Properties

Label 864.5.e.g.161.9
Level $864$
Weight $5$
Character 864.161
Analytic conductor $89.312$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,5,Mod(161,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.161"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 864.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(89.3116481044\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 22 x^{14} - 60 x^{13} + 313 x^{12} + 1368 x^{11} + 1844 x^{10} - 4788 x^{9} - 11779 x^{8} + \cdots + 16848900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{56}\cdot 3^{24} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.9
Root \(3.05115 + 1.25061i\) of defining polynomial
Character \(\chi\) \(=\) 864.161
Dual form 864.5.e.g.161.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.20720i q^{5} -58.8505 q^{7} +203.037i q^{11} -40.3208 q^{13} +411.924i q^{17} +674.335 q^{19} +295.738i q^{23} +540.227 q^{25} -1300.52i q^{29} +1271.23 q^{31} -541.849i q^{35} -2491.60 q^{37} +1607.08i q^{41} -995.060 q^{43} -2490.91i q^{47} +1062.38 q^{49} +3803.65i q^{53} -1869.40 q^{55} -1069.17i q^{59} +1422.99 q^{61} -371.242i q^{65} -6081.89 q^{67} +2585.90i q^{71} -9007.18 q^{73} -11948.8i q^{77} +5113.86 q^{79} +8679.67i q^{83} -3792.67 q^{85} +4627.16i q^{89} +2372.90 q^{91} +6208.74i q^{95} -8859.15 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{13} + 704 q^{25} - 2624 q^{37} + 1728 q^{49} + 3264 q^{61} - 5424 q^{73} + 4704 q^{85} - 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 9.20720i 0.368288i 0.982899 + 0.184144i \(0.0589513\pi\)
−0.982899 + 0.184144i \(0.941049\pi\)
\(6\) 0 0
\(7\) −58.8505 −1.20103 −0.600516 0.799613i \(-0.705038\pi\)
−0.600516 + 0.799613i \(0.705038\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 203.037i 1.67799i 0.544141 + 0.838994i \(0.316856\pi\)
−0.544141 + 0.838994i \(0.683144\pi\)
\(12\) 0 0
\(13\) −40.3208 −0.238585 −0.119292 0.992859i \(-0.538063\pi\)
−0.119292 + 0.992859i \(0.538063\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 411.924i 1.42534i 0.701497 + 0.712672i \(0.252515\pi\)
−0.701497 + 0.712672i \(0.747485\pi\)
\(18\) 0 0
\(19\) 674.335 1.86796 0.933982 0.357320i \(-0.116309\pi\)
0.933982 + 0.357320i \(0.116309\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 295.738i 0.559051i 0.960138 + 0.279526i \(0.0901772\pi\)
−0.960138 + 0.279526i \(0.909823\pi\)
\(24\) 0 0
\(25\) 540.227 0.864364
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 1300.52i − 1.54640i −0.634162 0.773200i \(-0.718655\pi\)
0.634162 0.773200i \(-0.281345\pi\)
\(30\) 0 0
\(31\) 1271.23 1.32282 0.661409 0.750025i \(-0.269959\pi\)
0.661409 + 0.750025i \(0.269959\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 541.849i − 0.442325i
\(36\) 0 0
\(37\) −2491.60 −1.82002 −0.910009 0.414589i \(-0.863925\pi\)
−0.910009 + 0.414589i \(0.863925\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1607.08i 0.956026i 0.878353 + 0.478013i \(0.158643\pi\)
−0.878353 + 0.478013i \(0.841357\pi\)
\(42\) 0 0
\(43\) −995.060 −0.538161 −0.269081 0.963118i \(-0.586720\pi\)
−0.269081 + 0.963118i \(0.586720\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 2490.91i − 1.12762i −0.825906 0.563808i \(-0.809336\pi\)
0.825906 0.563808i \(-0.190664\pi\)
\(48\) 0 0
\(49\) 1062.38 0.442476
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3803.65i 1.35410i 0.735939 + 0.677048i \(0.236741\pi\)
−0.735939 + 0.677048i \(0.763259\pi\)
\(54\) 0 0
\(55\) −1869.40 −0.617983
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 1069.17i − 0.307144i −0.988137 0.153572i \(-0.950922\pi\)
0.988137 0.153572i \(-0.0490777\pi\)
\(60\) 0 0
\(61\) 1422.99 0.382422 0.191211 0.981549i \(-0.438759\pi\)
0.191211 + 0.981549i \(0.438759\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 371.242i − 0.0878680i
\(66\) 0 0
\(67\) −6081.89 −1.35484 −0.677421 0.735595i \(-0.736903\pi\)
−0.677421 + 0.735595i \(0.736903\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2585.90i 0.512973i 0.966548 + 0.256486i \(0.0825649\pi\)
−0.966548 + 0.256486i \(0.917435\pi\)
\(72\) 0 0
\(73\) −9007.18 −1.69022 −0.845110 0.534593i \(-0.820465\pi\)
−0.845110 + 0.534593i \(0.820465\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 11948.8i − 2.01532i
\(78\) 0 0
\(79\) 5113.86 0.819397 0.409699 0.912221i \(-0.365634\pi\)
0.409699 + 0.912221i \(0.365634\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8679.67i 1.25993i 0.776623 + 0.629966i \(0.216931\pi\)
−0.776623 + 0.629966i \(0.783069\pi\)
\(84\) 0 0
\(85\) −3792.67 −0.524937
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4627.16i 0.584163i 0.956393 + 0.292082i \(0.0943479\pi\)
−0.956393 + 0.292082i \(0.905652\pi\)
\(90\) 0 0
\(91\) 2372.90 0.286548
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6208.74i 0.687949i
\(96\) 0 0
\(97\) −8859.15 −0.941561 −0.470781 0.882250i \(-0.656028\pi\)
−0.470781 + 0.882250i \(0.656028\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 1192.36i − 0.116886i −0.998291 0.0584432i \(-0.981386\pi\)
0.998291 0.0584432i \(-0.0186137\pi\)
\(102\) 0 0
\(103\) −11981.1 −1.12934 −0.564669 0.825318i \(-0.690996\pi\)
−0.564669 + 0.825318i \(0.690996\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1281.31i − 0.111915i −0.998433 0.0559575i \(-0.982179\pi\)
0.998433 0.0559575i \(-0.0178211\pi\)
\(108\) 0 0
\(109\) 3738.13 0.314631 0.157315 0.987548i \(-0.449716\pi\)
0.157315 + 0.987548i \(0.449716\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 1663.91i − 0.130308i −0.997875 0.0651541i \(-0.979246\pi\)
0.997875 0.0651541i \(-0.0207539\pi\)
\(114\) 0 0
\(115\) −2722.92 −0.205892
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 24242.0i − 1.71188i
\(120\) 0 0
\(121\) −26582.8 −1.81564
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10728.5i 0.686623i
\(126\) 0 0
\(127\) 10655.7 0.660653 0.330326 0.943867i \(-0.392841\pi\)
0.330326 + 0.943867i \(0.392841\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 7161.08i − 0.417288i −0.977992 0.208644i \(-0.933095\pi\)
0.977992 0.208644i \(-0.0669050\pi\)
\(132\) 0 0
\(133\) −39685.0 −2.24348
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 25280.8i − 1.34695i −0.739212 0.673473i \(-0.764802\pi\)
0.739212 0.673473i \(-0.235198\pi\)
\(138\) 0 0
\(139\) 31985.5 1.65548 0.827738 0.561114i \(-0.189627\pi\)
0.827738 + 0.561114i \(0.189627\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 8186.61i − 0.400343i
\(144\) 0 0
\(145\) 11974.2 0.569521
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 39856.0i 1.79524i 0.440774 + 0.897618i \(0.354704\pi\)
−0.440774 + 0.897618i \(0.645296\pi\)
\(150\) 0 0
\(151\) 30792.7 1.35050 0.675249 0.737590i \(-0.264036\pi\)
0.675249 + 0.737590i \(0.264036\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 11704.5i 0.487178i
\(156\) 0 0
\(157\) −28412.4 −1.15268 −0.576339 0.817211i \(-0.695519\pi\)
−0.576339 + 0.817211i \(0.695519\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 17404.3i − 0.671438i
\(162\) 0 0
\(163\) 6548.84 0.246484 0.123242 0.992377i \(-0.460671\pi\)
0.123242 + 0.992377i \(0.460671\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 1506.75i − 0.0540267i −0.999635 0.0270134i \(-0.991400\pi\)
0.999635 0.0270134i \(-0.00859967\pi\)
\(168\) 0 0
\(169\) −26935.2 −0.943077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 4460.99i − 0.149053i −0.997219 0.0745263i \(-0.976256\pi\)
0.997219 0.0745263i \(-0.0237445\pi\)
\(174\) 0 0
\(175\) −31792.7 −1.03813
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 41140.6i 1.28400i 0.766705 + 0.641999i \(0.221895\pi\)
−0.766705 + 0.641999i \(0.778105\pi\)
\(180\) 0 0
\(181\) −55119.0 −1.68246 −0.841230 0.540678i \(-0.818168\pi\)
−0.841230 + 0.540678i \(0.818168\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 22940.7i − 0.670291i
\(186\) 0 0
\(187\) −83635.7 −2.39171
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 17927.6i − 0.491423i −0.969343 0.245712i \(-0.920978\pi\)
0.969343 0.245712i \(-0.0790217\pi\)
\(192\) 0 0
\(193\) −17375.0 −0.466455 −0.233227 0.972422i \(-0.574929\pi\)
−0.233227 + 0.972422i \(0.574929\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 20244.5i − 0.521644i −0.965387 0.260822i \(-0.916006\pi\)
0.965387 0.260822i \(-0.0839935\pi\)
\(198\) 0 0
\(199\) −28268.6 −0.713835 −0.356918 0.934136i \(-0.616172\pi\)
−0.356918 + 0.934136i \(0.616172\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 76536.5i 1.85728i
\(204\) 0 0
\(205\) −14796.7 −0.352093
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 136915.i 3.13442i
\(210\) 0 0
\(211\) 11904.9 0.267400 0.133700 0.991022i \(-0.457314\pi\)
0.133700 + 0.991022i \(0.457314\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 9161.72i − 0.198198i
\(216\) 0 0
\(217\) −74812.5 −1.58875
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 16609.1i − 0.340066i
\(222\) 0 0
\(223\) −4305.32 −0.0865757 −0.0432878 0.999063i \(-0.513783\pi\)
−0.0432878 + 0.999063i \(0.513783\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 60754.4i − 1.17903i −0.807756 0.589516i \(-0.799318\pi\)
0.807756 0.589516i \(-0.200682\pi\)
\(228\) 0 0
\(229\) −30008.8 −0.572239 −0.286119 0.958194i \(-0.592365\pi\)
−0.286119 + 0.958194i \(0.592365\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 47860.2i − 0.881583i −0.897610 0.440791i \(-0.854698\pi\)
0.897610 0.440791i \(-0.145302\pi\)
\(234\) 0 0
\(235\) 22934.3 0.415288
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 40605.1i − 0.710861i −0.934703 0.355430i \(-0.884334\pi\)
0.934703 0.355430i \(-0.115666\pi\)
\(240\) 0 0
\(241\) −44909.7 −0.773226 −0.386613 0.922242i \(-0.626355\pi\)
−0.386613 + 0.922242i \(0.626355\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9781.58i 0.162958i
\(246\) 0 0
\(247\) −27189.8 −0.445668
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1832.88i 0.0290928i 0.999894 + 0.0145464i \(0.00463043\pi\)
−0.999894 + 0.0145464i \(0.995370\pi\)
\(252\) 0 0
\(253\) −60045.6 −0.938081
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 48645.0i 0.736499i 0.929727 + 0.368250i \(0.120043\pi\)
−0.929727 + 0.368250i \(0.879957\pi\)
\(258\) 0 0
\(259\) 146632. 2.18590
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 83740.8i − 1.21067i −0.795971 0.605335i \(-0.793039\pi\)
0.795971 0.605335i \(-0.206961\pi\)
\(264\) 0 0
\(265\) −35021.0 −0.498697
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 87184.6i − 1.20486i −0.798173 0.602428i \(-0.794200\pi\)
0.798173 0.602428i \(-0.205800\pi\)
\(270\) 0 0
\(271\) −35905.5 −0.488902 −0.244451 0.969662i \(-0.578608\pi\)
−0.244451 + 0.969662i \(0.578608\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 109686.i 1.45039i
\(276\) 0 0
\(277\) 74382.8 0.969422 0.484711 0.874674i \(-0.338925\pi\)
0.484711 + 0.874674i \(0.338925\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 105797.i − 1.33987i −0.742422 0.669933i \(-0.766323\pi\)
0.742422 0.669933i \(-0.233677\pi\)
\(282\) 0 0
\(283\) −36059.7 −0.450246 −0.225123 0.974330i \(-0.572278\pi\)
−0.225123 + 0.974330i \(0.572278\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 94577.4i − 1.14822i
\(288\) 0 0
\(289\) −86160.8 −1.03161
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 66937.1i − 0.779708i −0.920877 0.389854i \(-0.872526\pi\)
0.920877 0.389854i \(-0.127474\pi\)
\(294\) 0 0
\(295\) 9844.04 0.113117
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 11924.4i − 0.133381i
\(300\) 0 0
\(301\) 58559.8 0.646348
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 13101.8i 0.140841i
\(306\) 0 0
\(307\) −71055.1 −0.753909 −0.376954 0.926232i \(-0.623029\pi\)
−0.376954 + 0.926232i \(0.623029\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 79416.4i − 0.821087i −0.911841 0.410543i \(-0.865339\pi\)
0.911841 0.410543i \(-0.134661\pi\)
\(312\) 0 0
\(313\) 46492.0 0.474558 0.237279 0.971441i \(-0.423744\pi\)
0.237279 + 0.971441i \(0.423744\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8615.98i 0.0857406i 0.999081 + 0.0428703i \(0.0136502\pi\)
−0.999081 + 0.0428703i \(0.986350\pi\)
\(318\) 0 0
\(319\) 264054. 2.59484
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 277775.i 2.66249i
\(324\) 0 0
\(325\) −21782.4 −0.206224
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 146591.i 1.35430i
\(330\) 0 0
\(331\) −88930.9 −0.811703 −0.405851 0.913939i \(-0.633025\pi\)
−0.405851 + 0.913939i \(0.633025\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 55997.2i − 0.498972i
\(336\) 0 0
\(337\) −119129. −1.04896 −0.524478 0.851424i \(-0.675740\pi\)
−0.524478 + 0.851424i \(0.675740\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 258106.i 2.21967i
\(342\) 0 0
\(343\) 78778.3 0.669604
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 230105.i 1.91103i 0.294946 + 0.955514i \(0.404698\pi\)
−0.294946 + 0.955514i \(0.595302\pi\)
\(348\) 0 0
\(349\) −215366. −1.76818 −0.884089 0.467318i \(-0.845220\pi\)
−0.884089 + 0.467318i \(0.845220\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 136919.i − 1.09879i −0.835564 0.549394i \(-0.814859\pi\)
0.835564 0.549394i \(-0.185141\pi\)
\(354\) 0 0
\(355\) −23808.9 −0.188922
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 54063.8i 0.419486i 0.977757 + 0.209743i \(0.0672627\pi\)
−0.977757 + 0.209743i \(0.932737\pi\)
\(360\) 0 0
\(361\) 324407. 2.48929
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 82930.9i − 0.622488i
\(366\) 0 0
\(367\) −150034. −1.11393 −0.556965 0.830536i \(-0.688034\pi\)
−0.556965 + 0.830536i \(0.688034\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 223847.i − 1.62631i
\(372\) 0 0
\(373\) 123883. 0.890415 0.445207 0.895427i \(-0.353130\pi\)
0.445207 + 0.895427i \(0.353130\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 52438.2i 0.368948i
\(378\) 0 0
\(379\) 116175. 0.808788 0.404394 0.914585i \(-0.367482\pi\)
0.404394 + 0.914585i \(0.367482\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 99372.9i 0.677439i 0.940887 + 0.338720i \(0.109994\pi\)
−0.940887 + 0.338720i \(0.890006\pi\)
\(384\) 0 0
\(385\) 110015. 0.742217
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 163660.i − 1.08154i −0.841169 0.540772i \(-0.818132\pi\)
0.841169 0.540772i \(-0.181868\pi\)
\(390\) 0 0
\(391\) −121822. −0.796840
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 47084.3i 0.301774i
\(396\) 0 0
\(397\) 104776. 0.664782 0.332391 0.943142i \(-0.392145\pi\)
0.332391 + 0.943142i \(0.392145\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 238660.i − 1.48419i −0.670293 0.742097i \(-0.733832\pi\)
0.670293 0.742097i \(-0.266168\pi\)
\(402\) 0 0
\(403\) −51257.0 −0.315604
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 505887.i − 3.05397i
\(408\) 0 0
\(409\) 135660. 0.810968 0.405484 0.914102i \(-0.367103\pi\)
0.405484 + 0.914102i \(0.367103\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 62921.1i 0.368889i
\(414\) 0 0
\(415\) −79915.5 −0.464018
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 65750.8i 0.374518i 0.982311 + 0.187259i \(0.0599604\pi\)
−0.982311 + 0.187259i \(0.940040\pi\)
\(420\) 0 0
\(421\) 9953.15 0.0561560 0.0280780 0.999606i \(-0.491061\pi\)
0.0280780 + 0.999606i \(0.491061\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 222533.i 1.23202i
\(426\) 0 0
\(427\) −83743.8 −0.459301
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 257673.i − 1.38712i −0.720399 0.693559i \(-0.756041\pi\)
0.720399 0.693559i \(-0.243959\pi\)
\(432\) 0 0
\(433\) 128908. 0.687552 0.343776 0.939052i \(-0.388294\pi\)
0.343776 + 0.939052i \(0.388294\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 199427.i 1.04429i
\(438\) 0 0
\(439\) −167706. −0.870199 −0.435100 0.900382i \(-0.643287\pi\)
−0.435100 + 0.900382i \(0.643287\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 227763.i 1.16058i 0.814409 + 0.580292i \(0.197062\pi\)
−0.814409 + 0.580292i \(0.802938\pi\)
\(444\) 0 0
\(445\) −42603.1 −0.215140
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 40005.1i 0.198437i 0.995066 + 0.0992185i \(0.0316343\pi\)
−0.995066 + 0.0992185i \(0.968366\pi\)
\(450\) 0 0
\(451\) −326296. −1.60420
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 21847.8i 0.105532i
\(456\) 0 0
\(457\) 29809.1 0.142730 0.0713651 0.997450i \(-0.477264\pi\)
0.0713651 + 0.997450i \(0.477264\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 220157.i 1.03593i 0.855401 + 0.517966i \(0.173310\pi\)
−0.855401 + 0.517966i \(0.826690\pi\)
\(462\) 0 0
\(463\) −76372.8 −0.356268 −0.178134 0.984006i \(-0.557006\pi\)
−0.178134 + 0.984006i \(0.557006\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 91142.2i 0.417913i 0.977925 + 0.208956i \(0.0670067\pi\)
−0.977925 + 0.208956i \(0.932993\pi\)
\(468\) 0 0
\(469\) 357922. 1.62721
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 202034.i − 0.903028i
\(474\) 0 0
\(475\) 364294. 1.61460
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 335475.i − 1.46214i −0.682302 0.731070i \(-0.739021\pi\)
0.682302 0.731070i \(-0.260979\pi\)
\(480\) 0 0
\(481\) 100464. 0.434229
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 81568.0i − 0.346766i
\(486\) 0 0
\(487\) 275667. 1.16232 0.581162 0.813788i \(-0.302598\pi\)
0.581162 + 0.813788i \(0.302598\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 296740.i 1.23087i 0.788186 + 0.615437i \(0.211021\pi\)
−0.788186 + 0.615437i \(0.788979\pi\)
\(492\) 0 0
\(493\) 535717. 2.20415
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 152181.i − 0.616096i
\(498\) 0 0
\(499\) 192046. 0.771267 0.385633 0.922652i \(-0.373983\pi\)
0.385633 + 0.922652i \(0.373983\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 393624.i 1.55577i 0.628407 + 0.777885i \(0.283707\pi\)
−0.628407 + 0.777885i \(0.716293\pi\)
\(504\) 0 0
\(505\) 10978.3 0.0430479
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 199010.i 0.768139i 0.923304 + 0.384070i \(0.125478\pi\)
−0.923304 + 0.384070i \(0.874522\pi\)
\(510\) 0 0
\(511\) 530077. 2.03001
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 110313.i − 0.415921i
\(516\) 0 0
\(517\) 505745. 1.89213
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 5744.00i − 0.0211612i −0.999944 0.0105806i \(-0.996632\pi\)
0.999944 0.0105806i \(-0.00336797\pi\)
\(522\) 0 0
\(523\) 46438.8 0.169777 0.0848883 0.996390i \(-0.472947\pi\)
0.0848883 + 0.996390i \(0.472947\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 523650.i 1.88547i
\(528\) 0 0
\(529\) 192380. 0.687462
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 64798.8i − 0.228093i
\(534\) 0 0
\(535\) 11797.3 0.0412169
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 215703.i 0.742469i
\(540\) 0 0
\(541\) −318888. −1.08954 −0.544771 0.838585i \(-0.683383\pi\)
−0.544771 + 0.838585i \(0.683383\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 34417.7i 0.115875i
\(546\) 0 0
\(547\) 243528. 0.813906 0.406953 0.913449i \(-0.366591\pi\)
0.406953 + 0.913449i \(0.366591\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 876988.i − 2.88862i
\(552\) 0 0
\(553\) −300953. −0.984121
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 279752.i − 0.901701i −0.892599 0.450851i \(-0.851121\pi\)
0.892599 0.450851i \(-0.148879\pi\)
\(558\) 0 0
\(559\) 40121.7 0.128397
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 260930.i 0.823204i 0.911364 + 0.411602i \(0.135031\pi\)
−0.911364 + 0.411602i \(0.864969\pi\)
\(564\) 0 0
\(565\) 15319.9 0.0479910
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 90744.7i − 0.280283i −0.990131 0.140142i \(-0.955244\pi\)
0.990131 0.140142i \(-0.0447558\pi\)
\(570\) 0 0
\(571\) −409322. −1.25543 −0.627715 0.778443i \(-0.716010\pi\)
−0.627715 + 0.778443i \(0.716010\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 159766.i 0.483224i
\(576\) 0 0
\(577\) 262977. 0.789889 0.394944 0.918705i \(-0.370764\pi\)
0.394944 + 0.918705i \(0.370764\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 510803.i − 1.51322i
\(582\) 0 0
\(583\) −772281. −2.27216
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 292409.i − 0.848622i −0.905517 0.424311i \(-0.860516\pi\)
0.905517 0.424311i \(-0.139484\pi\)
\(588\) 0 0
\(589\) 857234. 2.47098
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 439268.i 1.24916i 0.780959 + 0.624582i \(0.214731\pi\)
−0.780959 + 0.624582i \(0.785269\pi\)
\(594\) 0 0
\(595\) 223201. 0.630466
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 184467.i − 0.514120i −0.966395 0.257060i \(-0.917246\pi\)
0.966395 0.257060i \(-0.0827539\pi\)
\(600\) 0 0
\(601\) 607715. 1.68249 0.841243 0.540658i \(-0.181825\pi\)
0.841243 + 0.540658i \(0.181825\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 244754.i − 0.668680i
\(606\) 0 0
\(607\) −136724. −0.371079 −0.185540 0.982637i \(-0.559403\pi\)
−0.185540 + 0.982637i \(0.559403\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 100435.i 0.269032i
\(612\) 0 0
\(613\) −600964. −1.59929 −0.799646 0.600472i \(-0.794979\pi\)
−0.799646 + 0.600472i \(0.794979\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 661738.i 1.73826i 0.494580 + 0.869132i \(0.335322\pi\)
−0.494580 + 0.869132i \(0.664678\pi\)
\(618\) 0 0
\(619\) −345696. −0.902220 −0.451110 0.892468i \(-0.648972\pi\)
−0.451110 + 0.892468i \(0.648972\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 272310.i − 0.701598i
\(624\) 0 0
\(625\) 238863. 0.611489
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 1.02635e6i − 2.59415i
\(630\) 0 0
\(631\) 232800. 0.584689 0.292345 0.956313i \(-0.405565\pi\)
0.292345 + 0.956313i \(0.405565\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 98108.8i 0.243310i
\(636\) 0 0
\(637\) −42836.2 −0.105568
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 200039.i 0.486855i 0.969919 + 0.243427i \(0.0782717\pi\)
−0.969919 + 0.243427i \(0.921728\pi\)
\(642\) 0 0
\(643\) 64240.0 0.155376 0.0776879 0.996978i \(-0.475246\pi\)
0.0776879 + 0.996978i \(0.475246\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 390522.i − 0.932904i −0.884547 0.466452i \(-0.845532\pi\)
0.884547 0.466452i \(-0.154468\pi\)
\(648\) 0 0
\(649\) 217080. 0.515384
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 763743.i 1.79110i 0.444956 + 0.895552i \(0.353219\pi\)
−0.444956 + 0.895552i \(0.646781\pi\)
\(654\) 0 0
\(655\) 65933.5 0.153682
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 556015.i − 1.28031i −0.768246 0.640155i \(-0.778870\pi\)
0.768246 0.640155i \(-0.221130\pi\)
\(660\) 0 0
\(661\) −137355. −0.314371 −0.157185 0.987569i \(-0.550242\pi\)
−0.157185 + 0.987569i \(0.550242\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 365388.i − 0.826248i
\(666\) 0 0
\(667\) 384614. 0.864517
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 288919.i 0.641700i
\(672\) 0 0
\(673\) 169016. 0.373163 0.186581 0.982440i \(-0.440259\pi\)
0.186581 + 0.982440i \(0.440259\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 717089.i 1.56457i 0.622919 + 0.782286i \(0.285947\pi\)
−0.622919 + 0.782286i \(0.714053\pi\)
\(678\) 0 0
\(679\) 521366. 1.13084
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 74770.9i 0.160284i 0.996783 + 0.0801422i \(0.0255374\pi\)
−0.996783 + 0.0801422i \(0.974463\pi\)
\(684\) 0 0
\(685\) 232766. 0.496064
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 153367.i − 0.323067i
\(690\) 0 0
\(691\) −345313. −0.723197 −0.361598 0.932334i \(-0.617769\pi\)
−0.361598 + 0.932334i \(0.617769\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 294497.i 0.609692i
\(696\) 0 0
\(697\) −661995. −1.36267
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 788179.i 1.60394i 0.597362 + 0.801971i \(0.296215\pi\)
−0.597362 + 0.801971i \(0.703785\pi\)
\(702\) 0 0
\(703\) −1.68018e6 −3.39973
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 70170.9i 0.140384i
\(708\) 0 0
\(709\) −667638. −1.32815 −0.664077 0.747664i \(-0.731175\pi\)
−0.664077 + 0.747664i \(0.731175\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 375951.i 0.739523i
\(714\) 0 0
\(715\) 75375.7 0.147441
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 591375.i 1.14394i 0.820273 + 0.571972i \(0.193821\pi\)
−0.820273 + 0.571972i \(0.806179\pi\)
\(720\) 0 0
\(721\) 705096. 1.35637
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 702578.i − 1.33665i
\(726\) 0 0
\(727\) 484117. 0.915970 0.457985 0.888960i \(-0.348571\pi\)
0.457985 + 0.888960i \(0.348571\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 409890.i − 0.767065i
\(732\) 0 0
\(733\) −36938.6 −0.0687499 −0.0343750 0.999409i \(-0.510944\pi\)
−0.0343750 + 0.999409i \(0.510944\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 1.23485e6i − 2.27341i
\(738\) 0 0
\(739\) 2546.44 0.00466277 0.00233139 0.999997i \(-0.499258\pi\)
0.00233139 + 0.999997i \(0.499258\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 637751.i 1.15524i 0.816305 + 0.577622i \(0.196019\pi\)
−0.816305 + 0.577622i \(0.803981\pi\)
\(744\) 0 0
\(745\) −366963. −0.661164
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 75406.0i 0.134413i
\(750\) 0 0
\(751\) −506237. −0.897582 −0.448791 0.893637i \(-0.648145\pi\)
−0.448791 + 0.893637i \(0.648145\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 283515.i 0.497372i
\(756\) 0 0
\(757\) −41453.6 −0.0723386 −0.0361693 0.999346i \(-0.511516\pi\)
−0.0361693 + 0.999346i \(0.511516\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 550019.i − 0.949747i −0.880054 0.474874i \(-0.842494\pi\)
0.880054 0.474874i \(-0.157506\pi\)
\(762\) 0 0
\(763\) −219991. −0.377881
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 43109.8i 0.0732799i
\(768\) 0 0
\(769\) −785730. −1.32868 −0.664341 0.747430i \(-0.731288\pi\)
−0.664341 + 0.747430i \(0.731288\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 790023.i 1.32215i 0.750319 + 0.661075i \(0.229900\pi\)
−0.750319 + 0.661075i \(0.770100\pi\)
\(774\) 0 0
\(775\) 686752. 1.14340
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.08371e6i 1.78582i
\(780\) 0 0
\(781\) −525032. −0.860763
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 261598.i − 0.424518i
\(786\) 0 0
\(787\) 52115.7 0.0841431 0.0420716 0.999115i \(-0.486604\pi\)
0.0420716 + 0.999115i \(0.486604\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 97921.7i 0.156504i
\(792\) 0 0
\(793\) −57376.3 −0.0912401
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 332982.i − 0.524208i −0.965040 0.262104i \(-0.915584\pi\)
0.965040 0.262104i \(-0.0844164\pi\)
\(798\) 0 0
\(799\) 1.02606e6 1.60724
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 1.82879e6i − 2.83617i
\(804\) 0 0
\(805\) 160245. 0.247282
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.09286e6i 1.66981i 0.550392 + 0.834906i \(0.314478\pi\)
−0.550392 + 0.834906i \(0.685522\pi\)
\(810\) 0 0
\(811\) 42430.5 0.0645113 0.0322557 0.999480i \(-0.489731\pi\)
0.0322557 + 0.999480i \(0.489731\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 60296.5i 0.0907772i
\(816\) 0 0
\(817\) −671004. −1.00527
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 323954.i 0.480615i 0.970697 + 0.240307i \(0.0772482\pi\)
−0.970697 + 0.240307i \(0.922752\pi\)
\(822\) 0 0
\(823\) 23844.8 0.0352041 0.0176021 0.999845i \(-0.494397\pi\)
0.0176021 + 0.999845i \(0.494397\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 272909.i 0.399031i 0.979895 + 0.199515i \(0.0639368\pi\)
−0.979895 + 0.199515i \(0.936063\pi\)
\(828\) 0 0
\(829\) −186691. −0.271652 −0.135826 0.990733i \(-0.543369\pi\)
−0.135826 + 0.990733i \(0.543369\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 437622.i 0.630680i
\(834\) 0 0
\(835\) 13873.0 0.0198974
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 5003.86i 0.00710856i 0.999994 + 0.00355428i \(0.00113136\pi\)
−0.999994 + 0.00355428i \(0.998869\pi\)
\(840\) 0 0
\(841\) −984079. −1.39136
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 247998.i − 0.347324i
\(846\) 0 0
\(847\) 1.56441e6 2.18065
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 736862.i − 1.01748i
\(852\) 0 0
\(853\) 132546. 0.182167 0.0910834 0.995843i \(-0.470967\pi\)
0.0910834 + 0.995843i \(0.470967\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 492132.i − 0.670070i −0.942206 0.335035i \(-0.891252\pi\)
0.942206 0.335035i \(-0.108748\pi\)
\(858\) 0 0
\(859\) 839031. 1.13708 0.568541 0.822655i \(-0.307508\pi\)
0.568541 + 0.822655i \(0.307508\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 508087.i 0.682208i 0.940026 + 0.341104i \(0.110801\pi\)
−0.940026 + 0.341104i \(0.889199\pi\)
\(864\) 0 0
\(865\) 41073.3 0.0548943
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.03830e6i 1.37494i
\(870\) 0 0
\(871\) 245227. 0.323245
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 631377.i − 0.824655i
\(876\) 0 0
\(877\) 828867. 1.07767 0.538835 0.842412i \(-0.318865\pi\)
0.538835 + 0.842412i \(0.318865\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.06305e6i 1.36963i 0.728718 + 0.684814i \(0.240117\pi\)
−0.728718 + 0.684814i \(0.759883\pi\)
\(882\) 0 0
\(883\) −1.17415e6 −1.50593 −0.752963 0.658063i \(-0.771376\pi\)
−0.752963 + 0.658063i \(0.771376\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 756633.i − 0.961696i −0.876804 0.480848i \(-0.840329\pi\)
0.876804 0.480848i \(-0.159671\pi\)
\(888\) 0 0
\(889\) −627091. −0.793464
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 1.67971e6i − 2.10635i
\(894\) 0 0
\(895\) −378790. −0.472881
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 1.65326e6i − 2.04561i
\(900\) 0 0
\(901\) −1.56682e6 −1.93005
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 507492.i − 0.619630i
\(906\) 0 0
\(907\) −365049. −0.443748 −0.221874 0.975075i \(-0.571217\pi\)
−0.221874 + 0.975075i \(0.571217\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.23447e6i 1.48745i 0.668486 + 0.743725i \(0.266943\pi\)
−0.668486 + 0.743725i \(0.733057\pi\)
\(912\) 0 0
\(913\) −1.76229e6 −2.11415
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 421433.i 0.501176i
\(918\) 0 0
\(919\) −957839. −1.13413 −0.567063 0.823674i \(-0.691921\pi\)
−0.567063 + 0.823674i \(0.691921\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 104266.i − 0.122388i
\(924\) 0 0
\(925\) −1.34603e6 −1.57316
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 1.53514e6i − 1.77876i −0.457167 0.889381i \(-0.651136\pi\)
0.457167 0.889381i \(-0.348864\pi\)
\(930\) 0 0
\(931\) 716403. 0.826528
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 770051.i − 0.880838i
\(936\) 0 0
\(937\) −275585. −0.313889 −0.156944 0.987607i \(-0.550164\pi\)
−0.156944 + 0.987607i \(0.550164\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 237709.i − 0.268452i −0.990951 0.134226i \(-0.957145\pi\)
0.990951 0.134226i \(-0.0428547\pi\)
\(942\) 0 0
\(943\) −475274. −0.534467
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 412084.i 0.459500i 0.973250 + 0.229750i \(0.0737908\pi\)
−0.973250 + 0.229750i \(0.926209\pi\)
\(948\) 0 0
\(949\) 363177. 0.403261
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 716408.i − 0.788814i −0.918936 0.394407i \(-0.870950\pi\)
0.918936 0.394407i \(-0.129050\pi\)
\(954\) 0 0
\(955\) 165063. 0.180985
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.48779e6i 1.61772i
\(960\) 0 0
\(961\) 692501. 0.749848
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 159975.i − 0.171790i
\(966\) 0 0
\(967\) −1.42980e6 −1.52905 −0.764524 0.644595i \(-0.777026\pi\)
−0.764524 + 0.644595i \(0.777026\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.10577e6i 1.17280i 0.810021 + 0.586401i \(0.199456\pi\)
−0.810021 + 0.586401i \(0.800544\pi\)
\(972\) 0 0
\(973\) −1.88236e6 −1.98828
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 143494.i 0.150329i 0.997171 + 0.0751646i \(0.0239482\pi\)
−0.997171 + 0.0751646i \(0.976052\pi\)
\(978\) 0 0
\(979\) −939482. −0.980219
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 331189.i − 0.342744i −0.985206 0.171372i \(-0.945180\pi\)
0.985206 0.171372i \(-0.0548199\pi\)
\(984\) 0 0
\(985\) 186395. 0.192115
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 294277.i − 0.300860i
\(990\) 0 0
\(991\) −1.31457e6 −1.33855 −0.669277 0.743013i \(-0.733396\pi\)
−0.669277 + 0.743013i \(0.733396\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 260275.i − 0.262897i
\(996\) 0 0
\(997\) 608752. 0.612421 0.306210 0.951964i \(-0.400939\pi\)
0.306210 + 0.951964i \(0.400939\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.5.e.g.161.9 yes 16
3.2 odd 2 inner 864.5.e.g.161.7 16
4.3 odd 2 inner 864.5.e.g.161.10 yes 16
12.11 even 2 inner 864.5.e.g.161.8 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
864.5.e.g.161.7 16 3.2 odd 2 inner
864.5.e.g.161.8 yes 16 12.11 even 2 inner
864.5.e.g.161.9 yes 16 1.1 even 1 trivial
864.5.e.g.161.10 yes 16 4.3 odd 2 inner