Properties

Label 864.5.e.g.161.15
Level $864$
Weight $5$
Character 864.161
Analytic conductor $89.312$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,5,Mod(161,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.161"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 864.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(89.3116481044\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 22 x^{14} - 60 x^{13} + 313 x^{12} + 1368 x^{11} + 1844 x^{10} - 4788 x^{9} - 11779 x^{8} + \cdots + 16848900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{56}\cdot 3^{24} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.15
Root \(-3.06658 + 1.75061i\) of defining polynomial
Character \(\chi\) \(=\) 864.161
Dual form 864.5.e.g.161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+33.5878i q^{5} -14.6267 q^{7} +144.752i q^{11} +19.3503 q^{13} +166.163i q^{17} +173.755 q^{19} +220.826i q^{23} -503.139 q^{25} +1289.78i q^{29} +171.391 q^{31} -491.280i q^{35} +1264.16 q^{37} +1695.63i q^{41} +878.215 q^{43} -1324.53i q^{47} -2187.06 q^{49} +1670.43i q^{53} -4861.91 q^{55} -1733.62i q^{59} -4001.81 q^{61} +649.933i q^{65} +7996.28 q^{67} +2799.71i q^{71} +1218.51 q^{73} -2117.26i q^{77} -8781.35 q^{79} +5917.23i q^{83} -5581.05 q^{85} -12798.2i q^{89} -283.032 q^{91} +5836.05i q^{95} -6356.47 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{13} + 704 q^{25} - 2624 q^{37} + 1728 q^{49} + 3264 q^{61} - 5424 q^{73} + 4704 q^{85} - 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 33.5878i 1.34351i 0.740773 + 0.671756i \(0.234460\pi\)
−0.740773 + 0.671756i \(0.765540\pi\)
\(6\) 0 0
\(7\) −14.6267 −0.298505 −0.149253 0.988799i \(-0.547687\pi\)
−0.149253 + 0.988799i \(0.547687\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 144.752i 1.19630i 0.801384 + 0.598150i \(0.204097\pi\)
−0.801384 + 0.598150i \(0.795903\pi\)
\(12\) 0 0
\(13\) 19.3503 0.114499 0.0572494 0.998360i \(-0.481767\pi\)
0.0572494 + 0.998360i \(0.481767\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 166.163i 0.574959i 0.957787 + 0.287479i \(0.0928173\pi\)
−0.957787 + 0.287479i \(0.907183\pi\)
\(18\) 0 0
\(19\) 173.755 0.481316 0.240658 0.970610i \(-0.422637\pi\)
0.240658 + 0.970610i \(0.422637\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 220.826i 0.417441i 0.977975 + 0.208721i \(0.0669299\pi\)
−0.977975 + 0.208721i \(0.933070\pi\)
\(24\) 0 0
\(25\) −503.139 −0.805023
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1289.78i 1.53362i 0.641873 + 0.766811i \(0.278158\pi\)
−0.641873 + 0.766811i \(0.721842\pi\)
\(30\) 0 0
\(31\) 171.391 0.178347 0.0891734 0.996016i \(-0.471577\pi\)
0.0891734 + 0.996016i \(0.471577\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 491.280i − 0.401045i
\(36\) 0 0
\(37\) 1264.16 0.923422 0.461711 0.887030i \(-0.347236\pi\)
0.461711 + 0.887030i \(0.347236\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1695.63i 1.00871i 0.863498 + 0.504353i \(0.168269\pi\)
−0.863498 + 0.504353i \(0.831731\pi\)
\(42\) 0 0
\(43\) 878.215 0.474967 0.237484 0.971392i \(-0.423677\pi\)
0.237484 + 0.971392i \(0.423677\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 1324.53i − 0.599608i −0.954001 0.299804i \(-0.903079\pi\)
0.954001 0.299804i \(-0.0969213\pi\)
\(48\) 0 0
\(49\) −2187.06 −0.910895
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1670.43i 0.594670i 0.954773 + 0.297335i \(0.0960978\pi\)
−0.954773 + 0.297335i \(0.903902\pi\)
\(54\) 0 0
\(55\) −4861.91 −1.60724
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 1733.62i − 0.498023i −0.968501 0.249012i \(-0.919894\pi\)
0.968501 0.249012i \(-0.0801057\pi\)
\(60\) 0 0
\(61\) −4001.81 −1.07547 −0.537733 0.843115i \(-0.680719\pi\)
−0.537733 + 0.843115i \(0.680719\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 649.933i 0.153830i
\(66\) 0 0
\(67\) 7996.28 1.78130 0.890652 0.454685i \(-0.150248\pi\)
0.890652 + 0.454685i \(0.150248\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2799.71i 0.555388i 0.960670 + 0.277694i \(0.0895702\pi\)
−0.960670 + 0.277694i \(0.910430\pi\)
\(72\) 0 0
\(73\) 1218.51 0.228657 0.114329 0.993443i \(-0.463528\pi\)
0.114329 + 0.993443i \(0.463528\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 2117.26i − 0.357102i
\(78\) 0 0
\(79\) −8781.35 −1.40704 −0.703521 0.710674i \(-0.748390\pi\)
−0.703521 + 0.710674i \(0.748390\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5917.23i 0.858938i 0.903082 + 0.429469i \(0.141299\pi\)
−0.903082 + 0.429469i \(0.858701\pi\)
\(84\) 0 0
\(85\) −5581.05 −0.772464
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 12798.2i − 1.61573i −0.589370 0.807863i \(-0.700624\pi\)
0.589370 0.807863i \(-0.299376\pi\)
\(90\) 0 0
\(91\) −283.032 −0.0341785
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5836.05i 0.646653i
\(96\) 0 0
\(97\) −6356.47 −0.675574 −0.337787 0.941223i \(-0.609678\pi\)
−0.337787 + 0.941223i \(0.609678\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 12782.6i − 1.25307i −0.779392 0.626537i \(-0.784472\pi\)
0.779392 0.626537i \(-0.215528\pi\)
\(102\) 0 0
\(103\) 11151.4 1.05113 0.525563 0.850755i \(-0.323855\pi\)
0.525563 + 0.850755i \(0.323855\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 8160.18i − 0.712741i −0.934345 0.356371i \(-0.884014\pi\)
0.934345 0.356371i \(-0.115986\pi\)
\(108\) 0 0
\(109\) −21304.4 −1.79315 −0.896575 0.442891i \(-0.853953\pi\)
−0.896575 + 0.442891i \(0.853953\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 4969.44i − 0.389180i −0.980885 0.194590i \(-0.937662\pi\)
0.980885 0.194590i \(-0.0623377\pi\)
\(114\) 0 0
\(115\) −7417.07 −0.560837
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 2430.43i − 0.171628i
\(120\) 0 0
\(121\) −6312.23 −0.431134
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 4093.04i 0.261954i
\(126\) 0 0
\(127\) −17154.5 −1.06358 −0.531792 0.846875i \(-0.678481\pi\)
−0.531792 + 0.846875i \(0.678481\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 21193.8i − 1.23500i −0.786572 0.617499i \(-0.788146\pi\)
0.786572 0.617499i \(-0.211854\pi\)
\(132\) 0 0
\(133\) −2541.47 −0.143675
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 17726.8i 0.944470i 0.881473 + 0.472235i \(0.156553\pi\)
−0.881473 + 0.472235i \(0.843447\pi\)
\(138\) 0 0
\(139\) 32235.7 1.66843 0.834214 0.551441i \(-0.185922\pi\)
0.834214 + 0.551441i \(0.185922\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2801.00i 0.136975i
\(144\) 0 0
\(145\) −43320.7 −2.06044
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 6952.42i − 0.313158i −0.987665 0.156579i \(-0.949953\pi\)
0.987665 0.156579i \(-0.0500466\pi\)
\(150\) 0 0
\(151\) 19213.1 0.842643 0.421322 0.906911i \(-0.361566\pi\)
0.421322 + 0.906911i \(0.361566\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5756.65i 0.239611i
\(156\) 0 0
\(157\) −18752.7 −0.760788 −0.380394 0.924824i \(-0.624212\pi\)
−0.380394 + 0.924824i \(0.624212\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 3229.97i − 0.124608i
\(162\) 0 0
\(163\) −35433.3 −1.33363 −0.666816 0.745222i \(-0.732343\pi\)
−0.666816 + 0.745222i \(0.732343\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9710.35i 0.348179i 0.984730 + 0.174089i \(0.0556981\pi\)
−0.984730 + 0.174089i \(0.944302\pi\)
\(168\) 0 0
\(169\) −28186.6 −0.986890
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3029.12i 0.101210i 0.998719 + 0.0506051i \(0.0161150\pi\)
−0.998719 + 0.0506051i \(0.983885\pi\)
\(174\) 0 0
\(175\) 7359.29 0.240303
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 6740.21i − 0.210362i −0.994453 0.105181i \(-0.966458\pi\)
0.994453 0.105181i \(-0.0335422\pi\)
\(180\) 0 0
\(181\) −20114.9 −0.613990 −0.306995 0.951711i \(-0.599323\pi\)
−0.306995 + 0.951711i \(0.599323\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 42460.5i 1.24063i
\(186\) 0 0
\(187\) −24052.5 −0.687823
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 53663.0i 1.47098i 0.677533 + 0.735492i \(0.263049\pi\)
−0.677533 + 0.735492i \(0.736951\pi\)
\(192\) 0 0
\(193\) −56279.7 −1.51090 −0.755452 0.655204i \(-0.772583\pi\)
−0.755452 + 0.655204i \(0.772583\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 73594.0i 1.89631i 0.317803 + 0.948157i \(0.397055\pi\)
−0.317803 + 0.948157i \(0.602945\pi\)
\(198\) 0 0
\(199\) 41991.5 1.06036 0.530182 0.847884i \(-0.322124\pi\)
0.530182 + 0.847884i \(0.322124\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 18865.2i − 0.457794i
\(204\) 0 0
\(205\) −56952.6 −1.35521
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 25151.4i 0.575798i
\(210\) 0 0
\(211\) −71125.2 −1.59756 −0.798782 0.601620i \(-0.794522\pi\)
−0.798782 + 0.601620i \(0.794522\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 29497.3i 0.638124i
\(216\) 0 0
\(217\) −2506.90 −0.0532374
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3215.30i 0.0658320i
\(222\) 0 0
\(223\) 10162.0 0.204347 0.102173 0.994767i \(-0.467420\pi\)
0.102173 + 0.994767i \(0.467420\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 32258.8i − 0.626032i −0.949748 0.313016i \(-0.898661\pi\)
0.949748 0.313016i \(-0.101339\pi\)
\(228\) 0 0
\(229\) −27216.5 −0.518993 −0.259497 0.965744i \(-0.583557\pi\)
−0.259497 + 0.965744i \(0.583557\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 50535.6i − 0.930863i −0.885084 0.465431i \(-0.845899\pi\)
0.885084 0.465431i \(-0.154101\pi\)
\(234\) 0 0
\(235\) 44488.2 0.805580
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 19945.9i − 0.349186i −0.984641 0.174593i \(-0.944139\pi\)
0.984641 0.174593i \(-0.0558610\pi\)
\(240\) 0 0
\(241\) −24031.9 −0.413765 −0.206882 0.978366i \(-0.566332\pi\)
−0.206882 + 0.978366i \(0.566332\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 73458.4i − 1.22380i
\(246\) 0 0
\(247\) 3362.21 0.0551101
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 109770.i − 1.74235i −0.490974 0.871174i \(-0.663359\pi\)
0.490974 0.871174i \(-0.336641\pi\)
\(252\) 0 0
\(253\) −31965.1 −0.499385
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 40324.2i − 0.610520i −0.952269 0.305260i \(-0.901257\pi\)
0.952269 0.305260i \(-0.0987433\pi\)
\(258\) 0 0
\(259\) −18490.6 −0.275646
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 131526.i 1.90152i 0.309929 + 0.950760i \(0.399695\pi\)
−0.309929 + 0.950760i \(0.600305\pi\)
\(264\) 0 0
\(265\) −56106.0 −0.798946
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 30889.1i 0.426876i 0.976957 + 0.213438i \(0.0684661\pi\)
−0.976957 + 0.213438i \(0.931534\pi\)
\(270\) 0 0
\(271\) 10337.2 0.140755 0.0703774 0.997520i \(-0.477580\pi\)
0.0703774 + 0.997520i \(0.477580\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 72830.5i − 0.963049i
\(276\) 0 0
\(277\) −105073. −1.36940 −0.684701 0.728825i \(-0.740067\pi\)
−0.684701 + 0.728825i \(0.740067\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 3501.73i − 0.0443476i −0.999754 0.0221738i \(-0.992941\pi\)
0.999754 0.0221738i \(-0.00705872\pi\)
\(282\) 0 0
\(283\) −20809.2 −0.259826 −0.129913 0.991525i \(-0.541470\pi\)
−0.129913 + 0.991525i \(0.541470\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 24801.6i − 0.301104i
\(288\) 0 0
\(289\) 55910.8 0.669422
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 84883.3i − 0.988752i −0.869248 0.494376i \(-0.835397\pi\)
0.869248 0.494376i \(-0.164603\pi\)
\(294\) 0 0
\(295\) 58228.4 0.669100
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4273.05i 0.0477965i
\(300\) 0 0
\(301\) −12845.4 −0.141780
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 134412.i − 1.44490i
\(306\) 0 0
\(307\) 28347.7 0.300774 0.150387 0.988627i \(-0.451948\pi\)
0.150387 + 0.988627i \(0.451948\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 20485.9i − 0.211804i −0.994377 0.105902i \(-0.966227\pi\)
0.994377 0.105902i \(-0.0337730\pi\)
\(312\) 0 0
\(313\) −18831.2 −0.192216 −0.0961078 0.995371i \(-0.530639\pi\)
−0.0961078 + 0.995371i \(0.530639\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 69100.0i − 0.687638i −0.939036 0.343819i \(-0.888279\pi\)
0.939036 0.343819i \(-0.111721\pi\)
\(318\) 0 0
\(319\) −186698. −1.83467
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 28871.7i 0.276737i
\(324\) 0 0
\(325\) −9735.89 −0.0921741
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 19373.6i 0.178986i
\(330\) 0 0
\(331\) 185395. 1.69216 0.846082 0.533054i \(-0.178956\pi\)
0.846082 + 0.533054i \(0.178956\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 268577.i 2.39320i
\(336\) 0 0
\(337\) 57550.1 0.506741 0.253370 0.967369i \(-0.418461\pi\)
0.253370 + 0.967369i \(0.418461\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 24809.3i 0.213356i
\(342\) 0 0
\(343\) 67108.4 0.570412
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 154889.i − 1.28636i −0.765715 0.643180i \(-0.777615\pi\)
0.765715 0.643180i \(-0.222385\pi\)
\(348\) 0 0
\(349\) 179372. 1.47267 0.736334 0.676618i \(-0.236555\pi\)
0.736334 + 0.676618i \(0.236555\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 107698.i 0.864286i 0.901805 + 0.432143i \(0.142242\pi\)
−0.901805 + 0.432143i \(0.857758\pi\)
\(354\) 0 0
\(355\) −94036.1 −0.746170
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 145895.i 1.13201i 0.824402 + 0.566005i \(0.191512\pi\)
−0.824402 + 0.566005i \(0.808488\pi\)
\(360\) 0 0
\(361\) −100130. −0.768335
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 40927.2i 0.307204i
\(366\) 0 0
\(367\) −167014. −1.23999 −0.619997 0.784604i \(-0.712866\pi\)
−0.619997 + 0.784604i \(0.712866\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 24432.9i − 0.177512i
\(372\) 0 0
\(373\) 92493.7 0.664806 0.332403 0.943138i \(-0.392141\pi\)
0.332403 + 0.943138i \(0.392141\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24957.5i 0.175598i
\(378\) 0 0
\(379\) 223591. 1.55660 0.778299 0.627894i \(-0.216083\pi\)
0.778299 + 0.627894i \(0.216083\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 24915.6i 0.169853i 0.996387 + 0.0849265i \(0.0270655\pi\)
−0.996387 + 0.0849265i \(0.972934\pi\)
\(384\) 0 0
\(385\) 71113.9 0.479770
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 156539.i 1.03448i 0.855839 + 0.517242i \(0.173041\pi\)
−0.855839 + 0.517242i \(0.826959\pi\)
\(390\) 0 0
\(391\) −36693.2 −0.240011
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 294946.i − 1.89038i
\(396\) 0 0
\(397\) 3880.64 0.0246220 0.0123110 0.999924i \(-0.496081\pi\)
0.0123110 + 0.999924i \(0.496081\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 113022.i 0.702868i 0.936213 + 0.351434i \(0.114306\pi\)
−0.936213 + 0.351434i \(0.885694\pi\)
\(402\) 0 0
\(403\) 3316.47 0.0204205
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 182991.i 1.10469i
\(408\) 0 0
\(409\) −56305.9 −0.336594 −0.168297 0.985736i \(-0.553827\pi\)
−0.168297 + 0.985736i \(0.553827\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 25357.2i 0.148662i
\(414\) 0 0
\(415\) −198746. −1.15399
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 302463.i − 1.72284i −0.507895 0.861419i \(-0.669576\pi\)
0.507895 0.861419i \(-0.330424\pi\)
\(420\) 0 0
\(421\) 154089. 0.869374 0.434687 0.900582i \(-0.356859\pi\)
0.434687 + 0.900582i \(0.356859\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 83603.1i − 0.462855i
\(426\) 0 0
\(427\) 58533.5 0.321032
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 198819.i − 1.07030i −0.844758 0.535148i \(-0.820256\pi\)
0.844758 0.535148i \(-0.179744\pi\)
\(432\) 0 0
\(433\) 211411. 1.12759 0.563795 0.825915i \(-0.309341\pi\)
0.563795 + 0.825915i \(0.309341\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 38369.7i 0.200921i
\(438\) 0 0
\(439\) 46748.0 0.242568 0.121284 0.992618i \(-0.461299\pi\)
0.121284 + 0.992618i \(0.461299\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 306327.i 1.56091i 0.625211 + 0.780456i \(0.285013\pi\)
−0.625211 + 0.780456i \(0.714987\pi\)
\(444\) 0 0
\(445\) 429862. 2.17075
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 248443.i 1.23235i 0.787610 + 0.616175i \(0.211318\pi\)
−0.787610 + 0.616175i \(0.788682\pi\)
\(450\) 0 0
\(451\) −245447. −1.20671
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 9506.41i − 0.0459191i
\(456\) 0 0
\(457\) 311234. 1.49023 0.745117 0.666934i \(-0.232394\pi\)
0.745117 + 0.666934i \(0.232394\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 74685.1i 0.351424i 0.984442 + 0.175712i \(0.0562228\pi\)
−0.984442 + 0.175712i \(0.943777\pi\)
\(462\) 0 0
\(463\) 164457. 0.767169 0.383584 0.923506i \(-0.374690\pi\)
0.383584 + 0.923506i \(0.374690\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 170365.i − 0.781170i −0.920567 0.390585i \(-0.872273\pi\)
0.920567 0.390585i \(-0.127727\pi\)
\(468\) 0 0
\(469\) −116960. −0.531728
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 127124.i 0.568203i
\(474\) 0 0
\(475\) −87423.0 −0.387470
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 325738.i 1.41970i 0.704351 + 0.709852i \(0.251238\pi\)
−0.704351 + 0.709852i \(0.748762\pi\)
\(480\) 0 0
\(481\) 24461.9 0.105731
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 213500.i − 0.907641i
\(486\) 0 0
\(487\) 134748. 0.568151 0.284076 0.958802i \(-0.408313\pi\)
0.284076 + 0.958802i \(0.408313\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 359856.i − 1.49267i −0.665568 0.746337i \(-0.731811\pi\)
0.665568 0.746337i \(-0.268189\pi\)
\(492\) 0 0
\(493\) −214313. −0.881770
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 40950.7i − 0.165786i
\(498\) 0 0
\(499\) 342749. 1.37650 0.688248 0.725475i \(-0.258380\pi\)
0.688248 + 0.725475i \(0.258380\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 373142.i 1.47482i 0.675448 + 0.737408i \(0.263950\pi\)
−0.675448 + 0.737408i \(0.736050\pi\)
\(504\) 0 0
\(505\) 429339. 1.68352
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 118958.i 0.459156i 0.973290 + 0.229578i \(0.0737345\pi\)
−0.973290 + 0.229578i \(0.926265\pi\)
\(510\) 0 0
\(511\) −17822.9 −0.0682554
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 374551.i 1.41220i
\(516\) 0 0
\(517\) 191729. 0.717311
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 37178.7i 0.136968i 0.997652 + 0.0684840i \(0.0218162\pi\)
−0.997652 + 0.0684840i \(0.978184\pi\)
\(522\) 0 0
\(523\) −337828. −1.23507 −0.617536 0.786542i \(-0.711869\pi\)
−0.617536 + 0.786542i \(0.711869\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 28478.9i 0.102542i
\(528\) 0 0
\(529\) 231077. 0.825743
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 32811.0i 0.115495i
\(534\) 0 0
\(535\) 274082. 0.957576
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 316582.i − 1.08970i
\(540\) 0 0
\(541\) 359312. 1.22766 0.613830 0.789439i \(-0.289628\pi\)
0.613830 + 0.789439i \(0.289628\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 715568.i − 2.40912i
\(546\) 0 0
\(547\) −102745. −0.343388 −0.171694 0.985150i \(-0.554924\pi\)
−0.171694 + 0.985150i \(0.554924\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 224105.i 0.738157i
\(552\) 0 0
\(553\) 128443. 0.420009
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 510008.i − 1.64387i −0.569583 0.821934i \(-0.692895\pi\)
0.569583 0.821934i \(-0.307105\pi\)
\(558\) 0 0
\(559\) 16993.7 0.0543832
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 184068.i − 0.580712i −0.956919 0.290356i \(-0.906226\pi\)
0.956919 0.290356i \(-0.0937737\pi\)
\(564\) 0 0
\(565\) 166913. 0.522868
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 372582.i − 1.15079i −0.817875 0.575397i \(-0.804848\pi\)
0.817875 0.575397i \(-0.195152\pi\)
\(570\) 0 0
\(571\) 48251.5 0.147992 0.0739961 0.997259i \(-0.476425\pi\)
0.0739961 + 0.997259i \(0.476425\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 111106.i − 0.336049i
\(576\) 0 0
\(577\) 321409. 0.965398 0.482699 0.875786i \(-0.339657\pi\)
0.482699 + 0.875786i \(0.339657\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 86549.8i − 0.256397i
\(582\) 0 0
\(583\) −241798. −0.711403
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 185894.i 0.539496i 0.962931 + 0.269748i \(0.0869404\pi\)
−0.962931 + 0.269748i \(0.913060\pi\)
\(588\) 0 0
\(589\) 29780.1 0.0858412
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 291755.i 0.829676i 0.909895 + 0.414838i \(0.136162\pi\)
−0.909895 + 0.414838i \(0.863838\pi\)
\(594\) 0 0
\(595\) 81632.6 0.230584
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 256098.i − 0.713761i −0.934150 0.356881i \(-0.883840\pi\)
0.934150 0.356881i \(-0.116160\pi\)
\(600\) 0 0
\(601\) 1472.07 0.00407549 0.00203775 0.999998i \(-0.499351\pi\)
0.00203775 + 0.999998i \(0.499351\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 212014.i − 0.579233i
\(606\) 0 0
\(607\) 533495. 1.44795 0.723974 0.689827i \(-0.242313\pi\)
0.723974 + 0.689827i \(0.242313\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 25630.1i − 0.0686543i
\(612\) 0 0
\(613\) 261329. 0.695451 0.347725 0.937596i \(-0.386954\pi\)
0.347725 + 0.937596i \(0.386954\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6677.95i 0.0175417i 0.999962 + 0.00877087i \(0.00279189\pi\)
−0.999962 + 0.00877087i \(0.997208\pi\)
\(618\) 0 0
\(619\) −467024. −1.21887 −0.609436 0.792835i \(-0.708604\pi\)
−0.609436 + 0.792835i \(0.708604\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 187196.i 0.482302i
\(624\) 0 0
\(625\) −451938. −1.15696
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 210057.i 0.530929i
\(630\) 0 0
\(631\) −355070. −0.891775 −0.445887 0.895089i \(-0.647112\pi\)
−0.445887 + 0.895089i \(0.647112\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 576183.i − 1.42894i
\(636\) 0 0
\(637\) −42320.2 −0.104296
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 9656.48i − 0.0235019i −0.999931 0.0117509i \(-0.996259\pi\)
0.999931 0.0117509i \(-0.00374053\pi\)
\(642\) 0 0
\(643\) −357560. −0.864823 −0.432411 0.901676i \(-0.642337\pi\)
−0.432411 + 0.901676i \(0.642337\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 343333.i − 0.820176i −0.912046 0.410088i \(-0.865498\pi\)
0.912046 0.410088i \(-0.134502\pi\)
\(648\) 0 0
\(649\) 250945. 0.595785
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 476404.i 1.11725i 0.829422 + 0.558623i \(0.188670\pi\)
−0.829422 + 0.558623i \(0.811330\pi\)
\(654\) 0 0
\(655\) 711853. 1.65923
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 601236.i 1.38444i 0.721686 + 0.692220i \(0.243367\pi\)
−0.721686 + 0.692220i \(0.756633\pi\)
\(660\) 0 0
\(661\) 679484. 1.55516 0.777582 0.628781i \(-0.216446\pi\)
0.777582 + 0.628781i \(0.216446\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 85362.4i − 0.193029i
\(666\) 0 0
\(667\) −284817. −0.640197
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 579271.i − 1.28658i
\(672\) 0 0
\(673\) −75784.5 −0.167321 −0.0836605 0.996494i \(-0.526661\pi\)
−0.0836605 + 0.996494i \(0.526661\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 612672.i 1.33675i 0.743824 + 0.668376i \(0.233010\pi\)
−0.743824 + 0.668376i \(0.766990\pi\)
\(678\) 0 0
\(679\) 92974.6 0.201662
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 274139.i − 0.587665i −0.955857 0.293832i \(-0.905069\pi\)
0.955857 0.293832i \(-0.0949308\pi\)
\(684\) 0 0
\(685\) −595402. −1.26891
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 32323.2i 0.0680889i
\(690\) 0 0
\(691\) 390853. 0.818573 0.409286 0.912406i \(-0.365778\pi\)
0.409286 + 0.912406i \(0.365778\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.08273e6i 2.24155i
\(696\) 0 0
\(697\) −281752. −0.579964
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 297715.i − 0.605849i −0.953015 0.302924i \(-0.902037\pi\)
0.953015 0.302924i \(-0.0979630\pi\)
\(702\) 0 0
\(703\) 219655. 0.444458
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 186968.i 0.374049i
\(708\) 0 0
\(709\) 173670. 0.345487 0.172744 0.984967i \(-0.444737\pi\)
0.172744 + 0.984967i \(0.444737\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 37847.7i 0.0744493i
\(714\) 0 0
\(715\) −94079.3 −0.184027
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 456933.i − 0.883882i −0.897044 0.441941i \(-0.854290\pi\)
0.897044 0.441941i \(-0.145710\pi\)
\(720\) 0 0
\(721\) −163109. −0.313766
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 648937.i − 1.23460i
\(726\) 0 0
\(727\) −607565. −1.14954 −0.574770 0.818315i \(-0.694908\pi\)
−0.574770 + 0.818315i \(0.694908\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 145927.i 0.273087i
\(732\) 0 0
\(733\) 433466. 0.806765 0.403383 0.915031i \(-0.367834\pi\)
0.403383 + 0.915031i \(0.367834\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.15748e6i 2.13097i
\(738\) 0 0
\(739\) −85028.7 −0.155696 −0.0778478 0.996965i \(-0.524805\pi\)
−0.0778478 + 0.996965i \(0.524805\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 100283.i 0.181656i 0.995867 + 0.0908278i \(0.0289513\pi\)
−0.995867 + 0.0908278i \(0.971049\pi\)
\(744\) 0 0
\(745\) 233516. 0.420731
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 119357.i 0.212757i
\(750\) 0 0
\(751\) −833818. −1.47840 −0.739199 0.673487i \(-0.764796\pi\)
−0.739199 + 0.673487i \(0.764796\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 645326.i 1.13210i
\(756\) 0 0
\(757\) −864671. −1.50889 −0.754447 0.656360i \(-0.772095\pi\)
−0.754447 + 0.656360i \(0.772095\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.02371e6i 1.76770i 0.467775 + 0.883848i \(0.345056\pi\)
−0.467775 + 0.883848i \(0.654944\pi\)
\(762\) 0 0
\(763\) 311614. 0.535265
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 33546.0i − 0.0570230i
\(768\) 0 0
\(769\) −572475. −0.968064 −0.484032 0.875050i \(-0.660828\pi\)
−0.484032 + 0.875050i \(0.660828\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 479910.i 0.803158i 0.915824 + 0.401579i \(0.131538\pi\)
−0.915824 + 0.401579i \(0.868462\pi\)
\(774\) 0 0
\(775\) −86233.7 −0.143573
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 294625.i 0.485506i
\(780\) 0 0
\(781\) −405265. −0.664411
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 629861.i − 1.02213i
\(786\) 0 0
\(787\) 1.03953e6 1.67837 0.839186 0.543844i \(-0.183032\pi\)
0.839186 + 0.543844i \(0.183032\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 72686.8i 0.116172i
\(792\) 0 0
\(793\) −77436.2 −0.123140
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 889741.i 1.40071i 0.713797 + 0.700353i \(0.246974\pi\)
−0.713797 + 0.700353i \(0.753026\pi\)
\(798\) 0 0
\(799\) 220089. 0.344750
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 176383.i 0.273543i
\(804\) 0 0
\(805\) 108488. 0.167413
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 637100.i − 0.973443i −0.873557 0.486722i \(-0.838193\pi\)
0.873557 0.486722i \(-0.161807\pi\)
\(810\) 0 0
\(811\) 1.29389e6 1.96723 0.983615 0.180282i \(-0.0577012\pi\)
0.983615 + 0.180282i \(0.0577012\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 1.19013e6i − 1.79175i
\(816\) 0 0
\(817\) 152594. 0.228609
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 415943.i 0.617089i 0.951210 + 0.308544i \(0.0998418\pi\)
−0.951210 + 0.308544i \(0.900158\pi\)
\(822\) 0 0
\(823\) −1.07471e6 −1.58669 −0.793344 0.608774i \(-0.791662\pi\)
−0.793344 + 0.608774i \(0.791662\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 23323.7i − 0.0341025i −0.999855 0.0170513i \(-0.994572\pi\)
0.999855 0.0170513i \(-0.00542785\pi\)
\(828\) 0 0
\(829\) −1.10602e6 −1.60937 −0.804683 0.593705i \(-0.797665\pi\)
−0.804683 + 0.593705i \(0.797665\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 363408.i − 0.523727i
\(834\) 0 0
\(835\) −326149. −0.467782
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 221608.i 0.314819i 0.987533 + 0.157409i \(0.0503143\pi\)
−0.987533 + 0.157409i \(0.949686\pi\)
\(840\) 0 0
\(841\) −956243. −1.35200
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 946724.i − 1.32590i
\(846\) 0 0
\(847\) 92327.4 0.128696
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 279161.i 0.385474i
\(852\) 0 0
\(853\) −1.12832e6 −1.55072 −0.775362 0.631517i \(-0.782433\pi\)
−0.775362 + 0.631517i \(0.782433\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 449136.i 0.611528i 0.952107 + 0.305764i \(0.0989118\pi\)
−0.952107 + 0.305764i \(0.901088\pi\)
\(858\) 0 0
\(859\) −1.24856e6 −1.69210 −0.846048 0.533107i \(-0.821024\pi\)
−0.846048 + 0.533107i \(0.821024\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 826246.i − 1.10940i −0.832051 0.554699i \(-0.812833\pi\)
0.832051 0.554699i \(-0.187167\pi\)
\(864\) 0 0
\(865\) −101741. −0.135977
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 1.27112e6i − 1.68324i
\(870\) 0 0
\(871\) 154730. 0.203957
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 59867.8i − 0.0781947i
\(876\) 0 0
\(877\) −78630.5 −0.102233 −0.0511166 0.998693i \(-0.516278\pi\)
−0.0511166 + 0.998693i \(0.516278\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 186139.i − 0.239820i −0.992785 0.119910i \(-0.961739\pi\)
0.992785 0.119910i \(-0.0382606\pi\)
\(882\) 0 0
\(883\) 1.39533e6 1.78960 0.894802 0.446464i \(-0.147317\pi\)
0.894802 + 0.446464i \(0.147317\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 874855.i − 1.11196i −0.831196 0.555980i \(-0.812343\pi\)
0.831196 0.555980i \(-0.187657\pi\)
\(888\) 0 0
\(889\) 250915. 0.317485
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 230144.i − 0.288601i
\(894\) 0 0
\(895\) 226389. 0.282624
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 221056.i 0.273517i
\(900\) 0 0
\(901\) −277563. −0.341911
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 675616.i − 0.824902i
\(906\) 0 0
\(907\) 120934. 0.147006 0.0735028 0.997295i \(-0.476582\pi\)
0.0735028 + 0.997295i \(0.476582\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 287471.i − 0.346383i −0.984888 0.173192i \(-0.944592\pi\)
0.984888 0.173192i \(-0.0554080\pi\)
\(912\) 0 0
\(913\) −856532. −1.02755
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 309996.i 0.368653i
\(918\) 0 0
\(919\) 539676. 0.639002 0.319501 0.947586i \(-0.396485\pi\)
0.319501 + 0.947586i \(0.396485\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 54175.2i 0.0635912i
\(924\) 0 0
\(925\) −636051. −0.743375
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 658350.i 0.762826i 0.924405 + 0.381413i \(0.124562\pi\)
−0.924405 + 0.381413i \(0.875438\pi\)
\(930\) 0 0
\(931\) −380012. −0.438428
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 807870.i − 0.924098i
\(936\) 0 0
\(937\) 255274. 0.290755 0.145378 0.989376i \(-0.453560\pi\)
0.145378 + 0.989376i \(0.453560\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 654533.i 0.739183i 0.929194 + 0.369592i \(0.120502\pi\)
−0.929194 + 0.369592i \(0.879498\pi\)
\(942\) 0 0
\(943\) −374441. −0.421075
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.59897e6i 1.78295i 0.453066 + 0.891477i \(0.350330\pi\)
−0.453066 + 0.891477i \(0.649670\pi\)
\(948\) 0 0
\(949\) 23578.6 0.0261810
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 1.25008e6i − 1.37642i −0.725510 0.688212i \(-0.758396\pi\)
0.725510 0.688212i \(-0.241604\pi\)
\(954\) 0 0
\(955\) −1.80242e6 −1.97628
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 259285.i − 0.281929i
\(960\) 0 0
\(961\) −894146. −0.968192
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 1.89031e6i − 2.02992i
\(966\) 0 0
\(967\) −1.70048e6 −1.81852 −0.909260 0.416229i \(-0.863352\pi\)
−0.909260 + 0.416229i \(0.863352\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 761568.i 0.807737i 0.914817 + 0.403869i \(0.132335\pi\)
−0.914817 + 0.403869i \(0.867665\pi\)
\(972\) 0 0
\(973\) −471503. −0.498034
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 905620.i − 0.948761i −0.880320 0.474380i \(-0.842672\pi\)
0.880320 0.474380i \(-0.157328\pi\)
\(978\) 0 0
\(979\) 1.85256e6 1.93289
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 291784.i − 0.301963i −0.988537 0.150982i \(-0.951757\pi\)
0.988537 0.150982i \(-0.0482434\pi\)
\(984\) 0 0
\(985\) −2.47186e6 −2.54772
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 193933.i 0.198271i
\(990\) 0 0
\(991\) 120352. 0.122547 0.0612737 0.998121i \(-0.480484\pi\)
0.0612737 + 0.998121i \(0.480484\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.41040e6i 1.42461i
\(996\) 0 0
\(997\) −1.33758e6 −1.34564 −0.672819 0.739807i \(-0.734917\pi\)
−0.672819 + 0.739807i \(0.734917\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.5.e.g.161.15 yes 16
3.2 odd 2 inner 864.5.e.g.161.1 16
4.3 odd 2 inner 864.5.e.g.161.16 yes 16
12.11 even 2 inner 864.5.e.g.161.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
864.5.e.g.161.1 16 3.2 odd 2 inner
864.5.e.g.161.2 yes 16 12.11 even 2 inner
864.5.e.g.161.15 yes 16 1.1 even 1 trivial
864.5.e.g.161.16 yes 16 4.3 odd 2 inner