Properties

Label 864.2.bn.a.35.20
Level $864$
Weight $2$
Character 864.35
Analytic conductor $6.899$
Analytic rank $0$
Dimension $368$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(35,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(24)) chi = DirichletCharacter(H, H._module([12, 9, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bn (of order \(24\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(368\)
Relative dimension: \(46\) over \(\Q(\zeta_{24})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

Embedding invariants

Embedding label 35.20
Character \(\chi\) \(=\) 864.35
Dual form 864.2.bn.a.395.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.195262 - 1.40067i) q^{2} +(-1.92375 + 0.546996i) q^{4} +(-0.729399 - 0.559687i) q^{5} +(1.92647 - 0.516196i) q^{7} +(1.14179 + 2.58772i) q^{8} +(-0.641512 + 1.13093i) q^{10} +(0.262162 - 1.99132i) q^{11} +(0.110163 - 0.0145032i) q^{13} +(-1.09919 - 2.59755i) q^{14} +(3.40159 - 2.10456i) q^{16} +4.23415 q^{17} +(-3.65777 - 1.51510i) q^{19} +(1.70932 + 0.677718i) q^{20} +(-2.84037 + 0.0216274i) q^{22} +(-0.0835920 + 0.311970i) q^{23} +(-1.07532 - 4.01316i) q^{25} +(-0.0418248 - 0.151470i) q^{26} +(-3.42368 + 2.04680i) q^{28} +(-0.0770779 - 0.100450i) q^{29} +(8.31926 - 4.80313i) q^{31} +(-3.61200 - 4.35356i) q^{32} +(-0.826771 - 5.93065i) q^{34} +(-1.69407 - 0.701707i) q^{35} +(-3.10495 - 7.49601i) q^{37} +(-1.40793 + 5.41917i) q^{38} +(0.615491 - 2.52653i) q^{40} +(-0.591162 - 0.158401i) q^{41} +(-2.62459 - 0.345533i) q^{43} +(0.584909 + 3.97419i) q^{44} +(0.453288 + 0.0561688i) q^{46} +(-7.70189 - 4.44669i) q^{47} +(-2.61736 + 1.51113i) q^{49} +(-5.41114 + 2.28979i) q^{50} +(-0.203992 + 0.0881591i) q^{52} +(-0.936389 - 2.26064i) q^{53} +(-1.30574 + 1.30574i) q^{55} +(3.53540 + 4.39577i) q^{56} +(-0.125647 + 0.127575i) q^{58} +(-1.87698 + 2.44612i) q^{59} +(-3.86495 + 2.96568i) q^{61} +(-8.35203 - 10.7147i) q^{62} +(-5.39261 + 5.90930i) q^{64} +(-0.0884699 - 0.0510781i) q^{65} +(10.5722 - 1.39186i) q^{67} +(-8.14544 + 2.31606i) q^{68} +(-0.652071 + 2.50985i) q^{70} +(1.10615 - 1.10615i) q^{71} +(-5.15157 - 5.15157i) q^{73} +(-9.89315 + 5.81269i) q^{74} +(7.86537 + 0.913878i) q^{76} +(-0.522863 - 3.97154i) q^{77} +(8.82426 - 15.2841i) q^{79} +(-3.65901 - 0.368763i) q^{80} +(-0.106436 + 0.858952i) q^{82} +(-5.47758 - 7.13853i) q^{83} +(-3.08839 - 2.36980i) q^{85} +(0.0285052 + 3.74364i) q^{86} +(5.45231 - 1.59527i) q^{88} +(12.1468 + 12.1468i) q^{89} +(0.204739 - 0.0848055i) q^{91} +(-0.00983634 - 0.645875i) q^{92} +(-4.72445 + 11.6561i) q^{94} +(1.81999 + 3.15232i) q^{95} +(-5.14292 + 8.90780i) q^{97} +(2.62766 + 3.37098i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 368 q + 12 q^{2} - 4 q^{4} + 12 q^{5} - 4 q^{7} - 16 q^{10} + 12 q^{11} - 4 q^{13} + 12 q^{14} - 4 q^{16} - 16 q^{19} + 12 q^{20} - 4 q^{22} + 12 q^{23} - 4 q^{25} - 16 q^{28} + 12 q^{29} + 12 q^{32} - 12 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.195262 1.40067i −0.138071 0.990422i
\(3\) 0 0
\(4\) −1.92375 + 0.546996i −0.961873 + 0.273498i
\(5\) −0.729399 0.559687i −0.326197 0.250300i 0.432660 0.901557i \(-0.357575\pi\)
−0.758857 + 0.651258i \(0.774242\pi\)
\(6\) 0 0
\(7\) 1.92647 0.516196i 0.728137 0.195104i 0.124337 0.992240i \(-0.460320\pi\)
0.603799 + 0.797136i \(0.293653\pi\)
\(8\) 1.14179 + 2.58772i 0.403685 + 0.914898i
\(9\) 0 0
\(10\) −0.641512 + 1.13093i −0.202864 + 0.357632i
\(11\) 0.262162 1.99132i 0.0790448 0.600405i −0.905380 0.424601i \(-0.860414\pi\)
0.984425 0.175804i \(-0.0562523\pi\)
\(12\) 0 0
\(13\) 0.110163 0.0145032i 0.0305537 0.00402247i −0.115234 0.993338i \(-0.536762\pi\)
0.145788 + 0.989316i \(0.453428\pi\)
\(14\) −1.09919 2.59755i −0.293770 0.694225i
\(15\) 0 0
\(16\) 3.40159 2.10456i 0.850398 0.526140i
\(17\) 4.23415 1.02693 0.513467 0.858110i \(-0.328361\pi\)
0.513467 + 0.858110i \(0.328361\pi\)
\(18\) 0 0
\(19\) −3.65777 1.51510i −0.839150 0.347587i −0.0786318 0.996904i \(-0.525055\pi\)
−0.760518 + 0.649316i \(0.775055\pi\)
\(20\) 1.70932 + 0.677718i 0.382216 + 0.151542i
\(21\) 0 0
\(22\) −2.84037 + 0.0216274i −0.605568 + 0.00461098i
\(23\) −0.0835920 + 0.311970i −0.0174301 + 0.0650502i −0.974093 0.226147i \(-0.927387\pi\)
0.956663 + 0.291197i \(0.0940536\pi\)
\(24\) 0 0
\(25\) −1.07532 4.01316i −0.215065 0.802632i
\(26\) −0.0418248 0.151470i −0.00820253 0.0297056i
\(27\) 0 0
\(28\) −3.42368 + 2.04680i −0.647014 + 0.386809i
\(29\) −0.0770779 0.100450i −0.0143130 0.0186531i 0.786142 0.618046i \(-0.212075\pi\)
−0.800455 + 0.599393i \(0.795409\pi\)
\(30\) 0 0
\(31\) 8.31926 4.80313i 1.49418 0.862667i 0.494206 0.869345i \(-0.335459\pi\)
0.999978 + 0.00667771i \(0.00212560\pi\)
\(32\) −3.61200 4.35356i −0.638517 0.769608i
\(33\) 0 0
\(34\) −0.826771 5.93065i −0.141790 1.01710i
\(35\) −1.69407 0.701707i −0.286350 0.118610i
\(36\) 0 0
\(37\) −3.10495 7.49601i −0.510450 1.23234i −0.943622 0.331025i \(-0.892606\pi\)
0.433172 0.901312i \(-0.357394\pi\)
\(38\) −1.40793 + 5.41917i −0.228396 + 0.879105i
\(39\) 0 0
\(40\) 0.615491 2.52653i 0.0973177 0.399479i
\(41\) −0.591162 0.158401i −0.0923240 0.0247381i 0.212361 0.977191i \(-0.431885\pi\)
−0.304685 + 0.952453i \(0.598551\pi\)
\(42\) 0 0
\(43\) −2.62459 0.345533i −0.400246 0.0526933i −0.0722833 0.997384i \(-0.523029\pi\)
−0.327962 + 0.944691i \(0.606362\pi\)
\(44\) 0.584909 + 3.97419i 0.0881784 + 0.599131i
\(45\) 0 0
\(46\) 0.453288 + 0.0561688i 0.0668337 + 0.00828163i
\(47\) −7.70189 4.44669i −1.12344 0.648616i −0.181160 0.983454i \(-0.557985\pi\)
−0.942276 + 0.334837i \(0.891319\pi\)
\(48\) 0 0
\(49\) −2.61736 + 1.51113i −0.373908 + 0.215876i
\(50\) −5.41114 + 2.28979i −0.765250 + 0.323825i
\(51\) 0 0
\(52\) −0.203992 + 0.0881591i −0.0282886 + 0.0122255i
\(53\) −0.936389 2.26064i −0.128623 0.310523i 0.846428 0.532502i \(-0.178748\pi\)
−0.975051 + 0.221979i \(0.928748\pi\)
\(54\) 0 0
\(55\) −1.30574 + 1.30574i −0.176065 + 0.176065i
\(56\) 3.53540 + 4.39577i 0.472438 + 0.587410i
\(57\) 0 0
\(58\) −0.125647 + 0.127575i −0.0164982 + 0.0167514i
\(59\) −1.87698 + 2.44612i −0.244361 + 0.318458i −0.899391 0.437145i \(-0.855990\pi\)
0.655029 + 0.755603i \(0.272656\pi\)
\(60\) 0 0
\(61\) −3.86495 + 2.96568i −0.494856 + 0.379716i −0.825826 0.563925i \(-0.809291\pi\)
0.330970 + 0.943641i \(0.392624\pi\)
\(62\) −8.35203 10.7147i −1.06071 1.36076i
\(63\) 0 0
\(64\) −5.39261 + 5.90930i −0.674076 + 0.738662i
\(65\) −0.0884699 0.0510781i −0.0109733 0.00633546i
\(66\) 0 0
\(67\) 10.5722 1.39186i 1.29160 0.170043i 0.546763 0.837287i \(-0.315860\pi\)
0.744839 + 0.667244i \(0.232526\pi\)
\(68\) −8.14544 + 2.31606i −0.987779 + 0.280864i
\(69\) 0 0
\(70\) −0.652071 + 2.50985i −0.0779374 + 0.299984i
\(71\) 1.10615 1.10615i 0.131276 0.131276i −0.638416 0.769692i \(-0.720410\pi\)
0.769692 + 0.638416i \(0.220410\pi\)
\(72\) 0 0
\(73\) −5.15157 5.15157i −0.602946 0.602946i 0.338147 0.941093i \(-0.390200\pi\)
−0.941093 + 0.338147i \(0.890200\pi\)
\(74\) −9.89315 + 5.81269i −1.15005 + 0.675712i
\(75\) 0 0
\(76\) 7.86537 + 0.913878i 0.902220 + 0.104829i
\(77\) −0.522863 3.97154i −0.0595857 0.452599i
\(78\) 0 0
\(79\) 8.82426 15.2841i 0.992806 1.71959i 0.392712 0.919661i \(-0.371537\pi\)
0.600094 0.799930i \(-0.295130\pi\)
\(80\) −3.65901 0.368763i −0.409090 0.0412290i
\(81\) 0 0
\(82\) −0.106436 + 0.858952i −0.0117539 + 0.0948554i
\(83\) −5.47758 7.13853i −0.601243 0.783555i 0.389248 0.921133i \(-0.372735\pi\)
−0.990491 + 0.137578i \(0.956068\pi\)
\(84\) 0 0
\(85\) −3.08839 2.36980i −0.334983 0.257041i
\(86\) 0.0285052 + 3.74364i 0.00307380 + 0.403688i
\(87\) 0 0
\(88\) 5.45231 1.59527i 0.581218 0.170057i
\(89\) 12.1468 + 12.1468i 1.28756 + 1.28756i 0.936264 + 0.351298i \(0.114259\pi\)
0.351298 + 0.936264i \(0.385741\pi\)
\(90\) 0 0
\(91\) 0.204739 0.0848055i 0.0214624 0.00889004i
\(92\) −0.00983634 0.645875i −0.00102551 0.0673371i
\(93\) 0 0
\(94\) −4.72445 + 11.6561i −0.487290 + 1.20223i
\(95\) 1.81999 + 3.15232i 0.186727 + 0.323421i
\(96\) 0 0
\(97\) −5.14292 + 8.90780i −0.522184 + 0.904450i 0.477483 + 0.878641i \(0.341549\pi\)
−0.999667 + 0.0258086i \(0.991784\pi\)
\(98\) 2.62766 + 3.37098i 0.265434 + 0.340520i
\(99\) 0 0
\(100\) 4.26383 + 7.13210i 0.426383 + 0.713210i
\(101\) −0.508954 + 3.86589i −0.0506428 + 0.384670i 0.947289 + 0.320382i \(0.103811\pi\)
−0.997931 + 0.0642885i \(0.979522\pi\)
\(102\) 0 0
\(103\) 3.04298 11.3565i 0.299833 1.11899i −0.637469 0.770476i \(-0.720019\pi\)
0.937302 0.348517i \(-0.113315\pi\)
\(104\) 0.163314 + 0.268511i 0.0160142 + 0.0263297i
\(105\) 0 0
\(106\) −2.98357 + 1.75299i −0.289790 + 0.170265i
\(107\) 16.2878 6.74663i 1.57460 0.652221i 0.587055 0.809547i \(-0.300287\pi\)
0.987547 + 0.157326i \(0.0502872\pi\)
\(108\) 0 0
\(109\) −5.97592 + 14.4272i −0.572389 + 1.38187i 0.327126 + 0.944981i \(0.393920\pi\)
−0.899515 + 0.436890i \(0.856080\pi\)
\(110\) 2.08386 + 1.57394i 0.198689 + 0.150069i
\(111\) 0 0
\(112\) 5.46669 5.81026i 0.516554 0.549018i
\(113\) 6.51148 + 11.2782i 0.612549 + 1.06097i 0.990809 + 0.135266i \(0.0431890\pi\)
−0.378261 + 0.925699i \(0.623478\pi\)
\(114\) 0 0
\(115\) 0.235577 0.180765i 0.0219677 0.0168564i
\(116\) 0.203224 + 0.151079i 0.0188689 + 0.0140273i
\(117\) 0 0
\(118\) 3.79271 + 2.15139i 0.349147 + 0.198051i
\(119\) 8.15697 2.18565i 0.747748 0.200358i
\(120\) 0 0
\(121\) 6.72857 + 1.80291i 0.611688 + 0.163901i
\(122\) 4.90861 + 4.83442i 0.444405 + 0.437688i
\(123\) 0 0
\(124\) −13.3768 + 13.7906i −1.20128 + 1.23843i
\(125\) −3.22095 + 7.77605i −0.288090 + 0.695511i
\(126\) 0 0
\(127\) 7.79985i 0.692125i 0.938212 + 0.346062i \(0.112481\pi\)
−0.938212 + 0.346062i \(0.887519\pi\)
\(128\) 9.32994 + 6.39940i 0.824658 + 0.565632i
\(129\) 0 0
\(130\) −0.0542687 + 0.133891i −0.00475968 + 0.0117430i
\(131\) −2.50627 19.0370i −0.218974 1.66327i −0.649251 0.760574i \(-0.724918\pi\)
0.430277 0.902697i \(-0.358416\pi\)
\(132\) 0 0
\(133\) −7.82867 1.03066i −0.678832 0.0893699i
\(134\) −4.01389 14.5364i −0.346747 1.25575i
\(135\) 0 0
\(136\) 4.83454 + 10.9568i 0.414558 + 0.939539i
\(137\) 1.01413 + 3.78480i 0.0866432 + 0.323357i 0.995620 0.0934892i \(-0.0298020\pi\)
−0.908977 + 0.416846i \(0.863135\pi\)
\(138\) 0 0
\(139\) −6.92686 + 9.02726i −0.587529 + 0.765682i −0.988633 0.150350i \(-0.951960\pi\)
0.401104 + 0.916032i \(0.368627\pi\)
\(140\) 3.64279 + 0.423256i 0.307872 + 0.0357717i
\(141\) 0 0
\(142\) −1.76534 1.33336i −0.148144 0.111893i
\(143\) 0.223171i 0.0186625i
\(144\) 0 0
\(145\) 0.116407i 0.00966711i
\(146\) −6.20974 + 8.22155i −0.513922 + 0.680421i
\(147\) 0 0
\(148\) 10.0734 + 12.7220i 0.828030 + 1.04574i
\(149\) 13.0959 17.0669i 1.07286 1.39817i 0.161346 0.986898i \(-0.448417\pi\)
0.911511 0.411276i \(-0.134917\pi\)
\(150\) 0 0
\(151\) −0.570547 2.12931i −0.0464305 0.173281i 0.938817 0.344416i \(-0.111923\pi\)
−0.985248 + 0.171135i \(0.945256\pi\)
\(152\) −0.255771 11.1952i −0.0207458 0.908053i
\(153\) 0 0
\(154\) −5.46071 + 1.50785i −0.440037 + 0.121506i
\(155\) −8.75631 1.15279i −0.703323 0.0925943i
\(156\) 0 0
\(157\) −0.334717 2.54243i −0.0267133 0.202908i 0.972884 0.231295i \(-0.0742962\pi\)
−0.999597 + 0.0283871i \(0.990963\pi\)
\(158\) −23.1309 9.37546i −1.84020 0.745871i
\(159\) 0 0
\(160\) 0.197952 + 5.19707i 0.0156495 + 0.410864i
\(161\) 0.644149i 0.0507661i
\(162\) 0 0
\(163\) −3.80321 + 9.18176i −0.297890 + 0.719171i 0.702085 + 0.712093i \(0.252253\pi\)
−0.999975 + 0.00707721i \(0.997747\pi\)
\(164\) 1.22389 0.0186392i 0.0955698 0.00145548i
\(165\) 0 0
\(166\) −8.92914 + 9.06617i −0.693036 + 0.703671i
\(167\) 19.6605 + 5.26802i 1.52138 + 0.407652i 0.920195 0.391460i \(-0.128030\pi\)
0.601182 + 0.799112i \(0.294697\pi\)
\(168\) 0 0
\(169\) −12.5451 + 3.36145i −0.965008 + 0.258573i
\(170\) −2.71626 + 4.78854i −0.208328 + 0.367264i
\(171\) 0 0
\(172\) 5.23804 0.770919i 0.399397 0.0587820i
\(173\) 6.80745 5.22354i 0.517561 0.397138i −0.316685 0.948531i \(-0.602570\pi\)
0.834246 + 0.551392i \(0.185903\pi\)
\(174\) 0 0
\(175\) −4.14315 7.17615i −0.313193 0.542466i
\(176\) −3.29908 7.32538i −0.248678 0.552171i
\(177\) 0 0
\(178\) 14.6419 19.3855i 1.09745 1.45300i
\(179\) −2.02726 + 4.89424i −0.151525 + 0.365813i −0.981355 0.192202i \(-0.938437\pi\)
0.829831 + 0.558015i \(0.188437\pi\)
\(180\) 0 0
\(181\) 16.6205 6.88442i 1.23539 0.511715i 0.333118 0.942885i \(-0.391899\pi\)
0.902271 + 0.431170i \(0.141899\pi\)
\(182\) −0.158762 0.270212i −0.0117682 0.0200294i
\(183\) 0 0
\(184\) −0.902736 + 0.139892i −0.0665505 + 0.0103130i
\(185\) −1.93068 + 7.20538i −0.141946 + 0.529750i
\(186\) 0 0
\(187\) 1.11003 8.43154i 0.0811737 0.616576i
\(188\) 17.2488 + 4.34139i 1.25800 + 0.316629i
\(189\) 0 0
\(190\) 4.05998 3.16473i 0.294542 0.229594i
\(191\) 7.06095 12.2299i 0.510912 0.884926i −0.489008 0.872279i \(-0.662641\pi\)
0.999920 0.0126465i \(-0.00402563\pi\)
\(192\) 0 0
\(193\) 5.73584 + 9.93477i 0.412875 + 0.715121i 0.995203 0.0978336i \(-0.0311913\pi\)
−0.582328 + 0.812954i \(0.697858\pi\)
\(194\) 13.4811 + 5.46417i 0.967886 + 0.392304i
\(195\) 0 0
\(196\) 4.20854 4.33871i 0.300610 0.309908i
\(197\) −11.0795 + 4.58927i −0.789380 + 0.326972i −0.740694 0.671842i \(-0.765503\pi\)
−0.0486857 + 0.998814i \(0.515503\pi\)
\(198\) 0 0
\(199\) −9.49285 9.49285i −0.672930 0.672930i 0.285460 0.958391i \(-0.407854\pi\)
−0.958391 + 0.285460i \(0.907854\pi\)
\(200\) 9.15714 7.36484i 0.647508 0.520773i
\(201\) 0 0
\(202\) 5.51420 0.0419868i 0.387978 0.00295418i
\(203\) −0.200340 0.153726i −0.0140611 0.0107895i
\(204\) 0 0
\(205\) 0.342538 + 0.446404i 0.0239239 + 0.0311782i
\(206\) −16.5009 2.04470i −1.14967 0.142461i
\(207\) 0 0
\(208\) 0.344206 0.281178i 0.0238664 0.0194962i
\(209\) −3.97597 + 6.88658i −0.275024 + 0.476355i
\(210\) 0 0
\(211\) 2.21223 + 16.8035i 0.152296 + 1.15680i 0.881390 + 0.472389i \(0.156608\pi\)
−0.729094 + 0.684414i \(0.760058\pi\)
\(212\) 3.03794 + 3.83670i 0.208646 + 0.263506i
\(213\) 0 0
\(214\) −12.6302 21.4965i −0.863382 1.46947i
\(215\) 1.72098 + 1.72098i 0.117370 + 0.117370i
\(216\) 0 0
\(217\) 13.5474 13.5474i 0.919660 0.919660i
\(218\) 21.3745 + 5.55321i 1.44767 + 0.376111i
\(219\) 0 0
\(220\) 1.79767 3.22613i 0.121199 0.217506i
\(221\) 0.466446 0.0614088i 0.0313766 0.00413081i
\(222\) 0 0
\(223\) 6.38525 + 3.68653i 0.427588 + 0.246868i 0.698319 0.715787i \(-0.253932\pi\)
−0.270731 + 0.962655i \(0.587265\pi\)
\(224\) −9.20568 6.52250i −0.615081 0.435803i
\(225\) 0 0
\(226\) 14.5256 11.3226i 0.966228 0.753171i
\(227\) −5.33361 + 4.09262i −0.354004 + 0.271637i −0.770419 0.637538i \(-0.779953\pi\)
0.416415 + 0.909175i \(0.363286\pi\)
\(228\) 0 0
\(229\) −7.55775 + 9.84945i −0.499430 + 0.650870i −0.973249 0.229752i \(-0.926208\pi\)
0.473819 + 0.880622i \(0.342875\pi\)
\(230\) −0.299191 0.294669i −0.0197281 0.0194299i
\(231\) 0 0
\(232\) 0.171929 0.314149i 0.0112877 0.0206249i
\(233\) −17.7874 + 17.7874i −1.16529 + 1.16529i −0.181990 + 0.983300i \(0.558254\pi\)
−0.983300 + 0.181990i \(0.941746\pi\)
\(234\) 0 0
\(235\) 3.12899 + 7.55406i 0.204113 + 0.492772i
\(236\) 2.27280 5.73241i 0.147947 0.373148i
\(237\) 0 0
\(238\) −4.65412 10.9984i −0.301682 0.712922i
\(239\) 13.9417 8.04926i 0.901815 0.520663i 0.0240263 0.999711i \(-0.492351\pi\)
0.877789 + 0.479048i \(0.159018\pi\)
\(240\) 0 0
\(241\) 17.2563 + 9.96293i 1.11158 + 0.641769i 0.939237 0.343269i \(-0.111534\pi\)
0.172339 + 0.985038i \(0.444867\pi\)
\(242\) 1.21145 9.77654i 0.0778749 0.628460i
\(243\) 0 0
\(244\) 5.81296 7.81932i 0.372137 0.500581i
\(245\) 2.75486 + 0.362684i 0.176001 + 0.0231710i
\(246\) 0 0
\(247\) −0.424924 0.113858i −0.0270373 0.00724462i
\(248\) 21.9280 + 16.0437i 1.39243 + 1.01878i
\(249\) 0 0
\(250\) 11.5206 + 2.99311i 0.728627 + 0.189301i
\(251\) 5.94030 + 14.3412i 0.374948 + 0.905205i 0.992896 + 0.118986i \(0.0379644\pi\)
−0.617948 + 0.786219i \(0.712036\pi\)
\(252\) 0 0
\(253\) 0.599316 + 0.248245i 0.0376787 + 0.0156070i
\(254\) 10.9250 1.52302i 0.685496 0.0955626i
\(255\) 0 0
\(256\) 7.14165 14.3177i 0.446353 0.894857i
\(257\) 16.3222 9.42360i 1.01815 0.587828i 0.104581 0.994516i \(-0.466650\pi\)
0.913567 + 0.406688i \(0.133316\pi\)
\(258\) 0 0
\(259\) −9.85099 12.8381i −0.612111 0.797719i
\(260\) 0.198133 + 0.0498686i 0.0122877 + 0.00309272i
\(261\) 0 0
\(262\) −26.1752 + 7.22766i −1.61711 + 0.446527i
\(263\) −2.04369 7.62714i −0.126019 0.470309i 0.873855 0.486187i \(-0.161613\pi\)
−0.999874 + 0.0158774i \(0.994946\pi\)
\(264\) 0 0
\(265\) −0.582252 + 2.17299i −0.0357675 + 0.133486i
\(266\) 0.0850260 + 11.1666i 0.00521328 + 0.684669i
\(267\) 0 0
\(268\) −19.5769 + 8.46054i −1.19585 + 0.516810i
\(269\) −21.4230 8.87371i −1.30619 0.541040i −0.382417 0.923990i \(-0.624908\pi\)
−0.923769 + 0.382950i \(0.874908\pi\)
\(270\) 0 0
\(271\) 17.4563 1.06039 0.530196 0.847875i \(-0.322118\pi\)
0.530196 + 0.847875i \(0.322118\pi\)
\(272\) 14.4029 8.91104i 0.873302 0.540311i
\(273\) 0 0
\(274\) 5.10322 2.15949i 0.308297 0.130460i
\(275\) −8.27338 + 1.08921i −0.498904 + 0.0656819i
\(276\) 0 0
\(277\) 0.263693 2.00295i 0.0158438 0.120345i −0.981695 0.190458i \(-0.939003\pi\)
0.997539 + 0.0701129i \(0.0223360\pi\)
\(278\) 13.9968 + 7.93955i 0.839470 + 0.476183i
\(279\) 0 0
\(280\) −0.118459 5.18499i −0.00707926 0.309862i
\(281\) −26.0116 + 6.96978i −1.55172 + 0.415782i −0.930031 0.367481i \(-0.880220\pi\)
−0.621690 + 0.783263i \(0.713554\pi\)
\(282\) 0 0
\(283\) 7.34479 + 5.63586i 0.436603 + 0.335017i 0.803563 0.595220i \(-0.202935\pi\)
−0.366961 + 0.930236i \(0.619602\pi\)
\(284\) −1.52289 + 2.73301i −0.0903671 + 0.162175i
\(285\) 0 0
\(286\) −0.312589 + 0.0435770i −0.0184838 + 0.00257676i
\(287\) −1.22062 −0.0720510
\(288\) 0 0
\(289\) 0.928068 0.0545922
\(290\) 0.163048 0.0227300i 0.00957452 0.00133475i
\(291\) 0 0
\(292\) 12.7282 + 7.09242i 0.744862 + 0.415053i
\(293\) 9.13260 + 7.00769i 0.533532 + 0.409394i 0.840081 0.542461i \(-0.182508\pi\)
−0.306549 + 0.951855i \(0.599174\pi\)
\(294\) 0 0
\(295\) 2.73813 0.733679i 0.159420 0.0427164i
\(296\) 15.8524 16.5937i 0.921401 0.964486i
\(297\) 0 0
\(298\) −26.4622 15.0105i −1.53291 0.869533i
\(299\) −0.00468417 + 0.0355798i −0.000270893 + 0.00205763i
\(300\) 0 0
\(301\) −5.23454 + 0.689141i −0.301714 + 0.0397214i
\(302\) −2.87105 + 1.21492i −0.165211 + 0.0699109i
\(303\) 0 0
\(304\) −15.6309 + 2.54426i −0.896491 + 0.145923i
\(305\) 4.47894 0.256463
\(306\) 0 0
\(307\) −1.94912 0.807354i −0.111242 0.0460781i 0.326368 0.945243i \(-0.394175\pi\)
−0.437610 + 0.899165i \(0.644175\pi\)
\(308\) 3.17827 + 7.35422i 0.181099 + 0.419046i
\(309\) 0 0
\(310\) 0.0951010 + 12.4898i 0.00540137 + 0.709372i
\(311\) −3.94549 + 14.7248i −0.223728 + 0.834965i 0.759182 + 0.650879i \(0.225599\pi\)
−0.982910 + 0.184087i \(0.941067\pi\)
\(312\) 0 0
\(313\) 6.71688 + 25.0677i 0.379660 + 1.41691i 0.846415 + 0.532525i \(0.178757\pi\)
−0.466754 + 0.884387i \(0.654577\pi\)
\(314\) −3.49574 + 0.965268i −0.197276 + 0.0544732i
\(315\) 0 0
\(316\) −8.61530 + 34.2295i −0.484649 + 1.92556i
\(317\) 7.61568 + 9.92495i 0.427739 + 0.557441i 0.956651 0.291236i \(-0.0940665\pi\)
−0.528912 + 0.848677i \(0.677400\pi\)
\(318\) 0 0
\(319\) −0.220234 + 0.127152i −0.0123308 + 0.00711916i
\(320\) 7.24072 1.29206i 0.404768 0.0722282i
\(321\) 0 0
\(322\) 0.902240 0.125778i 0.0502799 0.00700934i
\(323\) −15.4876 6.41516i −0.861752 0.356949i
\(324\) 0 0
\(325\) −0.176664 0.426505i −0.00979957 0.0236583i
\(326\) 13.6032 + 3.53418i 0.753413 + 0.195740i
\(327\) 0 0
\(328\) −0.265087 1.71063i −0.0146370 0.0944535i
\(329\) −17.1328 4.59072i −0.944562 0.253095i
\(330\) 0 0
\(331\) 5.97140 + 0.786149i 0.328218 + 0.0432107i 0.292835 0.956163i \(-0.405401\pi\)
0.0353832 + 0.999374i \(0.488735\pi\)
\(332\) 14.4422 + 10.7365i 0.792620 + 0.589242i
\(333\) 0 0
\(334\) 3.53979 28.5665i 0.193689 1.56309i
\(335\) −8.49037 4.90192i −0.463878 0.267820i
\(336\) 0 0
\(337\) 6.79715 3.92434i 0.370264 0.213772i −0.303310 0.952892i \(-0.598092\pi\)
0.673574 + 0.739120i \(0.264758\pi\)
\(338\) 7.15787 + 16.9152i 0.389337 + 0.920064i
\(339\) 0 0
\(340\) 7.23754 + 2.86956i 0.392511 + 0.155624i
\(341\) −7.38356 17.8255i −0.399842 0.965304i
\(342\) 0 0
\(343\) −14.1341 + 14.1341i −0.763171 + 0.763171i
\(344\) −2.10259 7.18623i −0.113364 0.387455i
\(345\) 0 0
\(346\) −8.64568 8.51502i −0.464795 0.457770i
\(347\) −14.4370 + 18.8146i −0.775017 + 1.01002i 0.224352 + 0.974508i \(0.427974\pi\)
−0.999369 + 0.0355141i \(0.988693\pi\)
\(348\) 0 0
\(349\) 4.10745 3.15175i 0.219866 0.168709i −0.492955 0.870055i \(-0.664083\pi\)
0.712822 + 0.701345i \(0.247417\pi\)
\(350\) −9.24240 + 7.20441i −0.494027 + 0.385092i
\(351\) 0 0
\(352\) −9.61625 + 6.05129i −0.512548 + 0.322535i
\(353\) −4.00920 2.31471i −0.213388 0.123200i 0.389497 0.921028i \(-0.372649\pi\)
−0.602885 + 0.797828i \(0.705982\pi\)
\(354\) 0 0
\(355\) −1.42592 + 0.187727i −0.0756802 + 0.00996349i
\(356\) −30.0117 16.7231i −1.59062 0.886325i
\(357\) 0 0
\(358\) 7.25106 + 1.88386i 0.383231 + 0.0995652i
\(359\) −6.59986 + 6.59986i −0.348328 + 0.348328i −0.859486 0.511159i \(-0.829216\pi\)
0.511159 + 0.859486i \(0.329216\pi\)
\(360\) 0 0
\(361\) −2.35126 2.35126i −0.123751 0.123751i
\(362\) −12.8881 21.9355i −0.677385 1.15290i
\(363\) 0 0
\(364\) −0.347477 + 0.275135i −0.0182127 + 0.0144210i
\(365\) 0.874280 + 6.64082i 0.0457619 + 0.347596i
\(366\) 0 0
\(367\) 12.4616 21.5841i 0.650488 1.12668i −0.332516 0.943098i \(-0.607898\pi\)
0.983005 0.183581i \(-0.0587691\pi\)
\(368\) 0.372213 + 1.23712i 0.0194030 + 0.0644892i
\(369\) 0 0
\(370\) 10.4693 + 1.29730i 0.544275 + 0.0674433i
\(371\) −2.97086 3.87170i −0.154239 0.201009i
\(372\) 0 0
\(373\) −20.2126 15.5097i −1.04657 0.803060i −0.0657203 0.997838i \(-0.520935\pi\)
−0.980847 + 0.194779i \(0.937601\pi\)
\(374\) −12.0265 + 0.0915738i −0.621878 + 0.00473517i
\(375\) 0 0
\(376\) 2.71281 25.0076i 0.139903 1.28967i
\(377\) −0.00994796 0.00994796i −0.000512346 0.000512346i
\(378\) 0 0
\(379\) −6.04583 + 2.50427i −0.310554 + 0.128636i −0.532517 0.846420i \(-0.678754\pi\)
0.221963 + 0.975055i \(0.428754\pi\)
\(380\) −5.22551 5.06873i −0.268063 0.260020i
\(381\) 0 0
\(382\) −18.5088 7.50200i −0.946993 0.383836i
\(383\) 6.29503 + 10.9033i 0.321661 + 0.557133i 0.980831 0.194861i \(-0.0624256\pi\)
−0.659170 + 0.751994i \(0.729092\pi\)
\(384\) 0 0
\(385\) −1.84144 + 3.18947i −0.0938486 + 0.162551i
\(386\) 12.7953 9.97390i 0.651265 0.507658i
\(387\) 0 0
\(388\) 5.02114 19.9495i 0.254910 1.01278i
\(389\) 0.774161 5.88033i 0.0392515 0.298145i −0.960548 0.278115i \(-0.910290\pi\)
0.999799 0.0200301i \(-0.00637619\pi\)
\(390\) 0 0
\(391\) −0.353941 + 1.32093i −0.0178996 + 0.0668022i
\(392\) −6.89887 5.04759i −0.348446 0.254942i
\(393\) 0 0
\(394\) 8.59145 + 14.6226i 0.432831 + 0.736674i
\(395\) −14.9907 + 6.20935i −0.754264 + 0.312426i
\(396\) 0 0
\(397\) −7.21072 + 17.4082i −0.361896 + 0.873693i 0.633127 + 0.774048i \(0.281771\pi\)
−0.995023 + 0.0996456i \(0.968229\pi\)
\(398\) −11.4427 + 15.1499i −0.573573 + 0.759398i
\(399\) 0 0
\(400\) −12.1037 11.3880i −0.605187 0.569402i
\(401\) −3.48119 6.02959i −0.173842 0.301104i 0.765918 0.642939i \(-0.222285\pi\)
−0.939760 + 0.341835i \(0.888952\pi\)
\(402\) 0 0
\(403\) 0.846813 0.649782i 0.0421827 0.0323680i
\(404\) −1.13553 7.71538i −0.0564946 0.383854i
\(405\) 0 0
\(406\) −0.176201 + 0.310627i −0.00874469 + 0.0154161i
\(407\) −15.7409 + 4.21777i −0.780249 + 0.209067i
\(408\) 0 0
\(409\) −15.0275 4.02660i −0.743062 0.199103i −0.132623 0.991167i \(-0.542340\pi\)
−0.610438 + 0.792064i \(0.709007\pi\)
\(410\) 0.558379 0.566948i 0.0275764 0.0279995i
\(411\) 0 0
\(412\) 0.358069 + 23.5116i 0.0176408 + 1.15833i
\(413\) −2.35326 + 5.68126i −0.115796 + 0.279557i
\(414\) 0 0
\(415\) 8.27257i 0.406084i
\(416\) −0.461048 0.427215i −0.0226047 0.0209459i
\(417\) 0 0
\(418\) 10.4222 + 4.22433i 0.509765 + 0.206619i
\(419\) −3.75071 28.4894i −0.183234 1.39180i −0.797794 0.602930i \(-0.794000\pi\)
0.614560 0.788870i \(-0.289334\pi\)
\(420\) 0 0
\(421\) −16.1708 2.12893i −0.788118 0.103758i −0.274285 0.961648i \(-0.588441\pi\)
−0.513832 + 0.857891i \(0.671775\pi\)
\(422\) 23.1042 6.37970i 1.12470 0.310559i
\(423\) 0 0
\(424\) 4.78075 5.00431i 0.232174 0.243031i
\(425\) −4.55308 16.9923i −0.220857 0.824249i
\(426\) 0 0
\(427\) −5.91483 + 7.70835i −0.286239 + 0.373033i
\(428\) −27.6432 + 21.8882i −1.33619 + 1.05800i
\(429\) 0 0
\(430\) 2.07448 2.74656i 0.100040 0.132451i
\(431\) 17.6688i 0.851074i −0.904941 0.425537i \(-0.860085\pi\)
0.904941 0.425537i \(-0.139915\pi\)
\(432\) 0 0
\(433\) 20.6124i 0.990567i 0.868731 + 0.495284i \(0.164936\pi\)
−0.868731 + 0.495284i \(0.835064\pi\)
\(434\) −21.6208 16.3302i −1.03783 0.783873i
\(435\) 0 0
\(436\) 3.60456 31.0230i 0.172627 1.48573i
\(437\) 0.778425 1.01446i 0.0372371 0.0485284i
\(438\) 0 0
\(439\) 7.93569 + 29.6164i 0.378750 + 1.41351i 0.847788 + 0.530335i \(0.177934\pi\)
−0.469038 + 0.883178i \(0.655399\pi\)
\(440\) −4.86976 1.88800i −0.232157 0.0900068i
\(441\) 0 0
\(442\) −0.177093 0.641346i −0.00842345 0.0305057i
\(443\) 18.4590 + 2.43017i 0.877013 + 0.115461i 0.555572 0.831468i \(-0.312499\pi\)
0.321441 + 0.946929i \(0.395833\pi\)
\(444\) 0 0
\(445\) −2.06146 15.6583i −0.0977223 0.742275i
\(446\) 3.91680 9.66346i 0.185466 0.457578i
\(447\) 0 0
\(448\) −7.33834 + 14.1677i −0.346704 + 0.669361i
\(449\) 9.64683i 0.455262i 0.973747 + 0.227631i \(0.0730980\pi\)
−0.973747 + 0.227631i \(0.926902\pi\)
\(450\) 0 0
\(451\) −0.470408 + 1.13566i −0.0221506 + 0.0534764i
\(452\) −18.6956 18.1347i −0.879366 0.852983i
\(453\) 0 0
\(454\) 6.77386 + 6.67148i 0.317913 + 0.313108i
\(455\) −0.196801 0.0527326i −0.00922616 0.00247214i
\(456\) 0 0
\(457\) −0.731559 + 0.196021i −0.0342209 + 0.00916945i −0.275889 0.961190i \(-0.588972\pi\)
0.241668 + 0.970359i \(0.422306\pi\)
\(458\) 15.2716 + 8.66268i 0.713593 + 0.404780i
\(459\) 0 0
\(460\) −0.354313 + 0.476605i −0.0165199 + 0.0222218i
\(461\) 8.35536 6.41130i 0.389148 0.298604i −0.395595 0.918425i \(-0.629462\pi\)
0.784743 + 0.619821i \(0.212795\pi\)
\(462\) 0 0
\(463\) 11.0847 + 19.1993i 0.515151 + 0.892267i 0.999845 + 0.0175838i \(0.00559740\pi\)
−0.484695 + 0.874683i \(0.661069\pi\)
\(464\) −0.473590 0.179474i −0.0219859 0.00833188i
\(465\) 0 0
\(466\) 28.3874 + 21.4410i 1.31502 + 0.993236i
\(467\) −6.87549 + 16.5989i −0.318160 + 0.768105i 0.681192 + 0.732105i \(0.261462\pi\)
−0.999352 + 0.0360004i \(0.988538\pi\)
\(468\) 0 0
\(469\) 19.6486 8.13871i 0.907287 0.375811i
\(470\) 9.96976 5.85771i 0.459871 0.270196i
\(471\) 0 0
\(472\) −8.47301 2.06412i −0.390002 0.0950089i
\(473\) −1.37613 + 5.13580i −0.0632746 + 0.236144i
\(474\) 0 0
\(475\) −2.14705 + 16.3084i −0.0985133 + 0.748283i
\(476\) −14.4964 + 8.66646i −0.664441 + 0.397227i
\(477\) 0 0
\(478\) −13.9966 17.9560i −0.640191 0.821289i
\(479\) −9.30888 + 16.1234i −0.425333 + 0.736699i −0.996452 0.0841688i \(-0.973177\pi\)
0.571118 + 0.820868i \(0.306510\pi\)
\(480\) 0 0
\(481\) −0.450766 0.780750i −0.0205532 0.0355991i
\(482\) 10.5853 26.1158i 0.482145 1.18954i
\(483\) 0 0
\(484\) −13.9302 + 0.212150i −0.633193 + 0.00964320i
\(485\) 8.73682 3.61891i 0.396718 0.164326i
\(486\) 0 0
\(487\) −20.7701 20.7701i −0.941183 0.941183i 0.0571804 0.998364i \(-0.481789\pi\)
−0.998364 + 0.0571804i \(0.981789\pi\)
\(488\) −12.0873 6.61521i −0.547167 0.299457i
\(489\) 0 0
\(490\) −0.0299201 3.92946i −0.00135165 0.177515i
\(491\) −10.7848 8.27545i −0.486710 0.373466i 0.336060 0.941841i \(-0.390906\pi\)
−0.822770 + 0.568375i \(0.807572\pi\)
\(492\) 0 0
\(493\) −0.326360 0.425320i −0.0146985 0.0191555i
\(494\) −0.0765058 + 0.617410i −0.00344216 + 0.0277786i
\(495\) 0 0
\(496\) 18.1903 33.8467i 0.816766 1.51976i
\(497\) 1.55998 2.70196i 0.0699745 0.121199i
\(498\) 0 0
\(499\) 0.290652 + 2.20772i 0.0130114 + 0.0988310i 0.996718 0.0809484i \(-0.0257949\pi\)
−0.983707 + 0.179779i \(0.942462\pi\)
\(500\) 1.94281 16.7210i 0.0868852 0.747785i
\(501\) 0 0
\(502\) 18.9273 11.1207i 0.844766 0.496340i
\(503\) 2.56043 + 2.56043i 0.114164 + 0.114164i 0.761881 0.647717i \(-0.224276\pi\)
−0.647717 + 0.761881i \(0.724276\pi\)
\(504\) 0 0
\(505\) 2.53492 2.53492i 0.112802 0.112802i
\(506\) 0.230685 0.887916i 0.0102552 0.0394727i
\(507\) 0 0
\(508\) −4.26648 15.0049i −0.189295 0.665736i
\(509\) −38.8541 + 5.11524i −1.72218 + 0.226729i −0.925786 0.378049i \(-0.876595\pi\)
−0.796394 + 0.604778i \(0.793262\pi\)
\(510\) 0 0
\(511\) −12.5836 7.26512i −0.556664 0.321390i
\(512\) −21.4489 7.20737i −0.947915 0.318524i
\(513\) 0 0
\(514\) −16.3864 21.0219i −0.722775 0.927234i
\(515\) −8.57565 + 6.58033i −0.377888 + 0.289964i
\(516\) 0 0
\(517\) −10.8739 + 14.1712i −0.478234 + 0.623247i
\(518\) −16.0583 + 16.3048i −0.705563 + 0.716390i
\(519\) 0 0
\(520\) 0.0311615 0.287256i 0.00136652 0.0125970i
\(521\) −24.7080 + 24.7080i −1.08248 + 1.08248i −0.0861991 + 0.996278i \(0.527472\pi\)
−0.996278 + 0.0861991i \(0.972528\pi\)
\(522\) 0 0
\(523\) 4.60853 + 11.1260i 0.201517 + 0.486505i 0.992039 0.125928i \(-0.0401909\pi\)
−0.790522 + 0.612433i \(0.790191\pi\)
\(524\) 15.2346 + 35.2514i 0.665526 + 1.53997i
\(525\) 0 0
\(526\) −10.2840 + 4.35182i −0.448405 + 0.189748i
\(527\) 35.2250 20.3372i 1.53443 0.885902i
\(528\) 0 0
\(529\) 19.8282 + 11.4478i 0.862098 + 0.497732i
\(530\) 3.15734 + 0.391238i 0.137146 + 0.0169943i
\(531\) 0 0
\(532\) 15.6241 2.29951i 0.677392 0.0996966i
\(533\) −0.0674214 0.00887620i −0.00292035 0.000384471i
\(534\) 0 0
\(535\) −15.6563 4.19509i −0.676881 0.181370i
\(536\) 15.6731 + 25.7687i 0.676973 + 1.11304i
\(537\) 0 0
\(538\) −8.24602 + 31.7393i −0.355511 + 1.36838i
\(539\) 2.32297 + 5.60815i 0.100057 + 0.241560i
\(540\) 0 0
\(541\) −11.1316 4.61087i −0.478586 0.198237i 0.130331 0.991471i \(-0.458396\pi\)
−0.608918 + 0.793234i \(0.708396\pi\)
\(542\) −3.40855 24.4504i −0.146410 1.05024i
\(543\) 0 0
\(544\) −15.2937 18.4336i −0.655714 0.790336i
\(545\) 12.4335 7.17850i 0.532594 0.307493i
\(546\) 0 0
\(547\) −20.3808 26.5608i −0.871421 1.13566i −0.989768 0.142686i \(-0.954426\pi\)
0.118347 0.992972i \(-0.462241\pi\)
\(548\) −4.02120 6.72626i −0.171777 0.287331i
\(549\) 0 0
\(550\) 3.14110 + 11.3756i 0.133937 + 0.485056i
\(551\) 0.129742 + 0.484203i 0.00552719 + 0.0206277i
\(552\) 0 0
\(553\) 9.11008 33.9993i 0.387400 1.44580i
\(554\) −2.85695 + 0.0217537i −0.121380 + 0.000924226i
\(555\) 0 0
\(556\) 8.38764 21.1551i 0.355715 0.897177i
\(557\) 40.2356 + 16.6661i 1.70484 + 0.706167i 0.999995 0.00319551i \(-0.00101716\pi\)
0.704844 + 0.709363i \(0.251017\pi\)
\(558\) 0 0
\(559\) −0.294143 −0.0124409
\(560\) −7.23932 + 1.17835i −0.305917 + 0.0497946i
\(561\) 0 0
\(562\) 14.8414 + 35.0727i 0.626048 + 1.47945i
\(563\) −38.7382 + 5.09998i −1.63262 + 0.214939i −0.890388 0.455202i \(-0.849567\pi\)
−0.742234 + 0.670141i \(0.766234\pi\)
\(564\) 0 0
\(565\) 1.56281 11.8707i 0.0657478 0.499404i
\(566\) 6.45981 11.3881i 0.271526 0.478677i
\(567\) 0 0
\(568\) 4.12541 + 1.59941i 0.173098 + 0.0671100i
\(569\) 7.10055 1.90259i 0.297671 0.0797606i −0.106893 0.994271i \(-0.534090\pi\)
0.404563 + 0.914510i \(0.367423\pi\)
\(570\) 0 0
\(571\) −21.4398 16.4514i −0.897229 0.688468i 0.0534745 0.998569i \(-0.482970\pi\)
−0.950704 + 0.310101i \(0.899637\pi\)
\(572\) 0.122074 + 0.429325i 0.00510416 + 0.0179510i
\(573\) 0 0
\(574\) 0.238341 + 1.70969i 0.00994818 + 0.0713609i
\(575\) 1.34187 0.0559599
\(576\) 0 0
\(577\) 39.1901 1.63150 0.815752 0.578402i \(-0.196323\pi\)
0.815752 + 0.578402i \(0.196323\pi\)
\(578\) −0.181217 1.29992i −0.00753762 0.0540693i
\(579\) 0 0
\(580\) −0.0636744 0.223938i −0.00264393 0.00929853i
\(581\) −14.2373 10.9246i −0.590661 0.453231i
\(582\) 0 0
\(583\) −4.74714 + 1.27199i −0.196607 + 0.0526806i
\(584\) 7.44880 19.2129i 0.308233 0.795034i
\(585\) 0 0
\(586\) 8.03220 14.1601i 0.331807 0.584948i
\(587\) −1.72250 + 13.0837i −0.0710950 + 0.540020i 0.918422 + 0.395602i \(0.129464\pi\)
−0.989517 + 0.144418i \(0.953869\pi\)
\(588\) 0 0
\(589\) −37.7072 + 4.96424i −1.55370 + 0.204548i
\(590\) −1.56229 3.69195i −0.0643186 0.151995i
\(591\) 0 0
\(592\) −26.3376 18.9638i −1.08247 0.779408i
\(593\) 45.3116 1.86072 0.930362 0.366643i \(-0.119493\pi\)
0.930362 + 0.366643i \(0.119493\pi\)
\(594\) 0 0
\(595\) −7.17296 2.97114i −0.294063 0.121805i
\(596\) −15.8576 + 39.9957i −0.649554 + 1.63829i
\(597\) 0 0
\(598\) 0.0507502 0.000386427i 0.00207533 1.58022e-5i
\(599\) 3.22876 12.0499i 0.131924 0.492345i −0.868068 0.496445i \(-0.834638\pi\)
0.999992 + 0.00409987i \(0.00130503\pi\)
\(600\) 0 0
\(601\) 2.71420 + 10.1295i 0.110714 + 0.413192i 0.998931 0.0462338i \(-0.0147219\pi\)
−0.888216 + 0.459426i \(0.848055\pi\)
\(602\) 1.98737 + 7.19730i 0.0809990 + 0.293340i
\(603\) 0 0
\(604\) 2.26231 + 3.78417i 0.0920522 + 0.153976i
\(605\) −3.89874 5.08094i −0.158506 0.206569i
\(606\) 0 0
\(607\) 31.5946 18.2412i 1.28239 0.740386i 0.305103 0.952319i \(-0.401309\pi\)
0.977284 + 0.211933i \(0.0679759\pi\)
\(608\) 6.61578 + 21.3969i 0.268305 + 0.867757i
\(609\) 0 0
\(610\) −0.874568 6.27351i −0.0354102 0.254007i
\(611\) −0.912953 0.378158i −0.0369341 0.0152986i
\(612\) 0 0
\(613\) −8.89057 21.4637i −0.359087 0.866912i −0.995429 0.0955052i \(-0.969553\pi\)
0.636342 0.771407i \(-0.280447\pi\)
\(614\) −0.750244 + 2.88772i −0.0302774 + 0.116539i
\(615\) 0 0
\(616\) 9.68023 5.88770i 0.390028 0.237222i
\(617\) 24.4173 + 6.54261i 0.983005 + 0.263395i 0.714310 0.699830i \(-0.246741\pi\)
0.268695 + 0.963225i \(0.413407\pi\)
\(618\) 0 0
\(619\) 17.1114 + 2.25276i 0.687765 + 0.0905459i 0.466306 0.884624i \(-0.345585\pi\)
0.221459 + 0.975170i \(0.428918\pi\)
\(620\) 17.4755 2.57199i 0.701832 0.103294i
\(621\) 0 0
\(622\) 21.3949 + 2.65113i 0.857859 + 0.106301i
\(623\) 29.6706 + 17.1303i 1.18873 + 0.686313i
\(624\) 0 0
\(625\) −11.2890 + 6.51770i −0.451560 + 0.260708i
\(626\) 33.8000 14.3029i 1.35092 0.571659i
\(627\) 0 0
\(628\) 2.03461 + 4.70790i 0.0811897 + 0.187865i
\(629\) −13.1468 31.7393i −0.524199 1.26553i
\(630\) 0 0
\(631\) 6.36119 6.36119i 0.253235 0.253235i −0.569061 0.822296i \(-0.692693\pi\)
0.822296 + 0.569061i \(0.192693\pi\)
\(632\) 49.6264 + 5.38346i 1.97403 + 0.214142i
\(633\) 0 0
\(634\) 12.4145 12.6050i 0.493043 0.500609i
\(635\) 4.36548 5.68920i 0.173239 0.225769i
\(636\) 0 0
\(637\) −0.266419 + 0.204430i −0.0105559 + 0.00809983i
\(638\) 0.221102 + 0.283647i 0.00875350 + 0.0112297i
\(639\) 0 0
\(640\) −3.22358 9.88956i −0.127423 0.390919i
\(641\) −27.8445 16.0760i −1.09979 0.634966i −0.163626 0.986522i \(-0.552319\pi\)
−0.936167 + 0.351557i \(0.885652\pi\)
\(642\) 0 0
\(643\) 24.6773 3.24883i 0.973177 0.128121i 0.372864 0.927886i \(-0.378376\pi\)
0.600313 + 0.799765i \(0.295043\pi\)
\(644\) −0.352347 1.23918i −0.0138844 0.0488305i
\(645\) 0 0
\(646\) −5.96138 + 22.9456i −0.234547 + 0.902782i
\(647\) −32.2477 + 32.2477i −1.26779 + 1.26779i −0.320560 + 0.947228i \(0.603871\pi\)
−0.947228 + 0.320560i \(0.896129\pi\)
\(648\) 0 0
\(649\) 4.37893 + 4.37893i 0.171888 + 0.171888i
\(650\) −0.562897 + 0.330729i −0.0220786 + 0.0129722i
\(651\) 0 0
\(652\) 2.29402 19.7437i 0.0898408 0.773223i
\(653\) 3.50465 + 26.6205i 0.137148 + 1.04174i 0.912172 + 0.409808i \(0.134404\pi\)
−0.775024 + 0.631932i \(0.782262\pi\)
\(654\) 0 0
\(655\) −8.82670 + 15.2883i −0.344888 + 0.597363i
\(656\) −2.34426 + 0.705320i −0.0915279 + 0.0275381i
\(657\) 0 0
\(658\) −3.08469 + 24.8938i −0.120254 + 0.970461i
\(659\) 30.1948 + 39.3507i 1.17622 + 1.53288i 0.792992 + 0.609232i \(0.208522\pi\)
0.383231 + 0.923653i \(0.374811\pi\)
\(660\) 0 0
\(661\) −11.4726 8.80327i −0.446234 0.342407i 0.361075 0.932537i \(-0.382410\pi\)
−0.807309 + 0.590130i \(0.799077\pi\)
\(662\) −0.0648545 8.51746i −0.00252064 0.331040i
\(663\) 0 0
\(664\) 12.2182 22.3252i 0.474160 0.866386i
\(665\) 5.13337 + 5.13337i 0.199064 + 0.199064i
\(666\) 0 0
\(667\) 0.0377804 0.0156491i 0.00146286 0.000605937i
\(668\) −40.7034 + 0.619893i −1.57486 + 0.0239844i
\(669\) 0 0
\(670\) −5.20811 + 12.8494i −0.201207 + 0.496414i
\(671\) 4.89236 + 8.47382i 0.188868 + 0.327128i
\(672\) 0 0
\(673\) 8.18688 14.1801i 0.315581 0.546603i −0.663980 0.747751i \(-0.731134\pi\)
0.979561 + 0.201148i \(0.0644672\pi\)
\(674\) −6.82392 8.75428i −0.262848 0.337202i
\(675\) 0 0
\(676\) 22.2949 13.3287i 0.857496 0.512642i
\(677\) 0.0300992 0.228626i 0.00115680 0.00878681i −0.990857 0.134918i \(-0.956923\pi\)
0.992014 + 0.126132i \(0.0402561\pi\)
\(678\) 0 0
\(679\) −5.30951 + 19.8153i −0.203760 + 0.760443i
\(680\) 2.60609 10.6977i 0.0999388 0.410239i
\(681\) 0 0
\(682\) −23.5259 + 13.8226i −0.900852 + 0.529293i
\(683\) 39.0929 16.1928i 1.49585 0.619601i 0.523269 0.852167i \(-0.324712\pi\)
0.972581 + 0.232566i \(0.0747122\pi\)
\(684\) 0 0
\(685\) 1.37859 3.32822i 0.0526734 0.127165i
\(686\) 22.5571 + 17.0374i 0.861233 + 0.650489i
\(687\) 0 0
\(688\) −9.65496 + 4.34824i −0.368092 + 0.165775i
\(689\) −0.135942 0.235458i −0.00517897 0.00897024i
\(690\) 0 0
\(691\) −16.0959 + 12.3508i −0.612315 + 0.469846i −0.867764 0.496977i \(-0.834443\pi\)
0.255449 + 0.966823i \(0.417777\pi\)
\(692\) −10.2385 + 13.7724i −0.389211 + 0.523548i
\(693\) 0 0
\(694\) 29.1721 + 16.5476i 1.10736 + 0.628139i
\(695\) 10.1049 2.70760i 0.383300 0.102705i
\(696\) 0 0
\(697\) −2.50307 0.670696i −0.0948106 0.0254044i
\(698\) −5.21659 5.13775i −0.197451 0.194467i
\(699\) 0 0
\(700\) 11.8957 + 11.5388i 0.449615 + 0.436125i
\(701\) 17.7240 42.7894i 0.669425 1.61613i −0.113151 0.993578i \(-0.536094\pi\)
0.782575 0.622556i \(-0.213906\pi\)
\(702\) 0 0
\(703\) 32.1230i 1.21154i
\(704\) 10.3535 + 12.2876i 0.390214 + 0.463106i
\(705\) 0 0
\(706\) −2.45930 + 6.06753i −0.0925569 + 0.228355i
\(707\) 1.01507 + 7.71023i 0.0381757 + 0.289973i
\(708\) 0 0
\(709\) 46.6755 + 6.14495i 1.75294 + 0.230778i 0.937480 0.348040i \(-0.113153\pi\)
0.815456 + 0.578819i \(0.196486\pi\)
\(710\) 0.541372 + 1.96059i 0.0203173 + 0.0735797i
\(711\) 0 0
\(712\) −17.5634 + 45.3018i −0.658217 + 1.69776i
\(713\) 0.803006 + 2.99686i 0.0300728 + 0.112233i
\(714\) 0 0
\(715\) −0.124906 + 0.162781i −0.00467122 + 0.00608766i
\(716\) 1.22281 10.5242i 0.0456984 0.393307i
\(717\) 0 0
\(718\) 10.5329 + 7.95552i 0.393085 + 0.296897i
\(719\) 33.7823i 1.25987i −0.776649 0.629934i \(-0.783082\pi\)
0.776649 0.629934i \(-0.216918\pi\)
\(720\) 0 0
\(721\) 23.4488i 0.873278i
\(722\) −2.83422 + 3.75245i −0.105479 + 0.139652i
\(723\) 0 0
\(724\) −28.2078 + 22.3352i −1.04833 + 0.830081i
\(725\) −0.320238 + 0.417342i −0.0118933 + 0.0154997i
\(726\) 0 0
\(727\) −3.57803 13.3534i −0.132702 0.495250i 0.867295 0.497795i \(-0.165857\pi\)
−0.999997 + 0.00254481i \(0.999190\pi\)
\(728\) 0.453223 + 0.432976i 0.0167976 + 0.0160472i
\(729\) 0 0
\(730\) 9.13087 2.52128i 0.337949 0.0933167i
\(731\) −11.1129 1.46304i −0.411026 0.0541125i
\(732\) 0 0
\(733\) −1.34275 10.1992i −0.0495955 0.376715i −0.998186 0.0602085i \(-0.980823\pi\)
0.948590 0.316506i \(-0.102510\pi\)
\(734\) −32.6654 13.2400i −1.20570 0.488696i
\(735\) 0 0
\(736\) 1.66011 0.762910i 0.0611926 0.0281212i
\(737\) 21.4175i 0.788925i
\(738\) 0 0
\(739\) 17.1048 41.2947i 0.629211 1.51905i −0.211394 0.977401i \(-0.567800\pi\)
0.840605 0.541649i \(-0.182200\pi\)
\(740\) −0.227184 14.9174i −0.00835146 0.548374i
\(741\) 0 0
\(742\) −4.84287 + 4.91718i −0.177787 + 0.180516i
\(743\) 2.76781 + 0.741632i 0.101541 + 0.0272078i 0.309232 0.950987i \(-0.399928\pi\)
−0.207691 + 0.978195i \(0.566595\pi\)
\(744\) 0 0
\(745\) −19.1042 + 5.11897i −0.699925 + 0.187544i
\(746\) −17.7771 + 31.3396i −0.650867 + 1.14742i
\(747\) 0 0
\(748\) 2.47660 + 16.8273i 0.0905534 + 0.615268i
\(749\) 27.8954 21.4049i 1.01927 0.782117i
\(750\) 0 0
\(751\) 7.03768 + 12.1896i 0.256809 + 0.444806i 0.965385 0.260828i \(-0.0839956\pi\)
−0.708577 + 0.705634i \(0.750662\pi\)
\(752\) −35.5570 + 1.08328i −1.29663 + 0.0395032i
\(753\) 0 0
\(754\) −0.0119913 + 0.0158763i −0.000436699 + 0.000578179i
\(755\) −0.775592 + 1.87244i −0.0282267 + 0.0681452i
\(756\) 0 0
\(757\) 48.0034 19.8836i 1.74471 0.722683i 0.746345 0.665559i \(-0.231807\pi\)
0.998367 0.0571241i \(-0.0181931\pi\)
\(758\) 4.68817 + 7.97922i 0.170282 + 0.289818i
\(759\) 0 0
\(760\) −6.07927 + 8.30893i −0.220518 + 0.301397i
\(761\) 8.64150 32.2505i 0.313254 1.16908i −0.612350 0.790587i \(-0.709776\pi\)
0.925604 0.378493i \(-0.123558\pi\)
\(762\) 0 0
\(763\) −4.06519 + 30.8782i −0.147170 + 1.11787i
\(764\) −6.89375 + 27.3896i −0.249407 + 0.990919i
\(765\) 0 0
\(766\) 14.0427 10.9463i 0.507385 0.395504i
\(767\) −0.171296 + 0.296694i −0.00618515 + 0.0107130i
\(768\) 0 0
\(769\) 5.70866 + 9.88770i 0.205860 + 0.356559i 0.950406 0.311011i \(-0.100668\pi\)
−0.744547 + 0.667570i \(0.767334\pi\)
\(770\) 4.82696 + 1.95647i 0.173951 + 0.0705062i
\(771\) 0 0
\(772\) −16.4686 15.9745i −0.592717 0.574934i
\(773\) −5.85874 + 2.42677i −0.210724 + 0.0872848i −0.485549 0.874210i \(-0.661380\pi\)
0.274825 + 0.961494i \(0.411380\pi\)
\(774\) 0 0
\(775\) −28.2216 28.2216i −1.01375 1.01375i
\(776\) −28.9231 3.13757i −1.03828 0.112632i
\(777\) 0 0
\(778\) −8.38756 + 0.0638654i −0.300709 + 0.00228969i
\(779\) 1.92234 + 1.47507i 0.0688751 + 0.0528497i
\(780\) 0 0
\(781\) −1.91271 2.49269i −0.0684421 0.0891955i
\(782\) 1.91929 + 0.237827i 0.0686338 + 0.00850469i
\(783\) 0 0
\(784\) −5.72291 + 10.6486i −0.204390 + 0.380308i
\(785\) −1.17882 + 2.04178i −0.0420740 + 0.0728743i
\(786\) 0 0
\(787\) 1.42466 + 10.8214i 0.0507837 + 0.385740i 0.997896 + 0.0648375i \(0.0206529\pi\)
−0.947112 + 0.320903i \(0.896014\pi\)
\(788\) 18.8038 14.8890i 0.669857 0.530399i
\(789\) 0 0
\(790\) 11.6244 + 19.7845i 0.413576 + 0.703902i
\(791\) 18.3659 + 18.3659i 0.653017 + 0.653017i
\(792\) 0 0
\(793\) −0.382762 + 0.382762i −0.0135923 + 0.0135923i
\(794\) 25.7911 + 6.70066i 0.915293 + 0.237797i
\(795\) 0 0
\(796\) 23.4544 + 13.0693i 0.831318 + 0.463228i
\(797\) 22.5091 2.96337i 0.797312 0.104968i 0.279146 0.960249i \(-0.409948\pi\)
0.518165 + 0.855280i \(0.326615\pi\)
\(798\) 0 0
\(799\) −32.6110 18.8280i −1.15369 0.666086i
\(800\) −13.5875 + 19.1770i −0.480390 + 0.678009i
\(801\) 0 0
\(802\) −7.76572 + 6.05334i −0.274217 + 0.213751i
\(803\) −11.6090 + 8.90787i −0.409671 + 0.314352i
\(804\) 0 0
\(805\) 0.360522 0.469842i 0.0127067 0.0165597i
\(806\) −1.07548 1.05923i −0.0378822 0.0373096i
\(807\) 0 0
\(808\) −10.5850 + 3.09702i −0.372378 + 0.108953i
\(809\) 22.7074 22.7074i 0.798348 0.798348i −0.184487 0.982835i \(-0.559062\pi\)
0.982835 + 0.184487i \(0.0590624\pi\)
\(810\) 0 0
\(811\) 13.7119 + 33.1034i 0.481490 + 1.16242i 0.958902 + 0.283739i \(0.0915749\pi\)
−0.477412 + 0.878680i \(0.658425\pi\)
\(812\) 0.469490 + 0.186145i 0.0164759 + 0.00653241i
\(813\) 0 0
\(814\) 8.98131 + 21.2243i 0.314795 + 0.743910i
\(815\) 7.91297 4.56855i 0.277179 0.160029i
\(816\) 0 0
\(817\) 9.07662 + 5.24039i 0.317551 + 0.183338i
\(818\) −2.70563 + 21.8348i −0.0946003 + 0.763435i
\(819\) 0 0
\(820\) −0.903136 0.671400i −0.0315389 0.0234463i
\(821\) 12.1550 + 1.60024i 0.424213 + 0.0558487i 0.339611 0.940566i \(-0.389705\pi\)
0.0846025 + 0.996415i \(0.473038\pi\)
\(822\) 0 0
\(823\) 10.9127 + 2.92405i 0.380393 + 0.101926i 0.443948 0.896052i \(-0.353577\pi\)
−0.0635555 + 0.997978i \(0.520244\pi\)
\(824\) 32.8620 5.09246i 1.14480 0.177404i
\(825\) 0 0
\(826\) 8.41707 + 2.18680i 0.292867 + 0.0760883i
\(827\) −3.04575 7.35309i −0.105911 0.255692i 0.862036 0.506848i \(-0.169189\pi\)
−0.967947 + 0.251156i \(0.919189\pi\)
\(828\) 0 0
\(829\) 9.08127 + 3.76158i 0.315405 + 0.130645i 0.534770 0.844998i \(-0.320398\pi\)
−0.219364 + 0.975643i \(0.570398\pi\)
\(830\) 11.5871 1.61532i 0.402195 0.0560686i
\(831\) 0 0
\(832\) −0.508361 + 0.729195i −0.0176243 + 0.0252803i
\(833\) −11.0823 + 6.39836i −0.383979 + 0.221690i
\(834\) 0 0
\(835\) −11.3919 14.8462i −0.394234 0.513775i
\(836\) 3.88182 15.4229i 0.134256 0.533411i
\(837\) 0 0
\(838\) −39.1719 + 10.8164i −1.35317 + 0.373647i
\(839\) −2.93228 10.9434i −0.101233 0.377809i 0.896657 0.442726i \(-0.145988\pi\)
−0.997891 + 0.0649170i \(0.979322\pi\)
\(840\) 0 0
\(841\) 7.50160 27.9964i 0.258676 0.965392i
\(842\) 0.175629 + 23.0657i 0.00605257 + 0.794895i
\(843\) 0 0
\(844\) −13.4472 31.1156i −0.462873 1.07104i
\(845\) 11.0317 + 4.56950i 0.379504 + 0.157196i
\(846\) 0 0
\(847\) 13.8930 0.477370
\(848\) −7.94287 5.71910i −0.272759 0.196395i
\(849\) 0 0
\(850\) −22.9116 + 9.69532i −0.785861 + 0.332547i
\(851\) 2.59808 0.342043i 0.0890609 0.0117251i
\(852\) 0 0
\(853\) −3.35298 + 25.4684i −0.114804 + 0.872021i 0.833024 + 0.553237i \(0.186608\pi\)
−0.947827 + 0.318784i \(0.896726\pi\)
\(854\) 11.9518 + 6.77956i 0.408982 + 0.231992i
\(855\) 0 0
\(856\) 36.0557 + 34.4450i 1.23236 + 1.17731i
\(857\) −6.08975 + 1.63174i −0.208022 + 0.0557393i −0.361325 0.932440i \(-0.617676\pi\)
0.153303 + 0.988179i \(0.451009\pi\)
\(858\) 0 0
\(859\) 26.2644 + 20.1534i 0.896129 + 0.687624i 0.950443 0.310900i \(-0.100630\pi\)
−0.0543133 + 0.998524i \(0.517297\pi\)
\(860\) −4.25209 2.36936i −0.144995 0.0807944i
\(861\) 0 0
\(862\) −24.7481 + 3.45004i −0.842923 + 0.117509i
\(863\) −13.8234 −0.470553 −0.235276 0.971928i \(-0.575600\pi\)
−0.235276 + 0.971928i \(0.575600\pi\)
\(864\) 0 0
\(865\) −7.88889 −0.268230
\(866\) 28.8711 4.02482i 0.981080 0.136769i
\(867\) 0 0
\(868\) −18.6514 + 33.4722i −0.633071 + 1.13612i
\(869\) −28.1220 21.5788i −0.953974 0.732010i
\(870\) 0 0
\(871\) 1.14448 0.306662i 0.0387792 0.0103909i
\(872\) −44.1567 + 1.00882i −1.49534 + 0.0341631i
\(873\) 0 0
\(874\) −1.57292 0.892229i −0.0532050 0.0301801i
\(875\) −2.19109 + 16.6430i −0.0740722 + 0.562634i
\(876\) 0 0
\(877\) 46.1641 6.07762i 1.55885 0.205227i 0.698756 0.715360i \(-0.253737\pi\)
0.860095 + 0.510133i \(0.170404\pi\)
\(878\) 39.9332 16.8982i 1.34768 0.570288i
\(879\) 0 0
\(880\) −1.69358 + 7.18958i −0.0570905 + 0.242361i
\(881\) 6.38763 0.215205 0.107602 0.994194i \(-0.465683\pi\)
0.107602 + 0.994194i \(0.465683\pi\)
\(882\) 0 0
\(883\) −31.8904 13.2094i −1.07320 0.444532i −0.225078 0.974341i \(-0.572264\pi\)
−0.848117 + 0.529808i \(0.822264\pi\)
\(884\) −0.863734 + 0.373279i −0.0290505 + 0.0125547i
\(885\) 0 0
\(886\) −0.200480 26.3295i −0.00673527 0.884555i
\(887\) −7.59138 + 28.3314i −0.254893 + 0.951275i 0.713256 + 0.700903i \(0.247220\pi\)
−0.968150 + 0.250372i \(0.919447\pi\)
\(888\) 0 0
\(889\) 4.02625 + 15.0262i 0.135036 + 0.503961i
\(890\) −21.5296 + 5.94489i −0.721673 + 0.199273i
\(891\) 0 0
\(892\) −14.3001 3.59923i −0.478803 0.120511i
\(893\) 21.4346 + 27.9341i 0.717281 + 0.934779i
\(894\) 0 0
\(895\) 4.21793 2.43522i 0.140990 0.0814005i
\(896\) 21.2772 + 7.51216i 0.710820 + 0.250964i
\(897\) 0 0
\(898\) 13.5120 1.88366i 0.450902 0.0628587i
\(899\) −1.12370 0.465454i −0.0374776 0.0155237i
\(900\) 0 0
\(901\) −3.96482 9.57191i −0.132087 0.318887i
\(902\) 1.68254 + 0.437133i 0.0560225 + 0.0145549i
\(903\) 0 0
\(904\) −21.7501 + 29.7273i −0.723398 + 0.988716i
\(905\) −15.9761 4.28077i −0.531062 0.142298i
\(906\) 0 0
\(907\) −10.0567 1.32399i −0.333927 0.0439623i −0.0383013 0.999266i \(-0.512195\pi\)
−0.295625 + 0.955304i \(0.595528\pi\)
\(908\) 8.02186 10.7906i 0.266215 0.358099i
\(909\) 0 0
\(910\) −0.0354331 + 0.285949i −0.00117460 + 0.00947913i
\(911\) −33.5891 19.3927i −1.11286 0.642508i −0.173289 0.984871i \(-0.555440\pi\)
−0.939568 + 0.342363i \(0.888773\pi\)
\(912\) 0 0
\(913\) −15.6511 + 9.03616i −0.517975 + 0.299053i
\(914\) 0.417406 + 0.986396i 0.0138066 + 0.0326271i
\(915\) 0 0
\(916\) 9.15158 23.0819i 0.302377 0.762647i
\(917\) −14.6551 35.3805i −0.483953 1.16837i
\(918\) 0 0
\(919\) −16.0260 + 16.0260i −0.528650 + 0.528650i −0.920170 0.391520i \(-0.871949\pi\)
0.391520 + 0.920170i \(0.371949\pi\)
\(920\) 0.736750 + 0.403212i 0.0242899 + 0.0132935i
\(921\) 0 0
\(922\) −10.6116 10.4512i −0.349474 0.344192i
\(923\) 0.105814 0.137900i 0.00348291 0.00453902i
\(924\) 0 0
\(925\) −26.7439 + 20.5213i −0.879333 + 0.674736i
\(926\) 24.7274 19.2749i 0.812594 0.633413i
\(927\) 0 0
\(928\) −0.158910 + 0.698387i −0.00521646 + 0.0229257i
\(929\) −40.3656 23.3051i −1.32435 0.764615i −0.339933 0.940450i \(-0.610404\pi\)
−0.984420 + 0.175835i \(0.943738\pi\)
\(930\) 0 0
\(931\) 11.8632 1.56182i 0.388801 0.0511866i
\(932\) 24.4888 43.9480i 0.802156 1.43956i
\(933\) 0 0
\(934\) 24.5921 + 6.38914i 0.804677 + 0.209059i
\(935\) −5.52868 + 5.52868i −0.180807 + 0.180807i
\(936\) 0 0
\(937\) −14.8752 14.8752i −0.485953 0.485953i 0.421074 0.907026i \(-0.361653\pi\)
−0.907026 + 0.421074i \(0.861653\pi\)
\(938\) −15.2363 25.9320i −0.497482 0.846709i
\(939\) 0 0
\(940\) −10.1514 12.8205i −0.331103 0.418160i
\(941\) 5.45350 + 41.4235i 0.177779 + 1.35037i 0.814900 + 0.579602i \(0.196792\pi\)
−0.637121 + 0.770764i \(0.719875\pi\)
\(942\) 0 0
\(943\) 0.0988329 0.171184i 0.00321844 0.00557450i
\(944\) −1.23669 + 12.2709i −0.0402508 + 0.399384i
\(945\) 0 0
\(946\) 7.46226 + 0.924678i 0.242619 + 0.0300639i
\(947\) 3.79961 + 4.95174i 0.123471 + 0.160910i 0.850999 0.525168i \(-0.175998\pi\)
−0.727528 + 0.686078i \(0.759331\pi\)
\(948\) 0 0
\(949\) −0.642226 0.492797i −0.0208475 0.0159969i
\(950\) 23.2620 0.177124i 0.754718 0.00574665i
\(951\) 0 0
\(952\) 14.9694 + 18.6124i 0.485162 + 0.603231i
\(953\) −1.87873 1.87873i −0.0608579 0.0608579i 0.676023 0.736881i \(-0.263702\pi\)
−0.736881 + 0.676023i \(0.763702\pi\)
\(954\) 0 0
\(955\) −11.9952 + 4.96856i −0.388155 + 0.160779i
\(956\) −22.4174 + 23.1108i −0.725031 + 0.747456i
\(957\) 0 0
\(958\) 24.4013 + 9.89035i 0.788370 + 0.319543i
\(959\) 3.90739 + 6.76780i 0.126176 + 0.218544i
\(960\) 0 0
\(961\) 30.6401 53.0702i 0.988390 1.71194i
\(962\) −1.00555 + 0.783825i −0.0324204 + 0.0252715i
\(963\) 0 0
\(964\) −38.6464 9.72702i −1.24472 0.313286i
\(965\) 1.37665 10.4567i 0.0443159 0.336613i
\(966\) 0 0
\(967\) −6.61817 + 24.6994i −0.212826 + 0.794278i 0.774094 + 0.633070i \(0.218206\pi\)
−0.986920 + 0.161208i \(0.948461\pi\)
\(968\) 3.01720 + 19.4702i 0.0969766 + 0.625797i
\(969\) 0 0
\(970\) −6.77486 11.5308i −0.217528 0.370230i
\(971\) 21.3354 8.83740i 0.684684 0.283606i −0.0130992 0.999914i \(-0.504170\pi\)
0.697784 + 0.716309i \(0.254170\pi\)
\(972\) 0 0
\(973\) −8.68455 + 20.9663i −0.278414 + 0.672150i
\(974\) −25.0364 + 33.1477i −0.802219 + 1.06212i
\(975\) 0 0
\(976\) −6.90552 + 18.2220i −0.221040 + 0.583273i
\(977\) 8.21825 + 14.2344i 0.262925 + 0.455400i 0.967018 0.254708i \(-0.0819794\pi\)
−0.704093 + 0.710108i \(0.748646\pi\)
\(978\) 0 0
\(979\) 27.3726 21.0038i 0.874833 0.671283i
\(980\) −5.49803 + 0.809184i −0.175628 + 0.0258484i
\(981\) 0 0
\(982\) −9.48530 + 16.7218i −0.302688 + 0.533613i
\(983\) 47.2731 12.6668i 1.50778 0.404008i 0.592081 0.805878i \(-0.298306\pi\)
0.915696 + 0.401871i \(0.131640\pi\)
\(984\) 0 0
\(985\) 10.6499 + 2.85363i 0.339334 + 0.0909243i
\(986\) −0.532007 + 0.540171i −0.0169425 + 0.0172025i
\(987\) 0 0
\(988\) 0.879726 0.0133978i 0.0279878 0.000426240i
\(989\) 0.327190 0.789907i 0.0104040 0.0251176i
\(990\) 0 0
\(991\) 36.6940i 1.16562i −0.812607 0.582812i \(-0.801952\pi\)
0.812607 0.582812i \(-0.198048\pi\)
\(992\) −50.9598 18.8695i −1.61798 0.599108i
\(993\) 0 0
\(994\) −4.08915 1.65742i −0.129700 0.0525701i
\(995\) 1.61104 + 12.2371i 0.0510736 + 0.387942i
\(996\) 0 0
\(997\) 44.5005 + 5.85860i 1.40935 + 0.185544i 0.796490 0.604652i \(-0.206688\pi\)
0.612855 + 0.790195i \(0.290021\pi\)
\(998\) 3.03553 0.838191i 0.0960880 0.0265325i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bn.a.35.20 368
3.2 odd 2 288.2.bf.a.227.27 yes 368
9.4 even 3 288.2.bf.a.131.41 yes 368
9.5 odd 6 inner 864.2.bn.a.611.6 368
32.11 odd 8 inner 864.2.bn.a.683.6 368
96.11 even 8 288.2.bf.a.11.41 368
288.139 odd 24 288.2.bf.a.203.27 yes 368
288.203 even 24 inner 864.2.bn.a.395.20 368
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.bf.a.11.41 368 96.11 even 8
288.2.bf.a.131.41 yes 368 9.4 even 3
288.2.bf.a.203.27 yes 368 288.139 odd 24
288.2.bf.a.227.27 yes 368 3.2 odd 2
864.2.bn.a.35.20 368 1.1 even 1 trivial
864.2.bn.a.395.20 368 288.203 even 24 inner
864.2.bn.a.611.6 368 9.5 odd 6 inner
864.2.bn.a.683.6 368 32.11 odd 8 inner