Properties

Label 864.5
Level 864
Weight 5
Dimension 36704
Nonzero newspaces 18
Sturm bound 207360
Trace bound 29

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 18 \)
Sturm bound: \(207360\)
Trace bound: \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(864))\).

Total New Old
Modular forms 83904 37024 46880
Cusp forms 81984 36704 45280
Eisenstein series 1920 320 1600

Trace form

\( 36704 q - 32 q^{2} - 36 q^{3} - 56 q^{4} - 32 q^{5} - 48 q^{6} - 42 q^{7} - 32 q^{8} - 72 q^{9} - 56 q^{10} - 22 q^{11} - 48 q^{12} - 56 q^{13} - 32 q^{14} - 36 q^{15} - 56 q^{16} + 80 q^{17} - 48 q^{18}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(864))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
864.5.b \(\chi_{864}(271, \cdot)\) 864.5.b.a 32 1
864.5.b.b 32
864.5.e \(\chi_{864}(161, \cdot)\) 864.5.e.a 8 1
864.5.e.b 8
864.5.e.c 8
864.5.e.d 8
864.5.e.e 8
864.5.e.f 8
864.5.e.g 16
864.5.g \(\chi_{864}(703, \cdot)\) 864.5.g.a 16 1
864.5.g.b 16
864.5.g.c 16
864.5.g.d 16
864.5.h \(\chi_{864}(593, \cdot)\) 864.5.h.a 2 1
864.5.h.b 2
864.5.h.c 14
864.5.h.d 14
864.5.h.e 32
864.5.j \(\chi_{864}(377, \cdot)\) None 0 2
864.5.m \(\chi_{864}(55, \cdot)\) None 0 2
864.5.n \(\chi_{864}(17, \cdot)\) 864.5.n.a 92 2
864.5.o \(\chi_{864}(127, \cdot)\) 864.5.o.a 48 2
864.5.o.b 48
864.5.q \(\chi_{864}(449, \cdot)\) 864.5.q.a 48 2
864.5.q.b 48
864.5.t \(\chi_{864}(559, \cdot)\) 864.5.t.a 4 2
864.5.t.b 88
864.5.u \(\chi_{864}(163, \cdot)\) n/a 1024 4
864.5.x \(\chi_{864}(53, \cdot)\) n/a 1024 4
864.5.ba \(\chi_{864}(199, \cdot)\) None 0 4
864.5.bb \(\chi_{864}(89, \cdot)\) None 0 4
864.5.bd \(\chi_{864}(79, \cdot)\) n/a 852 6
864.5.be \(\chi_{864}(31, \cdot)\) n/a 864 6
864.5.bg \(\chi_{864}(65, \cdot)\) n/a 864 6
864.5.bj \(\chi_{864}(113, \cdot)\) n/a 852 6
864.5.bl \(\chi_{864}(19, \cdot)\) n/a 1520 8
864.5.bm \(\chi_{864}(125, \cdot)\) n/a 1520 8
864.5.bp \(\chi_{864}(7, \cdot)\) None 0 12
864.5.bq \(\chi_{864}(41, \cdot)\) None 0 12
864.5.bs \(\chi_{864}(5, \cdot)\) n/a 13776 24
864.5.bv \(\chi_{864}(43, \cdot)\) n/a 13776 24

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(864))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(864)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 20}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 18}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 16}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 15}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 10}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 9}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 5}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(108))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(144))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(216))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(288))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(432))\)\(^{\oplus 2}\)