Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [864,2,Mod(97,864)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(864, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 0, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("864.97");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 864 = 2^{5} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 864.y (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.89907473464\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
97.1 | 0 | −1.71652 | + | 0.231448i | 0 | −3.16823 | − | 1.15314i | 0 | 0.327751 | − | 1.85877i | 0 | 2.89286 | − | 0.794570i | 0 | ||||||||||
97.2 | 0 | −1.65691 | + | 0.504627i | 0 | 1.76220 | + | 0.641388i | 0 | −0.498467 | + | 2.82694i | 0 | 2.49070 | − | 1.67224i | 0 | ||||||||||
97.3 | 0 | −1.01321 | − | 1.40478i | 0 | −1.03120 | − | 0.375327i | 0 | −0.257635 | + | 1.46112i | 0 | −0.946819 | + | 2.84667i | 0 | ||||||||||
97.4 | 0 | −0.790581 | − | 1.54110i | 0 | 3.49481 | + | 1.27201i | 0 | 0.718530 | − | 4.07499i | 0 | −1.74996 | + | 2.43673i | 0 | ||||||||||
97.5 | 0 | −0.523054 | + | 1.65119i | 0 | −0.117882 | − | 0.0429055i | 0 | 0.455772 | − | 2.58481i | 0 | −2.45283 | − | 1.72732i | 0 | ||||||||||
97.6 | 0 | 0.523054 | − | 1.65119i | 0 | −0.117882 | − | 0.0429055i | 0 | −0.455772 | + | 2.58481i | 0 | −2.45283 | − | 1.72732i | 0 | ||||||||||
97.7 | 0 | 0.790581 | + | 1.54110i | 0 | 3.49481 | + | 1.27201i | 0 | −0.718530 | + | 4.07499i | 0 | −1.74996 | + | 2.43673i | 0 | ||||||||||
97.8 | 0 | 1.01321 | + | 1.40478i | 0 | −1.03120 | − | 0.375327i | 0 | 0.257635 | − | 1.46112i | 0 | −0.946819 | + | 2.84667i | 0 | ||||||||||
97.9 | 0 | 1.65691 | − | 0.504627i | 0 | 1.76220 | + | 0.641388i | 0 | 0.498467 | − | 2.82694i | 0 | 2.49070 | − | 1.67224i | 0 | ||||||||||
97.10 | 0 | 1.71652 | − | 0.231448i | 0 | −3.16823 | − | 1.15314i | 0 | −0.327751 | + | 1.85877i | 0 | 2.89286 | − | 0.794570i | 0 | ||||||||||
193.1 | 0 | −1.72168 | − | 0.189239i | 0 | 0.679279 | − | 3.85238i | 0 | −2.91962 | + | 2.44985i | 0 | 2.92838 | + | 0.651618i | 0 | ||||||||||
193.2 | 0 | −1.68152 | + | 0.415309i | 0 | −0.564773 | + | 3.20298i | 0 | −2.06064 | + | 1.72908i | 0 | 2.65504 | − | 1.39670i | 0 | ||||||||||
193.3 | 0 | −1.28924 | + | 1.15666i | 0 | −0.110022 | + | 0.623966i | 0 | 3.44796 | − | 2.89318i | 0 | 0.324271 | − | 2.98242i | 0 | ||||||||||
193.4 | 0 | −0.998006 | − | 1.41562i | 0 | −0.476400 | + | 2.70180i | 0 | 0.930891 | − | 0.781110i | 0 | −1.00797 | + | 2.82560i | 0 | ||||||||||
193.5 | 0 | −0.141380 | + | 1.72627i | 0 | 0.298268 | − | 1.69156i | 0 | −0.0848018 | + | 0.0711572i | 0 | −2.96002 | − | 0.488119i | 0 | ||||||||||
193.6 | 0 | 0.141380 | − | 1.72627i | 0 | 0.298268 | − | 1.69156i | 0 | 0.0848018 | − | 0.0711572i | 0 | −2.96002 | − | 0.488119i | 0 | ||||||||||
193.7 | 0 | 0.998006 | + | 1.41562i | 0 | −0.476400 | + | 2.70180i | 0 | −0.930891 | + | 0.781110i | 0 | −1.00797 | + | 2.82560i | 0 | ||||||||||
193.8 | 0 | 1.28924 | − | 1.15666i | 0 | −0.110022 | + | 0.623966i | 0 | −3.44796 | + | 2.89318i | 0 | 0.324271 | − | 2.98242i | 0 | ||||||||||
193.9 | 0 | 1.68152 | − | 0.415309i | 0 | −0.564773 | + | 3.20298i | 0 | 2.06064 | − | 1.72908i | 0 | 2.65504 | − | 1.39670i | 0 | ||||||||||
193.10 | 0 | 1.72168 | + | 0.189239i | 0 | 0.679279 | − | 3.85238i | 0 | 2.91962 | − | 2.44985i | 0 | 2.92838 | + | 0.651618i | 0 | ||||||||||
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
27.e | even | 9 | 1 | inner |
108.j | odd | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 864.2.y.d | ✓ | 60 |
4.b | odd | 2 | 1 | inner | 864.2.y.d | ✓ | 60 |
27.e | even | 9 | 1 | inner | 864.2.y.d | ✓ | 60 |
108.j | odd | 18 | 1 | inner | 864.2.y.d | ✓ | 60 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
864.2.y.d | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
864.2.y.d | ✓ | 60 | 4.b | odd | 2 | 1 | inner |
864.2.y.d | ✓ | 60 | 27.e | even | 9 | 1 | inner |
864.2.y.d | ✓ | 60 | 108.j | odd | 18 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(864, [\chi])\):
\( T_{5}^{30} + 6 T_{5}^{28} - 19 T_{5}^{27} + 63 T_{5}^{26} - 675 T_{5}^{25} + 3456 T_{5}^{24} + 270 T_{5}^{23} + 12006 T_{5}^{22} + 32910 T_{5}^{21} - 110277 T_{5}^{20} - 36891 T_{5}^{19} + 5454057 T_{5}^{18} - 5670288 T_{5}^{17} + \cdots + 341056 \)
|
\( T_{7}^{60} - 21 T_{7}^{58} + 405 T_{7}^{56} + 4647 T_{7}^{54} - 122247 T_{7}^{52} + 3429648 T_{7}^{50} + 36003726 T_{7}^{48} - 665047908 T_{7}^{46} + 14409106767 T_{7}^{44} + \cdots + 10\!\cdots\!44 \)
|