Properties

Label 864.2.bn.a.35.4
Level $864$
Weight $2$
Character 864.35
Analytic conductor $6.899$
Analytic rank $0$
Dimension $368$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(35,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(24)) chi = DirichletCharacter(H, H._module([12, 9, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bn (of order \(24\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(368\)
Relative dimension: \(46\) over \(\Q(\zeta_{24})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

Embedding invariants

Embedding label 35.4
Character \(\chi\) \(=\) 864.35
Dual form 864.2.bn.a.395.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34272 + 0.443967i) q^{2} +(1.60579 - 1.19224i) q^{4} +(3.31478 + 2.54352i) q^{5} +(-0.681945 + 0.182727i) q^{7} +(-1.62680 + 2.31376i) q^{8} +(-5.58006 - 1.94358i) q^{10} +(0.665115 - 5.05205i) q^{11} +(4.20726 - 0.553897i) q^{13} +(0.834536 - 0.548111i) q^{14} +(1.15711 - 3.82898i) q^{16} +3.27263 q^{17} +(1.06932 + 0.442925i) q^{19} +(8.35533 + 0.132325i) q^{20} +(1.34988 + 7.07877i) q^{22} +(1.52244 - 5.68183i) q^{23} +(3.22418 + 12.0328i) q^{25} +(-5.40326 + 2.61161i) q^{26} +(-0.877204 + 1.10647i) q^{28} +(-2.15735 - 2.81151i) q^{29} +(-2.35537 + 1.35987i) q^{31} +(0.146271 + 5.65496i) q^{32} +(-4.39422 + 1.45294i) q^{34} +(-2.72527 - 1.12884i) q^{35} +(-3.40926 - 8.23069i) q^{37} +(-1.63244 - 0.119984i) q^{38} +(-11.2776 + 3.53181i) q^{40} +(5.03584 + 1.34935i) q^{41} +(2.10768 + 0.277481i) q^{43} +(-4.95524 - 8.90550i) q^{44} +(0.478331 + 8.30501i) q^{46} +(0.497855 + 0.287437i) q^{47} +(-5.63052 + 3.25078i) q^{49} +(-9.67133 - 14.7253i) q^{50} +(6.09559 - 5.90553i) q^{52} +(1.89053 + 4.56414i) q^{53} +(15.0547 - 15.0547i) q^{55} +(0.686605 - 1.87512i) q^{56} +(4.14493 + 2.81728i) q^{58} +(-7.22375 + 9.41417i) q^{59} +(-4.29798 + 3.29796i) q^{61} +(2.55886 - 2.87163i) q^{62} +(-2.70702 - 7.52809i) q^{64} +(15.3550 + 8.86522i) q^{65} +(3.81142 - 0.501783i) q^{67} +(5.25514 - 3.90177i) q^{68} +(4.16044 + 0.305791i) q^{70} +(-0.140021 + 0.140021i) q^{71} +(0.0572828 + 0.0572828i) q^{73} +(8.23183 + 9.53790i) q^{74} +(2.24517 - 0.563643i) q^{76} +(0.469572 + 3.56676i) q^{77} +(-4.30540 + 7.45718i) q^{79} +(13.5747 - 9.74912i) q^{80} +(-7.36078 + 0.423947i) q^{82} +(5.51068 + 7.18166i) q^{83} +(10.8480 + 8.32400i) q^{85} +(-2.95321 + 0.563160i) q^{86} +(10.6072 + 9.75762i) q^{88} +(2.41213 + 2.41213i) q^{89} +(-2.76791 + 1.14651i) q^{91} +(-4.32941 - 10.9389i) q^{92} +(-0.796092 - 0.164916i) q^{94} +(2.41796 + 4.18803i) q^{95} +(1.15407 - 1.99891i) q^{97} +(6.11696 - 6.86465i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 368 q + 12 q^{2} - 4 q^{4} + 12 q^{5} - 4 q^{7} - 16 q^{10} + 12 q^{11} - 4 q^{13} + 12 q^{14} - 4 q^{16} - 16 q^{19} + 12 q^{20} - 4 q^{22} + 12 q^{23} - 4 q^{25} - 16 q^{28} + 12 q^{29} + 12 q^{32} - 12 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34272 + 0.443967i −0.949446 + 0.313932i
\(3\) 0 0
\(4\) 1.60579 1.19224i 0.802894 0.596122i
\(5\) 3.31478 + 2.54352i 1.48242 + 1.13750i 0.958268 + 0.285870i \(0.0922825\pi\)
0.524147 + 0.851628i \(0.324384\pi\)
\(6\) 0 0
\(7\) −0.681945 + 0.182727i −0.257751 + 0.0690642i −0.385381 0.922758i \(-0.625930\pi\)
0.127629 + 0.991822i \(0.459263\pi\)
\(8\) −1.62680 + 2.31376i −0.575162 + 0.818039i
\(9\) 0 0
\(10\) −5.58006 1.94358i −1.76457 0.614615i
\(11\) 0.665115 5.05205i 0.200540 1.52325i −0.534466 0.845190i \(-0.679487\pi\)
0.735006 0.678061i \(-0.237179\pi\)
\(12\) 0 0
\(13\) 4.20726 0.553897i 1.16689 0.153623i 0.477910 0.878409i \(-0.341394\pi\)
0.688975 + 0.724785i \(0.258061\pi\)
\(14\) 0.834536 0.548111i 0.223039 0.146489i
\(15\) 0 0
\(16\) 1.15711 3.82898i 0.289277 0.957246i
\(17\) 3.27263 0.793729 0.396864 0.917877i \(-0.370098\pi\)
0.396864 + 0.917877i \(0.370098\pi\)
\(18\) 0 0
\(19\) 1.06932 + 0.442925i 0.245318 + 0.101614i 0.501955 0.864894i \(-0.332614\pi\)
−0.256637 + 0.966508i \(0.582614\pi\)
\(20\) 8.35533 + 0.132325i 1.86831 + 0.0295887i
\(21\) 0 0
\(22\) 1.34988 + 7.07877i 0.287795 + 1.50920i
\(23\) 1.52244 5.68183i 0.317451 1.18474i −0.604235 0.796806i \(-0.706521\pi\)
0.921686 0.387937i \(-0.126812\pi\)
\(24\) 0 0
\(25\) 3.22418 + 12.0328i 0.644836 + 2.40656i
\(26\) −5.40326 + 2.61161i −1.05967 + 0.512179i
\(27\) 0 0
\(28\) −0.877204 + 1.10647i −0.165776 + 0.209102i
\(29\) −2.15735 2.81151i −0.400609 0.522084i 0.548872 0.835906i \(-0.315057\pi\)
−0.949482 + 0.313822i \(0.898391\pi\)
\(30\) 0 0
\(31\) −2.35537 + 1.35987i −0.423036 + 0.244240i −0.696376 0.717678i \(-0.745205\pi\)
0.273339 + 0.961918i \(0.411872\pi\)
\(32\) 0.146271 + 5.65496i 0.0258573 + 0.999666i
\(33\) 0 0
\(34\) −4.39422 + 1.45294i −0.753602 + 0.249177i
\(35\) −2.72527 1.12884i −0.460655 0.190809i
\(36\) 0 0
\(37\) −3.40926 8.23069i −0.560480 1.35312i −0.909383 0.415959i \(-0.863446\pi\)
0.348904 0.937158i \(-0.386554\pi\)
\(38\) −1.63244 0.119984i −0.264816 0.0194639i
\(39\) 0 0
\(40\) −11.2776 + 3.53181i −1.78315 + 0.558429i
\(41\) 5.03584 + 1.34935i 0.786465 + 0.210733i 0.629633 0.776893i \(-0.283205\pi\)
0.156832 + 0.987625i \(0.449872\pi\)
\(42\) 0 0
\(43\) 2.10768 + 0.277481i 0.321418 + 0.0423155i 0.289509 0.957175i \(-0.406508\pi\)
0.0319091 + 0.999491i \(0.489841\pi\)
\(44\) −4.95524 8.90550i −0.747031 1.34255i
\(45\) 0 0
\(46\) 0.478331 + 8.30501i 0.0705261 + 1.22451i
\(47\) 0.497855 + 0.287437i 0.0726197 + 0.0419270i 0.535870 0.844300i \(-0.319984\pi\)
−0.463251 + 0.886227i \(0.653317\pi\)
\(48\) 0 0
\(49\) −5.63052 + 3.25078i −0.804360 + 0.464397i
\(50\) −9.67133 14.7253i −1.36773 2.08247i
\(51\) 0 0
\(52\) 6.09559 5.90553i 0.845307 0.818949i
\(53\) 1.89053 + 4.56414i 0.259684 + 0.626933i 0.998918 0.0465164i \(-0.0148120\pi\)
−0.739233 + 0.673449i \(0.764812\pi\)
\(54\) 0 0
\(55\) 15.0547 15.0547i 2.02998 2.02998i
\(56\) 0.686605 1.87512i 0.0917514 0.250574i
\(57\) 0 0
\(58\) 4.14493 + 2.81728i 0.544256 + 0.369927i
\(59\) −7.22375 + 9.41417i −0.940452 + 1.22562i 0.0336326 + 0.999434i \(0.489292\pi\)
−0.974084 + 0.226186i \(0.927374\pi\)
\(60\) 0 0
\(61\) −4.29798 + 3.29796i −0.550300 + 0.422260i −0.846127 0.532982i \(-0.821072\pi\)
0.295827 + 0.955242i \(0.404405\pi\)
\(62\) 2.55886 2.87163i 0.324975 0.364697i
\(63\) 0 0
\(64\) −2.70702 7.52809i −0.338377 0.941011i
\(65\) 15.3550 + 8.86522i 1.90456 + 1.09960i
\(66\) 0 0
\(67\) 3.81142 0.501783i 0.465639 0.0613025i 0.105943 0.994372i \(-0.466214\pi\)
0.359696 + 0.933070i \(0.382881\pi\)
\(68\) 5.25514 3.90177i 0.637280 0.473159i
\(69\) 0 0
\(70\) 4.16044 + 0.305791i 0.497268 + 0.0365490i
\(71\) −0.140021 + 0.140021i −0.0166175 + 0.0166175i −0.715367 0.698749i \(-0.753740\pi\)
0.698749 + 0.715367i \(0.253740\pi\)
\(72\) 0 0
\(73\) 0.0572828 + 0.0572828i 0.00670445 + 0.00670445i 0.710451 0.703747i \(-0.248491\pi\)
−0.703747 + 0.710451i \(0.748491\pi\)
\(74\) 8.23183 + 9.53790i 0.956931 + 1.10876i
\(75\) 0 0
\(76\) 2.24517 0.563643i 0.257539 0.0646542i
\(77\) 0.469572 + 3.56676i 0.0535127 + 0.406470i
\(78\) 0 0
\(79\) −4.30540 + 7.45718i −0.484396 + 0.838998i −0.999839 0.0179254i \(-0.994294\pi\)
0.515444 + 0.856924i \(0.327627\pi\)
\(80\) 13.5747 9.74912i 1.51769 1.08998i
\(81\) 0 0
\(82\) −7.36078 + 0.423947i −0.812862 + 0.0468172i
\(83\) 5.51068 + 7.18166i 0.604876 + 0.788290i 0.990958 0.134175i \(-0.0428384\pi\)
−0.386082 + 0.922465i \(0.626172\pi\)
\(84\) 0 0
\(85\) 10.8480 + 8.32400i 1.17664 + 0.902864i
\(86\) −2.95321 + 0.563160i −0.318453 + 0.0607271i
\(87\) 0 0
\(88\) 10.6072 + 9.75762i 1.13074 + 1.04017i
\(89\) 2.41213 + 2.41213i 0.255686 + 0.255686i 0.823297 0.567611i \(-0.192132\pi\)
−0.567611 + 0.823297i \(0.692132\pi\)
\(90\) 0 0
\(91\) −2.76791 + 1.14651i −0.290156 + 0.120187i
\(92\) −4.32941 10.9389i −0.451372 1.14046i
\(93\) 0 0
\(94\) −0.796092 0.164916i −0.0821106 0.0170098i
\(95\) 2.41796 + 4.18803i 0.248078 + 0.429683i
\(96\) 0 0
\(97\) 1.15407 1.99891i 0.117178 0.202958i −0.801470 0.598035i \(-0.795949\pi\)
0.918648 + 0.395076i \(0.129282\pi\)
\(98\) 6.11696 6.86465i 0.617907 0.693434i
\(99\) 0 0
\(100\) 19.5234 + 15.4781i 1.95234 + 1.54781i
\(101\) 1.43922 10.9319i 0.143208 1.08777i −0.757343 0.653017i \(-0.773503\pi\)
0.900550 0.434752i \(-0.143164\pi\)
\(102\) 0 0
\(103\) 1.09443 4.08448i 0.107838 0.402456i −0.890814 0.454368i \(-0.849865\pi\)
0.998652 + 0.0519123i \(0.0165316\pi\)
\(104\) −5.56281 + 10.6357i −0.545478 + 1.04292i
\(105\) 0 0
\(106\) −4.56477 5.28903i −0.443370 0.513716i
\(107\) 0.436533 0.180818i 0.0422012 0.0174803i −0.361483 0.932379i \(-0.617729\pi\)
0.403684 + 0.914898i \(0.367729\pi\)
\(108\) 0 0
\(109\) −1.95414 + 4.71771i −0.187173 + 0.451874i −0.989413 0.145126i \(-0.953641\pi\)
0.802241 + 0.597001i \(0.203641\pi\)
\(110\) −13.5305 + 26.8980i −1.29008 + 2.56463i
\(111\) 0 0
\(112\) −0.0894261 + 2.82259i −0.00844998 + 0.266710i
\(113\) 4.63361 + 8.02564i 0.435893 + 0.754989i 0.997368 0.0725046i \(-0.0230992\pi\)
−0.561475 + 0.827494i \(0.689766\pi\)
\(114\) 0 0
\(115\) 19.4984 14.9617i 1.81824 1.39518i
\(116\) −6.81625 1.94260i −0.632873 0.180366i
\(117\) 0 0
\(118\) 5.51988 15.8477i 0.508146 1.45890i
\(119\) −2.23175 + 0.597996i −0.204584 + 0.0548182i
\(120\) 0 0
\(121\) −14.4556 3.87338i −1.31415 0.352125i
\(122\) 4.30680 6.33639i 0.389919 0.573670i
\(123\) 0 0
\(124\) −2.16092 + 4.99184i −0.194056 + 0.448280i
\(125\) −11.9236 + 28.7862i −1.06648 + 2.57472i
\(126\) 0 0
\(127\) 15.5152i 1.37675i 0.725355 + 0.688375i \(0.241676\pi\)
−0.725355 + 0.688375i \(0.758324\pi\)
\(128\) 6.97698 + 8.90628i 0.616684 + 0.787211i
\(129\) 0 0
\(130\) −24.5533 5.08639i −2.15347 0.446106i
\(131\) 0.620380 + 4.71225i 0.0542028 + 0.411711i 0.996940 + 0.0781740i \(0.0249090\pi\)
−0.942737 + 0.333537i \(0.891758\pi\)
\(132\) 0 0
\(133\) −0.810150 0.106658i −0.0702489 0.00924844i
\(134\) −4.89489 + 2.36589i −0.422854 + 0.204382i
\(135\) 0 0
\(136\) −5.32392 + 7.57209i −0.456523 + 0.649301i
\(137\) −5.82142 21.7258i −0.497357 1.85616i −0.516405 0.856344i \(-0.672730\pi\)
0.0190478 0.999819i \(-0.493937\pi\)
\(138\) 0 0
\(139\) 7.45496 9.71549i 0.632321 0.824057i −0.361808 0.932252i \(-0.617841\pi\)
0.994130 + 0.108195i \(0.0345072\pi\)
\(140\) −5.72206 + 1.43650i −0.483602 + 0.121407i
\(141\) 0 0
\(142\) 0.125844 0.250174i 0.0105606 0.0209941i
\(143\) 21.6237i 1.80827i
\(144\) 0 0
\(145\) 14.8068i 1.22964i
\(146\) −0.102346 0.0514831i −0.00847025 0.00426077i
\(147\) 0 0
\(148\) −15.2875 9.15206i −1.25663 0.752295i
\(149\) −9.40409 + 12.2556i −0.770413 + 1.00402i 0.229118 + 0.973399i \(0.426416\pi\)
−0.999531 + 0.0306231i \(0.990251\pi\)
\(150\) 0 0
\(151\) −2.35190 8.77740i −0.191395 0.714295i −0.993171 0.116670i \(-0.962778\pi\)
0.801776 0.597625i \(-0.203889\pi\)
\(152\) −2.76439 + 1.75359i −0.224222 + 0.142235i
\(153\) 0 0
\(154\) −2.21402 4.58068i −0.178411 0.369121i
\(155\) −11.2664 1.48325i −0.904939 0.119137i
\(156\) 0 0
\(157\) −0.490917 3.72889i −0.0391795 0.297598i −0.999805 0.0197511i \(-0.993713\pi\)
0.960625 0.277847i \(-0.0896207\pi\)
\(158\) 2.47021 11.9243i 0.196519 0.948650i
\(159\) 0 0
\(160\) −13.8987 + 19.1170i −1.09879 + 1.51133i
\(161\) 4.15289i 0.327293i
\(162\) 0 0
\(163\) −0.486214 + 1.17383i −0.0380832 + 0.0919411i −0.941777 0.336239i \(-0.890845\pi\)
0.903693 + 0.428180i \(0.140845\pi\)
\(164\) 9.69523 3.83718i 0.757071 0.299633i
\(165\) 0 0
\(166\) −10.5877 7.19639i −0.821766 0.558548i
\(167\) −1.89723 0.508362i −0.146812 0.0393383i 0.184664 0.982802i \(-0.440880\pi\)
−0.331477 + 0.943463i \(0.607547\pi\)
\(168\) 0 0
\(169\) 4.83724 1.29613i 0.372095 0.0997026i
\(170\) −18.2614 6.36062i −1.40059 0.487837i
\(171\) 0 0
\(172\) 3.71531 2.06729i 0.283290 0.157630i
\(173\) −5.75436 + 4.41547i −0.437496 + 0.335702i −0.803911 0.594749i \(-0.797251\pi\)
0.366416 + 0.930451i \(0.380585\pi\)
\(174\) 0 0
\(175\) −4.39743 7.61657i −0.332415 0.575759i
\(176\) −18.5746 8.39247i −1.40011 0.632606i
\(177\) 0 0
\(178\) −4.30973 2.16791i −0.323028 0.162492i
\(179\) −0.274410 + 0.662483i −0.0205103 + 0.0495163i −0.933803 0.357788i \(-0.883531\pi\)
0.913293 + 0.407304i \(0.133531\pi\)
\(180\) 0 0
\(181\) 3.53686 1.46501i 0.262892 0.108894i −0.247344 0.968928i \(-0.579558\pi\)
0.510237 + 0.860034i \(0.329558\pi\)
\(182\) 3.20752 2.76830i 0.237757 0.205200i
\(183\) 0 0
\(184\) 10.6697 + 12.7658i 0.786581 + 0.941107i
\(185\) 9.63397 35.9545i 0.708304 2.64343i
\(186\) 0 0
\(187\) 2.17667 16.5335i 0.159174 1.20905i
\(188\) 1.14214 0.132003i 0.0832995 0.00962728i
\(189\) 0 0
\(190\) −5.10599 4.54985i −0.370427 0.330081i
\(191\) −1.37402 + 2.37986i −0.0994203 + 0.172201i −0.911445 0.411422i \(-0.865032\pi\)
0.812025 + 0.583623i \(0.198365\pi\)
\(192\) 0 0
\(193\) −6.77073 11.7272i −0.487368 0.844145i 0.512527 0.858671i \(-0.328709\pi\)
−0.999894 + 0.0145258i \(0.995376\pi\)
\(194\) −0.662143 + 3.19634i −0.0475391 + 0.229484i
\(195\) 0 0
\(196\) −5.16569 + 11.9330i −0.368978 + 0.852358i
\(197\) 14.1506 5.86137i 1.00819 0.417605i 0.183395 0.983039i \(-0.441291\pi\)
0.824794 + 0.565434i \(0.191291\pi\)
\(198\) 0 0
\(199\) −3.90190 3.90190i −0.276598 0.276598i 0.555151 0.831749i \(-0.312660\pi\)
−0.831749 + 0.555151i \(0.812660\pi\)
\(200\) −33.0862 12.1150i −2.33955 0.856662i
\(201\) 0 0
\(202\) 2.92095 + 15.3175i 0.205518 + 1.07773i
\(203\) 1.98493 + 1.52309i 0.139315 + 0.106900i
\(204\) 0 0
\(205\) 13.2606 + 17.2816i 0.926161 + 1.20700i
\(206\) 0.343857 + 5.97021i 0.0239576 + 0.415964i
\(207\) 0 0
\(208\) 2.74739 16.7505i 0.190497 1.16144i
\(209\) 2.94890 5.10764i 0.203980 0.353303i
\(210\) 0 0
\(211\) 1.75092 + 13.2996i 0.120539 + 0.915582i 0.939696 + 0.342012i \(0.111108\pi\)
−0.819157 + 0.573569i \(0.805558\pi\)
\(212\) 8.47736 + 5.07507i 0.582227 + 0.348557i
\(213\) 0 0
\(214\) −0.505864 + 0.436594i −0.0345802 + 0.0298449i
\(215\) 6.28072 + 6.28072i 0.428341 + 0.428341i
\(216\) 0 0
\(217\) 1.35775 1.35775i 0.0921699 0.0921699i
\(218\) 0.529354 7.20213i 0.0358524 0.487790i
\(219\) 0 0
\(220\) 6.22577 42.1236i 0.419741 2.83997i
\(221\) 13.7688 1.81270i 0.926190 0.121935i
\(222\) 0 0
\(223\) −16.8744 9.74243i −1.12999 0.652402i −0.186060 0.982538i \(-0.559572\pi\)
−0.943933 + 0.330137i \(0.892905\pi\)
\(224\) −1.13306 3.82965i −0.0757059 0.255879i
\(225\) 0 0
\(226\) −9.78475 8.71902i −0.650872 0.579980i
\(227\) −15.4649 + 11.8666i −1.02644 + 0.787616i −0.977447 0.211183i \(-0.932269\pi\)
−0.0489951 + 0.998799i \(0.515602\pi\)
\(228\) 0 0
\(229\) −7.80039 + 10.1657i −0.515464 + 0.671766i −0.976476 0.215628i \(-0.930820\pi\)
0.461011 + 0.887394i \(0.347487\pi\)
\(230\) −19.5384 + 28.7459i −1.28832 + 1.89545i
\(231\) 0 0
\(232\) 10.0148 0.417818i 0.657501 0.0274311i
\(233\) −9.69820 + 9.69820i −0.635350 + 0.635350i −0.949405 0.314055i \(-0.898313\pi\)
0.314055 + 0.949405i \(0.398313\pi\)
\(234\) 0 0
\(235\) 0.919180 + 2.21910i 0.0599607 + 0.144758i
\(236\) −0.375810 + 23.7296i −0.0244632 + 1.54467i
\(237\) 0 0
\(238\) 2.73113 1.79376i 0.177033 0.116272i
\(239\) −18.6229 + 10.7520i −1.20462 + 0.695486i −0.961578 0.274530i \(-0.911478\pi\)
−0.243039 + 0.970017i \(0.578144\pi\)
\(240\) 0 0
\(241\) 18.8890 + 10.9056i 1.21675 + 0.702491i 0.964221 0.265099i \(-0.0854046\pi\)
0.252528 + 0.967589i \(0.418738\pi\)
\(242\) 21.1295 1.21696i 1.35826 0.0782295i
\(243\) 0 0
\(244\) −2.96967 + 10.4201i −0.190114 + 0.667076i
\(245\) −26.9324 3.54571i −1.72065 0.226527i
\(246\) 0 0
\(247\) 4.74423 + 1.27121i 0.301868 + 0.0808854i
\(248\) 0.685298 7.66201i 0.0435165 0.486538i
\(249\) 0 0
\(250\) 3.22998 43.9455i 0.204282 2.77935i
\(251\) −7.58144 18.3032i −0.478536 1.15529i −0.960295 0.278985i \(-0.910002\pi\)
0.481759 0.876304i \(-0.339998\pi\)
\(252\) 0 0
\(253\) −27.6923 11.4705i −1.74100 0.721145i
\(254\) −6.88822 20.8325i −0.432206 1.30715i
\(255\) 0 0
\(256\) −13.3222 8.86108i −0.832638 0.553818i
\(257\) −19.7920 + 11.4269i −1.23459 + 0.712790i −0.967983 0.251016i \(-0.919235\pi\)
−0.266605 + 0.963806i \(0.585902\pi\)
\(258\) 0 0
\(259\) 3.82890 + 4.98992i 0.237916 + 0.310058i
\(260\) 35.2264 4.07127i 2.18465 0.252489i
\(261\) 0 0
\(262\) −2.92508 6.05180i −0.180712 0.373882i
\(263\) −7.95273 29.6800i −0.490386 1.83015i −0.554472 0.832202i \(-0.687080\pi\)
0.0640860 0.997944i \(-0.479587\pi\)
\(264\) 0 0
\(265\) −5.34230 + 19.9377i −0.328175 + 1.22477i
\(266\) 1.13516 0.216467i 0.0696009 0.0132725i
\(267\) 0 0
\(268\) 5.52208 5.34990i 0.337315 0.326797i
\(269\) −1.00756 0.417343i −0.0614317 0.0254459i 0.351756 0.936092i \(-0.385585\pi\)
−0.413188 + 0.910646i \(0.635585\pi\)
\(270\) 0 0
\(271\) −21.0778 −1.28038 −0.640191 0.768216i \(-0.721145\pi\)
−0.640191 + 0.768216i \(0.721145\pi\)
\(272\) 3.78678 12.5308i 0.229607 0.759793i
\(273\) 0 0
\(274\) 17.4621 + 26.5872i 1.05492 + 1.60619i
\(275\) 62.9348 8.28553i 3.79511 0.499636i
\(276\) 0 0
\(277\) −1.10339 + 8.38105i −0.0662960 + 0.503568i 0.925793 + 0.378031i \(0.123399\pi\)
−0.992089 + 0.125537i \(0.959935\pi\)
\(278\) −5.69656 + 16.3549i −0.341657 + 0.980903i
\(279\) 0 0
\(280\) 7.04536 4.46922i 0.421041 0.267087i
\(281\) 9.59718 2.57156i 0.572519 0.153406i 0.0390676 0.999237i \(-0.487561\pi\)
0.533452 + 0.845830i \(0.320895\pi\)
\(282\) 0 0
\(283\) 4.74003 + 3.63716i 0.281766 + 0.216207i 0.739969 0.672641i \(-0.234840\pi\)
−0.458203 + 0.888847i \(0.651507\pi\)
\(284\) −0.0579048 + 0.391784i −0.00343602 + 0.0232481i
\(285\) 0 0
\(286\) 9.60021 + 29.0346i 0.567672 + 1.71685i
\(287\) −3.68073 −0.217266
\(288\) 0 0
\(289\) −6.28991 −0.369995
\(290\) 6.57373 + 19.8814i 0.386023 + 1.16747i
\(291\) 0 0
\(292\) 0.160279 + 0.0236889i 0.00937963 + 0.00138629i
\(293\) 4.47989 + 3.43754i 0.261718 + 0.200823i 0.731282 0.682075i \(-0.238922\pi\)
−0.469564 + 0.882898i \(0.655589\pi\)
\(294\) 0 0
\(295\) −47.8903 + 12.8322i −2.78828 + 0.747117i
\(296\) 24.5901 + 5.50149i 1.42927 + 0.319768i
\(297\) 0 0
\(298\) 7.18595 20.6310i 0.416271 1.19512i
\(299\) 3.25817 24.7482i 0.188425 1.43123i
\(300\) 0 0
\(301\) −1.48803 + 0.195902i −0.0857684 + 0.0112916i
\(302\) 7.05481 + 10.7414i 0.405959 + 0.618099i
\(303\) 0 0
\(304\) 2.93327 3.58188i 0.168234 0.205435i
\(305\) −22.6353 −1.29609
\(306\) 0 0
\(307\) 13.9643 + 5.78421i 0.796986 + 0.330122i 0.743749 0.668459i \(-0.233046\pi\)
0.0532375 + 0.998582i \(0.483046\pi\)
\(308\) 5.00648 + 5.16761i 0.285271 + 0.294452i
\(309\) 0 0
\(310\) 15.7861 3.01032i 0.896591 0.170974i
\(311\) 6.29559 23.4954i 0.356990 1.33230i −0.520972 0.853574i \(-0.674430\pi\)
0.877962 0.478731i \(-0.158903\pi\)
\(312\) 0 0
\(313\) −8.32744 31.0784i −0.470695 1.75666i −0.637283 0.770630i \(-0.719942\pi\)
0.166588 0.986027i \(-0.446725\pi\)
\(314\) 2.31467 + 4.78890i 0.130624 + 0.270253i
\(315\) 0 0
\(316\) 1.97722 + 17.1077i 0.111227 + 0.962385i
\(317\) −5.36484 6.99159i −0.301319 0.392687i 0.618014 0.786167i \(-0.287938\pi\)
−0.919333 + 0.393480i \(0.871271\pi\)
\(318\) 0 0
\(319\) −15.6388 + 9.02905i −0.875603 + 0.505530i
\(320\) 10.1747 31.8393i 0.568782 1.77987i
\(321\) 0 0
\(322\) −1.84374 5.57616i −0.102748 0.310747i
\(323\) 3.49947 + 1.44953i 0.194716 + 0.0806540i
\(324\) 0 0
\(325\) 20.2299 + 48.8394i 1.12215 + 2.70912i
\(326\) 0.131710 1.79198i 0.00729474 0.0992486i
\(327\) 0 0
\(328\) −11.3144 + 9.45661i −0.624733 + 0.522154i
\(329\) −0.392033 0.105045i −0.0216135 0.00579131i
\(330\) 0 0
\(331\) −6.05875 0.797650i −0.333019 0.0438428i −0.0378374 0.999284i \(-0.512047\pi\)
−0.295182 + 0.955441i \(0.595380\pi\)
\(332\) 17.4113 + 4.96214i 0.955568 + 0.272333i
\(333\) 0 0
\(334\) 2.77315 0.159721i 0.151740 0.00873953i
\(335\) 13.9103 + 8.03112i 0.760002 + 0.438787i
\(336\) 0 0
\(337\) −7.43132 + 4.29047i −0.404810 + 0.233717i −0.688557 0.725182i \(-0.741756\pi\)
0.283748 + 0.958899i \(0.408422\pi\)
\(338\) −5.91961 + 3.88791i −0.321984 + 0.211475i
\(339\) 0 0
\(340\) 27.3439 + 0.433050i 1.48293 + 0.0234854i
\(341\) 5.30355 + 12.8039i 0.287203 + 0.693370i
\(342\) 0 0
\(343\) 6.74023 6.74023i 0.363938 0.363938i
\(344\) −4.07081 + 4.42527i −0.219483 + 0.238594i
\(345\) 0 0
\(346\) 5.76616 8.48348i 0.309991 0.456075i
\(347\) 5.23723 6.82530i 0.281150 0.366401i −0.631337 0.775509i \(-0.717493\pi\)
0.912486 + 0.409108i \(0.134160\pi\)
\(348\) 0 0
\(349\) 1.72655 1.32483i 0.0924199 0.0709163i −0.561518 0.827465i \(-0.689782\pi\)
0.653938 + 0.756548i \(0.273116\pi\)
\(350\) 9.28602 + 8.27461i 0.496359 + 0.442296i
\(351\) 0 0
\(352\) 28.6664 + 3.02223i 1.52793 + 0.161085i
\(353\) 18.1756 + 10.4937i 0.967387 + 0.558521i 0.898439 0.439099i \(-0.144702\pi\)
0.0689486 + 0.997620i \(0.478036\pi\)
\(354\) 0 0
\(355\) −0.820287 + 0.107993i −0.0435363 + 0.00573167i
\(356\) 6.74923 + 0.997521i 0.357708 + 0.0528685i
\(357\) 0 0
\(358\) 0.0743345 1.01136i 0.00392870 0.0534519i
\(359\) −24.5834 + 24.5834i −1.29746 + 1.29746i −0.367401 + 0.930062i \(0.619752\pi\)
−0.930062 + 0.367401i \(0.880248\pi\)
\(360\) 0 0
\(361\) −12.4878 12.4878i −0.657251 0.657251i
\(362\) −4.09859 + 3.53735i −0.215417 + 0.185919i
\(363\) 0 0
\(364\) −3.07776 + 5.14107i −0.161319 + 0.269466i
\(365\) 0.0441800 + 0.335580i 0.00231249 + 0.0175651i
\(366\) 0 0
\(367\) 11.1995 19.3981i 0.584609 1.01257i −0.410315 0.911944i \(-0.634581\pi\)
0.994924 0.100628i \(-0.0320853\pi\)
\(368\) −19.9940 12.4039i −1.04226 0.646597i
\(369\) 0 0
\(370\) 3.02687 + 52.5539i 0.157359 + 2.73215i
\(371\) −2.12323 2.76704i −0.110232 0.143658i
\(372\) 0 0
\(373\) 3.13684 + 2.40698i 0.162420 + 0.124629i 0.686773 0.726871i \(-0.259026\pi\)
−0.524354 + 0.851500i \(0.675693\pi\)
\(374\) 4.41765 + 23.1662i 0.228431 + 1.19789i
\(375\) 0 0
\(376\) −1.47497 + 0.684317i −0.0760660 + 0.0352909i
\(377\) −10.6338 10.6338i −0.547670 0.547670i
\(378\) 0 0
\(379\) −21.0622 + 8.72423i −1.08189 + 0.448134i −0.851172 0.524887i \(-0.824108\pi\)
−0.230718 + 0.973021i \(0.574108\pi\)
\(380\) 8.87589 + 3.84229i 0.455323 + 0.197105i
\(381\) 0 0
\(382\) 0.788336 3.80551i 0.0403348 0.194707i
\(383\) −16.7028 28.9302i −0.853475 1.47826i −0.878053 0.478564i \(-0.841157\pi\)
0.0245777 0.999698i \(-0.492176\pi\)
\(384\) 0 0
\(385\) −7.51559 + 13.0174i −0.383030 + 0.663427i
\(386\) 14.2977 + 12.7404i 0.727733 + 0.648470i
\(387\) 0 0
\(388\) −0.529995 4.58575i −0.0269064 0.232806i
\(389\) −4.05917 + 30.8325i −0.205808 + 1.56327i 0.507024 + 0.861932i \(0.330746\pi\)
−0.712832 + 0.701335i \(0.752588\pi\)
\(390\) 0 0
\(391\) 4.98238 18.5945i 0.251970 0.940364i
\(392\) 1.63821 18.3161i 0.0827420 0.925102i
\(393\) 0 0
\(394\) −16.3980 + 14.1526i −0.826121 + 0.712996i
\(395\) −33.2390 + 13.7680i −1.67243 + 0.692745i
\(396\) 0 0
\(397\) −0.939961 + 2.26927i −0.0471753 + 0.113891i −0.945711 0.325010i \(-0.894632\pi\)
0.898535 + 0.438901i \(0.144632\pi\)
\(398\) 6.97146 + 3.50684i 0.349448 + 0.175782i
\(399\) 0 0
\(400\) 49.8041 + 1.57791i 2.49021 + 0.0788955i
\(401\) 3.51481 + 6.08782i 0.175521 + 0.304011i 0.940341 0.340232i \(-0.110506\pi\)
−0.764820 + 0.644243i \(0.777172\pi\)
\(402\) 0 0
\(403\) −9.15642 + 7.02597i −0.456114 + 0.349989i
\(404\) −10.7225 19.2703i −0.533463 0.958732i
\(405\) 0 0
\(406\) −3.34141 1.16384i −0.165831 0.0577604i
\(407\) −43.8494 + 11.7494i −2.17353 + 0.582397i
\(408\) 0 0
\(409\) 27.9547 + 7.49043i 1.38227 + 0.370378i 0.871945 0.489604i \(-0.162859\pi\)
0.510324 + 0.859982i \(0.329525\pi\)
\(410\) −25.4777 17.3170i −1.25825 0.855226i
\(411\) 0 0
\(412\) −3.11227 7.86365i −0.153331 0.387414i
\(413\) 3.20598 7.73992i 0.157756 0.380856i
\(414\) 0 0
\(415\) 37.8222i 1.85662i
\(416\) 3.74767 + 23.7109i 0.183745 + 1.16252i
\(417\) 0 0
\(418\) −1.69192 + 8.16734i −0.0827545 + 0.399478i
\(419\) −0.486408 3.69464i −0.0237626 0.180495i 0.975448 0.220232i \(-0.0706814\pi\)
−0.999210 + 0.0397369i \(0.987348\pi\)
\(420\) 0 0
\(421\) 8.43183 + 1.11007i 0.410942 + 0.0541015i 0.333163 0.942869i \(-0.391884\pi\)
0.0777786 + 0.996971i \(0.475217\pi\)
\(422\) −8.25557 17.0803i −0.401875 0.831454i
\(423\) 0 0
\(424\) −13.6359 3.05072i −0.662216 0.148156i
\(425\) 10.5515 + 39.3789i 0.511825 + 1.91016i
\(426\) 0 0
\(427\) 2.32836 3.03438i 0.112677 0.146844i
\(428\) 0.485400 0.810809i 0.0234627 0.0391919i
\(429\) 0 0
\(430\) −11.2217 5.64481i −0.541157 0.272217i
\(431\) 30.9185i 1.48929i 0.667460 + 0.744646i \(0.267382\pi\)
−0.667460 + 0.744646i \(0.732618\pi\)
\(432\) 0 0
\(433\) 7.78344i 0.374048i −0.982355 0.187024i \(-0.940116\pi\)
0.982355 0.187024i \(-0.0598843\pi\)
\(434\) −1.22028 + 2.42587i −0.0585752 + 0.116445i
\(435\) 0 0
\(436\) 2.48673 + 9.90545i 0.119093 + 0.474385i
\(437\) 4.14460 5.40134i 0.198263 0.258381i
\(438\) 0 0
\(439\) −0.716161 2.67275i −0.0341805 0.127563i 0.946727 0.322036i \(-0.104367\pi\)
−0.980908 + 0.194473i \(0.937700\pi\)
\(440\) 10.3420 + 59.3241i 0.493035 + 2.82817i
\(441\) 0 0
\(442\) −17.6829 + 8.54683i −0.841088 + 0.406531i
\(443\) 25.7814 + 3.39419i 1.22491 + 0.161263i 0.715100 0.699022i \(-0.246381\pi\)
0.509813 + 0.860285i \(0.329714\pi\)
\(444\) 0 0
\(445\) 1.86038 + 14.1310i 0.0881906 + 0.669874i
\(446\) 26.9829 + 5.58968i 1.27768 + 0.264679i
\(447\) 0 0
\(448\) 3.22162 + 4.63910i 0.152207 + 0.219177i
\(449\) 32.2988i 1.52427i −0.647417 0.762136i \(-0.724151\pi\)
0.647417 0.762136i \(-0.275849\pi\)
\(450\) 0 0
\(451\) 10.1664 24.5438i 0.478716 1.15572i
\(452\) 17.0091 + 7.36309i 0.800042 + 0.346330i
\(453\) 0 0
\(454\) 15.4966 22.7995i 0.727293 1.07003i
\(455\) −12.0912 3.23982i −0.566844 0.151885i
\(456\) 0 0
\(457\) 34.2613 9.18028i 1.60267 0.429435i 0.656825 0.754043i \(-0.271899\pi\)
0.945849 + 0.324607i \(0.105232\pi\)
\(458\) 5.96052 17.1127i 0.278517 0.799626i
\(459\) 0 0
\(460\) 13.4724 47.2721i 0.628152 2.20407i
\(461\) 21.2164 16.2799i 0.988147 0.758232i 0.0177735 0.999842i \(-0.494342\pi\)
0.970373 + 0.241610i \(0.0776756\pi\)
\(462\) 0 0
\(463\) 8.97808 + 15.5505i 0.417247 + 0.722693i 0.995661 0.0930503i \(-0.0296617\pi\)
−0.578415 + 0.815743i \(0.696328\pi\)
\(464\) −13.2615 + 5.00723i −0.615650 + 0.232455i
\(465\) 0 0
\(466\) 8.71628 17.3276i 0.403774 0.802687i
\(467\) 1.89271 4.56940i 0.0875841 0.211447i −0.874018 0.485893i \(-0.838495\pi\)
0.961602 + 0.274446i \(0.0884945\pi\)
\(468\) 0 0
\(469\) −2.50749 + 1.03864i −0.115785 + 0.0479598i
\(470\) −2.21940 2.57154i −0.102374 0.118616i
\(471\) 0 0
\(472\) −10.0306 32.0291i −0.461694 1.47426i
\(473\) 2.80370 10.4635i 0.128914 0.481114i
\(474\) 0 0
\(475\) −1.88197 + 14.2950i −0.0863505 + 0.655897i
\(476\) −2.87076 + 3.62105i −0.131581 + 0.165971i
\(477\) 0 0
\(478\) 20.2319 22.7048i 0.925383 1.03849i
\(479\) 10.5230 18.2264i 0.480809 0.832785i −0.518949 0.854805i \(-0.673676\pi\)
0.999758 + 0.0220202i \(0.00700982\pi\)
\(480\) 0 0
\(481\) −18.9026 32.7403i −0.861886 1.49283i
\(482\) −30.2044 6.25704i −1.37577 0.285000i
\(483\) 0 0
\(484\) −27.8307 + 11.0148i −1.26503 + 0.500675i
\(485\) 8.90975 3.69054i 0.404571 0.167579i
\(486\) 0 0
\(487\) 23.3607 + 23.3607i 1.05857 + 1.05857i 0.998174 + 0.0603997i \(0.0192375\pi\)
0.0603997 + 0.998174i \(0.480762\pi\)
\(488\) −0.638722 15.3096i −0.0289136 0.693035i
\(489\) 0 0
\(490\) 37.7368 7.19617i 1.70477 0.325090i
\(491\) 33.6634 + 25.8309i 1.51921 + 1.16573i 0.935270 + 0.353934i \(0.115156\pi\)
0.583940 + 0.811797i \(0.301510\pi\)
\(492\) 0 0
\(493\) −7.06019 9.20103i −0.317975 0.414393i
\(494\) −6.93455 + 0.399399i −0.312000 + 0.0179698i
\(495\) 0 0
\(496\) 2.48151 + 10.5922i 0.111423 + 0.475603i
\(497\) 0.0699012 0.121072i 0.00313550 0.00543084i
\(498\) 0 0
\(499\) −3.65147 27.7356i −0.163462 1.24162i −0.854751 0.519039i \(-0.826290\pi\)
0.691288 0.722579i \(-0.257043\pi\)
\(500\) 15.1734 + 60.4404i 0.678573 + 2.70298i
\(501\) 0 0
\(502\) 18.3058 + 21.2102i 0.817026 + 0.946656i
\(503\) −15.4913 15.4913i −0.690725 0.690725i 0.271667 0.962391i \(-0.412425\pi\)
−0.962391 + 0.271667i \(0.912425\pi\)
\(504\) 0 0
\(505\) 32.5763 32.5763i 1.44963 1.44963i
\(506\) 42.2755 + 3.10723i 1.87937 + 0.138133i
\(507\) 0 0
\(508\) 18.4979 + 24.9141i 0.820711 + 1.10538i
\(509\) −19.3181 + 2.54328i −0.856261 + 0.112729i −0.545860 0.837877i \(-0.683797\pi\)
−0.310401 + 0.950606i \(0.600463\pi\)
\(510\) 0 0
\(511\) −0.0495309 0.0285967i −0.00219112 0.00126504i
\(512\) 21.8220 + 5.98332i 0.964405 + 0.264428i
\(513\) 0 0
\(514\) 21.5019 24.1301i 0.948407 1.06433i
\(515\) 14.0168 10.7555i 0.617653 0.473942i
\(516\) 0 0
\(517\) 1.78328 2.32401i 0.0784284 0.102210i
\(518\) −7.35649 5.00015i −0.323226 0.219694i
\(519\) 0 0
\(520\) −45.4916 + 21.1059i −1.99494 + 0.925555i
\(521\) 30.1843 30.1843i 1.32240 1.32240i 0.410572 0.911828i \(-0.365329\pi\)
0.911828 0.410572i \(-0.134671\pi\)
\(522\) 0 0
\(523\) 14.2906 + 34.5006i 0.624886 + 1.50861i 0.845903 + 0.533337i \(0.179062\pi\)
−0.221017 + 0.975270i \(0.570938\pi\)
\(524\) 6.61435 + 6.82723i 0.288949 + 0.298249i
\(525\) 0 0
\(526\) 23.8552 + 36.3211i 1.04014 + 1.58368i
\(527\) −7.70824 + 4.45035i −0.335776 + 0.193860i
\(528\) 0 0
\(529\) −10.0468 5.80050i −0.436815 0.252195i
\(530\) −1.67848 29.1426i −0.0729085 1.26587i
\(531\) 0 0
\(532\) −1.42809 + 0.794626i −0.0619156 + 0.0344514i
\(533\) 21.9345 + 2.88773i 0.950088 + 0.125081i
\(534\) 0 0
\(535\) 1.90693 + 0.510959i 0.0824436 + 0.0220907i
\(536\) −5.03942 + 9.63503i −0.217670 + 0.416170i
\(537\) 0 0
\(538\) 1.53815 + 0.113054i 0.0663143 + 0.00487408i
\(539\) 12.6782 + 30.6078i 0.546087 + 1.31837i
\(540\) 0 0
\(541\) −15.8282 6.55627i −0.680509 0.281876i 0.0155308 0.999879i \(-0.495056\pi\)
−0.696040 + 0.718003i \(0.745056\pi\)
\(542\) 28.3015 9.35782i 1.21565 0.401953i
\(543\) 0 0
\(544\) 0.478691 + 18.5066i 0.0205237 + 0.793463i
\(545\) −18.4771 + 10.6678i −0.791474 + 0.456957i
\(546\) 0 0
\(547\) 3.59785 + 4.68881i 0.153833 + 0.200479i 0.863912 0.503643i \(-0.168007\pi\)
−0.710079 + 0.704122i \(0.751341\pi\)
\(548\) −35.2505 27.9465i −1.50583 1.19382i
\(549\) 0 0
\(550\) −80.8253 + 39.0661i −3.44640 + 1.66578i
\(551\) −1.06160 3.96194i −0.0452256 0.168784i
\(552\) 0 0
\(553\) 1.57342 5.87210i 0.0669088 0.249707i
\(554\) −2.23937 11.7433i −0.0951416 0.498923i
\(555\) 0 0
\(556\) 0.387839 24.4891i 0.0164480 1.03857i
\(557\) −25.3053 10.4818i −1.07222 0.444128i −0.224447 0.974486i \(-0.572058\pi\)
−0.847774 + 0.530358i \(0.822058\pi\)
\(558\) 0 0
\(559\) 9.02126 0.381559
\(560\) −7.47575 + 9.12882i −0.315908 + 0.385763i
\(561\) 0 0
\(562\) −11.7446 + 7.71370i −0.495417 + 0.325383i
\(563\) −5.66165 + 0.745370i −0.238610 + 0.0314136i −0.248883 0.968534i \(-0.580063\pi\)
0.0102727 + 0.999947i \(0.496730\pi\)
\(564\) 0 0
\(565\) −5.05400 + 38.3889i −0.212623 + 1.61504i
\(566\) −7.97931 2.77926i −0.335395 0.116821i
\(567\) 0 0
\(568\) −0.0961891 0.551763i −0.00403600 0.0231515i
\(569\) 10.0612 2.69590i 0.421788 0.113018i −0.0416807 0.999131i \(-0.513271\pi\)
0.463469 + 0.886113i \(0.346605\pi\)
\(570\) 0 0
\(571\) −7.19131 5.51809i −0.300947 0.230925i 0.447238 0.894415i \(-0.352408\pi\)
−0.748185 + 0.663490i \(0.769074\pi\)
\(572\) −25.7808 34.7231i −1.07795 1.45185i
\(573\) 0 0
\(574\) 4.94218 1.63412i 0.206283 0.0682068i
\(575\) 73.2770 3.05586
\(576\) 0 0
\(577\) −10.1091 −0.420845 −0.210423 0.977610i \(-0.567484\pi\)
−0.210423 + 0.977610i \(0.567484\pi\)
\(578\) 8.44559 2.79251i 0.351290 0.116153i
\(579\) 0 0
\(580\) −17.6533 23.7766i −0.733015 0.987269i
\(581\) −5.07026 3.89055i −0.210350 0.161407i
\(582\) 0 0
\(583\) 24.3157 6.51537i 1.00705 0.269839i
\(584\) −0.225727 + 0.0393510i −0.00934065 + 0.00162836i
\(585\) 0 0
\(586\) −7.54138 2.62673i −0.311531 0.108509i
\(587\) −2.88035 + 21.8785i −0.118885 + 0.903021i 0.823225 + 0.567716i \(0.192173\pi\)
−0.942110 + 0.335305i \(0.891161\pi\)
\(588\) 0 0
\(589\) −3.12095 + 0.410882i −0.128597 + 0.0169301i
\(590\) 58.6061 38.4917i 2.41278 1.58468i
\(591\) 0 0
\(592\) −35.4601 + 3.53022i −1.45740 + 0.145091i
\(593\) 13.8523 0.568845 0.284422 0.958699i \(-0.408198\pi\)
0.284422 + 0.958699i \(0.408198\pi\)
\(594\) 0 0
\(595\) −8.91879 3.69428i −0.365635 0.151451i
\(596\) −0.489241 + 30.8919i −0.0200401 + 1.26538i
\(597\) 0 0
\(598\) 6.61258 + 34.6764i 0.270409 + 1.41802i
\(599\) 6.23971 23.2869i 0.254948 0.951478i −0.713172 0.700989i \(-0.752742\pi\)
0.968119 0.250489i \(-0.0805913\pi\)
\(600\) 0 0
\(601\) −9.05439 33.7914i −0.369336 1.37838i −0.861446 0.507849i \(-0.830441\pi\)
0.492110 0.870533i \(-0.336226\pi\)
\(602\) 1.91103 0.923675i 0.0778876 0.0376462i
\(603\) 0 0
\(604\) −14.2415 11.2906i −0.579476 0.459408i
\(605\) −38.0653 49.6077i −1.54757 2.01684i
\(606\) 0 0
\(607\) 15.8254 9.13679i 0.642332 0.370851i −0.143180 0.989697i \(-0.545733\pi\)
0.785512 + 0.618846i \(0.212399\pi\)
\(608\) −2.34832 + 6.11173i −0.0952368 + 0.247863i
\(609\) 0 0
\(610\) 30.3928 10.0493i 1.23057 0.406885i
\(611\) 2.25382 + 0.933563i 0.0911798 + 0.0377679i
\(612\) 0 0
\(613\) −1.15710 2.79348i −0.0467348 0.112828i 0.898788 0.438383i \(-0.144449\pi\)
−0.945523 + 0.325555i \(0.894449\pi\)
\(614\) −21.3182 1.56688i −0.860331 0.0632341i
\(615\) 0 0
\(616\) −9.01654 4.71593i −0.363287 0.190010i
\(617\) −2.32983 0.624276i −0.0937954 0.0251324i 0.211616 0.977353i \(-0.432127\pi\)
−0.305412 + 0.952220i \(0.598794\pi\)
\(618\) 0 0
\(619\) −6.16432 0.811548i −0.247765 0.0326189i 0.00562074 0.999984i \(-0.498211\pi\)
−0.253386 + 0.967365i \(0.581544\pi\)
\(620\) −19.8598 + 11.0505i −0.797590 + 0.443799i
\(621\) 0 0
\(622\) 1.97799 + 34.3428i 0.0793102 + 1.37702i
\(623\) −2.08571 1.20418i −0.0835620 0.0482446i
\(624\) 0 0
\(625\) −58.8009 + 33.9487i −2.35204 + 1.35795i
\(626\) 24.9792 + 38.0325i 0.998369 + 1.52008i
\(627\) 0 0
\(628\) −5.23406 5.40251i −0.208862 0.215584i
\(629\) −11.1572 26.9360i −0.444869 1.07401i
\(630\) 0 0
\(631\) −19.8310 + 19.8310i −0.789458 + 0.789458i −0.981405 0.191947i \(-0.938520\pi\)
0.191947 + 0.981405i \(0.438520\pi\)
\(632\) −10.2501 22.0931i −0.407727 0.878815i
\(633\) 0 0
\(634\) 10.3075 + 7.00593i 0.409363 + 0.278241i
\(635\) −39.4632 + 51.4295i −1.56605 + 2.04092i
\(636\) 0 0
\(637\) −21.8885 + 16.7956i −0.867253 + 0.665467i
\(638\) 16.9899 19.0666i 0.672636 0.754853i
\(639\) 0 0
\(640\) 0.473853 + 47.2685i 0.0187307 + 1.86845i
\(641\) −32.7883 18.9303i −1.29506 0.747702i −0.315512 0.948922i \(-0.602176\pi\)
−0.979546 + 0.201220i \(0.935510\pi\)
\(642\) 0 0
\(643\) 8.33708 1.09760i 0.328783 0.0432850i 0.0356718 0.999364i \(-0.488643\pi\)
0.293111 + 0.956079i \(0.405310\pi\)
\(644\) 4.95126 + 6.66865i 0.195107 + 0.262782i
\(645\) 0 0
\(646\) −5.34235 0.392661i −0.210192 0.0154490i
\(647\) −8.24716 + 8.24716i −0.324229 + 0.324229i −0.850387 0.526158i \(-0.823632\pi\)
0.526158 + 0.850387i \(0.323632\pi\)
\(648\) 0 0
\(649\) 42.7562 + 42.7562i 1.67833 + 1.67833i
\(650\) −48.8461 56.5961i −1.91590 2.21988i
\(651\) 0 0
\(652\) 0.618730 + 2.46460i 0.0242313 + 0.0965212i
\(653\) −4.12727 31.3497i −0.161512 1.22681i −0.859664 0.510859i \(-0.829327\pi\)
0.698152 0.715950i \(-0.254006\pi\)
\(654\) 0 0
\(655\) −9.92929 + 17.1980i −0.387970 + 0.671983i
\(656\) 10.9936 17.7208i 0.429229 0.691880i
\(657\) 0 0
\(658\) 0.573026 0.0330037i 0.0223389 0.00128662i
\(659\) −5.19357 6.76840i −0.202313 0.263659i 0.681167 0.732128i \(-0.261473\pi\)
−0.883480 + 0.468468i \(0.844806\pi\)
\(660\) 0 0
\(661\) −33.7257 25.8786i −1.31178 1.00656i −0.998378 0.0569392i \(-0.981866\pi\)
−0.313398 0.949622i \(-0.601467\pi\)
\(662\) 8.48933 1.61886i 0.329947 0.0629190i
\(663\) 0 0
\(664\) −25.5815 + 1.06727i −0.992754 + 0.0414179i
\(665\) −2.41418 2.41418i −0.0936180 0.0936180i
\(666\) 0 0
\(667\) −19.2590 + 7.97732i −0.745710 + 0.308883i
\(668\) −3.65265 + 1.44564i −0.141325 + 0.0559337i
\(669\) 0 0
\(670\) −22.2432 4.60783i −0.859329 0.178016i
\(671\) 13.8028 + 23.9071i 0.532851 + 0.922925i
\(672\) 0 0
\(673\) 12.3032 21.3097i 0.474252 0.821428i −0.525314 0.850909i \(-0.676052\pi\)
0.999565 + 0.0294806i \(0.00938532\pi\)
\(674\) 8.07334 9.06015i 0.310974 0.348984i
\(675\) 0 0
\(676\) 6.22227 7.84848i 0.239318 0.301865i
\(677\) −6.14666 + 46.6886i −0.236235 + 1.79439i 0.303791 + 0.952739i \(0.401748\pi\)
−0.540026 + 0.841648i \(0.681586\pi\)
\(678\) 0 0
\(679\) −0.421759 + 1.57402i −0.0161856 + 0.0604055i
\(680\) −36.9074 + 11.5583i −1.41533 + 0.443241i
\(681\) 0 0
\(682\) −12.8057 14.8374i −0.490355 0.568155i
\(683\) −42.4306 + 17.5753i −1.62356 + 0.672501i −0.994489 0.104845i \(-0.966565\pi\)
−0.629073 + 0.777346i \(0.716565\pi\)
\(684\) 0 0
\(685\) 35.9634 86.8233i 1.37409 3.31735i
\(686\) −6.05780 + 12.0427i −0.231288 + 0.459791i
\(687\) 0 0
\(688\) 3.50128 7.74919i 0.133485 0.295435i
\(689\) 10.4820 + 18.1554i 0.399333 + 0.691665i
\(690\) 0 0
\(691\) −23.6372 + 18.1375i −0.899202 + 0.689982i −0.951170 0.308667i \(-0.900117\pi\)
0.0519680 + 0.998649i \(0.483451\pi\)
\(692\) −3.97595 + 13.9509i −0.151143 + 0.530334i
\(693\) 0 0
\(694\) −4.00193 + 11.4896i −0.151911 + 0.436140i
\(695\) 49.4231 13.2429i 1.87473 0.502331i
\(696\) 0 0
\(697\) 16.4804 + 4.41591i 0.624240 + 0.167265i
\(698\) −1.73009 + 2.54540i −0.0654848 + 0.0963447i
\(699\) 0 0
\(700\) −16.1422 6.98779i −0.610116 0.264114i
\(701\) −14.9000 + 35.9718i −0.562765 + 1.35864i 0.344780 + 0.938683i \(0.387953\pi\)
−0.907546 + 0.419953i \(0.862047\pi\)
\(702\) 0 0
\(703\) 10.3113i 0.388897i
\(704\) −39.8327 + 8.66893i −1.50125 + 0.326723i
\(705\) 0 0
\(706\) −29.0635 6.02070i −1.09382 0.226592i
\(707\) 1.01609 + 7.71797i 0.0382140 + 0.290264i
\(708\) 0 0
\(709\) −3.48182 0.458391i −0.130763 0.0172152i 0.0648607 0.997894i \(-0.479340\pi\)
−0.195623 + 0.980679i \(0.562673\pi\)
\(710\) 1.05347 0.509184i 0.0395360 0.0191093i
\(711\) 0 0
\(712\) −9.50518 + 1.65704i −0.356222 + 0.0621002i
\(713\) 4.14065 + 15.4531i 0.155069 + 0.578724i
\(714\) 0 0
\(715\) 55.0004 71.6779i 2.05690 2.68060i
\(716\) 0.349199 + 1.39097i 0.0130502 + 0.0519830i
\(717\) 0 0
\(718\) 22.0944 43.9229i 0.824556 1.63919i
\(719\) 9.36057i 0.349091i −0.984649 0.174545i \(-0.944154\pi\)
0.984649 0.174545i \(-0.0558455\pi\)
\(720\) 0 0
\(721\) 2.98538i 0.111181i
\(722\) 22.3117 + 11.2234i 0.830356 + 0.417692i
\(723\) 0 0
\(724\) 3.93279 6.56930i 0.146161 0.244146i
\(725\) 26.8747 35.0238i 0.998101 1.30075i
\(726\) 0 0
\(727\) 4.13266 + 15.4233i 0.153272 + 0.572019i 0.999247 + 0.0387966i \(0.0123524\pi\)
−0.845975 + 0.533222i \(0.820981\pi\)
\(728\) 1.85010 8.26944i 0.0685694 0.306486i
\(729\) 0 0
\(730\) −0.208308 0.430975i −0.00770981 0.0159511i
\(731\) 6.89765 + 0.908093i 0.255119 + 0.0335870i
\(732\) 0 0
\(733\) −2.57675 19.5723i −0.0951744 0.722921i −0.970793 0.239918i \(-0.922879\pi\)
0.875619 0.483003i \(-0.160454\pi\)
\(734\) −6.42567 + 31.0184i −0.237176 + 1.14491i
\(735\) 0 0
\(736\) 32.3532 + 7.77826i 1.19256 + 0.286710i
\(737\) 19.5892i 0.721578i
\(738\) 0 0
\(739\) −13.4889 + 32.5651i −0.496197 + 1.19793i 0.455319 + 0.890328i \(0.349525\pi\)
−0.951516 + 0.307598i \(0.900475\pi\)
\(740\) −27.3964 69.2213i −1.00711 2.54463i
\(741\) 0 0
\(742\) 4.07937 + 2.77272i 0.149758 + 0.101790i
\(743\) −11.1598 2.99025i −0.409412 0.109702i 0.0482343 0.998836i \(-0.484641\pi\)
−0.457646 + 0.889135i \(0.651307\pi\)
\(744\) 0 0
\(745\) −62.3450 + 16.7053i −2.28414 + 0.612035i
\(746\) −5.28052 1.83925i −0.193334 0.0673397i
\(747\) 0 0
\(748\) −16.2167 29.1444i −0.592940 1.06562i
\(749\) −0.264651 + 0.203074i −0.00967015 + 0.00742017i
\(750\) 0 0
\(751\) 12.2793 + 21.2684i 0.448079 + 0.776095i 0.998261 0.0589497i \(-0.0187751\pi\)
−0.550182 + 0.835045i \(0.685442\pi\)
\(752\) 1.67666 1.57368i 0.0611416 0.0573864i
\(753\) 0 0
\(754\) 18.9993 + 9.55717i 0.691913 + 0.348052i
\(755\) 14.5295 35.0773i 0.528782 1.27659i
\(756\) 0 0
\(757\) 24.9075 10.3170i 0.905278 0.374979i 0.119031 0.992891i \(-0.462021\pi\)
0.786247 + 0.617912i \(0.212021\pi\)
\(758\) 24.4073 21.0651i 0.886513 0.765118i
\(759\) 0 0
\(760\) −13.6237 1.21851i −0.494182 0.0442002i
\(761\) −6.72681 + 25.1048i −0.243847 + 0.910048i 0.730113 + 0.683326i \(0.239467\pi\)
−0.973960 + 0.226722i \(0.927199\pi\)
\(762\) 0 0
\(763\) 0.470564 3.57429i 0.0170356 0.129398i
\(764\) 0.631004 + 5.45972i 0.0228289 + 0.197526i
\(765\) 0 0
\(766\) 35.2712 + 31.4296i 1.27440 + 1.13560i
\(767\) −25.1777 + 43.6091i −0.909115 + 1.57463i
\(768\) 0 0
\(769\) 3.15099 + 5.45767i 0.113628 + 0.196809i 0.917230 0.398357i \(-0.130420\pi\)
−0.803603 + 0.595166i \(0.797086\pi\)
\(770\) 4.31204 20.8154i 0.155395 0.750133i
\(771\) 0 0
\(772\) −24.8541 10.7591i −0.894518 0.387228i
\(773\) 6.65957 2.75849i 0.239528 0.0992158i −0.259690 0.965692i \(-0.583620\pi\)
0.499219 + 0.866476i \(0.333620\pi\)
\(774\) 0 0
\(775\) −23.9572 23.9572i −0.860569 0.860569i
\(776\) 2.74756 + 5.92208i 0.0986315 + 0.212590i
\(777\) 0 0
\(778\) −8.23825 43.2015i −0.295356 1.54885i
\(779\) 4.78724 + 3.67338i 0.171521 + 0.131612i
\(780\) 0 0
\(781\) 0.614264 + 0.800525i 0.0219801 + 0.0286450i
\(782\) 1.56540 + 27.1792i 0.0559786 + 0.971926i
\(783\) 0 0
\(784\) 5.93207 + 25.3207i 0.211860 + 0.904309i
\(785\) 7.85722 13.6091i 0.280436 0.485730i
\(786\) 0 0
\(787\) 5.70110 + 43.3041i 0.203222 + 1.54363i 0.723919 + 0.689885i \(0.242339\pi\)
−0.520697 + 0.853741i \(0.674328\pi\)
\(788\) 15.7347 26.2831i 0.560524 0.936296i
\(789\) 0 0
\(790\) 38.5180 33.2436i 1.37041 1.18275i
\(791\) −4.62637 4.62637i −0.164495 0.164495i
\(792\) 0 0
\(793\) −16.2560 + 16.2560i −0.577268 + 0.577268i
\(794\) 0.254625 3.46430i 0.00903630 0.122943i
\(795\) 0 0
\(796\) −10.9176 1.61360i −0.386965 0.0571926i
\(797\) −14.3743 + 1.89241i −0.509164 + 0.0670327i −0.380732 0.924686i \(-0.624328\pi\)
−0.128432 + 0.991718i \(0.540995\pi\)
\(798\) 0 0
\(799\) 1.62929 + 0.940674i 0.0576403 + 0.0332786i
\(800\) −67.5735 + 19.9927i −2.38908 + 0.706848i
\(801\) 0 0
\(802\) −7.42218 6.61378i −0.262086 0.233541i
\(803\) 0.327495 0.251296i 0.0115571 0.00886805i
\(804\) 0 0
\(805\) −10.5630 + 13.7659i −0.372295 + 0.485185i
\(806\) 9.17521 13.4991i 0.323183 0.475484i
\(807\) 0 0
\(808\) 22.9526 + 21.1141i 0.807470 + 0.742793i
\(809\) −9.54703 + 9.54703i −0.335656 + 0.335656i −0.854729 0.519074i \(-0.826277\pi\)
0.519074 + 0.854729i \(0.326277\pi\)
\(810\) 0 0
\(811\) −12.9403 31.2405i −0.454394 1.09700i −0.970634 0.240560i \(-0.922669\pi\)
0.516241 0.856444i \(-0.327331\pi\)
\(812\) 5.00328 + 0.0792377i 0.175581 + 0.00278070i
\(813\) 0 0
\(814\) 53.6611 35.2438i 1.88082 1.23530i
\(815\) −4.59734 + 2.65428i −0.161038 + 0.0929753i
\(816\) 0 0
\(817\) 2.13087 + 1.23026i 0.0745498 + 0.0430414i
\(818\) −40.8607 + 2.35339i −1.42866 + 0.0822845i
\(819\) 0 0
\(820\) 41.8975 + 11.9406i 1.46313 + 0.416985i
\(821\) −35.7513 4.70675i −1.24773 0.164267i −0.522419 0.852689i \(-0.674970\pi\)
−0.725310 + 0.688422i \(0.758304\pi\)
\(822\) 0 0
\(823\) 41.6234 + 11.1529i 1.45090 + 0.388767i 0.896336 0.443375i \(-0.146219\pi\)
0.554563 + 0.832142i \(0.312886\pi\)
\(824\) 7.67011 + 9.17692i 0.267201 + 0.319693i
\(825\) 0 0
\(826\) −0.868464 + 11.8159i −0.0302177 + 0.411127i
\(827\) 17.1956 + 41.5138i 0.597950 + 1.44358i 0.875667 + 0.482915i \(0.160422\pi\)
−0.277718 + 0.960663i \(0.589578\pi\)
\(828\) 0 0
\(829\) −31.6468 13.1086i −1.09914 0.455279i −0.241955 0.970287i \(-0.577789\pi\)
−0.857185 + 0.515009i \(0.827789\pi\)
\(830\) −16.7918 50.7846i −0.582851 1.76276i
\(831\) 0 0
\(832\) −15.5589 30.1732i −0.539408 1.04607i
\(833\) −18.4266 + 10.6386i −0.638443 + 0.368605i
\(834\) 0 0
\(835\) −4.99589 6.51077i −0.172890 0.225314i
\(836\) −1.35425 11.7176i −0.0468379 0.405262i
\(837\) 0 0
\(838\) 2.29341 + 4.74491i 0.0792244 + 0.163910i
\(839\) 11.4882 + 42.8744i 0.396616 + 1.48019i 0.819011 + 0.573778i \(0.194523\pi\)
−0.422395 + 0.906412i \(0.638810\pi\)
\(840\) 0 0
\(841\) 4.25531 15.8810i 0.146735 0.547622i
\(842\) −11.8144 + 2.25294i −0.407151 + 0.0776413i
\(843\) 0 0
\(844\) 18.6680 + 19.2688i 0.642578 + 0.663259i
\(845\) 19.3311 + 8.00722i 0.665011 + 0.275457i
\(846\) 0 0
\(847\) 10.5657 0.363043
\(848\) 19.6636 1.95760i 0.675249 0.0672244i
\(849\) 0 0
\(850\) −31.6507 48.1903i −1.08561 1.65291i
\(851\) −51.9558 + 6.84011i −1.78102 + 0.234476i
\(852\) 0 0
\(853\) 3.30226 25.0831i 0.113067 0.858830i −0.837092 0.547063i \(-0.815746\pi\)
0.950159 0.311767i \(-0.100921\pi\)
\(854\) −1.77917 + 5.10804i −0.0608820 + 0.174793i
\(855\) 0 0
\(856\) −0.291784 + 1.30419i −0.00997296 + 0.0445763i
\(857\) 15.1930 4.07096i 0.518984 0.139061i 0.0101874 0.999948i \(-0.496757\pi\)
0.508797 + 0.860887i \(0.330091\pi\)
\(858\) 0 0
\(859\) −27.0298 20.7407i −0.922244 0.707663i 0.0342501 0.999413i \(-0.489096\pi\)
−0.956495 + 0.291750i \(0.905762\pi\)
\(860\) 17.5737 + 2.59735i 0.599257 + 0.0885688i
\(861\) 0 0
\(862\) −13.7268 41.5149i −0.467536 1.41400i
\(863\) 2.03418 0.0692444 0.0346222 0.999400i \(-0.488977\pi\)
0.0346222 + 0.999400i \(0.488977\pi\)
\(864\) 0 0
\(865\) −30.3053 −1.03041
\(866\) 3.45559 + 10.4510i 0.117426 + 0.355139i
\(867\) 0 0
\(868\) 0.561487 3.79902i 0.0190581 0.128947i
\(869\) 34.8104 + 26.7110i 1.18086 + 0.906109i
\(870\) 0 0
\(871\) 15.7577 4.22226i 0.533930 0.143066i
\(872\) −7.73667 12.1962i −0.261997 0.413016i
\(873\) 0 0
\(874\) −3.16701 + 9.09255i −0.107126 + 0.307560i
\(875\) 2.87126 21.8094i 0.0970663 0.737291i
\(876\) 0 0
\(877\) 38.3089 5.04346i 1.29360 0.170306i 0.547875 0.836560i \(-0.315437\pi\)
0.745725 + 0.666254i \(0.232103\pi\)
\(878\) 2.14821 + 3.27080i 0.0724987 + 0.110384i
\(879\) 0 0
\(880\) −40.2243 75.0641i −1.35596 2.53041i
\(881\) 24.0834 0.811392 0.405696 0.914008i \(-0.367029\pi\)
0.405696 + 0.914008i \(0.367029\pi\)
\(882\) 0 0
\(883\) 19.6149 + 8.12476i 0.660094 + 0.273420i 0.687478 0.726205i \(-0.258718\pi\)
−0.0273840 + 0.999625i \(0.508718\pi\)
\(884\) 19.9486 19.3266i 0.670944 0.650024i
\(885\) 0 0
\(886\) −36.1241 + 6.88865i −1.21361 + 0.231429i
\(887\) 2.20271 8.22064i 0.0739599 0.276022i −0.919036 0.394175i \(-0.871031\pi\)
0.992995 + 0.118153i \(0.0376972\pi\)
\(888\) 0 0
\(889\) −2.83504 10.5805i −0.0950841 0.354859i
\(890\) −8.77167 18.1480i −0.294027 0.608323i
\(891\) 0 0
\(892\) −38.7120 + 4.47412i −1.29618 + 0.149805i
\(893\) 0.405052 + 0.527874i 0.0135545 + 0.0176646i
\(894\) 0 0
\(895\) −2.59465 + 1.49802i −0.0867295 + 0.0500733i
\(896\) −6.38533 4.79871i −0.213319 0.160314i
\(897\) 0 0
\(898\) 14.3396 + 43.3681i 0.478518 + 1.44721i
\(899\) 8.90464 + 3.68842i 0.296986 + 0.123016i
\(900\) 0 0
\(901\) 6.18700 + 14.9367i 0.206119 + 0.497615i
\(902\) −2.75396 + 37.4690i −0.0916968 + 1.24758i
\(903\) 0 0
\(904\) −26.1074 2.33507i −0.868320 0.0776634i
\(905\) 15.4502 + 4.13987i 0.513582 + 0.137614i
\(906\) 0 0
\(907\) −14.0354 1.84779i −0.466036 0.0613549i −0.106148 0.994350i \(-0.533852\pi\)
−0.359888 + 0.932995i \(0.617185\pi\)
\(908\) −10.6854 + 37.4932i −0.354608 + 1.24426i
\(909\) 0 0
\(910\) 17.6734 1.01791i 0.585869 0.0337434i
\(911\) −10.7904 6.22981i −0.357500 0.206403i 0.310483 0.950579i \(-0.399509\pi\)
−0.667984 + 0.744176i \(0.732842\pi\)
\(912\) 0 0
\(913\) 39.9473 23.0636i 1.32206 0.763294i
\(914\) −41.9275 + 27.5374i −1.38684 + 0.910856i
\(915\) 0 0
\(916\) −0.405810 + 25.6239i −0.0134083 + 0.846637i
\(917\) −1.28412 3.10014i −0.0424054 0.102376i
\(918\) 0 0
\(919\) 8.09555 8.09555i 0.267048 0.267048i −0.560862 0.827909i \(-0.689530\pi\)
0.827909 + 0.560862i \(0.189530\pi\)
\(920\) 2.89766 + 69.4544i 0.0955329 + 2.28984i
\(921\) 0 0
\(922\) −21.2599 + 31.2787i −0.700159 + 1.03011i
\(923\) −0.511549 + 0.666664i −0.0168378 + 0.0219435i
\(924\) 0 0
\(925\) 88.0463 67.5603i 2.89494 2.22137i
\(926\) −18.9589 16.8940i −0.623029 0.555170i
\(927\) 0 0
\(928\) 15.5834 12.6110i 0.511551 0.413975i
\(929\) −8.44700 4.87688i −0.277137 0.160005i 0.354989 0.934870i \(-0.384484\pi\)
−0.632127 + 0.774865i \(0.717818\pi\)
\(930\) 0 0
\(931\) −7.46066 + 0.982214i −0.244513 + 0.0321908i
\(932\) −4.01062 + 27.1359i −0.131372 + 0.888865i
\(933\) 0 0
\(934\) −0.512713 + 6.97572i −0.0167765 + 0.228253i
\(935\) 49.2684 49.2684i 1.61125 1.61125i
\(936\) 0 0
\(937\) −0.190702 0.190702i −0.00622997 0.00622997i 0.703985 0.710215i \(-0.251402\pi\)
−0.710215 + 0.703985i \(0.751402\pi\)
\(938\) 2.90573 2.50784i 0.0948755 0.0818838i
\(939\) 0 0
\(940\) 4.12171 + 2.46751i 0.134435 + 0.0804813i
\(941\) 0.226723 + 1.72213i 0.00739097 + 0.0561400i 0.994743 0.102404i \(-0.0326534\pi\)
−0.987352 + 0.158544i \(0.949320\pi\)
\(942\) 0 0
\(943\) 15.3335 26.5584i 0.499328 0.864862i
\(944\) 27.6880 + 38.5528i 0.901169 + 1.25479i
\(945\) 0 0
\(946\) 0.880885 + 15.2943i 0.0286401 + 0.497262i
\(947\) 1.58884 + 2.07062i 0.0516303 + 0.0672860i 0.818455 0.574571i \(-0.194831\pi\)
−0.766825 + 0.641857i \(0.778164\pi\)
\(948\) 0 0
\(949\) 0.272733 + 0.209275i 0.00885328 + 0.00679336i
\(950\) −3.81953 20.0296i −0.123922 0.649847i
\(951\) 0 0
\(952\) 2.24700 6.13657i 0.0728257 0.198887i
\(953\) −32.7952 32.7952i −1.06234 1.06234i −0.997923 0.0644170i \(-0.979481\pi\)
−0.0644170 0.997923i \(-0.520519\pi\)
\(954\) 0 0
\(955\) −10.6078 + 4.39389i −0.343260 + 0.142183i
\(956\) −17.0855 + 39.4684i −0.552585 + 1.27650i
\(957\) 0 0
\(958\) −6.03754 + 29.1448i −0.195064 + 0.941625i
\(959\) 7.93978 + 13.7521i 0.256389 + 0.444078i
\(960\) 0 0
\(961\) −11.8015 + 20.4408i −0.380693 + 0.659380i
\(962\) 39.9165 + 35.5689i 1.28696 + 1.14679i
\(963\) 0 0
\(964\) 43.3339 5.00829i 1.39569 0.161306i
\(965\) 7.38501 56.0947i 0.237732 1.80575i
\(966\) 0 0
\(967\) −6.93757 + 25.8914i −0.223097 + 0.832610i 0.760061 + 0.649852i \(0.225169\pi\)
−0.983158 + 0.182758i \(0.941498\pi\)
\(968\) 32.4786 27.1457i 1.04390 0.872497i
\(969\) 0 0
\(970\) −10.3248 + 8.91099i −0.331510 + 0.286115i
\(971\) 14.4324 5.97811i 0.463159 0.191847i −0.138887 0.990308i \(-0.544352\pi\)
0.602046 + 0.798462i \(0.294352\pi\)
\(972\) 0 0
\(973\) −3.30859 + 7.98765i −0.106069 + 0.256072i
\(974\) −41.7382 20.9955i −1.33738 0.672738i
\(975\) 0 0
\(976\) 7.65459 + 20.2730i 0.245018 + 0.648922i
\(977\) 14.0912 + 24.4067i 0.450819 + 0.780841i 0.998437 0.0558872i \(-0.0177987\pi\)
−0.547618 + 0.836728i \(0.684465\pi\)
\(978\) 0 0
\(979\) 13.7906 10.5819i 0.440749 0.338198i
\(980\) −47.4750 + 26.4163i −1.51653 + 0.843838i
\(981\) 0 0
\(982\) −56.6686 19.7382i −1.80837 0.629870i
\(983\) 23.4618 6.28657i 0.748315 0.200510i 0.135544 0.990771i \(-0.456722\pi\)
0.612770 + 0.790261i \(0.290055\pi\)
\(984\) 0 0
\(985\) 61.8147 + 16.5632i 1.96958 + 0.527747i
\(986\) 13.5648 + 9.21990i 0.431991 + 0.293621i
\(987\) 0 0
\(988\) 9.13383 3.61499i 0.290586 0.115008i
\(989\) 4.78542 11.5530i 0.152167 0.367365i
\(990\) 0 0
\(991\) 30.2498i 0.960917i −0.877017 0.480459i \(-0.840470\pi\)
0.877017 0.480459i \(-0.159530\pi\)
\(992\) −8.03455 13.1206i −0.255097 0.416580i
\(993\) 0 0
\(994\) −0.0401056 + 0.193600i −0.00127207 + 0.00614062i
\(995\) −3.00938 22.8585i −0.0954037 0.724663i
\(996\) 0 0
\(997\) 52.8202 + 6.95391i 1.67283 + 0.220233i 0.906498 0.422209i \(-0.138745\pi\)
0.766334 + 0.642442i \(0.222079\pi\)
\(998\) 17.2166 + 35.6200i 0.544982 + 1.12753i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bn.a.35.4 368
3.2 odd 2 288.2.bf.a.227.43 yes 368
9.4 even 3 288.2.bf.a.131.28 yes 368
9.5 odd 6 inner 864.2.bn.a.611.19 368
32.11 odd 8 inner 864.2.bn.a.683.19 368
96.11 even 8 288.2.bf.a.11.28 368
288.139 odd 24 288.2.bf.a.203.43 yes 368
288.203 even 24 inner 864.2.bn.a.395.4 368
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.bf.a.11.28 368 96.11 even 8
288.2.bf.a.131.28 yes 368 9.4 even 3
288.2.bf.a.203.43 yes 368 288.139 odd 24
288.2.bf.a.227.43 yes 368 3.2 odd 2
864.2.bn.a.35.4 368 1.1 even 1 trivial
864.2.bn.a.395.4 368 288.203 even 24 inner
864.2.bn.a.611.19 368 9.5 odd 6 inner
864.2.bn.a.683.19 368 32.11 odd 8 inner