Properties

Label 864.5.h.a.593.1
Level $864$
Weight $5$
Character 864.593
Self dual yes
Analytic conductor $89.312$
Analytic rank $0$
Dimension $2$
CM discriminant -24
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,5,Mod(593,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.593"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 864.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-46] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.3116481044\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 593.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 864.593

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-39.9706 q^{5} +85.8528 q^{7} +240.706 q^{11} +972.646 q^{25} -818.000 q^{29} +1373.20 q^{31} -3431.59 q^{35} +4969.71 q^{49} -2379.08 q^{53} -9621.14 q^{55} -6862.00 q^{59} -1860.70 q^{73} +20665.3 q^{77} +9118.00 q^{79} +9281.28 q^{83} -15089.8 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 46 q^{5} + 2 q^{7} + 142 q^{11} + 384 q^{25} - 1636 q^{29} - 478 q^{31} - 2926 q^{35} + 9600 q^{49} + 3218 q^{53} - 9026 q^{55} - 13724 q^{59} + 8158 q^{73} + 28942 q^{77} + 18236 q^{79} - 4178 q^{83}+ \cdots - 17282 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −39.9706 −1.59882 −0.799411 0.600784i \(-0.794855\pi\)
−0.799411 + 0.600784i \(0.794855\pi\)
\(6\) 0 0
\(7\) 85.8528 1.75210 0.876049 0.482222i \(-0.160170\pi\)
0.876049 + 0.482222i \(0.160170\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 240.706 1.98930 0.994651 0.103289i \(-0.0329368\pi\)
0.994651 + 0.103289i \(0.0329368\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 972.646 1.55623
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −818.000 −0.972652 −0.486326 0.873778i \(-0.661663\pi\)
−0.486326 + 0.873778i \(0.661663\pi\)
\(30\) 0 0
\(31\) 1373.20 1.42893 0.714466 0.699670i \(-0.246670\pi\)
0.714466 + 0.699670i \(0.246670\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3431.59 −2.80129
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 4969.71 2.06985
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2379.08 −0.846950 −0.423475 0.905908i \(-0.639190\pi\)
−0.423475 + 0.905908i \(0.639190\pi\)
\(54\) 0 0
\(55\) −9621.14 −3.18054
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6862.00 −1.97127 −0.985636 0.168882i \(-0.945984\pi\)
−0.985636 + 0.168882i \(0.945984\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −1860.70 −0.349164 −0.174582 0.984643i \(-0.555857\pi\)
−0.174582 + 0.984643i \(0.555857\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 20665.3 3.48545
\(78\) 0 0
\(79\) 9118.00 1.46098 0.730492 0.682921i \(-0.239291\pi\)
0.730492 + 0.682921i \(0.239291\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9281.28 1.34726 0.673630 0.739069i \(-0.264734\pi\)
0.673630 + 0.739069i \(0.264734\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −15089.8 −1.60376 −0.801882 0.597483i \(-0.796168\pi\)
−0.801882 + 0.597483i \(0.796168\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 19134.4 1.87574 0.937870 0.346987i \(-0.112795\pi\)
0.937870 + 0.346987i \(0.112795\pi\)
\(102\) 0 0
\(103\) 21118.0 1.99057 0.995287 0.0969729i \(-0.0309160\pi\)
0.995287 + 0.0969729i \(0.0309160\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6843.68 −0.597754 −0.298877 0.954292i \(-0.596612\pi\)
−0.298877 + 0.954292i \(0.596612\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 43298.2 2.95733
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −13895.6 −0.889319
\(126\) 0 0
\(127\) 31788.8 1.97091 0.985454 0.169945i \(-0.0543589\pi\)
0.985454 + 0.169945i \(0.0543589\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2881.56 0.167913 0.0839567 0.996469i \(-0.473244\pi\)
0.0839567 + 0.996469i \(0.473244\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 32695.9 1.55510
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2623.88 0.118187 0.0590937 0.998252i \(-0.481179\pi\)
0.0590937 + 0.998252i \(0.481179\pi\)
\(150\) 0 0
\(151\) 8957.93 0.392874 0.196437 0.980516i \(-0.437063\pi\)
0.196437 + 0.980516i \(0.437063\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −54887.7 −2.28461
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 28561.0 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −42532.3 −1.42111 −0.710553 0.703643i \(-0.751555\pi\)
−0.710553 + 0.703643i \(0.751555\pi\)
\(174\) 0 0
\(175\) 83504.4 2.72667
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 60236.2 1.87997 0.939986 0.341212i \(-0.110837\pi\)
0.939986 + 0.341212i \(0.110837\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) −68780.0 −1.84649 −0.923247 0.384208i \(-0.874475\pi\)
−0.923247 + 0.384208i \(0.874475\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 37624.1 0.969467 0.484734 0.874662i \(-0.338917\pi\)
0.484734 + 0.874662i \(0.338917\pi\)
\(198\) 0 0
\(199\) −79189.9 −1.99970 −0.999848 0.0174508i \(-0.994445\pi\)
−0.999848 + 0.0174508i \(0.994445\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −70227.6 −1.70418
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 117893. 2.50363
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 46558.0 0.936234 0.468117 0.883666i \(-0.344933\pi\)
0.468117 + 0.883666i \(0.344933\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16658.0 0.323274 0.161637 0.986850i \(-0.448323\pi\)
0.161637 + 0.986850i \(0.448323\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 29762.0 0.512422 0.256211 0.966621i \(-0.417526\pi\)
0.256211 + 0.966621i \(0.417526\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −198642. −3.30932
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 94898.0 1.50629 0.753147 0.657853i \(-0.228535\pi\)
0.753147 + 0.657853i \(0.228535\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 95093.3 1.35412
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −40178.0 −0.555244 −0.277622 0.960690i \(-0.589546\pi\)
−0.277622 + 0.960690i \(0.589546\pi\)
\(270\) 0 0
\(271\) −44691.0 −0.608529 −0.304264 0.952588i \(-0.598411\pi\)
−0.304264 + 0.952588i \(0.598411\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 234121. 3.09582
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 83521.0 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 22702.0 0.264441 0.132221 0.991220i \(-0.457789\pi\)
0.132221 + 0.991220i \(0.457789\pi\)
\(294\) 0 0
\(295\) 274278. 3.15172
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 110424. 1.12713 0.563565 0.826072i \(-0.309429\pi\)
0.563565 + 0.826072i \(0.309429\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 111164. 1.10623 0.553113 0.833106i \(-0.313440\pi\)
0.553113 + 0.833106i \(0.313440\pi\)
\(318\) 0 0
\(319\) −196897. −1.93490
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −191038. −1.68213 −0.841066 0.540933i \(-0.818071\pi\)
−0.841066 + 0.540933i \(0.818071\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 330538. 2.84258
\(342\) 0 0
\(343\) 220531. 1.87448
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 51830.2 0.430451 0.215226 0.976564i \(-0.430951\pi\)
0.215226 + 0.976564i \(0.430951\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 130321. 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 74373.1 0.558252
\(366\) 0 0
\(367\) 2894.55 0.0214907 0.0107453 0.999942i \(-0.496580\pi\)
0.0107453 + 0.999942i \(0.496580\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −204251. −1.48394
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) −826002. −5.57262
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −257411. −1.70109 −0.850545 0.525902i \(-0.823728\pi\)
−0.850545 + 0.525902i \(0.823728\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −364452. −2.33585
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −334178. −1.99771 −0.998853 0.0478805i \(-0.984753\pi\)
−0.998853 + 0.0478805i \(0.984753\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −589122. −3.45386
\(414\) 0 0
\(415\) −370978. −2.15403
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 181778. 1.03541 0.517706 0.855559i \(-0.326786\pi\)
0.517706 + 0.855559i \(0.326786\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 281407. 1.50092 0.750462 0.660914i \(-0.229831\pi\)
0.750462 + 0.660914i \(0.229831\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −354586. −1.83989 −0.919947 0.392043i \(-0.871769\pi\)
−0.919947 + 0.392043i \(0.871769\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −385102. −1.96231 −0.981157 0.193214i \(-0.938109\pi\)
−0.981157 + 0.193214i \(0.938109\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 410186. 1.96403 0.982016 0.188798i \(-0.0604590\pi\)
0.982016 + 0.188798i \(0.0604590\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 274213. 1.29029 0.645144 0.764061i \(-0.276797\pi\)
0.645144 + 0.764061i \(0.276797\pi\)
\(462\) 0 0
\(463\) 9921.15 0.0462807 0.0231404 0.999732i \(-0.492634\pi\)
0.0231404 + 0.999732i \(0.492634\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −359466. −1.64825 −0.824126 0.566406i \(-0.808333\pi\)
−0.824126 + 0.566406i \(0.808333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 603148. 2.56413
\(486\) 0 0
\(487\) −466562. −1.96721 −0.983607 0.180327i \(-0.942284\pi\)
−0.983607 + 0.180327i \(0.942284\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 481582. 1.99760 0.998798 0.0490245i \(-0.0156112\pi\)
0.998798 + 0.0490245i \(0.0156112\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) −764814. −2.99898
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 139557. 0.538663 0.269331 0.963048i \(-0.413197\pi\)
0.269331 + 0.963048i \(0.413197\pi\)
\(510\) 0 0
\(511\) −159746. −0.611770
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −844098. −3.18257
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 279841. 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 273546. 0.955702
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.19624e6 4.11755
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 782806. 2.55979
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 611560. 1.97119 0.985595 0.169124i \(-0.0540939\pi\)
0.985595 + 0.169124i \(0.0540939\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −40451.2 −0.127619 −0.0638094 0.997962i \(-0.520325\pi\)
−0.0638094 + 0.997962i \(0.520325\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −581758. −1.74739 −0.873697 0.486471i \(-0.838284\pi\)
−0.873697 + 0.486471i \(0.838284\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 796824. 2.36053
\(582\) 0 0
\(583\) −572658. −1.68484
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 555922. 1.61338 0.806692 0.590973i \(-0.201256\pi\)
0.806692 + 0.590973i \(0.201256\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −458055. −1.26814 −0.634072 0.773274i \(-0.718618\pi\)
−0.634072 + 0.773274i \(0.718618\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.73065e6 −4.72824
\(606\) 0 0
\(607\) 203998. 0.553667 0.276833 0.960918i \(-0.410715\pi\)
0.276833 + 0.960918i \(0.410715\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −52488.7 −0.134371
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 105542. 0.265073 0.132536 0.991178i \(-0.457688\pi\)
0.132536 + 0.991178i \(0.457688\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.27061e6 −3.15113
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) −1.65172e6 −3.92146
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 805185. 1.88829 0.944147 0.329525i \(-0.106889\pi\)
0.944147 + 0.329525i \(0.106889\pi\)
\(654\) 0 0
\(655\) −115178. −0.268464
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −525926. −1.21103 −0.605513 0.795835i \(-0.707032\pi\)
−0.605513 + 0.795835i \(0.707032\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 215619. 0.476055 0.238028 0.971258i \(-0.423499\pi\)
0.238028 + 0.971258i \(0.423499\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −895058. −1.95287 −0.976436 0.215807i \(-0.930762\pi\)
−0.976436 + 0.215807i \(0.930762\pi\)
\(678\) 0 0
\(679\) −1.29550e6 −2.80995
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 846578. 1.81479 0.907393 0.420282i \(-0.138069\pi\)
0.907393 + 0.420282i \(0.138069\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −429481. −0.873993 −0.436997 0.899463i \(-0.643958\pi\)
−0.436997 + 0.899463i \(0.643958\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.64274e6 3.28648
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 1.81304e6 3.48768
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −795624. −1.51367
\(726\) 0 0
\(727\) 387381. 0.732941 0.366471 0.930430i \(-0.380566\pi\)
0.366471 + 0.930430i \(0.380566\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) −104878. −0.188961
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −587550. −1.04732
\(750\) 0 0
\(751\) 1.07310e6 1.90266 0.951329 0.308177i \(-0.0997189\pi\)
0.951329 + 0.308177i \(0.0997189\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −358054. −0.628137
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −731022. −1.23617 −0.618084 0.786112i \(-0.712091\pi\)
−0.618084 + 0.786112i \(0.712091\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −136658. −0.228705 −0.114353 0.993440i \(-0.536479\pi\)
−0.114353 + 0.993440i \(0.536479\pi\)
\(774\) 0 0
\(775\) 1.33564e6 2.22375
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −841087. −1.32411 −0.662055 0.749455i \(-0.730316\pi\)
−0.662055 + 0.749455i \(0.730316\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −447880. −0.694594
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 899182. 1.33402 0.667008 0.745050i \(-0.267575\pi\)
0.667008 + 0.745050i \(0.267575\pi\)
\(822\) 0 0
\(823\) 75202.2 0.111028 0.0555138 0.998458i \(-0.482320\pi\)
0.0555138 + 0.998458i \(0.482320\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.02226e6 1.49468 0.747342 0.664439i \(-0.231330\pi\)
0.747342 + 0.664439i \(0.231330\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −38157.0 −0.0539489
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.14160e6 −1.59882
\(846\) 0 0
\(847\) 3.71727e6 5.18152
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 1.70004e6 2.27210
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.19475e6 2.90634
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.19298e6 −1.55817
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 2.72915e6 3.45322
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −2.40768e6 −3.00574
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.12328e6 −1.38985
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 2.23406e6 2.68011
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 247390. 0.294201
\(918\) 0 0
\(919\) −1.60846e6 −1.90449 −0.952246 0.305333i \(-0.901232\pi\)
−0.952246 + 0.305333i \(0.901232\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1.69868e6 −1.93478 −0.967390 0.253291i \(-0.918487\pi\)
−0.967390 + 0.253291i \(0.918487\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −110730. −0.125050 −0.0625251 0.998043i \(-0.519915\pi\)
−0.0625251 + 0.998043i \(0.519915\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.59544e6 1.77902 0.889509 0.456917i \(-0.151046\pi\)
0.889509 + 0.456917i \(0.151046\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 962167. 1.04185
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.74918e6 2.95221
\(966\) 0 0
\(967\) 386547. 0.413380 0.206690 0.978406i \(-0.433731\pi\)
0.206690 + 0.978406i \(0.433731\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.27989e6 −1.35749 −0.678743 0.734376i \(-0.737475\pi\)
−0.678743 + 0.734376i \(0.737475\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) −1.50385e6 −1.55001
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −1.72748e6 −1.75900 −0.879502 0.475895i \(-0.842124\pi\)
−0.879502 + 0.475895i \(0.842124\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.16527e6 3.19716
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.5.h.a.593.1 2
3.2 odd 2 864.5.h.b.593.2 2
4.3 odd 2 216.5.h.a.53.1 2
8.3 odd 2 216.5.h.b.53.2 yes 2
8.5 even 2 864.5.h.b.593.2 2
12.11 even 2 216.5.h.b.53.2 yes 2
24.5 odd 2 CM 864.5.h.a.593.1 2
24.11 even 2 216.5.h.a.53.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.5.h.a.53.1 2 4.3 odd 2
216.5.h.a.53.1 2 24.11 even 2
216.5.h.b.53.2 yes 2 8.3 odd 2
216.5.h.b.53.2 yes 2 12.11 even 2
864.5.h.a.593.1 2 1.1 even 1 trivial
864.5.h.a.593.1 2 24.5 odd 2 CM
864.5.h.b.593.2 2 3.2 odd 2
864.5.h.b.593.2 2 8.5 even 2