Properties

Label 864.5.e.g.161.14
Level $864$
Weight $5$
Character 864.161
Analytic conductor $89.312$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,5,Mod(161,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.161"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 864.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(89.3116481044\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 22 x^{14} - 60 x^{13} + 313 x^{12} + 1368 x^{11} + 1844 x^{10} - 4788 x^{9} - 11779 x^{8} + \cdots + 16848900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{56}\cdot 3^{24} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.14
Root \(-1.80390 - 1.84121i\) of defining polynomial
Character \(\chi\) \(=\) 864.161
Dual form 864.5.e.g.161.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+26.0821i q^{5} +48.1712 q^{7} +40.7201i q^{11} +248.819 q^{13} -239.132i q^{17} +416.251 q^{19} -630.391i q^{23} -55.2781 q^{25} -1245.41i q^{29} -365.546 q^{31} +1256.41i q^{35} -911.684 q^{37} -427.438i q^{41} +2576.66 q^{43} +983.883i q^{47} -80.5328 q^{49} -4185.09i q^{53} -1062.07 q^{55} -3365.25i q^{59} +4341.68 q^{61} +6489.74i q^{65} -6089.47 q^{67} +899.338i q^{71} +7731.62 q^{73} +1961.54i q^{77} -8521.08 q^{79} -1878.93i q^{83} +6237.06 q^{85} -6120.92i q^{89} +11985.9 q^{91} +10856.7i q^{95} +1311.39 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{13} + 704 q^{25} - 2624 q^{37} + 1728 q^{49} + 3264 q^{61} - 5424 q^{73} + 4704 q^{85} - 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 26.0821i 1.04329i 0.853164 + 0.521643i \(0.174681\pi\)
−0.853164 + 0.521643i \(0.825319\pi\)
\(6\) 0 0
\(7\) 48.1712 0.983086 0.491543 0.870853i \(-0.336433\pi\)
0.491543 + 0.870853i \(0.336433\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 40.7201i 0.336530i 0.985742 + 0.168265i \(0.0538164\pi\)
−0.985742 + 0.168265i \(0.946184\pi\)
\(12\) 0 0
\(13\) 248.819 1.47230 0.736152 0.676816i \(-0.236641\pi\)
0.736152 + 0.676816i \(0.236641\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 239.132i − 0.827445i −0.910403 0.413722i \(-0.864228\pi\)
0.910403 0.413722i \(-0.135772\pi\)
\(18\) 0 0
\(19\) 416.251 1.15305 0.576524 0.817080i \(-0.304409\pi\)
0.576524 + 0.817080i \(0.304409\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 630.391i − 1.19166i −0.803109 0.595832i \(-0.796822\pi\)
0.803109 0.595832i \(-0.203178\pi\)
\(24\) 0 0
\(25\) −55.2781 −0.0884449
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 1245.41i − 1.48086i −0.672132 0.740431i \(-0.734621\pi\)
0.672132 0.740431i \(-0.265379\pi\)
\(30\) 0 0
\(31\) −365.546 −0.380380 −0.190190 0.981747i \(-0.560910\pi\)
−0.190190 + 0.981747i \(0.560910\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1256.41i 1.02564i
\(36\) 0 0
\(37\) −911.684 −0.665949 −0.332974 0.942936i \(-0.608052\pi\)
−0.332974 + 0.942936i \(0.608052\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 427.438i − 0.254276i −0.991885 0.127138i \(-0.959421\pi\)
0.991885 0.127138i \(-0.0405791\pi\)
\(42\) 0 0
\(43\) 2576.66 1.39354 0.696772 0.717293i \(-0.254619\pi\)
0.696772 + 0.717293i \(0.254619\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 983.883i 0.445398i 0.974887 + 0.222699i \(0.0714867\pi\)
−0.974887 + 0.222699i \(0.928513\pi\)
\(48\) 0 0
\(49\) −80.5328 −0.0335413
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 4185.09i − 1.48989i −0.667127 0.744944i \(-0.732476\pi\)
0.667127 0.744944i \(-0.267524\pi\)
\(54\) 0 0
\(55\) −1062.07 −0.351097
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 3365.25i − 0.966749i −0.875414 0.483374i \(-0.839411\pi\)
0.875414 0.483374i \(-0.160589\pi\)
\(60\) 0 0
\(61\) 4341.68 1.16681 0.583403 0.812183i \(-0.301721\pi\)
0.583403 + 0.812183i \(0.301721\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6489.74i 1.53603i
\(66\) 0 0
\(67\) −6089.47 −1.35653 −0.678266 0.734817i \(-0.737268\pi\)
−0.678266 + 0.734817i \(0.737268\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 899.338i 0.178405i 0.996014 + 0.0892023i \(0.0284318\pi\)
−0.996014 + 0.0892023i \(0.971568\pi\)
\(72\) 0 0
\(73\) 7731.62 1.45086 0.725428 0.688298i \(-0.241642\pi\)
0.725428 + 0.688298i \(0.241642\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1961.54i 0.330838i
\(78\) 0 0
\(79\) −8521.08 −1.36534 −0.682669 0.730727i \(-0.739181\pi\)
−0.682669 + 0.730727i \(0.739181\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 1878.93i − 0.272744i −0.990658 0.136372i \(-0.956456\pi\)
0.990658 0.136372i \(-0.0435442\pi\)
\(84\) 0 0
\(85\) 6237.06 0.863261
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 6120.92i − 0.772745i −0.922343 0.386373i \(-0.873728\pi\)
0.922343 0.386373i \(-0.126272\pi\)
\(90\) 0 0
\(91\) 11985.9 1.44740
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 10856.7i 1.20296i
\(96\) 0 0
\(97\) 1311.39 0.139376 0.0696881 0.997569i \(-0.477800\pi\)
0.0696881 + 0.997569i \(0.477800\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 11536.8i 1.13095i 0.824766 + 0.565475i \(0.191307\pi\)
−0.824766 + 0.565475i \(0.808693\pi\)
\(102\) 0 0
\(103\) −9606.38 −0.905493 −0.452747 0.891639i \(-0.649556\pi\)
−0.452747 + 0.891639i \(0.649556\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 10583.3i − 0.924387i −0.886779 0.462194i \(-0.847063\pi\)
0.886779 0.462194i \(-0.152937\pi\)
\(108\) 0 0
\(109\) −1154.69 −0.0971882 −0.0485941 0.998819i \(-0.515474\pi\)
−0.0485941 + 0.998819i \(0.515474\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11484.3i 0.899392i 0.893182 + 0.449696i \(0.148468\pi\)
−0.893182 + 0.449696i \(0.851532\pi\)
\(114\) 0 0
\(115\) 16441.9 1.24325
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 11519.3i − 0.813450i
\(120\) 0 0
\(121\) 12982.9 0.886748
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 14859.6i 0.951012i
\(126\) 0 0
\(127\) 18047.0 1.11891 0.559457 0.828860i \(-0.311010\pi\)
0.559457 + 0.828860i \(0.311010\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 17139.8i 0.998764i 0.866382 + 0.499382i \(0.166440\pi\)
−0.866382 + 0.499382i \(0.833560\pi\)
\(132\) 0 0
\(133\) 20051.3 1.13355
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 5308.06i − 0.282810i −0.989952 0.141405i \(-0.954838\pi\)
0.989952 0.141405i \(-0.0451620\pi\)
\(138\) 0 0
\(139\) −12796.4 −0.662307 −0.331153 0.943577i \(-0.607438\pi\)
−0.331153 + 0.943577i \(0.607438\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 10132.0i 0.495474i
\(144\) 0 0
\(145\) 32482.8 1.54496
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 3105.45i − 0.139879i −0.997551 0.0699395i \(-0.977719\pi\)
0.997551 0.0699395i \(-0.0222806\pi\)
\(150\) 0 0
\(151\) 16915.4 0.741873 0.370937 0.928658i \(-0.379037\pi\)
0.370937 + 0.928658i \(0.379037\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 9534.21i − 0.396845i
\(156\) 0 0
\(157\) 34031.7 1.38065 0.690327 0.723497i \(-0.257467\pi\)
0.690327 + 0.723497i \(0.257467\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 30366.7i − 1.17151i
\(162\) 0 0
\(163\) −29232.3 −1.10024 −0.550121 0.835085i \(-0.685418\pi\)
−0.550121 + 0.835085i \(0.685418\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3995.34i 0.143259i 0.997431 + 0.0716294i \(0.0228199\pi\)
−0.997431 + 0.0716294i \(0.977180\pi\)
\(168\) 0 0
\(169\) 33350.1 1.16768
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 56731.5i − 1.89554i −0.318959 0.947769i \(-0.603333\pi\)
0.318959 0.947769i \(-0.396667\pi\)
\(174\) 0 0
\(175\) −2662.81 −0.0869490
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 9534.66i − 0.297577i −0.988869 0.148788i \(-0.952463\pi\)
0.988869 0.148788i \(-0.0475373\pi\)
\(180\) 0 0
\(181\) 64512.2 1.96918 0.984588 0.174890i \(-0.0559571\pi\)
0.984588 + 0.174890i \(0.0559571\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 23778.7i − 0.694775i
\(186\) 0 0
\(187\) 9737.46 0.278460
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 14948.1i 0.409749i 0.978788 + 0.204875i \(0.0656787\pi\)
−0.978788 + 0.204875i \(0.934321\pi\)
\(192\) 0 0
\(193\) 16198.3 0.434864 0.217432 0.976075i \(-0.430232\pi\)
0.217432 + 0.976075i \(0.430232\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 66093.1i 1.70303i 0.524327 + 0.851517i \(0.324317\pi\)
−0.524327 + 0.851517i \(0.675683\pi\)
\(198\) 0 0
\(199\) 34440.5 0.869688 0.434844 0.900506i \(-0.356803\pi\)
0.434844 + 0.900506i \(0.356803\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 59992.7i − 1.45582i
\(204\) 0 0
\(205\) 11148.5 0.265282
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 16949.8i 0.388035i
\(210\) 0 0
\(211\) −52835.8 −1.18676 −0.593381 0.804922i \(-0.702207\pi\)
−0.593381 + 0.804922i \(0.702207\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 67204.9i 1.45386i
\(216\) 0 0
\(217\) −17608.8 −0.373947
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 59500.6i − 1.21825i
\(222\) 0 0
\(223\) −74220.3 −1.49249 −0.746247 0.665669i \(-0.768146\pi\)
−0.746247 + 0.665669i \(0.768146\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 97835.5i − 1.89865i −0.314297 0.949325i \(-0.601769\pi\)
0.314297 0.949325i \(-0.398231\pi\)
\(228\) 0 0
\(229\) 500.763 0.00954907 0.00477453 0.999989i \(-0.498480\pi\)
0.00477453 + 0.999989i \(0.498480\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 21170.2i − 0.389953i −0.980808 0.194976i \(-0.937537\pi\)
0.980808 0.194976i \(-0.0624630\pi\)
\(234\) 0 0
\(235\) −25661.8 −0.464677
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 73002.8i 1.27804i 0.769191 + 0.639019i \(0.220659\pi\)
−0.769191 + 0.639019i \(0.779341\pi\)
\(240\) 0 0
\(241\) 91442.8 1.57440 0.787201 0.616697i \(-0.211529\pi\)
0.787201 + 0.616697i \(0.211529\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 2100.47i − 0.0349932i
\(246\) 0 0
\(247\) 103571. 1.69764
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 34216.9i 0.543116i 0.962422 + 0.271558i \(0.0875389\pi\)
−0.962422 + 0.271558i \(0.912461\pi\)
\(252\) 0 0
\(253\) 25669.6 0.401031
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 64000.8i 0.968990i 0.874794 + 0.484495i \(0.160997\pi\)
−0.874794 + 0.484495i \(0.839003\pi\)
\(258\) 0 0
\(259\) −43916.9 −0.654685
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 45688.9i 0.660540i 0.943886 + 0.330270i \(0.107140\pi\)
−0.943886 + 0.330270i \(0.892860\pi\)
\(264\) 0 0
\(265\) 109156. 1.55438
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 30659.8i 0.423706i 0.977302 + 0.211853i \(0.0679498\pi\)
−0.977302 + 0.211853i \(0.932050\pi\)
\(270\) 0 0
\(271\) −78049.4 −1.06275 −0.531375 0.847137i \(-0.678324\pi\)
−0.531375 + 0.847137i \(0.678324\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 2250.93i − 0.0297643i
\(276\) 0 0
\(277\) 14251.2 0.185735 0.0928673 0.995678i \(-0.470397\pi\)
0.0928673 + 0.995678i \(0.470397\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 63538.5i 0.804682i 0.915490 + 0.402341i \(0.131803\pi\)
−0.915490 + 0.402341i \(0.868197\pi\)
\(282\) 0 0
\(283\) 146475. 1.82890 0.914448 0.404702i \(-0.132625\pi\)
0.914448 + 0.404702i \(0.132625\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 20590.2i − 0.249975i
\(288\) 0 0
\(289\) 26337.1 0.315335
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 3680.34i − 0.0428700i −0.999770 0.0214350i \(-0.993177\pi\)
0.999770 0.0214350i \(-0.00682349\pi\)
\(294\) 0 0
\(295\) 87773.0 1.00860
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 156853.i − 1.75449i
\(300\) 0 0
\(301\) 124121. 1.36997
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 113240.i 1.21731i
\(306\) 0 0
\(307\) 42873.8 0.454899 0.227449 0.973790i \(-0.426961\pi\)
0.227449 + 0.973790i \(0.426961\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 143339.i 1.48198i 0.671515 + 0.740991i \(0.265644\pi\)
−0.671515 + 0.740991i \(0.734356\pi\)
\(312\) 0 0
\(313\) −32423.5 −0.330956 −0.165478 0.986213i \(-0.552917\pi\)
−0.165478 + 0.986213i \(0.552917\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 60745.1i − 0.604495i −0.953230 0.302247i \(-0.902263\pi\)
0.953230 0.302247i \(-0.0977368\pi\)
\(318\) 0 0
\(319\) 50713.0 0.498354
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 99538.7i − 0.954084i
\(324\) 0 0
\(325\) −13754.3 −0.130218
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 47394.9i 0.437864i
\(330\) 0 0
\(331\) 40918.4 0.373476 0.186738 0.982410i \(-0.440208\pi\)
0.186738 + 0.982410i \(0.440208\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 158826.i − 1.41525i
\(336\) 0 0
\(337\) −211024. −1.85811 −0.929057 0.369936i \(-0.879380\pi\)
−0.929057 + 0.369936i \(0.879380\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 14885.1i − 0.128009i
\(342\) 0 0
\(343\) −119538. −1.01606
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 197212.i 1.63785i 0.573903 + 0.818924i \(0.305429\pi\)
−0.573903 + 0.818924i \(0.694571\pi\)
\(348\) 0 0
\(349\) −59585.4 −0.489203 −0.244602 0.969624i \(-0.578657\pi\)
−0.244602 + 0.969624i \(0.578657\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 17784.6i − 0.142723i −0.997451 0.0713617i \(-0.977266\pi\)
0.997451 0.0713617i \(-0.0227344\pi\)
\(354\) 0 0
\(355\) −23456.6 −0.186127
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 222312.i 1.72494i 0.506108 + 0.862470i \(0.331084\pi\)
−0.506108 + 0.862470i \(0.668916\pi\)
\(360\) 0 0
\(361\) 42943.6 0.329521
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 201657.i 1.51366i
\(366\) 0 0
\(367\) −131037. −0.972888 −0.486444 0.873712i \(-0.661706\pi\)
−0.486444 + 0.873712i \(0.661706\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 201601.i − 1.46469i
\(372\) 0 0
\(373\) −139772. −1.00462 −0.502311 0.864687i \(-0.667517\pi\)
−0.502311 + 0.864687i \(0.667517\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 309881.i − 2.18028i
\(378\) 0 0
\(379\) −20704.5 −0.144141 −0.0720703 0.997400i \(-0.522961\pi\)
−0.0720703 + 0.997400i \(0.522961\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 188237.i 1.28324i 0.767024 + 0.641619i \(0.221737\pi\)
−0.767024 + 0.641619i \(0.778263\pi\)
\(384\) 0 0
\(385\) −51161.1 −0.345158
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 94390.4i 0.623776i 0.950119 + 0.311888i \(0.100961\pi\)
−0.950119 + 0.311888i \(0.899039\pi\)
\(390\) 0 0
\(391\) −150746. −0.986037
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 222248.i − 1.42444i
\(396\) 0 0
\(397\) −219505. −1.39272 −0.696358 0.717694i \(-0.745198\pi\)
−0.696358 + 0.717694i \(0.745198\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 217971.i − 1.35553i −0.735277 0.677766i \(-0.762948\pi\)
0.735277 0.677766i \(-0.237052\pi\)
\(402\) 0 0
\(403\) −90954.9 −0.560036
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 37123.8i − 0.224112i
\(408\) 0 0
\(409\) −129752. −0.775653 −0.387827 0.921732i \(-0.626774\pi\)
−0.387827 + 0.921732i \(0.626774\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 162108.i − 0.950397i
\(414\) 0 0
\(415\) 49006.5 0.284550
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 144142.i − 0.821036i −0.911853 0.410518i \(-0.865348\pi\)
0.911853 0.410518i \(-0.134652\pi\)
\(420\) 0 0
\(421\) 31049.1 0.175180 0.0875901 0.996157i \(-0.472083\pi\)
0.0875901 + 0.996157i \(0.472083\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 13218.7i 0.0731833i
\(426\) 0 0
\(427\) 209144. 1.14707
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 302768.i 1.62988i 0.579547 + 0.814939i \(0.303230\pi\)
−0.579547 + 0.814939i \(0.696770\pi\)
\(432\) 0 0
\(433\) 169560. 0.904371 0.452185 0.891924i \(-0.350645\pi\)
0.452185 + 0.891924i \(0.350645\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 262400.i − 1.37405i
\(438\) 0 0
\(439\) 127352. 0.660809 0.330405 0.943839i \(-0.392815\pi\)
0.330405 + 0.943839i \(0.392815\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 377780.i − 1.92500i −0.271277 0.962501i \(-0.587446\pi\)
0.271277 0.962501i \(-0.412554\pi\)
\(444\) 0 0
\(445\) 159647. 0.806194
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 80369.1i − 0.398654i −0.979933 0.199327i \(-0.936124\pi\)
0.979933 0.199327i \(-0.0638756\pi\)
\(450\) 0 0
\(451\) 17405.3 0.0855714
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 312619.i 1.51005i
\(456\) 0 0
\(457\) −287088. −1.37462 −0.687311 0.726363i \(-0.741209\pi\)
−0.687311 + 0.726363i \(0.741209\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 135413.i 0.637175i 0.947893 + 0.318588i \(0.103208\pi\)
−0.947893 + 0.318588i \(0.896792\pi\)
\(462\) 0 0
\(463\) −368189. −1.71755 −0.858774 0.512354i \(-0.828773\pi\)
−0.858774 + 0.512354i \(0.828773\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 311796.i 1.42967i 0.699291 + 0.714837i \(0.253499\pi\)
−0.699291 + 0.714837i \(0.746501\pi\)
\(468\) 0 0
\(469\) −293337. −1.33359
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 104922.i 0.468969i
\(474\) 0 0
\(475\) −23009.5 −0.101981
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 22235.0i − 0.0969093i −0.998825 0.0484547i \(-0.984570\pi\)
0.998825 0.0484547i \(-0.0154296\pi\)
\(480\) 0 0
\(481\) −226845. −0.980479
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 34203.9i 0.145409i
\(486\) 0 0
\(487\) −61386.5 −0.258830 −0.129415 0.991591i \(-0.541310\pi\)
−0.129415 + 0.991591i \(0.541310\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 256257.i − 1.06295i −0.847074 0.531475i \(-0.821638\pi\)
0.847074 0.531475i \(-0.178362\pi\)
\(492\) 0 0
\(493\) −297816. −1.22533
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 43322.2i 0.175387i
\(498\) 0 0
\(499\) 65633.4 0.263587 0.131794 0.991277i \(-0.457926\pi\)
0.131794 + 0.991277i \(0.457926\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 82370.7i 0.325564i 0.986662 + 0.162782i \(0.0520468\pi\)
−0.986662 + 0.162782i \(0.947953\pi\)
\(504\) 0 0
\(505\) −300905. −1.17990
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 260352.i 1.00491i 0.864604 + 0.502454i \(0.167569\pi\)
−0.864604 + 0.502454i \(0.832431\pi\)
\(510\) 0 0
\(511\) 372441. 1.42632
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 250555.i − 0.944688i
\(516\) 0 0
\(517\) −40063.8 −0.149890
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 402531.i 1.48294i 0.670985 + 0.741471i \(0.265871\pi\)
−0.670985 + 0.741471i \(0.734129\pi\)
\(522\) 0 0
\(523\) 137088. 0.501183 0.250592 0.968093i \(-0.419375\pi\)
0.250592 + 0.968093i \(0.419375\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 87413.5i 0.314744i
\(528\) 0 0
\(529\) −117551. −0.420065
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 106355.i − 0.374371i
\(534\) 0 0
\(535\) 276035. 0.964400
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 3279.30i − 0.0112877i
\(540\) 0 0
\(541\) −434083. −1.48313 −0.741563 0.670883i \(-0.765915\pi\)
−0.741563 + 0.670883i \(0.765915\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 30116.9i − 0.101395i
\(546\) 0 0
\(547\) −439181. −1.46781 −0.733904 0.679254i \(-0.762304\pi\)
−0.733904 + 0.679254i \(0.762304\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 518401.i − 1.70751i
\(552\) 0 0
\(553\) −410471. −1.34225
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 169278.i − 0.545621i −0.962068 0.272810i \(-0.912047\pi\)
0.962068 0.272810i \(-0.0879532\pi\)
\(558\) 0 0
\(559\) 641124. 2.05172
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 469385.i 1.48086i 0.672136 + 0.740428i \(0.265377\pi\)
−0.672136 + 0.740428i \(0.734623\pi\)
\(564\) 0 0
\(565\) −299536. −0.938323
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 320777.i − 0.990783i −0.868670 0.495391i \(-0.835025\pi\)
0.868670 0.495391i \(-0.164975\pi\)
\(570\) 0 0
\(571\) −588961. −1.80640 −0.903201 0.429217i \(-0.858789\pi\)
−0.903201 + 0.429217i \(0.858789\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 34846.8i 0.105397i
\(576\) 0 0
\(577\) 11156.6 0.0335106 0.0167553 0.999860i \(-0.494666\pi\)
0.0167553 + 0.999860i \(0.494666\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 90510.4i − 0.268131i
\(582\) 0 0
\(583\) 170417. 0.501391
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 495563.i − 1.43821i −0.694901 0.719106i \(-0.744552\pi\)
0.694901 0.719106i \(-0.255448\pi\)
\(588\) 0 0
\(589\) −152159. −0.438597
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 519925.i 1.47853i 0.673412 + 0.739267i \(0.264828\pi\)
−0.673412 + 0.739267i \(0.735172\pi\)
\(594\) 0 0
\(595\) 300447. 0.848660
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 562456.i 1.56760i 0.621013 + 0.783800i \(0.286721\pi\)
−0.621013 + 0.783800i \(0.713279\pi\)
\(600\) 0 0
\(601\) 507756. 1.40574 0.702872 0.711317i \(-0.251901\pi\)
0.702872 + 0.711317i \(0.251901\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 338621.i 0.925131i
\(606\) 0 0
\(607\) −277348. −0.752744 −0.376372 0.926469i \(-0.622829\pi\)
−0.376372 + 0.926469i \(0.622829\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 244809.i 0.655761i
\(612\) 0 0
\(613\) 107427. 0.285887 0.142943 0.989731i \(-0.454343\pi\)
0.142943 + 0.989731i \(0.454343\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 643658.i 1.69077i 0.534157 + 0.845386i \(0.320629\pi\)
−0.534157 + 0.845386i \(0.679371\pi\)
\(618\) 0 0
\(619\) 489273. 1.27694 0.638469 0.769648i \(-0.279568\pi\)
0.638469 + 0.769648i \(0.279568\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 294852.i − 0.759675i
\(624\) 0 0
\(625\) −422118. −1.08062
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 218012.i 0.551036i
\(630\) 0 0
\(631\) −216159. −0.542894 −0.271447 0.962453i \(-0.587502\pi\)
−0.271447 + 0.962453i \(0.587502\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 470703.i 1.16735i
\(636\) 0 0
\(637\) −20038.1 −0.0493831
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 535626.i − 1.30360i −0.758390 0.651802i \(-0.774013\pi\)
0.758390 0.651802i \(-0.225987\pi\)
\(642\) 0 0
\(643\) −439218. −1.06233 −0.531163 0.847270i \(-0.678245\pi\)
−0.531163 + 0.847270i \(0.678245\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 152707.i 0.364797i 0.983225 + 0.182398i \(0.0583860\pi\)
−0.983225 + 0.182398i \(0.941614\pi\)
\(648\) 0 0
\(649\) 137033. 0.325340
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 259997.i − 0.609736i −0.952395 0.304868i \(-0.901388\pi\)
0.952395 0.304868i \(-0.0986123\pi\)
\(654\) 0 0
\(655\) −447043. −1.04200
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 353537.i − 0.814074i −0.913412 0.407037i \(-0.866562\pi\)
0.913412 0.407037i \(-0.133438\pi\)
\(660\) 0 0
\(661\) 501941. 1.14881 0.574407 0.818570i \(-0.305233\pi\)
0.574407 + 0.818570i \(0.305233\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 522981.i 1.18261i
\(666\) 0 0
\(667\) −785092. −1.76469
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 176794.i 0.392665i
\(672\) 0 0
\(673\) −157532. −0.347808 −0.173904 0.984763i \(-0.555638\pi\)
−0.173904 + 0.984763i \(0.555638\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 153643.i − 0.335224i −0.985853 0.167612i \(-0.946394\pi\)
0.985853 0.167612i \(-0.0536056\pi\)
\(678\) 0 0
\(679\) 63171.3 0.137019
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 558703.i − 1.19768i −0.800870 0.598838i \(-0.795629\pi\)
0.800870 0.598838i \(-0.204371\pi\)
\(684\) 0 0
\(685\) 138446. 0.295052
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 1.04133e6i − 2.19357i
\(690\) 0 0
\(691\) 432660. 0.906129 0.453065 0.891478i \(-0.350331\pi\)
0.453065 + 0.891478i \(0.350331\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 333758.i − 0.690975i
\(696\) 0 0
\(697\) −102214. −0.210399
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 414368.i − 0.843239i −0.906773 0.421619i \(-0.861462\pi\)
0.906773 0.421619i \(-0.138538\pi\)
\(702\) 0 0
\(703\) −379489. −0.767871
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 555743.i 1.11182i
\(708\) 0 0
\(709\) −490238. −0.975246 −0.487623 0.873054i \(-0.662136\pi\)
−0.487623 + 0.873054i \(0.662136\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 230437.i 0.453286i
\(714\) 0 0
\(715\) −264263. −0.516921
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3533.72i 0.00683557i 0.999994 + 0.00341778i \(0.00108792\pi\)
−0.999994 + 0.00341778i \(0.998912\pi\)
\(720\) 0 0
\(721\) −462751. −0.890178
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 68843.6i 0.130975i
\(726\) 0 0
\(727\) −363437. −0.687639 −0.343819 0.939036i \(-0.611721\pi\)
−0.343819 + 0.939036i \(0.611721\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 616161.i − 1.15308i
\(732\) 0 0
\(733\) 380607. 0.708385 0.354192 0.935173i \(-0.384756\pi\)
0.354192 + 0.935173i \(0.384756\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 247964.i − 0.456513i
\(738\) 0 0
\(739\) 801943. 1.46843 0.734217 0.678915i \(-0.237549\pi\)
0.734217 + 0.678915i \(0.237549\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 399832.i 0.724269i 0.932126 + 0.362135i \(0.117952\pi\)
−0.932126 + 0.362135i \(0.882048\pi\)
\(744\) 0 0
\(745\) 80996.9 0.145934
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 509811.i − 0.908752i
\(750\) 0 0
\(751\) 983568. 1.74391 0.871956 0.489584i \(-0.162851\pi\)
0.871956 + 0.489584i \(0.162851\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 441191.i 0.773986i
\(756\) 0 0
\(757\) −348508. −0.608164 −0.304082 0.952646i \(-0.598350\pi\)
−0.304082 + 0.952646i \(0.598350\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 684017.i − 1.18113i −0.806990 0.590565i \(-0.798905\pi\)
0.806990 0.590565i \(-0.201095\pi\)
\(762\) 0 0
\(763\) −55623.0 −0.0955444
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 837340.i − 1.42335i
\(768\) 0 0
\(769\) 196926. 0.333004 0.166502 0.986041i \(-0.446753\pi\)
0.166502 + 0.986041i \(0.446753\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 875710.i − 1.46555i −0.680469 0.732776i \(-0.738224\pi\)
0.680469 0.732776i \(-0.261776\pi\)
\(774\) 0 0
\(775\) 20206.7 0.0336427
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 177921.i − 0.293192i
\(780\) 0 0
\(781\) −36621.1 −0.0600385
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 887621.i 1.44042i
\(786\) 0 0
\(787\) 1.00359e6 1.62035 0.810174 0.586189i \(-0.199372\pi\)
0.810174 + 0.586189i \(0.199372\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 553215.i 0.884180i
\(792\) 0 0
\(793\) 1.08030e6 1.71789
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.14346e6i 1.80013i 0.435755 + 0.900066i \(0.356482\pi\)
−0.435755 + 0.900066i \(0.643518\pi\)
\(798\) 0 0
\(799\) 235278. 0.368542
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 314832.i 0.488257i
\(804\) 0 0
\(805\) 792028. 1.22222
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 839438.i − 1.28260i −0.767290 0.641301i \(-0.778395\pi\)
0.767290 0.641301i \(-0.221605\pi\)
\(810\) 0 0
\(811\) −838658. −1.27510 −0.637549 0.770410i \(-0.720052\pi\)
−0.637549 + 0.770410i \(0.720052\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 762441.i − 1.14787i
\(816\) 0 0
\(817\) 1.07254e6 1.60682
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 671694.i 0.996518i 0.867028 + 0.498259i \(0.166027\pi\)
−0.867028 + 0.498259i \(0.833973\pi\)
\(822\) 0 0
\(823\) −440508. −0.650360 −0.325180 0.945652i \(-0.605425\pi\)
−0.325180 + 0.945652i \(0.605425\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.08223e6i 1.58237i 0.611580 + 0.791183i \(0.290534\pi\)
−0.611580 + 0.791183i \(0.709466\pi\)
\(828\) 0 0
\(829\) 600354. 0.873571 0.436786 0.899566i \(-0.356117\pi\)
0.436786 + 0.899566i \(0.356117\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 19257.9i 0.0277536i
\(834\) 0 0
\(835\) −104207. −0.149460
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 67217.9i 0.0954907i 0.998860 + 0.0477453i \(0.0152036\pi\)
−0.998860 + 0.0477453i \(0.984796\pi\)
\(840\) 0 0
\(841\) −843754. −1.19295
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 869842.i 1.21822i
\(846\) 0 0
\(847\) 625401. 0.871750
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 574717.i 0.793587i
\(852\) 0 0
\(853\) 785261. 1.07923 0.539617 0.841910i \(-0.318569\pi\)
0.539617 + 0.841910i \(0.318569\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 1.43820e6i − 1.95820i −0.203372 0.979102i \(-0.565190\pi\)
0.203372 0.979102i \(-0.434810\pi\)
\(858\) 0 0
\(859\) 1.06162e6 1.43874 0.719372 0.694625i \(-0.244430\pi\)
0.719372 + 0.694625i \(0.244430\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 1.12954e6i − 1.51663i −0.651889 0.758314i \(-0.726023\pi\)
0.651889 0.758314i \(-0.273977\pi\)
\(864\) 0 0
\(865\) 1.47968e6 1.97759
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 346979.i − 0.459477i
\(870\) 0 0
\(871\) −1.51518e6 −1.99723
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 715804.i 0.934927i
\(876\) 0 0
\(877\) 973912. 1.26625 0.633126 0.774048i \(-0.281771\pi\)
0.633126 + 0.774048i \(0.281771\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 246060.i 0.317022i 0.987357 + 0.158511i \(0.0506694\pi\)
−0.987357 + 0.158511i \(0.949331\pi\)
\(882\) 0 0
\(883\) 455874. 0.584687 0.292344 0.956313i \(-0.405565\pi\)
0.292344 + 0.956313i \(0.405565\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 883124.i − 1.12247i −0.827657 0.561234i \(-0.810327\pi\)
0.827657 0.561234i \(-0.189673\pi\)
\(888\) 0 0
\(889\) 869344. 1.09999
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 409542.i 0.513565i
\(894\) 0 0
\(895\) 248684. 0.310458
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 455252.i 0.563291i
\(900\) 0 0
\(901\) −1.00079e6 −1.23280
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.68262e6i 2.05441i
\(906\) 0 0
\(907\) 400867. 0.487288 0.243644 0.969865i \(-0.421657\pi\)
0.243644 + 0.969865i \(0.421657\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 1.46297e6i − 1.76278i −0.472385 0.881392i \(-0.656607\pi\)
0.472385 0.881392i \(-0.343393\pi\)
\(912\) 0 0
\(913\) 76510.3 0.0917864
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 825645.i 0.981872i
\(918\) 0 0
\(919\) −1.16531e6 −1.37978 −0.689889 0.723915i \(-0.742341\pi\)
−0.689889 + 0.723915i \(0.742341\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 223773.i 0.262666i
\(924\) 0 0
\(925\) 50396.1 0.0588997
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 986016.i 1.14249i 0.820780 + 0.571245i \(0.193539\pi\)
−0.820780 + 0.571245i \(0.806461\pi\)
\(930\) 0 0
\(931\) −33521.8 −0.0386748
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 253974.i 0.290513i
\(936\) 0 0
\(937\) 1.46816e6 1.67223 0.836114 0.548555i \(-0.184822\pi\)
0.836114 + 0.548555i \(0.184822\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 229399.i − 0.259067i −0.991575 0.129534i \(-0.958652\pi\)
0.991575 0.129534i \(-0.0413480\pi\)
\(942\) 0 0
\(943\) −269453. −0.303012
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 403740.i 0.450196i 0.974336 + 0.225098i \(0.0722703\pi\)
−0.974336 + 0.225098i \(0.927730\pi\)
\(948\) 0 0
\(949\) 1.92378e6 2.13610
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 807857.i − 0.889506i −0.895653 0.444753i \(-0.853291\pi\)
0.895653 0.444753i \(-0.146709\pi\)
\(954\) 0 0
\(955\) −389877. −0.427485
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 255696.i − 0.278027i
\(960\) 0 0
\(961\) −789897. −0.855311
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 422485.i 0.453688i
\(966\) 0 0
\(967\) 778378. 0.832410 0.416205 0.909271i \(-0.363360\pi\)
0.416205 + 0.909271i \(0.363360\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 943638.i 1.00085i 0.865781 + 0.500423i \(0.166822\pi\)
−0.865781 + 0.500423i \(0.833178\pi\)
\(972\) 0 0
\(973\) −616420. −0.651105
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 573080.i 0.600380i 0.953879 + 0.300190i \(0.0970501\pi\)
−0.953879 + 0.300190i \(0.902950\pi\)
\(978\) 0 0
\(979\) 249244. 0.260052
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.43403e6i 1.48406i 0.670366 + 0.742030i \(0.266137\pi\)
−0.670366 + 0.742030i \(0.733863\pi\)
\(984\) 0 0
\(985\) −1.72385e6 −1.77675
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 1.62430e6i − 1.66064i
\(990\) 0 0
\(991\) −309420. −0.315066 −0.157533 0.987514i \(-0.550354\pi\)
−0.157533 + 0.987514i \(0.550354\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 898282.i 0.907333i
\(996\) 0 0
\(997\) 824998. 0.829970 0.414985 0.909828i \(-0.363787\pi\)
0.414985 + 0.909828i \(0.363787\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.5.e.g.161.14 yes 16
3.2 odd 2 inner 864.5.e.g.161.4 yes 16
4.3 odd 2 inner 864.5.e.g.161.13 yes 16
12.11 even 2 inner 864.5.e.g.161.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
864.5.e.g.161.3 16 12.11 even 2 inner
864.5.e.g.161.4 yes 16 3.2 odd 2 inner
864.5.e.g.161.13 yes 16 4.3 odd 2 inner
864.5.e.g.161.14 yes 16 1.1 even 1 trivial