Properties

Label 864.2.bn.a.35.3
Level $864$
Weight $2$
Character 864.35
Analytic conductor $6.899$
Analytic rank $0$
Dimension $368$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(35,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(24)) chi = DirichletCharacter(H, H._module([12, 9, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bn (of order \(24\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(368\)
Relative dimension: \(46\) over \(\Q(\zeta_{24})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

Embedding invariants

Embedding label 35.3
Character \(\chi\) \(=\) 864.35
Dual form 864.2.bn.a.395.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36587 + 0.366606i) q^{2} +(1.73120 - 1.00147i) q^{4} +(-0.924826 - 0.709644i) q^{5} +(1.85343 - 0.496625i) q^{7} +(-1.99745 + 2.00255i) q^{8} +(1.52335 + 0.630235i) q^{10} +(0.637333 - 4.84102i) q^{11} +(-2.65706 + 0.349808i) q^{13} +(-2.34948 + 1.35780i) q^{14} +(1.99411 - 3.46749i) q^{16} -4.48513 q^{17} +(1.00431 + 0.415998i) q^{19} +(-2.31175 - 0.302350i) q^{20} +(0.904232 + 6.84586i) q^{22} +(0.0881758 - 0.329076i) q^{23} +(-0.942386 - 3.51703i) q^{25} +(3.50095 - 1.45188i) q^{26} +(2.71130 - 2.71591i) q^{28} +(3.56729 + 4.64898i) q^{29} +(-4.83932 + 2.79398i) q^{31} +(-1.45250 + 5.46720i) q^{32} +(6.12611 - 1.64427i) q^{34} +(-2.06653 - 0.855983i) q^{35} +(-2.90428 - 7.01154i) q^{37} +(-1.52426 - 0.200014i) q^{38} +(3.26839 - 0.434529i) q^{40} +(3.68584 + 0.987619i) q^{41} +(-11.7865 - 1.55172i) q^{43} +(-3.74479 - 9.01905i) q^{44} +(0.000204623 + 0.481801i) q^{46} +(3.25721 + 1.88055i) q^{47} +(-2.87362 + 1.65908i) q^{49} +(2.57654 + 4.45833i) q^{50} +(-4.24958 + 3.26655i) q^{52} +(-3.91618 - 9.45448i) q^{53} +(-4.02483 + 4.02483i) q^{55} +(-2.70762 + 4.70356i) q^{56} +(-6.57680 - 5.04212i) q^{58} +(-0.584963 + 0.762339i) q^{59} +(9.47057 - 7.26703i) q^{61} +(5.58560 - 5.59034i) q^{62} +(-0.0203858 - 7.99997i) q^{64} +(2.70555 + 1.56205i) q^{65} +(-2.51153 + 0.330649i) q^{67} +(-7.76466 + 4.49173i) q^{68} +(3.13641 + 0.411562i) q^{70} +(-6.68291 + 6.68291i) q^{71} +(-0.787037 - 0.787037i) q^{73} +(6.53733 + 8.51213i) q^{74} +(2.15527 - 0.285609i) q^{76} +(-1.22292 - 9.28901i) q^{77} +(3.18314 - 5.51337i) q^{79} +(-4.30489 + 1.79172i) q^{80} +(-5.39645 + 0.00229190i) q^{82} +(-11.0027 - 14.3389i) q^{83} +(4.14797 + 3.18285i) q^{85} +(16.6676 - 2.20154i) q^{86} +(8.42133 + 10.9460i) q^{88} +(-2.96906 - 2.96906i) q^{89} +(-4.75094 + 1.96790i) q^{91} +(-0.176911 - 0.658003i) q^{92} +(-5.13835 - 1.37448i) q^{94} +(-0.633600 - 1.09743i) q^{95} +(-1.67561 + 2.90224i) q^{97} +(3.31676 - 3.31958i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 368 q + 12 q^{2} - 4 q^{4} + 12 q^{5} - 4 q^{7} - 16 q^{10} + 12 q^{11} - 4 q^{13} + 12 q^{14} - 4 q^{16} - 16 q^{19} + 12 q^{20} - 4 q^{22} + 12 q^{23} - 4 q^{25} - 16 q^{28} + 12 q^{29} + 12 q^{32} - 12 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36587 + 0.366606i −0.965816 + 0.259229i
\(3\) 0 0
\(4\) 1.73120 1.00147i 0.865600 0.500735i
\(5\) −0.924826 0.709644i −0.413595 0.317363i 0.380919 0.924608i \(-0.375608\pi\)
−0.794514 + 0.607246i \(0.792274\pi\)
\(6\) 0 0
\(7\) 1.85343 0.496625i 0.700530 0.187706i 0.109062 0.994035i \(-0.465215\pi\)
0.591468 + 0.806328i \(0.298549\pi\)
\(8\) −1.99745 + 2.00255i −0.706205 + 0.708007i
\(9\) 0 0
\(10\) 1.52335 + 0.630235i 0.481726 + 0.199298i
\(11\) 0.637333 4.84102i 0.192163 1.45962i −0.574990 0.818160i \(-0.694994\pi\)
0.767154 0.641463i \(-0.221672\pi\)
\(12\) 0 0
\(13\) −2.65706 + 0.349808i −0.736935 + 0.0970193i −0.489645 0.871922i \(-0.662873\pi\)
−0.247290 + 0.968941i \(0.579540\pi\)
\(14\) −2.34948 + 1.35780i −0.627924 + 0.362888i
\(15\) 0 0
\(16\) 1.99411 3.46749i 0.498528 0.866874i
\(17\) −4.48513 −1.08780 −0.543902 0.839149i \(-0.683054\pi\)
−0.543902 + 0.839149i \(0.683054\pi\)
\(18\) 0 0
\(19\) 1.00431 + 0.415998i 0.230404 + 0.0954365i 0.494899 0.868951i \(-0.335205\pi\)
−0.264495 + 0.964387i \(0.585205\pi\)
\(20\) −2.31175 0.302350i −0.516923 0.0676075i
\(21\) 0 0
\(22\) 0.904232 + 6.84586i 0.192783 + 1.45954i
\(23\) 0.0881758 0.329076i 0.0183859 0.0686172i −0.956123 0.292964i \(-0.905358\pi\)
0.974509 + 0.224347i \(0.0720249\pi\)
\(24\) 0 0
\(25\) −0.942386 3.51703i −0.188477 0.703407i
\(26\) 3.50095 1.45188i 0.686593 0.284738i
\(27\) 0 0
\(28\) 2.71130 2.71591i 0.512388 0.513259i
\(29\) 3.56729 + 4.64898i 0.662429 + 0.863295i 0.996865 0.0791239i \(-0.0252123\pi\)
−0.334435 + 0.942419i \(0.608546\pi\)
\(30\) 0 0
\(31\) −4.83932 + 2.79398i −0.869168 + 0.501814i −0.867072 0.498183i \(-0.834001\pi\)
−0.00209645 + 0.999998i \(0.500667\pi\)
\(32\) −1.45250 + 5.46720i −0.256767 + 0.966473i
\(33\) 0 0
\(34\) 6.12611 1.64427i 1.05062 0.281991i
\(35\) −2.06653 0.855983i −0.349307 0.144688i
\(36\) 0 0
\(37\) −2.90428 7.01154i −0.477460 1.15269i −0.960796 0.277255i \(-0.910575\pi\)
0.483336 0.875435i \(-0.339425\pi\)
\(38\) −1.52426 0.200014i −0.247268 0.0324466i
\(39\) 0 0
\(40\) 3.26839 0.434529i 0.516778 0.0687051i
\(41\) 3.68584 + 0.987619i 0.575632 + 0.154240i 0.534878 0.844929i \(-0.320357\pi\)
0.0407537 + 0.999169i \(0.487024\pi\)
\(42\) 0 0
\(43\) −11.7865 1.55172i −1.79742 0.236635i −0.843591 0.536986i \(-0.819563\pi\)
−0.953829 + 0.300352i \(0.902896\pi\)
\(44\) −3.74479 9.01905i −0.564549 1.35967i
\(45\) 0 0
\(46\) 0.000204623 0.481801i 3.01700e−5 0.0710377i
\(47\) 3.25721 + 1.88055i 0.475114 + 0.274307i 0.718378 0.695653i \(-0.244885\pi\)
−0.243264 + 0.969960i \(0.578218\pi\)
\(48\) 0 0
\(49\) −2.87362 + 1.65908i −0.410517 + 0.237012i
\(50\) 2.57654 + 4.45833i 0.364378 + 0.630503i
\(51\) 0 0
\(52\) −4.24958 + 3.26655i −0.589310 + 0.452989i
\(53\) −3.91618 9.45448i −0.537928 1.29867i −0.926167 0.377114i \(-0.876916\pi\)
0.388239 0.921559i \(-0.373084\pi\)
\(54\) 0 0
\(55\) −4.02483 + 4.02483i −0.542708 + 0.542708i
\(56\) −2.70762 + 4.70356i −0.361821 + 0.628540i
\(57\) 0 0
\(58\) −6.57680 5.04212i −0.863576 0.662063i
\(59\) −0.584963 + 0.762339i −0.0761557 + 0.0992480i −0.829878 0.557945i \(-0.811590\pi\)
0.753722 + 0.657193i \(0.228257\pi\)
\(60\) 0 0
\(61\) 9.47057 7.26703i 1.21258 0.930447i 0.213662 0.976908i \(-0.431461\pi\)
0.998920 + 0.0464603i \(0.0147941\pi\)
\(62\) 5.58560 5.59034i 0.709371 0.709974i
\(63\) 0 0
\(64\) −0.0203858 7.99997i −0.00254822 0.999997i
\(65\) 2.70555 + 1.56205i 0.335583 + 0.193749i
\(66\) 0 0
\(67\) −2.51153 + 0.330649i −0.306832 + 0.0403952i −0.282370 0.959306i \(-0.591121\pi\)
−0.0244620 + 0.999701i \(0.507787\pi\)
\(68\) −7.76466 + 4.49173i −0.941604 + 0.544702i
\(69\) 0 0
\(70\) 3.13641 + 0.411562i 0.374873 + 0.0491910i
\(71\) −6.68291 + 6.68291i −0.793115 + 0.793115i −0.981999 0.188884i \(-0.939513\pi\)
0.188884 + 0.981999i \(0.439513\pi\)
\(72\) 0 0
\(73\) −0.787037 0.787037i −0.0921157 0.0921157i 0.659547 0.751663i \(-0.270748\pi\)
−0.751663 + 0.659547i \(0.770748\pi\)
\(74\) 6.53733 + 8.51213i 0.759949 + 0.989515i
\(75\) 0 0
\(76\) 2.15527 0.285609i 0.247226 0.0327616i
\(77\) −1.22292 9.28901i −0.139365 1.05858i
\(78\) 0 0
\(79\) 3.18314 5.51337i 0.358132 0.620302i −0.629517 0.776987i \(-0.716747\pi\)
0.987649 + 0.156684i \(0.0500805\pi\)
\(80\) −4.30489 + 1.79172i −0.481302 + 0.200320i
\(81\) 0 0
\(82\) −5.39645 + 0.00229190i −0.595938 + 0.000253098i
\(83\) −11.0027 14.3389i −1.20770 1.57390i −0.704432 0.709772i \(-0.748798\pi\)
−0.503266 0.864131i \(-0.667869\pi\)
\(84\) 0 0
\(85\) 4.14797 + 3.18285i 0.449910 + 0.345228i
\(86\) 16.6676 2.20154i 1.79732 0.237398i
\(87\) 0 0
\(88\) 8.42133 + 10.9460i 0.897717 + 1.16685i
\(89\) −2.96906 2.96906i −0.314720 0.314720i 0.532015 0.846735i \(-0.321435\pi\)
−0.846735 + 0.532015i \(0.821435\pi\)
\(90\) 0 0
\(91\) −4.75094 + 1.96790i −0.498034 + 0.206292i
\(92\) −0.176911 0.658003i −0.0184442 0.0686015i
\(93\) 0 0
\(94\) −5.13835 1.37448i −0.529981 0.141767i
\(95\) −0.633600 1.09743i −0.0650060 0.112594i
\(96\) 0 0
\(97\) −1.67561 + 2.90224i −0.170132 + 0.294678i −0.938466 0.345372i \(-0.887753\pi\)
0.768334 + 0.640049i \(0.221086\pi\)
\(98\) 3.31676 3.31958i 0.335043 0.335328i
\(99\) 0 0
\(100\) −5.15367 5.14492i −0.515367 0.514492i
\(101\) 1.63476 12.4173i 0.162665 1.23556i −0.694108 0.719871i \(-0.744201\pi\)
0.856773 0.515694i \(-0.172466\pi\)
\(102\) 0 0
\(103\) 1.01900 3.80296i 0.100405 0.374717i −0.897378 0.441262i \(-0.854531\pi\)
0.997783 + 0.0665452i \(0.0211977\pi\)
\(104\) 4.60683 6.01960i 0.451737 0.590271i
\(105\) 0 0
\(106\) 8.81505 + 11.4779i 0.856194 + 1.11483i
\(107\) 10.9410 4.53190i 1.05770 0.438115i 0.215068 0.976599i \(-0.431003\pi\)
0.842636 + 0.538484i \(0.181003\pi\)
\(108\) 0 0
\(109\) 5.21100 12.5805i 0.499124 1.20499i −0.450833 0.892608i \(-0.648873\pi\)
0.949956 0.312383i \(-0.101127\pi\)
\(110\) 4.02187 6.97291i 0.383470 0.664841i
\(111\) 0 0
\(112\) 1.97390 7.41708i 0.186516 0.700848i
\(113\) −1.89610 3.28415i −0.178370 0.308947i 0.762952 0.646455i \(-0.223749\pi\)
−0.941323 + 0.337508i \(0.890416\pi\)
\(114\) 0 0
\(115\) −0.315074 + 0.241765i −0.0293808 + 0.0225447i
\(116\) 10.8315 + 4.47579i 1.00568 + 0.415566i
\(117\) 0 0
\(118\) 0.519506 1.25571i 0.0478244 0.115597i
\(119\) −8.31287 + 2.22743i −0.762040 + 0.204188i
\(120\) 0 0
\(121\) −12.4041 3.32368i −1.12765 0.302152i
\(122\) −10.2714 + 13.3978i −0.929932 + 1.21298i
\(123\) 0 0
\(124\) −5.57975 + 9.68339i −0.501076 + 0.869594i
\(125\) −3.85480 + 9.30632i −0.344784 + 0.832383i
\(126\) 0 0
\(127\) 0.602538i 0.0534666i −0.999643 0.0267333i \(-0.991490\pi\)
0.999643 0.0267333i \(-0.00851049\pi\)
\(128\) 2.96068 + 10.9194i 0.261690 + 0.965152i
\(129\) 0 0
\(130\) −4.26809 1.14169i −0.374337 0.100133i
\(131\) 0.922112 + 7.00414i 0.0805653 + 0.611954i 0.983331 + 0.181823i \(0.0581996\pi\)
−0.902766 + 0.430132i \(0.858467\pi\)
\(132\) 0 0
\(133\) 2.06801 + 0.272258i 0.179319 + 0.0236078i
\(134\) 3.30920 1.37236i 0.285872 0.118554i
\(135\) 0 0
\(136\) 8.95883 8.98168i 0.768213 0.770173i
\(137\) −3.69237 13.7801i −0.315461 1.17731i −0.923560 0.383454i \(-0.874734\pi\)
0.608099 0.793861i \(-0.291932\pi\)
\(138\) 0 0
\(139\) −4.76751 + 6.21314i −0.404375 + 0.526992i −0.950505 0.310708i \(-0.899434\pi\)
0.546130 + 0.837700i \(0.316100\pi\)
\(140\) −4.43481 + 0.587687i −0.374810 + 0.0496686i
\(141\) 0 0
\(142\) 6.67799 11.5780i 0.560405 0.971602i
\(143\) 13.0858i 1.09429i
\(144\) 0 0
\(145\) 6.83101i 0.567285i
\(146\) 1.36352 + 0.786458i 0.112846 + 0.0650877i
\(147\) 0 0
\(148\) −12.0497 9.22984i −0.990482 0.758688i
\(149\) 10.1226 13.1920i 0.829274 1.08073i −0.166237 0.986086i \(-0.553162\pi\)
0.995511 0.0946449i \(-0.0301716\pi\)
\(150\) 0 0
\(151\) 2.59500 + 9.68466i 0.211178 + 0.788127i 0.987477 + 0.157762i \(0.0504279\pi\)
−0.776299 + 0.630365i \(0.782905\pi\)
\(152\) −2.83911 + 1.18024i −0.230282 + 0.0957300i
\(153\) 0 0
\(154\) 5.07575 + 12.2392i 0.409016 + 0.986266i
\(155\) 6.45827 + 0.850247i 0.518741 + 0.0682935i
\(156\) 0 0
\(157\) 2.93301 + 22.2784i 0.234080 + 1.77801i 0.555936 + 0.831225i \(0.312360\pi\)
−0.321856 + 0.946789i \(0.604307\pi\)
\(158\) −2.32653 + 8.69750i −0.185089 + 0.691936i
\(159\) 0 0
\(160\) 5.22307 4.02545i 0.412920 0.318240i
\(161\) 0.653710i 0.0515196i
\(162\) 0 0
\(163\) −3.18448 + 7.68801i −0.249428 + 0.602171i −0.998156 0.0607058i \(-0.980665\pi\)
0.748728 + 0.662877i \(0.230665\pi\)
\(164\) 7.37001 1.98150i 0.575501 0.154729i
\(165\) 0 0
\(166\) 20.2849 + 15.5515i 1.57442 + 1.20703i
\(167\) 6.67910 + 1.78966i 0.516844 + 0.138488i 0.507806 0.861471i \(-0.330457\pi\)
0.00903759 + 0.999959i \(0.497123\pi\)
\(168\) 0 0
\(169\) −5.61945 + 1.50573i −0.432266 + 0.115825i
\(170\) −6.83243 2.82669i −0.524024 0.216797i
\(171\) 0 0
\(172\) −21.9587 + 9.11747i −1.67434 + 0.695200i
\(173\) −5.99572 + 4.60068i −0.455847 + 0.349783i −0.811021 0.585017i \(-0.801088\pi\)
0.355175 + 0.934800i \(0.384421\pi\)
\(174\) 0 0
\(175\) −3.49329 6.05056i −0.264068 0.457379i
\(176\) −15.5153 11.8635i −1.16951 0.894244i
\(177\) 0 0
\(178\) 5.14382 + 2.96688i 0.385546 + 0.222377i
\(179\) −8.90629 + 21.5017i −0.665688 + 1.60711i 0.123063 + 0.992399i \(0.460728\pi\)
−0.788751 + 0.614713i \(0.789272\pi\)
\(180\) 0 0
\(181\) 23.2328 9.62335i 1.72688 0.715298i 0.727302 0.686318i \(-0.240774\pi\)
0.999580 0.0289797i \(-0.00922581\pi\)
\(182\) 5.76772 4.42962i 0.427532 0.328345i
\(183\) 0 0
\(184\) 0.482864 + 0.833890i 0.0355972 + 0.0614752i
\(185\) −2.28975 + 8.54546i −0.168346 + 0.628275i
\(186\) 0 0
\(187\) −2.85852 + 21.7126i −0.209036 + 1.58778i
\(188\) 7.52221 0.00638943i 0.548614 0.000465997i
\(189\) 0 0
\(190\) 1.26774 + 1.26666i 0.0919714 + 0.0918933i
\(191\) −2.34881 + 4.06825i −0.169954 + 0.294369i −0.938403 0.345542i \(-0.887695\pi\)
0.768450 + 0.639910i \(0.221029\pi\)
\(192\) 0 0
\(193\) 5.59933 + 9.69833i 0.403049 + 0.698101i 0.994092 0.108539i \(-0.0346171\pi\)
−0.591043 + 0.806640i \(0.701284\pi\)
\(194\) 1.22469 4.57837i 0.0879273 0.328708i
\(195\) 0 0
\(196\) −3.31328 + 5.75005i −0.236663 + 0.410718i
\(197\) −10.2796 + 4.25796i −0.732394 + 0.303367i −0.717535 0.696522i \(-0.754730\pi\)
−0.0148585 + 0.999890i \(0.504730\pi\)
\(198\) 0 0
\(199\) 12.0444 + 12.0444i 0.853803 + 0.853803i 0.990599 0.136796i \(-0.0436806\pi\)
−0.136796 + 0.990599i \(0.543681\pi\)
\(200\) 8.92539 + 5.13793i 0.631121 + 0.363306i
\(201\) 0 0
\(202\) 2.31936 + 17.5597i 0.163190 + 1.23550i
\(203\) 8.92052 + 6.84496i 0.626098 + 0.480422i
\(204\) 0 0
\(205\) −2.70791 3.52901i −0.189128 0.246477i
\(206\) 0.00236472 + 5.56792i 0.000164758 + 0.387935i
\(207\) 0 0
\(208\) −4.08551 + 9.91088i −0.283279 + 0.687196i
\(209\) 2.65393 4.59675i 0.183576 0.317964i
\(210\) 0 0
\(211\) −2.66573 20.2482i −0.183516 1.39394i −0.796877 0.604141i \(-0.793516\pi\)
0.613361 0.789802i \(-0.289817\pi\)
\(212\) −16.2481 12.4457i −1.11592 0.854773i
\(213\) 0 0
\(214\) −13.2825 + 10.2010i −0.907975 + 0.697327i
\(215\) 9.79927 + 9.79927i 0.668305 + 0.668305i
\(216\) 0 0
\(217\) −7.58178 + 7.58178i −0.514685 + 0.514685i
\(218\) −2.50548 + 19.0937i −0.169693 + 1.29319i
\(219\) 0 0
\(220\) −2.93704 + 10.9985i −0.198015 + 0.741521i
\(221\) 11.9172 1.56894i 0.801641 0.105538i
\(222\) 0 0
\(223\) 11.0201 + 6.36245i 0.737960 + 0.426061i 0.821327 0.570457i \(-0.193234\pi\)
−0.0833671 + 0.996519i \(0.526567\pi\)
\(224\) 0.0230496 + 10.8544i 0.00154007 + 0.725241i
\(225\) 0 0
\(226\) 3.79382 + 3.79060i 0.252361 + 0.252147i
\(227\) 18.2169 13.9783i 1.20910 0.927772i 0.210340 0.977628i \(-0.432543\pi\)
0.998756 + 0.0498561i \(0.0158763\pi\)
\(228\) 0 0
\(229\) 9.10025 11.8597i 0.601362 0.783710i −0.389145 0.921177i \(-0.627229\pi\)
0.990506 + 0.137467i \(0.0438961\pi\)
\(230\) 0.341718 0.445728i 0.0225322 0.0293904i
\(231\) 0 0
\(232\) −16.4353 2.14245i −1.07903 0.140659i
\(233\) 7.68982 7.68982i 0.503777 0.503777i −0.408833 0.912609i \(-0.634064\pi\)
0.912609 + 0.408833i \(0.134064\pi\)
\(234\) 0 0
\(235\) −1.67783 4.05065i −0.109450 0.264235i
\(236\) −0.249228 + 1.90558i −0.0162234 + 0.124043i
\(237\) 0 0
\(238\) 10.5377 6.08992i 0.683058 0.394751i
\(239\) −3.38369 + 1.95358i −0.218873 + 0.126366i −0.605428 0.795900i \(-0.706998\pi\)
0.386555 + 0.922266i \(0.373665\pi\)
\(240\) 0 0
\(241\) 24.7577 + 14.2939i 1.59479 + 0.920751i 0.992469 + 0.122494i \(0.0390892\pi\)
0.602318 + 0.798257i \(0.294244\pi\)
\(242\) 18.1609 0.00771302i 1.16743 0.000495812i
\(243\) 0 0
\(244\) 9.11775 22.0652i 0.583704 1.41258i
\(245\) 3.83495 + 0.504881i 0.245006 + 0.0322557i
\(246\) 0 0
\(247\) −2.81402 0.754015i −0.179052 0.0479768i
\(248\) 4.07122 15.2718i 0.258523 0.969761i
\(249\) 0 0
\(250\) 1.85341 14.1244i 0.117220 0.893306i
\(251\) −2.34809 5.66878i −0.148210 0.357810i 0.832287 0.554345i \(-0.187031\pi\)
−0.980497 + 0.196535i \(0.937031\pi\)
\(252\) 0 0
\(253\) −1.53687 0.636592i −0.0966222 0.0400222i
\(254\) 0.220894 + 0.822989i 0.0138601 + 0.0516389i
\(255\) 0 0
\(256\) −8.04703 13.8291i −0.502940 0.864322i
\(257\) 8.35257 4.82236i 0.521019 0.300810i −0.216333 0.976320i \(-0.569410\pi\)
0.737351 + 0.675509i \(0.236076\pi\)
\(258\) 0 0
\(259\) −8.86497 11.5531i −0.550843 0.717872i
\(260\) 6.24821 0.00530728i 0.387497 0.000329144i
\(261\) 0 0
\(262\) −3.82724 9.22869i −0.236448 0.570150i
\(263\) 8.17454 + 30.5078i 0.504063 + 1.88119i 0.471789 + 0.881712i \(0.343608\pi\)
0.0322745 + 0.999479i \(0.489725\pi\)
\(264\) 0 0
\(265\) −3.08754 + 11.5228i −0.189666 + 0.707843i
\(266\) −2.92444 + 0.386274i −0.179309 + 0.0236840i
\(267\) 0 0
\(268\) −4.01682 + 3.08764i −0.245367 + 0.188608i
\(269\) 21.1423 + 8.75744i 1.28907 + 0.533951i 0.918708 0.394937i \(-0.129233\pi\)
0.370362 + 0.928887i \(0.379233\pi\)
\(270\) 0 0
\(271\) −11.0776 −0.672917 −0.336459 0.941698i \(-0.609229\pi\)
−0.336459 + 0.941698i \(0.609229\pi\)
\(272\) −8.94386 + 15.5522i −0.542301 + 0.942989i
\(273\) 0 0
\(274\) 10.0952 + 17.4682i 0.609871 + 1.05529i
\(275\) −17.6267 + 2.32059i −1.06293 + 0.139937i
\(276\) 0 0
\(277\) −0.689862 + 5.24003i −0.0414498 + 0.314843i 0.958143 + 0.286292i \(0.0924226\pi\)
−0.999592 + 0.0285510i \(0.990911\pi\)
\(278\) 4.23403 10.2341i 0.253940 0.613803i
\(279\) 0 0
\(280\) 5.84193 2.42853i 0.349122 0.145133i
\(281\) −28.0589 + 7.51836i −1.67385 + 0.448508i −0.966146 0.257997i \(-0.916938\pi\)
−0.707708 + 0.706505i \(0.750271\pi\)
\(282\) 0 0
\(283\) 9.47185 + 7.26801i 0.563043 + 0.432038i 0.850667 0.525705i \(-0.176199\pi\)
−0.287624 + 0.957744i \(0.592865\pi\)
\(284\) −4.87672 + 18.2622i −0.289380 + 1.08366i
\(285\) 0 0
\(286\) −4.79733 17.8735i −0.283672 1.05688i
\(287\) 7.32192 0.432200
\(288\) 0 0
\(289\) 3.11640 0.183318
\(290\) 2.50429 + 9.33027i 0.147057 + 0.547892i
\(291\) 0 0
\(292\) −2.15071 0.574324i −0.125861 0.0336098i
\(293\) 9.05940 + 6.95152i 0.529256 + 0.406112i 0.838526 0.544862i \(-0.183418\pi\)
−0.309270 + 0.950974i \(0.600085\pi\)
\(294\) 0 0
\(295\) 1.08198 0.289915i 0.0629952 0.0168795i
\(296\) 19.8421 + 8.18926i 1.15330 + 0.475991i
\(297\) 0 0
\(298\) −8.98986 + 21.7295i −0.520769 + 1.25876i
\(299\) −0.119174 + 0.905219i −0.00689203 + 0.0523502i
\(300\) 0 0
\(301\) −22.6160 + 2.97745i −1.30356 + 0.171618i
\(302\) −7.09488 12.2767i −0.408265 0.706442i
\(303\) 0 0
\(304\) 3.44517 2.65289i 0.197594 0.152153i
\(305\) −13.9156 −0.796807
\(306\) 0 0
\(307\) −30.1275 12.4792i −1.71947 0.712228i −0.999840 0.0178696i \(-0.994312\pi\)
−0.719630 0.694358i \(-0.755688\pi\)
\(308\) −11.4198 14.8564i −0.650703 0.846523i
\(309\) 0 0
\(310\) −9.13286 + 1.20631i −0.518712 + 0.0685138i
\(311\) −0.958889 + 3.57862i −0.0543736 + 0.202925i −0.987769 0.155925i \(-0.950164\pi\)
0.933395 + 0.358850i \(0.116831\pi\)
\(312\) 0 0
\(313\) 1.23426 + 4.60631i 0.0697643 + 0.260364i 0.991995 0.126276i \(-0.0403024\pi\)
−0.922231 + 0.386640i \(0.873636\pi\)
\(314\) −12.1735 29.3542i −0.686991 1.65655i
\(315\) 0 0
\(316\) −0.0108152 12.7326i −0.000608400 0.716263i
\(317\) 1.92143 + 2.50405i 0.107918 + 0.140642i 0.844190 0.536044i \(-0.180082\pi\)
−0.736272 + 0.676686i \(0.763415\pi\)
\(318\) 0 0
\(319\) 24.7794 14.3064i 1.38738 0.801004i
\(320\) −5.65828 + 7.41305i −0.316308 + 0.414402i
\(321\) 0 0
\(322\) 0.239654 + 0.892883i 0.0133554 + 0.0497584i
\(323\) −4.50445 1.86581i −0.250634 0.103816i
\(324\) 0 0
\(325\) 3.73426 + 9.01530i 0.207139 + 0.500079i
\(326\) 1.53112 11.6683i 0.0848006 0.646245i
\(327\) 0 0
\(328\) −9.34004 + 5.40835i −0.515718 + 0.298626i
\(329\) 6.97094 + 1.86786i 0.384321 + 0.102978i
\(330\) 0 0
\(331\) −17.8399 2.34867i −0.980571 0.129095i −0.376836 0.926280i \(-0.622988\pi\)
−0.603735 + 0.797185i \(0.706321\pi\)
\(332\) −33.4078 13.8047i −1.83349 0.757634i
\(333\) 0 0
\(334\) −9.77887 + 0.00415313i −0.535076 + 0.000227249i
\(335\) 2.55737 + 1.47650i 0.139724 + 0.0806697i
\(336\) 0 0
\(337\) 21.5782 12.4582i 1.17544 0.678641i 0.220485 0.975390i \(-0.429236\pi\)
0.954955 + 0.296750i \(0.0959027\pi\)
\(338\) 7.12343 4.11675i 0.387464 0.223922i
\(339\) 0 0
\(340\) 10.3685 + 1.35608i 0.562311 + 0.0735437i
\(341\) 10.4415 + 25.2080i 0.565438 + 1.36509i
\(342\) 0 0
\(343\) −13.9997 + 13.9997i −0.755914 + 0.755914i
\(344\) 26.6503 20.5035i 1.43689 1.10547i
\(345\) 0 0
\(346\) 6.50274 8.48200i 0.349590 0.455995i
\(347\) 14.4898 18.8835i 0.777853 1.01372i −0.221404 0.975182i \(-0.571064\pi\)
0.999257 0.0385355i \(-0.0122693\pi\)
\(348\) 0 0
\(349\) 5.69606 4.37074i 0.304903 0.233960i −0.444965 0.895548i \(-0.646784\pi\)
0.749868 + 0.661588i \(0.230117\pi\)
\(350\) 6.98955 + 6.98362i 0.373607 + 0.373290i
\(351\) 0 0
\(352\) 25.5411 + 10.5160i 1.36135 + 0.560504i
\(353\) −4.86328 2.80781i −0.258846 0.149445i 0.364962 0.931022i \(-0.381082\pi\)
−0.623808 + 0.781578i \(0.714415\pi\)
\(354\) 0 0
\(355\) 10.9230 1.43804i 0.579733 0.0763234i
\(356\) −8.11347 2.16661i −0.430013 0.114830i
\(357\) 0 0
\(358\) 4.28220 32.6336i 0.226321 1.72474i
\(359\) 10.4889 10.4889i 0.553582 0.553582i −0.373891 0.927473i \(-0.621977\pi\)
0.927473 + 0.373891i \(0.121977\pi\)
\(360\) 0 0
\(361\) −12.5994 12.5994i −0.663129 0.663129i
\(362\) −28.2050 + 21.6615i −1.48242 + 1.13850i
\(363\) 0 0
\(364\) −6.25403 + 8.16477i −0.327800 + 0.427950i
\(365\) 0.169356 + 1.28639i 0.00886451 + 0.0673326i
\(366\) 0 0
\(367\) 4.13255 7.15779i 0.215718 0.373634i −0.737777 0.675045i \(-0.764124\pi\)
0.953494 + 0.301411i \(0.0974576\pi\)
\(368\) −0.965238 0.961964i −0.0503165 0.0501459i
\(369\) 0 0
\(370\) −0.00531366 12.5114i −0.000276244 0.650438i
\(371\) −11.9537 15.5783i −0.620604 0.808787i
\(372\) 0 0
\(373\) −17.0254 13.0640i −0.881540 0.676430i 0.0653931 0.997860i \(-0.479170\pi\)
−0.946933 + 0.321430i \(0.895837\pi\)
\(374\) −4.05560 30.7046i −0.209710 1.58770i
\(375\) 0 0
\(376\) −10.2720 + 2.76641i −0.529739 + 0.142667i
\(377\) −11.1047 11.1047i −0.571924 0.571924i
\(378\) 0 0
\(379\) 15.8866 6.58044i 0.816039 0.338015i 0.0646786 0.997906i \(-0.479398\pi\)
0.751361 + 0.659892i \(0.229398\pi\)
\(380\) −2.19593 1.26533i −0.112649 0.0649103i
\(381\) 0 0
\(382\) 1.71672 6.41779i 0.0878351 0.328363i
\(383\) 2.44422 + 4.23351i 0.124894 + 0.216322i 0.921691 0.387924i \(-0.126808\pi\)
−0.796798 + 0.604246i \(0.793474\pi\)
\(384\) 0 0
\(385\) −5.46090 + 9.45856i −0.278313 + 0.482053i
\(386\) −11.2034 11.1939i −0.570239 0.569755i
\(387\) 0 0
\(388\) 0.00569310 + 6.70243i 0.000289024 + 0.340264i
\(389\) 3.68256 27.9719i 0.186713 1.41823i −0.599550 0.800338i \(-0.704654\pi\)
0.786263 0.617892i \(-0.212013\pi\)
\(390\) 0 0
\(391\) −0.395480 + 1.47595i −0.0200003 + 0.0746420i
\(392\) 2.41751 9.06849i 0.122103 0.458028i
\(393\) 0 0
\(394\) 12.4797 9.58440i 0.628716 0.482855i
\(395\) −6.85638 + 2.84001i −0.344982 + 0.142896i
\(396\) 0 0
\(397\) 3.45578 8.34299i 0.173441 0.418723i −0.813125 0.582089i \(-0.802235\pi\)
0.986565 + 0.163367i \(0.0522354\pi\)
\(398\) −20.8666 12.0355i −1.04595 0.603286i
\(399\) 0 0
\(400\) −14.0745 3.74564i −0.703726 0.187282i
\(401\) −8.90316 15.4207i −0.444602 0.770074i 0.553422 0.832901i \(-0.313322\pi\)
−0.998024 + 0.0628271i \(0.979988\pi\)
\(402\) 0 0
\(403\) 11.8810 9.11661i 0.591835 0.454131i
\(404\) −9.60543 23.1340i −0.477888 1.15096i
\(405\) 0 0
\(406\) −14.6937 6.07901i −0.729235 0.301696i
\(407\) −35.7940 + 9.59098i −1.77424 + 0.475407i
\(408\) 0 0
\(409\) −2.12454 0.569267i −0.105052 0.0281485i 0.205910 0.978571i \(-0.433984\pi\)
−0.310962 + 0.950422i \(0.600651\pi\)
\(410\) 4.99241 + 3.82744i 0.246557 + 0.189024i
\(411\) 0 0
\(412\) −2.04446 7.60418i −0.100723 0.374631i
\(413\) −0.705591 + 1.70345i −0.0347199 + 0.0838212i
\(414\) 0 0
\(415\) 21.0690i 1.03424i
\(416\) 1.94689 15.0347i 0.0954542 0.737139i
\(417\) 0 0
\(418\) −1.93974 + 7.25151i −0.0948756 + 0.354683i
\(419\) 3.34453 + 25.4042i 0.163391 + 1.24108i 0.854932 + 0.518740i \(0.173599\pi\)
−0.691541 + 0.722337i \(0.743068\pi\)
\(420\) 0 0
\(421\) 7.72051 + 1.01642i 0.376275 + 0.0495375i 0.316292 0.948662i \(-0.397562\pi\)
0.0599828 + 0.998199i \(0.480895\pi\)
\(422\) 11.0641 + 26.6791i 0.538594 + 1.29872i
\(423\) 0 0
\(424\) 26.7554 + 11.0425i 1.29936 + 0.536273i
\(425\) 4.22673 + 15.7744i 0.205026 + 0.765169i
\(426\) 0 0
\(427\) 13.9440 18.1722i 0.674800 0.879416i
\(428\) 14.4025 18.8027i 0.696169 0.908863i
\(429\) 0 0
\(430\) −16.9770 9.79206i −0.818703 0.472215i
\(431\) 5.95516i 0.286850i 0.989661 + 0.143425i \(0.0458116\pi\)
−0.989661 + 0.143425i \(0.954188\pi\)
\(432\) 0 0
\(433\) 0.651090i 0.0312894i −0.999878 0.0156447i \(-0.995020\pi\)
0.999878 0.0156447i \(-0.00498007\pi\)
\(434\) 7.57620 13.1352i 0.363669 0.630512i
\(435\) 0 0
\(436\) −3.57769 26.9980i −0.171340 1.29297i
\(437\) 0.225451 0.293813i 0.0107848 0.0140550i
\(438\) 0 0
\(439\) −9.13069 34.0762i −0.435784 1.62637i −0.739183 0.673505i \(-0.764788\pi\)
0.303399 0.952864i \(-0.401879\pi\)
\(440\) −0.0205123 16.0993i −0.000977887 0.767504i
\(441\) 0 0
\(442\) −15.7022 + 6.51189i −0.746879 + 0.309739i
\(443\) −13.5187 1.77978i −0.642295 0.0845597i −0.197658 0.980271i \(-0.563334\pi\)
−0.444636 + 0.895711i \(0.646667\pi\)
\(444\) 0 0
\(445\) 0.638889 + 4.85284i 0.0302862 + 0.230047i
\(446\) −17.3845 4.65026i −0.823181 0.220196i
\(447\) 0 0
\(448\) −4.01077 14.8173i −0.189491 0.700050i
\(449\) 26.8384i 1.26658i −0.773914 0.633291i \(-0.781704\pi\)
0.773914 0.633291i \(-0.218296\pi\)
\(450\) 0 0
\(451\) 7.13020 17.2138i 0.335748 0.810567i
\(452\) −6.57152 3.78663i −0.309098 0.178108i
\(453\) 0 0
\(454\) −19.7574 + 25.7709i −0.927259 + 1.20949i
\(455\) 5.79031 + 1.55151i 0.271454 + 0.0727358i
\(456\) 0 0
\(457\) 16.7058 4.47630i 0.781463 0.209392i 0.154033 0.988066i \(-0.450774\pi\)
0.627430 + 0.778673i \(0.284107\pi\)
\(458\) −8.08193 + 19.5350i −0.377644 + 0.912810i
\(459\) 0 0
\(460\) −0.303336 + 0.734082i −0.0141431 + 0.0342267i
\(461\) −2.59860 + 1.99398i −0.121029 + 0.0928688i −0.667502 0.744608i \(-0.732637\pi\)
0.546473 + 0.837476i \(0.315970\pi\)
\(462\) 0 0
\(463\) 13.4759 + 23.3409i 0.626277 + 1.08474i 0.988293 + 0.152571i \(0.0487552\pi\)
−0.362016 + 0.932172i \(0.617911\pi\)
\(464\) 23.2339 3.09897i 1.07861 0.143866i
\(465\) 0 0
\(466\) −7.68416 + 13.3224i −0.355962 + 0.617149i
\(467\) 6.67811 16.1224i 0.309026 0.746055i −0.690711 0.723131i \(-0.742702\pi\)
0.999737 0.0229242i \(-0.00729765\pi\)
\(468\) 0 0
\(469\) −4.49073 + 1.86012i −0.207363 + 0.0858924i
\(470\) 3.77669 + 4.91756i 0.174206 + 0.226830i
\(471\) 0 0
\(472\) −0.358184 2.69415i −0.0164868 0.124008i
\(473\) −15.0238 + 56.0696i −0.690795 + 2.57808i
\(474\) 0 0
\(475\) 0.516633 3.92422i 0.0237047 0.180055i
\(476\) −12.1605 + 12.1812i −0.557378 + 0.558325i
\(477\) 0 0
\(478\) 3.90549 3.90881i 0.178633 0.178785i
\(479\) 9.05406 15.6821i 0.413691 0.716533i −0.581599 0.813475i \(-0.697573\pi\)
0.995290 + 0.0969423i \(0.0309062\pi\)
\(480\) 0 0
\(481\) 10.1695 + 17.6141i 0.463690 + 0.803135i
\(482\) −39.0561 10.4473i −1.77896 0.475860i
\(483\) 0 0
\(484\) −24.8026 + 6.66842i −1.12739 + 0.303110i
\(485\) 3.60920 1.49498i 0.163885 0.0678836i
\(486\) 0 0
\(487\) 22.7577 + 22.7577i 1.03125 + 1.03125i 0.999496 + 0.0317527i \(0.0101089\pi\)
0.0317527 + 0.999496i \(0.489891\pi\)
\(488\) −4.36444 + 33.4808i −0.197569 + 1.51560i
\(489\) 0 0
\(490\) −5.42314 + 0.716313i −0.244993 + 0.0323597i
\(491\) 8.12295 + 6.23296i 0.366584 + 0.281290i 0.775584 0.631245i \(-0.217456\pi\)
−0.409000 + 0.912534i \(0.634122\pi\)
\(492\) 0 0
\(493\) −15.9998 20.8513i −0.720593 0.939096i
\(494\) 4.12001 0.00174979i 0.185368 7.87267e-5i
\(495\) 0 0
\(496\) 0.0379717 + 22.3518i 0.00170498 + 1.00363i
\(497\) −9.06740 + 15.7052i −0.406728 + 0.704474i
\(498\) 0 0
\(499\) −1.10083 8.36162i −0.0492798 0.374318i −0.998259 0.0589794i \(-0.981215\pi\)
0.948979 0.315338i \(-0.102118\pi\)
\(500\) 2.64657 + 19.9716i 0.118358 + 0.893156i
\(501\) 0 0
\(502\) 5.28538 + 6.88199i 0.235898 + 0.307158i
\(503\) −23.0958 23.0958i −1.02979 1.02979i −0.999542 0.0302472i \(-0.990371\pi\)
−0.0302472 0.999542i \(-0.509629\pi\)
\(504\) 0 0
\(505\) −10.3237 + 10.3237i −0.459399 + 0.459399i
\(506\) 2.33254 + 0.306077i 0.103694 + 0.0136068i
\(507\) 0 0
\(508\) −0.603425 1.04311i −0.0267726 0.0462807i
\(509\) 33.5101 4.41168i 1.48531 0.195544i 0.656180 0.754605i \(-0.272171\pi\)
0.829127 + 0.559060i \(0.188838\pi\)
\(510\) 0 0
\(511\) −1.84958 1.06785i −0.0818205 0.0472391i
\(512\) 16.0610 + 15.9387i 0.709804 + 0.704399i
\(513\) 0 0
\(514\) −9.64062 + 9.64881i −0.425229 + 0.425591i
\(515\) −3.64115 + 2.79395i −0.160448 + 0.123116i
\(516\) 0 0
\(517\) 11.1797 14.5697i 0.491684 0.640775i
\(518\) 16.3438 + 12.5300i 0.718106 + 0.550538i
\(519\) 0 0
\(520\) −8.53229 + 2.29788i −0.374166 + 0.100769i
\(521\) −6.84957 + 6.84957i −0.300085 + 0.300085i −0.841047 0.540962i \(-0.818060\pi\)
0.540962 + 0.841047i \(0.318060\pi\)
\(522\) 0 0
\(523\) 15.0066 + 36.2292i 0.656193 + 1.58419i 0.803637 + 0.595120i \(0.202896\pi\)
−0.147443 + 0.989071i \(0.547104\pi\)
\(524\) 8.61080 + 11.2021i 0.376165 + 0.489366i
\(525\) 0 0
\(526\) −22.3497 38.6728i −0.974492 1.68622i
\(527\) 21.7050 12.5314i 0.945485 0.545876i
\(528\) 0 0
\(529\) 19.8181 + 11.4420i 0.861655 + 0.497477i
\(530\) −0.00716503 16.8706i −0.000311229 0.732813i
\(531\) 0 0
\(532\) 3.85280 1.59972i 0.167040 0.0693565i
\(533\) −10.1390 1.33482i −0.439168 0.0578175i
\(534\) 0 0
\(535\) −13.3345 3.57298i −0.576503 0.154473i
\(536\) 4.35451 5.68991i 0.188086 0.245767i
\(537\) 0 0
\(538\) −32.0882 4.21063i −1.38342 0.181533i
\(539\) 6.20021 + 14.9686i 0.267062 + 0.644745i
\(540\) 0 0
\(541\) 16.0481 + 6.64736i 0.689963 + 0.285792i 0.699985 0.714158i \(-0.253190\pi\)
−0.0100216 + 0.999950i \(0.503190\pi\)
\(542\) 15.1306 4.06111i 0.649914 0.174440i
\(543\) 0 0
\(544\) 6.51463 24.5211i 0.279313 1.05133i
\(545\) −13.7469 + 7.93680i −0.588854 + 0.339975i
\(546\) 0 0
\(547\) 11.0225 + 14.3647i 0.471286 + 0.614192i 0.967149 0.254208i \(-0.0818149\pi\)
−0.495863 + 0.868401i \(0.665148\pi\)
\(548\) −20.1926 20.1583i −0.862586 0.861122i
\(549\) 0 0
\(550\) 23.2250 9.63166i 0.990316 0.410695i
\(551\) 1.64869 + 6.15300i 0.0702366 + 0.262127i
\(552\) 0 0
\(553\) 3.16166 11.7995i 0.134447 0.501764i
\(554\) −0.978760 7.41010i −0.0415835 0.314825i
\(555\) 0 0
\(556\) −2.03124 + 15.5307i −0.0861438 + 0.658650i
\(557\) −5.47199 2.26657i −0.231856 0.0960377i 0.263731 0.964596i \(-0.415047\pi\)
−0.495587 + 0.868559i \(0.665047\pi\)
\(558\) 0 0
\(559\) 31.8601 1.34754
\(560\) −7.08900 + 5.45874i −0.299565 + 0.230674i
\(561\) 0 0
\(562\) 35.5685 20.5557i 1.50037 0.867088i
\(563\) −3.00069 + 0.395049i −0.126464 + 0.0166493i −0.193493 0.981102i \(-0.561982\pi\)
0.0670284 + 0.997751i \(0.478648\pi\)
\(564\) 0 0
\(565\) −0.577010 + 4.38283i −0.0242750 + 0.184387i
\(566\) −15.6018 6.45472i −0.655793 0.271312i
\(567\) 0 0
\(568\) −0.0340591 26.7316i −0.00142909 1.12163i
\(569\) 4.93731 1.32295i 0.206983 0.0554608i −0.153838 0.988096i \(-0.549163\pi\)
0.360821 + 0.932635i \(0.382497\pi\)
\(570\) 0 0
\(571\) 17.1849 + 13.1864i 0.719166 + 0.551836i 0.902225 0.431266i \(-0.141933\pi\)
−0.183058 + 0.983102i \(0.558600\pi\)
\(572\) 13.1051 + 22.6542i 0.547950 + 0.947219i
\(573\) 0 0
\(574\) −10.0008 + 2.68426i −0.417425 + 0.112039i
\(575\) −1.24047 −0.0517311
\(576\) 0 0
\(577\) −14.1206 −0.587847 −0.293924 0.955829i \(-0.594961\pi\)
−0.293924 + 0.955829i \(0.594961\pi\)
\(578\) −4.25660 + 1.14249i −0.177051 + 0.0475213i
\(579\) 0 0
\(580\) −6.84106 11.8259i −0.284059 0.491042i
\(581\) −27.5137 21.1120i −1.14146 0.875874i
\(582\) 0 0
\(583\) −48.2653 + 12.9326i −1.99894 + 0.535615i
\(584\) 3.14814 0.00401109i 0.130271 0.000165980i
\(585\) 0 0
\(586\) −14.9224 6.17365i −0.616440 0.255031i
\(587\) 3.27791 24.8982i 0.135294 1.02766i −0.780258 0.625458i \(-0.784912\pi\)
0.915552 0.402200i \(-0.131754\pi\)
\(588\) 0 0
\(589\) −6.02246 + 0.792872i −0.248151 + 0.0326697i
\(590\) −1.37156 + 0.792646i −0.0564661 + 0.0326327i
\(591\) 0 0
\(592\) −30.1039 3.91124i −1.23726 0.160751i
\(593\) 7.37102 0.302692 0.151346 0.988481i \(-0.451639\pi\)
0.151346 + 0.988481i \(0.451639\pi\)
\(594\) 0 0
\(595\) 9.26864 + 3.83920i 0.379977 + 0.157392i
\(596\) 4.31281 32.9755i 0.176660 1.35073i
\(597\) 0 0
\(598\) −0.169082 1.28010i −0.00691426 0.0523472i
\(599\) −2.27969 + 8.50790i −0.0931454 + 0.347623i −0.996732 0.0807826i \(-0.974258\pi\)
0.903586 + 0.428406i \(0.140925\pi\)
\(600\) 0 0
\(601\) −2.82530 10.5441i −0.115246 0.430105i 0.884059 0.467375i \(-0.154800\pi\)
−0.999305 + 0.0372706i \(0.988134\pi\)
\(602\) 29.7990 12.3580i 1.21451 0.503673i
\(603\) 0 0
\(604\) 14.1914 + 14.1673i 0.577439 + 0.576459i
\(605\) 9.11304 + 11.8763i 0.370498 + 0.482842i
\(606\) 0 0
\(607\) 28.7961 16.6254i 1.16880 0.674805i 0.215400 0.976526i \(-0.430894\pi\)
0.953396 + 0.301721i \(0.0975611\pi\)
\(608\) −3.73310 + 4.88652i −0.151397 + 0.198174i
\(609\) 0 0
\(610\) 19.0069 5.10155i 0.769569 0.206556i
\(611\) −9.31243 3.85734i −0.376741 0.156051i
\(612\) 0 0
\(613\) −14.8026 35.7366i −0.597871 1.44339i −0.875747 0.482770i \(-0.839631\pi\)
0.277876 0.960617i \(-0.410369\pi\)
\(614\) 45.7253 + 6.00009i 1.84532 + 0.242144i
\(615\) 0 0
\(616\) 21.0444 + 16.1054i 0.847903 + 0.648904i
\(617\) −32.7075 8.76394i −1.31675 0.352823i −0.468992 0.883202i \(-0.655383\pi\)
−0.847760 + 0.530380i \(0.822049\pi\)
\(618\) 0 0
\(619\) −42.0543 5.53655i −1.69030 0.222533i −0.776911 0.629610i \(-0.783215\pi\)
−0.913394 + 0.407078i \(0.866548\pi\)
\(620\) 12.0321 4.99582i 0.483219 0.200637i
\(621\) 0 0
\(622\) −0.00222522 5.23947i −8.92234e−5 0.210083i
\(623\) −6.97745 4.02843i −0.279546 0.161396i
\(624\) 0 0
\(625\) −5.59723 + 3.23156i −0.223889 + 0.129263i
\(626\) −3.37453 5.83913i −0.134873 0.233379i
\(627\) 0 0
\(628\) 27.3889 + 35.6311i 1.09293 + 1.42184i
\(629\) 13.0261 + 31.4477i 0.519383 + 1.25390i
\(630\) 0 0
\(631\) 12.5592 12.5592i 0.499973 0.499973i −0.411457 0.911429i \(-0.634980\pi\)
0.911429 + 0.411457i \(0.134980\pi\)
\(632\) 4.68260 + 17.3871i 0.186264 + 0.691621i
\(633\) 0 0
\(634\) −3.54242 2.71581i −0.140688 0.107858i
\(635\) −0.427588 + 0.557243i −0.0169683 + 0.0221135i
\(636\) 0 0
\(637\) 7.05500 5.41349i 0.279529 0.214490i
\(638\) −28.6006 + 28.6249i −1.13231 + 1.13327i
\(639\) 0 0
\(640\) 5.01081 12.1996i 0.198070 0.482232i
\(641\) 28.9745 + 16.7284i 1.14442 + 0.660733i 0.947522 0.319690i \(-0.103579\pi\)
0.196901 + 0.980423i \(0.436912\pi\)
\(642\) 0 0
\(643\) −22.3466 + 2.94198i −0.881263 + 0.116021i −0.557559 0.830138i \(-0.688262\pi\)
−0.323705 + 0.946158i \(0.604928\pi\)
\(644\) −0.654671 1.13170i −0.0257977 0.0445954i
\(645\) 0 0
\(646\) 6.83651 + 0.897090i 0.268979 + 0.0352955i
\(647\) 6.25883 6.25883i 0.246060 0.246060i −0.573291 0.819352i \(-0.694334\pi\)
0.819352 + 0.573291i \(0.194334\pi\)
\(648\) 0 0
\(649\) 3.31768 + 3.31768i 0.130230 + 0.130230i
\(650\) −8.40557 10.9447i −0.329694 0.429288i
\(651\) 0 0
\(652\) 2.18635 + 16.4986i 0.0856239 + 0.646137i
\(653\) 6.33253 + 48.1003i 0.247811 + 1.88231i 0.435658 + 0.900112i \(0.356516\pi\)
−0.187847 + 0.982198i \(0.560151\pi\)
\(654\) 0 0
\(655\) 4.11765 7.13198i 0.160890 0.278670i
\(656\) 10.7745 10.8112i 0.420675 0.422107i
\(657\) 0 0
\(658\) −10.2062 + 0.00433460i −0.397878 + 0.000168980i
\(659\) −3.84152 5.00637i −0.149644 0.195020i 0.712516 0.701656i \(-0.247556\pi\)
−0.862160 + 0.506636i \(0.830889\pi\)
\(660\) 0 0
\(661\) −11.4845 8.81236i −0.446695 0.342761i 0.360792 0.932646i \(-0.382506\pi\)
−0.807487 + 0.589885i \(0.799173\pi\)
\(662\) 25.2281 3.33224i 0.980516 0.129511i
\(663\) 0 0
\(664\) 50.6916 + 6.60799i 1.96722 + 0.256440i
\(665\) −1.71934 1.71934i −0.0666732 0.0666732i
\(666\) 0 0
\(667\) 1.84442 0.763984i 0.0714162 0.0295816i
\(668\) 13.3551 3.59066i 0.516726 0.138927i
\(669\) 0 0
\(670\) −4.03433 1.07916i −0.155860 0.0416915i
\(671\) −29.1439 50.4788i −1.12509 1.94871i
\(672\) 0 0
\(673\) −15.4497 + 26.7596i −0.595541 + 1.03151i 0.397930 + 0.917416i \(0.369729\pi\)
−0.993470 + 0.114091i \(0.963605\pi\)
\(674\) −24.9058 + 24.9270i −0.959335 + 0.960150i
\(675\) 0 0
\(676\) −8.22046 + 8.23444i −0.316172 + 0.316709i
\(677\) −0.102675 + 0.779896i −0.00394613 + 0.0299738i −0.993305 0.115524i \(-0.963145\pi\)
0.989359 + 0.145498i \(0.0464785\pi\)
\(678\) 0 0
\(679\) −1.66430 + 6.21124i −0.0638698 + 0.238366i
\(680\) −14.6592 + 1.94892i −0.562153 + 0.0747376i
\(681\) 0 0
\(682\) −23.5031 30.6029i −0.899980 1.17185i
\(683\) −23.0089 + 9.53060i −0.880411 + 0.364678i −0.776656 0.629925i \(-0.783086\pi\)
−0.103755 + 0.994603i \(0.533086\pi\)
\(684\) 0 0
\(685\) −6.36418 + 15.3645i −0.243163 + 0.587047i
\(686\) 13.9894 24.2542i 0.534119 0.926029i
\(687\) 0 0
\(688\) −28.8841 + 37.7752i −1.10120 + 1.44017i
\(689\) 13.7128 + 23.7512i 0.522414 + 0.904848i
\(690\) 0 0
\(691\) 8.12020 6.23085i 0.308907 0.237033i −0.442660 0.896690i \(-0.645965\pi\)
0.751567 + 0.659657i \(0.229298\pi\)
\(692\) −5.77235 + 13.9692i −0.219432 + 0.531031i
\(693\) 0 0
\(694\) −12.8684 + 31.1044i −0.488477 + 1.18071i
\(695\) 8.81824 2.36284i 0.334495 0.0896277i
\(696\) 0 0
\(697\) −16.5315 4.42960i −0.626175 0.167783i
\(698\) −6.17774 + 8.05807i −0.233831 + 0.305002i
\(699\) 0 0
\(700\) −12.1070 6.97630i −0.457603 0.263679i
\(701\) −9.41659 + 22.7336i −0.355660 + 0.858638i 0.640240 + 0.768175i \(0.278835\pi\)
−0.995900 + 0.0904633i \(0.971165\pi\)
\(702\) 0 0
\(703\) 8.24992i 0.311152i
\(704\) −38.7411 4.99996i −1.46011 0.188443i
\(705\) 0 0
\(706\) 7.67196 + 2.05220i 0.288738 + 0.0772357i
\(707\) −3.13680 23.8264i −0.117972 0.896084i
\(708\) 0 0
\(709\) −4.29982 0.566082i −0.161483 0.0212597i 0.0493510 0.998781i \(-0.484285\pi\)
−0.210834 + 0.977522i \(0.567618\pi\)
\(710\) −14.3922 + 5.96862i −0.540131 + 0.223998i
\(711\) 0 0
\(712\) 11.8762 0.0151317i 0.445081 0.000567083i
\(713\) 0.492723 + 1.83887i 0.0184526 + 0.0688662i
\(714\) 0 0
\(715\) 9.28627 12.1021i 0.347287 0.452593i
\(716\) 6.11474 + 46.1431i 0.228518 + 1.72445i
\(717\) 0 0
\(718\) −10.4812 + 18.1717i −0.391153 + 0.678162i
\(719\) 31.9312i 1.19083i −0.803418 0.595416i \(-0.796987\pi\)
0.803418 0.595416i \(-0.203013\pi\)
\(720\) 0 0
\(721\) 7.55457i 0.281347i
\(722\) 21.8282 + 12.5902i 0.812363 + 0.468558i
\(723\) 0 0
\(724\) 30.5832 39.9269i 1.13661 1.48387i
\(725\) 12.9889 16.9274i 0.482394 0.628669i
\(726\) 0 0
\(727\) 9.11768 + 34.0277i 0.338156 + 1.26202i 0.900407 + 0.435049i \(0.143269\pi\)
−0.562251 + 0.826967i \(0.690064\pi\)
\(728\) 5.54895 13.4448i 0.205658 0.498296i
\(729\) 0 0
\(730\) −0.702916 1.69495i −0.0260161 0.0627330i
\(731\) 52.8639 + 6.95966i 1.95524 + 0.257412i
\(732\) 0 0
\(733\) 2.70865 + 20.5742i 0.100046 + 0.759927i 0.965769 + 0.259403i \(0.0835258\pi\)
−0.865723 + 0.500524i \(0.833141\pi\)
\(734\) −3.02044 + 11.2916i −0.111487 + 0.416782i
\(735\) 0 0
\(736\) 1.67105 + 0.960056i 0.0615958 + 0.0353881i
\(737\) 12.3691i 0.455622i
\(738\) 0 0
\(739\) 4.30694 10.3979i 0.158433 0.382492i −0.824652 0.565641i \(-0.808629\pi\)
0.983085 + 0.183149i \(0.0586289\pi\)
\(740\) 4.59401 + 17.0870i 0.168879 + 0.628131i
\(741\) 0 0
\(742\) 22.0383 + 16.8957i 0.809051 + 0.620261i
\(743\) −22.4653 6.01956i −0.824172 0.220836i −0.178003 0.984030i \(-0.556964\pi\)
−0.646170 + 0.763194i \(0.723630\pi\)
\(744\) 0 0
\(745\) −18.7233 + 5.01688i −0.685967 + 0.183804i
\(746\) 28.0438 + 11.6022i 1.02676 + 0.424785i
\(747\) 0 0
\(748\) 16.7959 + 40.4516i 0.614118 + 1.47906i
\(749\) 18.0277 13.8331i 0.658717 0.505451i
\(750\) 0 0
\(751\) 23.4640 + 40.6409i 0.856214 + 1.48301i 0.875514 + 0.483192i \(0.160523\pi\)
−0.0193005 + 0.999814i \(0.506144\pi\)
\(752\) 13.0161 7.54434i 0.474647 0.275114i
\(753\) 0 0
\(754\) 19.2387 + 11.0966i 0.700632 + 0.404113i
\(755\) 4.47274 10.7982i 0.162780 0.392985i
\(756\) 0 0
\(757\) −23.1447 + 9.58685i −0.841209 + 0.348440i −0.761330 0.648364i \(-0.775453\pi\)
−0.0798788 + 0.996805i \(0.525453\pi\)
\(758\) −19.2866 + 14.8121i −0.700521 + 0.538001i
\(759\) 0 0
\(760\) 3.46323 + 0.923243i 0.125625 + 0.0334895i
\(761\) −0.0262675 + 0.0980316i −0.000952196 + 0.00355364i −0.966400 0.257042i \(-0.917252\pi\)
0.965448 + 0.260595i \(0.0839189\pi\)
\(762\) 0 0
\(763\) 3.41045 25.9049i 0.123467 0.937821i
\(764\) 0.00798039 + 9.39523i 0.000288720 + 0.339907i
\(765\) 0 0
\(766\) −4.89051 4.88636i −0.176701 0.176551i
\(767\) 1.28761 2.23020i 0.0464928 0.0805279i
\(768\) 0 0
\(769\) −15.1755 26.2847i −0.547241 0.947850i −0.998462 0.0554374i \(-0.982345\pi\)
0.451221 0.892412i \(-0.350989\pi\)
\(770\) 3.99132 14.9212i 0.143837 0.537721i
\(771\) 0 0
\(772\) 19.4062 + 11.1822i 0.698443 + 0.402456i
\(773\) 10.1380 4.19928i 0.364637 0.151038i −0.192839 0.981230i \(-0.561770\pi\)
0.557477 + 0.830193i \(0.311770\pi\)
\(774\) 0 0
\(775\) 14.3871 + 14.3871i 0.516798 + 0.516798i
\(776\) −2.46492 9.15256i −0.0884856 0.328558i
\(777\) 0 0
\(778\) 5.22473 + 39.5560i 0.187316 + 1.41815i
\(779\) 3.29087 + 2.52518i 0.117908 + 0.0904739i
\(780\) 0 0
\(781\) 28.0929 + 36.6114i 1.00524 + 1.31006i
\(782\) −0.000917762 2.16094i −3.28191e−5 0.0772751i
\(783\) 0 0
\(784\) 0.0225478 + 13.2726i 0.000805279 + 0.474023i
\(785\) 13.0972 22.6851i 0.467461 0.809666i
\(786\) 0 0
\(787\) −2.32542 17.6633i −0.0828924 0.629630i −0.981581 0.191044i \(-0.938813\pi\)
0.898689 0.438586i \(-0.144521\pi\)
\(788\) −13.5319 + 17.6661i −0.482053 + 0.629330i
\(789\) 0 0
\(790\) 8.32377 6.39267i 0.296146 0.227441i
\(791\) −5.14528 5.14528i −0.182945 0.182945i
\(792\) 0 0
\(793\) −22.6218 + 22.6218i −0.803323 + 0.803323i
\(794\) −1.66156 + 12.6623i −0.0589665 + 0.449370i
\(795\) 0 0
\(796\) 32.9133 + 8.78914i 1.16658 + 0.311523i
\(797\) 0.478432 0.0629867i 0.0169469 0.00223110i −0.122048 0.992524i \(-0.538946\pi\)
0.138995 + 0.990293i \(0.455613\pi\)
\(798\) 0 0
\(799\) −14.6090 8.43453i −0.516830 0.298392i
\(800\) 20.5971 0.0437385i 0.728219 0.00154639i
\(801\) 0 0
\(802\) 17.8139 + 17.7987i 0.629030 + 0.628496i
\(803\) −4.31167 + 3.30846i −0.152155 + 0.116753i
\(804\) 0 0
\(805\) −0.463901 + 0.604568i −0.0163504 + 0.0213082i
\(806\) −12.8857 + 16.8077i −0.453879 + 0.592027i
\(807\) 0 0
\(808\) 21.6008 + 28.0766i 0.759914 + 0.987730i
\(809\) −2.96581 + 2.96581i −0.104272 + 0.104272i −0.757318 0.653046i \(-0.773491\pi\)
0.653046 + 0.757318i \(0.273491\pi\)
\(810\) 0 0
\(811\) 2.73876 + 6.61195i 0.0961709 + 0.232177i 0.964642 0.263562i \(-0.0848973\pi\)
−0.868472 + 0.495739i \(0.834897\pi\)
\(812\) 22.2982 + 2.91635i 0.782515 + 0.102344i
\(813\) 0 0
\(814\) 45.3739 26.2223i 1.59035 0.919092i
\(815\) 8.40084 4.85023i 0.294269 0.169896i
\(816\) 0 0
\(817\) −11.1917 6.46155i −0.391549 0.226061i
\(818\) 3.11054 0.00132106i 0.108757 4.61897e-5i
\(819\) 0 0
\(820\) −8.22214 3.39754i −0.287129 0.118647i
\(821\) −34.5764 4.55206i −1.20672 0.158868i −0.499789 0.866147i \(-0.666589\pi\)
−0.706934 + 0.707279i \(0.749922\pi\)
\(822\) 0 0
\(823\) −36.1366 9.68278i −1.25964 0.337520i −0.433589 0.901111i \(-0.642753\pi\)
−0.826054 + 0.563590i \(0.809420\pi\)
\(824\) 5.58020 + 9.63681i 0.194395 + 0.335714i
\(825\) 0 0
\(826\) 0.339252 2.58536i 0.0118041 0.0899562i
\(827\) −2.02392 4.88617i −0.0703785 0.169909i 0.884776 0.466016i \(-0.154311\pi\)
−0.955155 + 0.296108i \(0.904311\pi\)
\(828\) 0 0
\(829\) −49.1995 20.3791i −1.70877 0.707795i −0.999997 0.00235766i \(-0.999250\pi\)
−0.708772 0.705438i \(-0.750750\pi\)
\(830\) −7.72401 28.7775i −0.268104 0.998882i
\(831\) 0 0
\(832\) 2.85262 + 21.2492i 0.0988969 + 0.736685i
\(833\) 12.8885 7.44121i 0.446562 0.257822i
\(834\) 0 0
\(835\) −4.90698 6.39490i −0.169813 0.221305i
\(836\) −0.00901710 10.6157i −0.000311863 0.367153i
\(837\) 0 0
\(838\) −13.8815 33.4727i −0.479529 1.15630i
\(839\) 7.01726 + 26.1888i 0.242263 + 0.904137i 0.974739 + 0.223345i \(0.0716976\pi\)
−0.732477 + 0.680792i \(0.761636\pi\)
\(840\) 0 0
\(841\) −1.38174 + 5.15671i −0.0476461 + 0.177818i
\(842\) −10.9178 + 1.44208i −0.376254 + 0.0496973i
\(843\) 0 0
\(844\) −24.8929 32.3840i −0.856848 1.11470i
\(845\) 6.26555 + 2.59528i 0.215541 + 0.0892802i
\(846\) 0 0
\(847\) −24.6408 −0.846668
\(848\) −40.5927 5.27399i −1.39396 0.181109i
\(849\) 0 0
\(850\) −11.5561 19.9962i −0.396372 0.685863i
\(851\) −2.56342 + 0.337481i −0.0878729 + 0.0115687i
\(852\) 0 0
\(853\) 4.12534 31.3351i 0.141249 1.07289i −0.763155 0.646216i \(-0.776351\pi\)
0.904404 0.426678i \(-0.140316\pi\)
\(854\) −12.3837 + 29.9329i −0.423762 + 1.02428i
\(855\) 0 0
\(856\) −12.7787 + 30.9621i −0.436767 + 1.05826i
\(857\) 23.9116 6.40709i 0.816804 0.218862i 0.173855 0.984771i \(-0.444378\pi\)
0.642949 + 0.765909i \(0.277711\pi\)
\(858\) 0 0
\(859\) 2.45003 + 1.87998i 0.0835940 + 0.0641439i 0.649713 0.760180i \(-0.274889\pi\)
−0.566119 + 0.824324i \(0.691556\pi\)
\(860\) 26.7782 + 7.15082i 0.913128 + 0.243841i
\(861\) 0 0
\(862\) −2.18320 8.13398i −0.0743599 0.277044i
\(863\) 38.7531 1.31917 0.659585 0.751630i \(-0.270732\pi\)
0.659585 + 0.751630i \(0.270732\pi\)
\(864\) 0 0
\(865\) 8.80985 0.299544
\(866\) 0.238693 + 0.889305i 0.00811113 + 0.0302198i
\(867\) 0 0
\(868\) −5.53265 + 20.7185i −0.187790 + 0.703232i
\(869\) −24.6616 18.9235i −0.836588 0.641937i
\(870\) 0 0
\(871\) 6.55761 1.75711i 0.222196 0.0595373i
\(872\) 14.7843 + 35.5641i 0.500658 + 1.20435i
\(873\) 0 0
\(874\) −0.200223 + 0.483962i −0.00677264 + 0.0163703i
\(875\) −2.52286 + 19.1630i −0.0852881 + 0.647827i
\(876\) 0 0
\(877\) −11.0924 + 1.46034i −0.374563 + 0.0493122i −0.315458 0.948940i \(-0.602158\pi\)
−0.0591054 + 0.998252i \(0.518825\pi\)
\(878\) 24.9639 + 43.1963i 0.842489 + 1.45780i
\(879\) 0 0
\(880\) 5.93011 + 21.9820i 0.199904 + 0.741014i
\(881\) 33.1806 1.11788 0.558941 0.829208i \(-0.311208\pi\)
0.558941 + 0.829208i \(0.311208\pi\)
\(882\) 0 0
\(883\) −16.9677 7.02823i −0.571007 0.236519i 0.0784488 0.996918i \(-0.475003\pi\)
−0.649456 + 0.760399i \(0.725003\pi\)
\(884\) 19.0599 14.6509i 0.641054 0.492764i
\(885\) 0 0
\(886\) 19.1173 2.52510i 0.642259 0.0848325i
\(887\) −6.51728 + 24.3228i −0.218829 + 0.816681i 0.765955 + 0.642895i \(0.222267\pi\)
−0.984783 + 0.173786i \(0.944400\pi\)
\(888\) 0 0
\(889\) −0.299235 1.11676i −0.0100360 0.0374550i
\(890\) −2.65172 6.39413i −0.0888858 0.214332i
\(891\) 0 0
\(892\) 25.4498 0.0216173i 0.852123 0.000723801i
\(893\) 2.48894 + 3.24365i 0.0832892 + 0.108545i
\(894\) 0 0
\(895\) 23.4953 13.5650i 0.785362 0.453429i
\(896\) 10.9103 + 18.7681i 0.364487 + 0.626997i
\(897\) 0 0
\(898\) 9.83910 + 36.6578i 0.328335 + 1.22329i
\(899\) −30.2525 12.5310i −1.00898 0.417932i
\(900\) 0 0
\(901\) 17.5646 + 42.4046i 0.585160 + 1.41270i
\(902\) −3.42824 + 26.1258i −0.114148 + 0.869894i
\(903\) 0 0
\(904\) 10.3640 + 2.76289i 0.344703 + 0.0918922i
\(905\) −28.3155 7.58711i −0.941238 0.252204i
\(906\) 0 0
\(907\) 3.68122 + 0.484642i 0.122233 + 0.0160923i 0.191394 0.981513i \(-0.438699\pi\)
−0.0691614 + 0.997605i \(0.522032\pi\)
\(908\) 17.5382 42.4429i 0.582026 1.40852i
\(909\) 0 0
\(910\) −8.47760 + 0.00360047i −0.281030 + 0.000119355i
\(911\) 41.0434 + 23.6964i 1.35983 + 0.785098i 0.989601 0.143843i \(-0.0459460\pi\)
0.370229 + 0.928941i \(0.379279\pi\)
\(912\) 0 0
\(913\) −76.4275 + 44.1254i −2.52938 + 1.46034i
\(914\) −21.1769 + 12.2385i −0.700469 + 0.404813i
\(915\) 0 0
\(916\) 3.87724 29.6451i 0.128108 0.979502i
\(917\) 5.18750 + 12.5237i 0.171306 + 0.413570i
\(918\) 0 0
\(919\) 18.4084 18.4084i 0.607235 0.607235i −0.334987 0.942223i \(-0.608732\pi\)
0.942223 + 0.334987i \(0.108732\pi\)
\(920\) 0.145200 1.11387i 0.00478709 0.0367230i
\(921\) 0 0
\(922\) 2.81835 3.67618i 0.0928174 0.121068i
\(923\) 15.4191 20.0946i 0.507527 0.661422i
\(924\) 0 0
\(925\) −21.9229 + 16.8220i −0.720820 + 0.553104i
\(926\) −26.9632 26.9403i −0.886065 0.885313i
\(927\) 0 0
\(928\) −30.5984 + 12.7505i −1.00444 + 0.418554i
\(929\) 16.1678 + 9.33448i 0.530448 + 0.306254i 0.741199 0.671285i \(-0.234258\pi\)
−0.210751 + 0.977540i \(0.567591\pi\)
\(930\) 0 0
\(931\) −3.57617 + 0.470812i −0.117204 + 0.0154302i
\(932\) 5.61149 21.0138i 0.183811 0.688328i
\(933\) 0 0
\(934\) −3.21087 + 24.4693i −0.105063 + 0.800660i
\(935\) 18.0519 18.0519i 0.590359 0.590359i
\(936\) 0 0
\(937\) 3.70266 + 3.70266i 0.120961 + 0.120961i 0.764996 0.644035i \(-0.222741\pi\)
−0.644035 + 0.764996i \(0.722741\pi\)
\(938\) 5.45182 4.18701i 0.178008 0.136711i
\(939\) 0 0
\(940\) −6.96127 5.33218i −0.227052 0.173917i
\(941\) −6.11775 46.4689i −0.199433 1.51484i −0.739463 0.673197i \(-0.764920\pi\)
0.540030 0.841646i \(-0.318413\pi\)
\(942\) 0 0
\(943\) 0.650004 1.12584i 0.0211670 0.0366624i
\(944\) 1.47692 + 3.54854i 0.0480697 + 0.115495i
\(945\) 0 0
\(946\) −0.0348647 82.0916i −0.00113355 2.66903i
\(947\) −13.8473 18.0462i −0.449977 0.586422i 0.512193 0.858870i \(-0.328833\pi\)
−0.962170 + 0.272449i \(0.912167\pi\)
\(948\) 0 0
\(949\) 2.36651 + 1.81589i 0.0768202 + 0.0589462i
\(950\) 0.732986 + 5.54937i 0.0237812 + 0.180045i
\(951\) 0 0
\(952\) 12.1440 21.0961i 0.393590 0.683728i
\(953\) −20.1825 20.1825i −0.653774 0.653774i 0.300126 0.953900i \(-0.402971\pi\)
−0.953900 + 0.300126i \(0.902971\pi\)
\(954\) 0 0
\(955\) 5.05925 2.09561i 0.163714 0.0678124i
\(956\) −3.90140 + 6.77070i −0.126180 + 0.218980i
\(957\) 0 0
\(958\) −6.61753 + 24.7390i −0.213803 + 0.799280i
\(959\) −13.6871 23.7067i −0.441979 0.765531i
\(960\) 0 0
\(961\) 0.112702 0.195206i 0.00363555 0.00629696i
\(962\) −20.3477 20.3304i −0.656035 0.655478i
\(963\) 0 0
\(964\) 57.1756 0.0485654i 1.84150 0.00156419i
\(965\) 1.70395 12.9428i 0.0548522 0.416644i
\(966\) 0 0
\(967\) 4.79197 17.8839i 0.154100 0.575107i −0.845081 0.534638i \(-0.820448\pi\)
0.999181 0.0404694i \(-0.0128853\pi\)
\(968\) 31.4325 18.2010i 1.01028 0.585001i
\(969\) 0 0
\(970\) −4.38163 + 3.36510i −0.140686 + 0.108047i
\(971\) −38.0099 + 15.7442i −1.21979 + 0.505255i −0.897344 0.441331i \(-0.854506\pi\)
−0.322450 + 0.946586i \(0.604506\pi\)
\(972\) 0 0
\(973\) −5.75065 + 13.8833i −0.184357 + 0.445078i
\(974\) −39.4271 22.7409i −1.26333 0.728666i
\(975\) 0 0
\(976\) −6.31299 47.3304i −0.202074 1.51501i
\(977\) −6.97197 12.0758i −0.223053 0.386339i 0.732680 0.680573i \(-0.238269\pi\)
−0.955734 + 0.294233i \(0.904936\pi\)
\(978\) 0 0
\(979\) −16.2656 + 12.4810i −0.519850 + 0.398895i
\(980\) 7.14470 2.96654i 0.228229 0.0947628i
\(981\) 0 0
\(982\) −13.3799 5.53549i −0.426971 0.176645i
\(983\) 32.9007 8.81570i 1.04937 0.281177i 0.307377 0.951588i \(-0.400549\pi\)
0.741990 + 0.670410i \(0.233882\pi\)
\(984\) 0 0
\(985\) 12.5285 + 3.35701i 0.399192 + 0.106963i
\(986\) 29.4978 + 22.6146i 0.939402 + 0.720194i
\(987\) 0 0
\(988\) −5.62676 + 1.51281i −0.179011 + 0.0481289i
\(989\) −1.54991 + 3.74182i −0.0492844 + 0.118983i
\(990\) 0 0
\(991\) 18.4826i 0.587119i −0.955941 0.293560i \(-0.905160\pi\)
0.955941 0.293560i \(-0.0948399\pi\)
\(992\) −8.24617 30.5158i −0.261816 0.968877i
\(993\) 0 0
\(994\) 6.62727 24.7754i 0.210204 0.785828i
\(995\) −2.59173 19.6862i −0.0821635 0.624093i
\(996\) 0 0
\(997\) 4.84617 + 0.638010i 0.153480 + 0.0202060i 0.206874 0.978367i \(-0.433671\pi\)
−0.0533947 + 0.998573i \(0.517004\pi\)
\(998\) 4.56901 + 11.0173i 0.144629 + 0.348747i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bn.a.35.3 368
3.2 odd 2 288.2.bf.a.227.44 yes 368
9.4 even 3 288.2.bf.a.131.29 yes 368
9.5 odd 6 inner 864.2.bn.a.611.18 368
32.11 odd 8 inner 864.2.bn.a.683.18 368
96.11 even 8 288.2.bf.a.11.29 368
288.139 odd 24 288.2.bf.a.203.44 yes 368
288.203 even 24 inner 864.2.bn.a.395.3 368
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.bf.a.11.29 368 96.11 even 8
288.2.bf.a.131.29 yes 368 9.4 even 3
288.2.bf.a.203.44 yes 368 288.139 odd 24
288.2.bf.a.227.44 yes 368 3.2 odd 2
864.2.bn.a.35.3 368 1.1 even 1 trivial
864.2.bn.a.395.3 368 288.203 even 24 inner
864.2.bn.a.611.18 368 9.5 odd 6 inner
864.2.bn.a.683.18 368 32.11 odd 8 inner