0.581357 + 0.240806i
\(760\) 0 0
\(761\) 47.2917i 1.71432i −0.515048 0.857161i \(-0.672226\pi\)
0.515048 0.857161i \(-0.327774\pi\)
\(762\) 0 0
\(763\) 1.15609 + 1.15609i 0.0418531 + 0.0418531i
\(764\) 0 0
\(765\) 4.30928 5.06627i 0.155802 0.183171i
\(766\) 0 0
\(767\) 3.69278 + 3.69278i 0.133338 + 0.133338i
\(768\) 0 0
\(769\) 6.39156i 0.230486i 0.993337 + 0.115243i \(0.0367646\pi\)
−0.993337 + 0.115243i \(0.963235\pi\)
\(770\) 0 0
\(771\) −18.1638 7.52368i −0.654152 0.270959i
\(772\) 0 0
\(773\) −2.60024 + 2.60024i −0.0935241 + 0.0935241i −0.752321 0.658797i \(-0.771066\pi\)
0.658797 + 0.752321i \(0.271066\pi\)
\(774\) 0 0
\(775\) 2.36235 5.70321i 0.0848580 0.204865i
\(776\) 0 0
\(777\) 0.621995 + 1.50163i 0.0223140 + 0.0538707i
\(778\) 0 0
\(779\) −1.68226 + 0.696813i −0.0602731 + 0.0249659i
\(780\) 0 0
\(781\) 32.9146 1.17778
\(782\) 0 0
\(783\) −2.24264 −0.0801454
\(784\) 0 0
\(785\) −27.0567 + 11.2073i −0.965696 + 0.400004i
\(786\) 0 0
\(787\) 1.55526 + 3.75473i 0.0554391 + 0.133842i 0.949172 0.314757i \(-0.101923\pi\)
−0.893733 + 0.448599i \(0.851923\pi\)
\(788\) 0 0
\(789\) 10.6662 25.7505i 0.379726 0.916741i
\(790\) 0 0
\(791\) −0.180311 + 0.180311i −0.00641113 + 0.00641113i
\(792\) 0 0
\(793\) −30.1718 12.4976i −1.07143 0.443801i
\(794\) 0 0
\(795\) 3.42970i 0.121639i
\(796\) 0 0
\(797\) 9.76205 + 9.76205i 0.345790 + 0.345790i 0.858539 0.512749i \(-0.171373\pi\)
−0.512749 + 0.858539i \(0.671373\pi\)
\(798\) 0 0
\(799\) −38.5389 12.4358i −1.36341 0.439947i
\(800\) 0 0
\(801\) −5.40829 5.40829i −0.191092 0.191092i
\(802\) 0 0
\(803\) 41.8596i 1.47719i
\(804\) 0 0
\(805\) 0.782394 + 0.324078i 0.0275758 + 0.0114223i
\(806\) 0 0
\(807\) −0.145188 + 0.145188i −0.00511087 + 0.00511087i
\(808\) 0 0
\(809\) 7.21319 17.4142i 0.253602 0.612250i −0.744887 0.667190i \(-0.767497\pi\)
0.998490 + 0.0549401i \(0.0174968\pi\)
\(810\) 0 0
\(811\) 0.994804 + 2.40167i 0.0349323 + 0.0843340i 0.940383 0.340118i \(-0.110467\pi\)
−0.905451 + 0.424452i \(0.860467\pi\)
\(812\) 0 0
\(813\) 7.58576 3.14212i 0.266044 0.110199i
\(814\) 0 0
\(815\) 33.4280 1.17093
\(816\) 0 0
\(817\) −41.7291 −1.45992
\(818\) 0 0
\(819\) −0.554866 + 0.229833i −0.0193886 + 0.00803101i
\(820\) 0 0
\(821\) 4.97770 + 12.0172i 0.173723 + 0.419404i 0.986627 0.162993i \(-0.0521149\pi\)
−0.812904 + 0.582397i \(0.802115\pi\)
\(822\) 0 0
\(823\) 8.28676 20.0060i 0.288858 0.697366i −0.711125 0.703065i \(-0.751814\pi\)
0.999984 + 0.00569929i \(0.00181415\pi\)
\(824\) 0 0
\(825\) 8.52395 8.52395i 0.296766 0.296766i
\(826\) 0 0
\(827\) 44.2300 + 18.3207i 1.53803 + 0.637072i 0.981102 0.193490i \(-0.0619807\pi\)
0.556926 + 0.830562i \(0.311981\pi\)
\(828\) 0 0
\(829\) 12.9906i 0.451181i −0.974222 0.225590i \(-0.927569\pi\)
0.974222 0.225590i \(-0.0724311\pi\)
\(830\) 0 0
\(831\) −16.6649 16.6649i −0.578098 0.578098i
\(832\) 0 0
\(833\) −25.6043 + 13.1115i −0.887138 + 0.454285i
\(834\) 0 0
\(835\) −9.22652 9.22652i −0.319297 0.319297i
\(836\) 0 0
\(837\) 2.57446i 0.0889864i
\(838\) 0 0
\(839\) −17.4361 7.22226i −0.601961 0.249340i 0.0608263 0.998148i \(-0.480626\pi\)
−0.662787 + 0.748808i \(0.730626\pi\)
\(840\) 0 0
\(841\) 16.9497 16.9497i 0.584474 0.584474i
\(842\) 0 0
\(843\) 3.88547 9.38035i 0.133823 0.323076i
\(844\) 0 0
\(845\) 1.58194 + 3.81914i 0.0544204 + 0.131383i
\(846\) 0 0
\(847\) −2.00769 + 0.831613i −0.0689851 + 0.0285746i
\(848\) 0 0
\(849\) −9.47918 −0.325325
\(850\) 0 0
\(851\) −36.8151 −1.26201
\(852\) 0 0
\(853\) 5.57645 2.30984i 0.190934 0.0790875i −0.285168 0.958478i \(-0.592049\pi\)
0.476102 + 0.879390i \(0.342049\pi\)
\(854\) 0 0
\(855\) −4.06132 9.80490i −0.138894 0.335321i
\(856\) 0 0
\(857\) 6.15488 14.8592i 0.210247 0.507581i −0.783214 0.621752i \(-0.786421\pi\)
0.993461 + 0.114171i \(0.0364213\pi\)
\(858\) 0 0
\(859\) 40.9101 40.9101i 1.39583 1.39583i 0.584285 0.811548i \(-0.301375\pi\)
0.811548 0.584285i \(-0.198625\pi\)
\(860\) 0 0
\(861\) 0.0389281 + 0.0161246i 0.00132667 + 0.000549524i
\(862\) 0 0
\(863\) 7.56067i 0.257368i −0.991686 0.128684i \(-0.958925\pi\)
0.991686 0.128684i \(-0.0410753\pi\)
\(864\) 0 0
\(865\) 1.32387 + 1.32387i 0.0450128 + 0.0450128i
\(866\) 0 0
\(867\) 16.5462 + 3.90156i 0.561940 + 0.132504i
\(868\) 0 0
\(869\) 1.89235 + 1.89235i 0.0641936 + 0.0641936i
\(870\) 0 0
\(871\) 28.0475i 0.950354i
\(872\) 0 0
\(873\) −3.33182 1.38009i −0.112765 0.0467088i
\(874\) 0 0
\(875\) 1.28466 1.28466i 0.0434295 0.0434295i
\(876\) 0 0
\(877\) 6.64567 16.0441i 0.224408 0.541770i −0.771071 0.636749i \(-0.780279\pi\)
0.995479 + 0.0949797i \(0.0302786\pi\)
\(878\) 0 0
\(879\) −3.55327 8.57836i −0.119849 0.289341i
\(880\) 0 0
\(881\) 37.9731 15.7290i 1.27935 0.529923i 0.363554 0.931573i \(-0.381563\pi\)
0.915793 + 0.401650i \(0.131563\pi\)
\(882\) 0 0
\(883\) 28.3729 0.954824 0.477412 0.878680i \(-0.341575\pi\)
0.477412 + 0.878680i \(0.341575\pi\)
\(884\) 0 0
\(885\) 2.13548 0.0717833
\(886\) 0 0
\(887\) 19.8638 8.22786i 0.666961 0.276264i −0.0234033 0.999726i \(-0.507450\pi\)
0.690364 + 0.723462i \(0.257450\pi\)
\(888\) 0 0
\(889\) −0.709676 1.71331i −0.0238018 0.0574626i
\(890\) 0 0
\(891\) −1.92388 + 4.64466i −0.0644524 + 0.155602i
\(892\) 0 0
\(893\) −45.6908 + 45.6908i −1.52898 + 1.52898i
\(894\) 0 0
\(895\) 4.31703 + 1.78817i 0.144302 + 0.0597719i
\(896\) 0 0
\(897\) 13.6035i 0.454208i
\(898\) 0 0
\(899\) 4.08255 + 4.08255i 0.136161 + 0.136161i
\(900\) 0 0
\(901\) 7.80268 3.99560i 0.259945 0.133113i
\(902\) 0 0
\(903\) 0.682803 + 0.682803i 0.0227223 + 0.0227223i
\(904\) 0 0
\(905\) 1.35937i 0.0451871i
\(906\) 0 0
\(907\) 13.6798 + 5.66635i 0.454229 + 0.188148i 0.598055 0.801455i \(-0.295940\pi\)
−0.143826 + 0.989603i \(0.545940\pi\)
\(908\) 0 0
\(909\) −6.46088 + 6.46088i −0.214294 + 0.214294i
\(910\) 0 0
\(911\) −18.1855 + 43.9036i −0.602512 + 1.45459i 0.268475 + 0.963287i \(0.413480\pi\)
−0.870987 + 0.491306i \(0.836520\pi\)
\(912\) 0 0
\(913\) −4.23917 10.2343i −0.140296 0.338705i
\(914\) 0 0
\(915\) −12.3375 + 5.11037i −0.407866 + 0.168944i
\(916\) 0 0
\(917\) −1.59109 −0.0525425
\(918\) 0 0
\(919\) 52.4090 1.72881 0.864407 0.502793i \(-0.167694\pi\)
0.864407 + 0.502793i \(0.167694\pi\)
\(920\) 0 0
\(921\) −25.0757 + 10.3867i −0.826273 + 0.342253i
\(922\) 0 0
\(923\) −9.88397 23.8620i −0.325335 0.785428i
\(924\) 0 0
\(925\) −9.79655 + 23.6510i −0.322109 + 0.777639i
\(926\) 0 0
\(927\) −5.35890 + 5.35890i −0.176009 + 0.176009i
\(928\) 0 0
\(929\) 42.4038 + 17.5642i 1.39122 + 0.576263i 0.947458 0.319880i \(-0.103643\pi\)
0.443764 + 0.896143i \(0.353643\pi\)
\(930\) 0 0
\(931\) 45.9005i 1.50433i
\(932\) 0 0
\(933\) −1.82843 1.82843i −0.0598600 0.0598600i
\(934\) 0 0
\(935\) −31.8216 10.2682i −1.04068 0.335807i
\(936\) 0 0
\(937\) 15.3852 + 15.3852i 0.502611 + 0.502611i 0.912248 0.409637i \(-0.134345\pi\)
−0.409637 + 0.912248i \(0.634345\pi\)
\(938\) 0 0
\(939\) 25.6105i 0.835767i
\(940\) 0 0
\(941\) 49.9839 + 20.7040i 1.62943 + 0.674932i 0.995168 0.0981874i \(-0.0313045\pi\)
0.634261 + 0.773119i \(0.281304\pi\)
\(942\) 0 0
\(943\) −0.674858 + 0.674858i −0.0219764 + 0.0219764i
\(944\) 0 0
\(945\) −0.0939809 + 0.226890i −0.00305720 + 0.00738073i
\(946\) 0 0
\(947\) −2.21041 5.33640i −0.0718286 0.173410i 0.883888 0.467699i \(-0.154917\pi\)
−0.955716 + 0.294290i \(0.904917\pi\)
\(948\) 0 0
\(949\) −30.3468 + 12.5701i −0.985099 + 0.408041i
\(950\) 0 0
\(951\) −25.5982 −0.830078
\(952\) 0 0
\(953\) −31.4698 −1.01941 −0.509704 0.860350i \(-0.670245\pi\)
−0.509704 + 0.860350i \(0.670245\pi\)
\(954\) 0 0
\(955\) −14.8597 + 6.15507i −0.480847 + 0.199174i
\(956\) 0 0
\(957\) 4.31457 + 10.4163i 0.139470 + 0.336711i
\(958\) 0 0
\(959\) −0.786089 + 1.89779i −0.0253841 + 0.0612828i
\(960\) 0 0
\(961\) −17.2337 + 17.2337i −0.555926 + 0.555926i
\(962\) 0 0
\(963\) −17.0610 7.06688i −0.549781 0.227727i
\(964\) 0 0
\(965\) 6.02371i 0.193910i
\(966\) 0 0
\(967\) −4.11626 4.11626i −0.132370 0.132370i 0.637818 0.770187i \(-0.279837\pi\)
−0.770187 + 0.637818i \(0.779837\pi\)
\(968\) 0 0
\(969\) 17.5750 20.6623i 0.564592 0.663770i
\(970\) 0 0
\(971\) −15.4891 15.4891i −0.497070 0.497070i 0.413455 0.910525i \(-0.364322\pi\)
−0.910525 + 0.413455i \(0.864322\pi\)
\(972\) 0 0
\(973\) 0.811136i 0.0260038i
\(974\) 0 0
\(975\) −8.73925 3.61991i −0.279880 0.115930i
\(976\) 0 0
\(977\) 19.8324 19.8324i 0.634495 0.634495i −0.314697 0.949192i \(-0.601903\pi\)
0.949192 + 0.314697i \(0.101903\pi\)
\(978\) 0 0
\(979\) −14.7147 + 35.5245i −0.470285 + 1.13537i
\(980\) 0 0
\(981\) −4.10973 9.92177i −0.131214 0.316778i
\(982\) 0 0
\(983\) 28.9425 11.9884i 0.923121 0.382369i 0.130056 0.991507i \(-0.458484\pi\)
0.793065 + 0.609137i \(0.208484\pi\)
\(984\) 0 0
\(985\) 26.1412 0.832929
\(986\) 0 0
\(987\) 1.49526 0.0475945
\(988\) 0 0
\(989\) −20.2071 + 8.37007i −0.642549 + 0.266153i
\(990\) 0 0
\(991\) −6.88802 16.6291i −0.218805 0.528242i 0.775919 0.630833i \(-0.217287\pi\)
−0.994724 + 0.102591i \(0.967287\pi\)
\(992\) 0 0
\(993\) 0.127499 0.307810i 0.00404607 0.00976807i
\(994\) 0 0
\(995\) −18.7905 + 18.7905i −0.595697 + 0.595697i
\(996\) 0 0
\(997\) 51.3369 + 21.2644i 1.62586 + 0.673451i 0.994758 0.102253i \(-0.0326050\pi\)
0.631097 + 0.775704i \(0.282605\pi\)
\(998\) 0 0
\(999\) 10.6762i 0.337780i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 816.2.bq.a.529.1 8
4.3 odd 2 51.2.h.a.19.1 8
12.11 even 2 153.2.l.e.19.2 8
17.9 even 8 inner 816.2.bq.a.145.1 8
68.3 even 16 867.2.a.n.1.1 4
68.7 even 16 867.2.e.h.829.4 8
68.11 even 16 867.2.e.h.616.1 8
68.15 odd 8 867.2.h.b.688.2 8
68.19 odd 8 867.2.h.f.688.2 8
68.23 even 16 867.2.e.i.616.1 8
68.27 even 16 867.2.e.i.829.4 8
68.31 even 16 867.2.a.m.1.1 4
68.39 even 16 867.2.d.e.577.8 8
68.43 odd 8 51.2.h.a.43.1 yes 8
68.47 odd 4 867.2.h.f.712.2 8
68.55 odd 4 867.2.h.b.712.2 8
68.59 odd 8 867.2.h.g.757.1 8
68.63 even 16 867.2.d.e.577.7 8
68.67 odd 2 867.2.h.g.733.1 8
204.71 odd 16 2601.2.a.bd.1.4 4
204.167 odd 16 2601.2.a.bc.1.4 4
204.179 even 8 153.2.l.e.145.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.h.a.19.1 8 4.3 odd 2
51.2.h.a.43.1 yes 8 68.43 odd 8
153.2.l.e.19.2 8 12.11 even 2
153.2.l.e.145.2 8 204.179 even 8
816.2.bq.a.145.1 8 17.9 even 8 inner
816.2.bq.a.529.1 8 1.1 even 1 trivial
867.2.a.m.1.1 4 68.31 even 16
867.2.a.n.1.1 4 68.3 even 16
867.2.d.e.577.7 8 68.63 even 16
867.2.d.e.577.8 8 68.39 even 16
867.2.e.h.616.1 8 68.11 even 16
867.2.e.h.829.4 8 68.7 even 16
867.2.e.i.616.1 8 68.23 even 16
867.2.e.i.829.4 8 68.27 even 16
867.2.h.b.688.2 8 68.15 odd 8
867.2.h.b.712.2 8 68.55 odd 4
867.2.h.f.688.2 8 68.19 odd 8
867.2.h.f.712.2 8 68.47 odd 4
867.2.h.g.733.1 8 68.67 odd 2
867.2.h.g.757.1 8 68.59 odd 8
2601.2.a.bc.1.4 4 204.167 odd 16
2601.2.a.bd.1.4 4 204.71 odd 16