Properties

Label 864.2.bn.a.35.16
Level $864$
Weight $2$
Character 864.35
Analytic conductor $6.899$
Analytic rank $0$
Dimension $368$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(35,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(24)) chi = DirichletCharacter(H, H._module([12, 9, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bn (of order \(24\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(368\)
Relative dimension: \(46\) over \(\Q(\zeta_{24})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

Embedding invariants

Embedding label 35.16
Character \(\chi\) \(=\) 864.35
Dual form 864.2.bn.a.395.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.728560 - 1.21211i) q^{2} +(-0.938401 + 1.76618i) q^{4} +(-2.86669 - 2.19969i) q^{5} +(-0.326320 + 0.0874372i) q^{7} +(2.82448 - 0.149329i) q^{8} +(-0.577700 + 5.07734i) q^{10} +(0.285551 - 2.16897i) q^{11} +(3.11610 - 0.410243i) q^{13} +(0.343727 + 0.331831i) q^{14} +(-2.23881 - 3.31478i) q^{16} -5.19359 q^{17} +(-6.00299 - 2.48652i) q^{19} +(6.57516 - 2.99891i) q^{20} +(-2.83706 + 1.23411i) q^{22} +(-1.35356 + 5.05154i) q^{23} +(2.08519 + 7.78203i) q^{25} +(-2.76752 - 3.47816i) q^{26} +(0.151789 - 0.658392i) q^{28} +(0.686119 + 0.894167i) q^{29} +(-2.41169 + 1.39239i) q^{31} +(-2.38675 + 5.12868i) q^{32} +(3.78384 + 6.29518i) q^{34} +(1.12779 + 0.467147i) q^{35} +(0.498481 + 1.20344i) q^{37} +(1.35961 + 9.08784i) q^{38} +(-8.42539 - 5.78490i) q^{40} +(8.63084 + 2.31263i) q^{41} +(7.07855 + 0.931909i) q^{43} +(3.56284 + 2.53970i) q^{44} +(7.10915 - 2.03970i) q^{46} +(4.11008 + 2.37296i) q^{47} +(-5.96334 + 3.44293i) q^{49} +(7.91346 - 8.19714i) q^{50} +(-2.19959 + 5.88858i) q^{52} +(4.79184 + 11.5685i) q^{53} +(-5.58965 + 5.58965i) q^{55} +(-0.908628 + 0.295694i) q^{56} +(0.583947 - 1.48310i) q^{58} +(-7.50078 + 9.77521i) q^{59} +(2.08513 - 1.59998i) q^{61} +(3.44479 + 1.90879i) q^{62} +(7.95540 - 0.843554i) q^{64} +(-9.83531 - 5.67842i) q^{65} +(-3.45892 + 0.455376i) q^{67} +(4.87367 - 9.17283i) q^{68} +(-0.255433 - 1.70735i) q^{70} +(-4.59606 + 4.59606i) q^{71} +(-9.75895 - 9.75895i) q^{73} +(1.09552 - 1.48099i) q^{74} +(10.0249 - 8.26903i) q^{76} +(0.0964679 + 0.732747i) q^{77} +(-4.76659 + 8.25597i) q^{79} +(-0.873510 + 14.4271i) q^{80} +(-3.48493 - 12.1464i) q^{82} +(-6.13939 - 8.00100i) q^{83} +(14.8884 + 11.4243i) q^{85} +(-4.02758 - 9.25890i) q^{86} +(0.482642 - 6.16886i) q^{88} +(-6.07191 - 6.07191i) q^{89} +(-0.980976 + 0.406334i) q^{91} +(-7.65177 - 7.13100i) q^{92} +(-0.118166 - 6.71070i) q^{94} +(11.7391 + 20.3328i) q^{95} +(-4.89585 + 8.47985i) q^{97} +(8.51785 + 4.71981i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 368 q + 12 q^{2} - 4 q^{4} + 12 q^{5} - 4 q^{7} - 16 q^{10} + 12 q^{11} - 4 q^{13} + 12 q^{14} - 4 q^{16} - 16 q^{19} + 12 q^{20} - 4 q^{22} + 12 q^{23} - 4 q^{25} - 16 q^{28} + 12 q^{29} + 12 q^{32} - 12 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.728560 1.21211i −0.515170 0.857088i
\(3\) 0 0
\(4\) −0.938401 + 1.76618i −0.469201 + 0.883092i
\(5\) −2.86669 2.19969i −1.28202 0.983731i −0.999702 0.0244109i \(-0.992229\pi\)
−0.282321 0.959320i \(-0.591104\pi\)
\(6\) 0 0
\(7\) −0.326320 + 0.0874372i −0.123337 + 0.0330481i −0.319960 0.947431i \(-0.603669\pi\)
0.196622 + 0.980479i \(0.437003\pi\)
\(8\) 2.82448 0.149329i 0.998605 0.0527958i
\(9\) 0 0
\(10\) −0.577700 + 5.07734i −0.182685 + 1.60560i
\(11\) 0.285551 2.16897i 0.0860967 0.653970i −0.892924 0.450208i \(-0.851350\pi\)
0.979021 0.203762i \(-0.0653168\pi\)
\(12\) 0 0
\(13\) 3.11610 0.410243i 0.864251 0.113781i 0.314650 0.949208i \(-0.398113\pi\)
0.549601 + 0.835427i \(0.314780\pi\)
\(14\) 0.343727 + 0.331831i 0.0918648 + 0.0886856i
\(15\) 0 0
\(16\) −2.23881 3.31478i −0.559702 0.828694i
\(17\) −5.19359 −1.25963 −0.629815 0.776745i \(-0.716869\pi\)
−0.629815 + 0.776745i \(0.716869\pi\)
\(18\) 0 0
\(19\) −6.00299 2.48652i −1.37718 0.570447i −0.433455 0.901175i \(-0.642706\pi\)
−0.943726 + 0.330728i \(0.892706\pi\)
\(20\) 6.57516 2.99891i 1.47025 0.670577i
\(21\) 0 0
\(22\) −2.83706 + 1.23411i −0.604864 + 0.263113i
\(23\) −1.35356 + 5.05154i −0.282236 + 1.05332i 0.668599 + 0.743623i \(0.266894\pi\)
−0.950835 + 0.309697i \(0.899772\pi\)
\(24\) 0 0
\(25\) 2.08519 + 7.78203i 0.417038 + 1.55641i
\(26\) −2.76752 3.47816i −0.542756 0.682123i
\(27\) 0 0
\(28\) 0.151789 0.658392i 0.0286854 0.124424i
\(29\) 0.686119 + 0.894167i 0.127409 + 0.166043i 0.852702 0.522398i \(-0.174962\pi\)
−0.725293 + 0.688440i \(0.758296\pi\)
\(30\) 0 0
\(31\) −2.41169 + 1.39239i −0.433153 + 0.250081i −0.700689 0.713467i \(-0.747124\pi\)
0.267536 + 0.963548i \(0.413791\pi\)
\(32\) −2.38675 + 5.12868i −0.421923 + 0.906632i
\(33\) 0 0
\(34\) 3.78384 + 6.29518i 0.648923 + 1.07961i
\(35\) 1.12779 + 0.467147i 0.190632 + 0.0789623i
\(36\) 0 0
\(37\) 0.498481 + 1.20344i 0.0819498 + 0.197844i 0.959543 0.281561i \(-0.0908523\pi\)
−0.877593 + 0.479406i \(0.840852\pi\)
\(38\) 1.35961 + 9.08784i 0.220558 + 1.47424i
\(39\) 0 0
\(40\) −8.42539 5.78490i −1.33217 0.914674i
\(41\) 8.63084 + 2.31263i 1.34791 + 0.361171i 0.859363 0.511366i \(-0.170860\pi\)
0.488547 + 0.872537i \(0.337527\pi\)
\(42\) 0 0
\(43\) 7.07855 + 0.931909i 1.07947 + 0.142115i 0.649224 0.760597i \(-0.275094\pi\)
0.430245 + 0.902712i \(0.358427\pi\)
\(44\) 3.56284 + 2.53970i 0.537118 + 0.382874i
\(45\) 0 0
\(46\) 7.10915 2.03970i 1.04819 0.300737i
\(47\) 4.11008 + 2.37296i 0.599517 + 0.346131i 0.768852 0.639427i \(-0.220828\pi\)
−0.169334 + 0.985559i \(0.554162\pi\)
\(48\) 0 0
\(49\) −5.96334 + 3.44293i −0.851905 + 0.491848i
\(50\) 7.91346 8.19714i 1.11913 1.15925i
\(51\) 0 0
\(52\) −2.19959 + 5.88858i −0.305028 + 0.816599i
\(53\) 4.79184 + 11.5685i 0.658210 + 1.58906i 0.800566 + 0.599244i \(0.204532\pi\)
−0.142356 + 0.989815i \(0.545468\pi\)
\(54\) 0 0
\(55\) −5.58965 + 5.58965i −0.753708 + 0.753708i
\(56\) −0.908628 + 0.295694i −0.121421 + 0.0395137i
\(57\) 0 0
\(58\) 0.583947 1.48310i 0.0766760 0.194741i
\(59\) −7.50078 + 9.77521i −0.976519 + 1.27262i −0.0144276 + 0.999896i \(0.504593\pi\)
−0.962091 + 0.272728i \(0.912074\pi\)
\(60\) 0 0
\(61\) 2.08513 1.59998i 0.266974 0.204856i −0.466595 0.884471i \(-0.654520\pi\)
0.733570 + 0.679614i \(0.237853\pi\)
\(62\) 3.44479 + 1.90879i 0.437488 + 0.242416i
\(63\) 0 0
\(64\) 7.95540 0.843554i 0.994425 0.105444i
\(65\) −9.83531 5.67842i −1.21992 0.704321i
\(66\) 0 0
\(67\) −3.45892 + 0.455376i −0.422575 + 0.0556330i −0.338815 0.940853i \(-0.610026\pi\)
−0.0837596 + 0.996486i \(0.526693\pi\)
\(68\) 4.87367 9.17283i 0.591019 1.11237i
\(69\) 0 0
\(70\) −0.255433 1.70735i −0.0305301 0.204067i
\(71\) −4.59606 + 4.59606i −0.545452 + 0.545452i −0.925122 0.379670i \(-0.876038\pi\)
0.379670 + 0.925122i \(0.376038\pi\)
\(72\) 0 0
\(73\) −9.75895 9.75895i −1.14220 1.14220i −0.988047 0.154151i \(-0.950736\pi\)
−0.154151 0.988047i \(-0.549264\pi\)
\(74\) 1.09552 1.48099i 0.127352 0.172162i
\(75\) 0 0
\(76\) 10.0249 8.26903i 1.14993 0.948523i
\(77\) 0.0964679 + 0.732747i 0.0109935 + 0.0835042i
\(78\) 0 0
\(79\) −4.76659 + 8.25597i −0.536283 + 0.928869i 0.462817 + 0.886454i \(0.346839\pi\)
−0.999100 + 0.0424156i \(0.986495\pi\)
\(80\) −0.873510 + 14.4271i −0.0976614 + 1.61300i
\(81\) 0 0
\(82\) −3.48493 12.1464i −0.384847 1.34134i
\(83\) −6.13939 8.00100i −0.673885 0.878224i 0.323807 0.946123i \(-0.395037\pi\)
−0.997692 + 0.0678990i \(0.978370\pi\)
\(84\) 0 0
\(85\) 14.8884 + 11.4243i 1.61487 + 1.23914i
\(86\) −4.02758 9.25890i −0.434305 0.998413i
\(87\) 0 0
\(88\) 0.482642 6.16886i 0.0514498 0.657603i
\(89\) −6.07191 6.07191i −0.643621 0.643621i 0.307822 0.951444i \(-0.400400\pi\)
−0.951444 + 0.307822i \(0.900400\pi\)
\(90\) 0 0
\(91\) −0.980976 + 0.406334i −0.102834 + 0.0425953i
\(92\) −7.65177 7.13100i −0.797753 0.743459i
\(93\) 0 0
\(94\) −0.118166 6.71070i −0.0121879 0.692156i
\(95\) 11.7391 + 20.3328i 1.20441 + 2.08610i
\(96\) 0 0
\(97\) −4.89585 + 8.47985i −0.497098 + 0.860999i −0.999994 0.00334789i \(-0.998934\pi\)
0.502897 + 0.864347i \(0.332268\pi\)
\(98\) 8.51785 + 4.71981i 0.860433 + 0.476773i
\(99\) 0 0
\(100\) −15.7012 3.61984i −1.57012 0.361984i
\(101\) 0.707950 5.37742i 0.0704437 0.535073i −0.919444 0.393221i \(-0.871361\pi\)
0.989888 0.141852i \(-0.0453058\pi\)
\(102\) 0 0
\(103\) −3.39471 + 12.6692i −0.334490 + 1.24834i 0.569930 + 0.821693i \(0.306970\pi\)
−0.904421 + 0.426642i \(0.859696\pi\)
\(104\) 8.74012 1.62405i 0.857039 0.159251i
\(105\) 0 0
\(106\) 10.5311 14.2366i 1.02287 1.38278i
\(107\) 2.81325 1.16529i 0.271967 0.112652i −0.242532 0.970143i \(-0.577978\pi\)
0.514499 + 0.857491i \(0.327978\pi\)
\(108\) 0 0
\(109\) 1.73974 4.20010i 0.166637 0.402297i −0.818398 0.574652i \(-0.805138\pi\)
0.985035 + 0.172355i \(0.0551376\pi\)
\(110\) 10.8476 + 2.70285i 1.03428 + 0.257707i
\(111\) 0 0
\(112\) 1.02040 + 0.885923i 0.0964189 + 0.0837118i
\(113\) −5.84502 10.1239i −0.549853 0.952373i −0.998284 0.0585559i \(-0.981350\pi\)
0.448431 0.893817i \(-0.351983\pi\)
\(114\) 0 0
\(115\) 14.9921 11.5038i 1.39802 1.07274i
\(116\) −2.22312 + 0.372724i −0.206411 + 0.0346065i
\(117\) 0 0
\(118\) 17.3134 + 1.96992i 1.59382 + 0.181346i
\(119\) 1.69477 0.454113i 0.155359 0.0416284i
\(120\) 0 0
\(121\) 6.00228 + 1.60831i 0.545662 + 0.146210i
\(122\) −3.45849 1.36172i −0.313117 0.123285i
\(123\) 0 0
\(124\) −0.196084 5.56611i −0.0176088 0.499851i
\(125\) 4.22654 10.2038i 0.378033 0.912653i
\(126\) 0 0
\(127\) 2.63721i 0.234015i 0.993131 + 0.117007i \(0.0373301\pi\)
−0.993131 + 0.117007i \(0.962670\pi\)
\(128\) −6.81846 9.02821i −0.602673 0.797988i
\(129\) 0 0
\(130\) 0.282768 + 16.0585i 0.0248004 + 1.40842i
\(131\) 0.188336 + 1.43056i 0.0164550 + 0.124988i 0.997701 0.0677725i \(-0.0215892\pi\)
−0.981246 + 0.192761i \(0.938256\pi\)
\(132\) 0 0
\(133\) 2.17631 + 0.286517i 0.188710 + 0.0248441i
\(134\) 3.07200 + 3.86081i 0.265380 + 0.333523i
\(135\) 0 0
\(136\) −14.6692 + 0.775553i −1.25787 + 0.0665031i
\(137\) −5.15642 19.2440i −0.440543 1.64413i −0.727444 0.686167i \(-0.759292\pi\)
0.286901 0.957960i \(-0.407375\pi\)
\(138\) 0 0
\(139\) −6.32406 + 8.24167i −0.536400 + 0.699050i −0.980409 0.196973i \(-0.936889\pi\)
0.444009 + 0.896022i \(0.353556\pi\)
\(140\) −1.88339 + 1.55352i −0.159175 + 0.131296i
\(141\) 0 0
\(142\) 8.91942 + 2.22241i 0.748501 + 0.186500i
\(143\) 6.87588i 0.574990i
\(144\) 0 0
\(145\) 4.07255i 0.338207i
\(146\) −4.71890 + 18.9389i −0.390539 + 1.56739i
\(147\) 0 0
\(148\) −2.59327 0.248900i −0.213166 0.0204595i
\(149\) 3.65105 4.75815i 0.299106 0.389803i −0.619487 0.785007i \(-0.712659\pi\)
0.918593 + 0.395204i \(0.129326\pi\)
\(150\) 0 0
\(151\) 0.208106 + 0.776662i 0.0169354 + 0.0632038i 0.973876 0.227079i \(-0.0729174\pi\)
−0.956941 + 0.290282i \(0.906251\pi\)
\(152\) −17.3267 6.12671i −1.40538 0.496942i
\(153\) 0 0
\(154\) 0.817884 0.650779i 0.0659070 0.0524413i
\(155\) 9.97640 + 1.31342i 0.801324 + 0.105496i
\(156\) 0 0
\(157\) −2.39047 18.1574i −0.190780 1.44912i −0.772130 0.635464i \(-0.780809\pi\)
0.581350 0.813654i \(-0.302525\pi\)
\(158\) 13.4799 0.237361i 1.07240 0.0188835i
\(159\) 0 0
\(160\) 18.1236 9.45223i 1.43280 0.747265i
\(161\) 1.76677i 0.139241i
\(162\) 0 0
\(163\) 2.99169 7.22259i 0.234327 0.565717i −0.762350 0.647165i \(-0.775955\pi\)
0.996678 + 0.0814482i \(0.0259545\pi\)
\(164\) −12.1837 + 13.0735i −0.951388 + 1.02087i
\(165\) 0 0
\(166\) −5.22515 + 13.2708i −0.405550 + 1.03001i
\(167\) −8.44045 2.26161i −0.653142 0.175009i −0.0829929 0.996550i \(-0.526448\pi\)
−0.570149 + 0.821541i \(0.693115\pi\)
\(168\) 0 0
\(169\) −3.01524 + 0.807931i −0.231942 + 0.0621485i
\(170\) 3.00034 26.3696i 0.230115 2.02246i
\(171\) 0 0
\(172\) −8.28844 + 11.6275i −0.631988 + 0.886590i
\(173\) 2.37032 1.81881i 0.180212 0.138282i −0.514716 0.857361i \(-0.672103\pi\)
0.694929 + 0.719079i \(0.255436\pi\)
\(174\) 0 0
\(175\) −1.36088 2.35711i −0.102873 0.178181i
\(176\) −7.82895 + 3.90937i −0.590129 + 0.294680i
\(177\) 0 0
\(178\) −2.93605 + 11.7836i −0.220066 + 0.883215i
\(179\) −2.62554 + 6.33861i −0.196242 + 0.473770i −0.991115 0.133006i \(-0.957537\pi\)
0.794873 + 0.606775i \(0.207537\pi\)
\(180\) 0 0
\(181\) 14.4026 5.96576i 1.07054 0.443431i 0.223357 0.974737i \(-0.428298\pi\)
0.847180 + 0.531306i \(0.178298\pi\)
\(182\) 1.20722 + 0.893008i 0.0894850 + 0.0661942i
\(183\) 0 0
\(184\) −3.06876 + 14.4701i −0.226232 + 1.06675i
\(185\) 1.21820 4.54639i 0.0895640 0.334258i
\(186\) 0 0
\(187\) −1.48303 + 11.2647i −0.108450 + 0.823760i
\(188\) −8.04798 + 5.03237i −0.586960 + 0.367024i
\(189\) 0 0
\(190\) 16.0928 29.0428i 1.16750 2.10698i
\(191\) −10.4588 + 18.1152i −0.756771 + 1.31077i 0.187717 + 0.982223i \(0.439891\pi\)
−0.944489 + 0.328544i \(0.893442\pi\)
\(192\) 0 0
\(193\) −4.85291 8.40549i −0.349320 0.605041i 0.636809 0.771022i \(-0.280254\pi\)
−0.986129 + 0.165981i \(0.946921\pi\)
\(194\) 13.8454 0.243798i 0.994042 0.0175037i
\(195\) 0 0
\(196\) −0.484852 13.7632i −0.0346323 0.983086i
\(197\) −23.0259 + 9.53766i −1.64053 + 0.679530i −0.996351 0.0853449i \(-0.972801\pi\)
−0.644179 + 0.764875i \(0.722801\pi\)
\(198\) 0 0
\(199\) 15.9180 + 15.9180i 1.12840 + 1.12840i 0.990438 + 0.137959i \(0.0440542\pi\)
0.137959 + 0.990438i \(0.455946\pi\)
\(200\) 7.05166 + 21.6688i 0.498628 + 1.53222i
\(201\) 0 0
\(202\) −7.03378 + 3.05966i −0.494895 + 0.215277i
\(203\) −0.302078 0.231792i −0.0212017 0.0162686i
\(204\) 0 0
\(205\) −19.6549 25.6147i −1.37276 1.78901i
\(206\) 17.8297 5.11554i 1.24225 0.356417i
\(207\) 0 0
\(208\) −8.33621 9.41073i −0.578013 0.652517i
\(209\) −7.10735 + 12.3103i −0.491626 + 0.851521i
\(210\) 0 0
\(211\) 2.65660 + 20.1789i 0.182888 + 1.38917i 0.798913 + 0.601446i \(0.205409\pi\)
−0.616025 + 0.787726i \(0.711258\pi\)
\(212\) −24.9288 2.39265i −1.71212 0.164328i
\(213\) 0 0
\(214\) −3.46207 2.56098i −0.236662 0.175065i
\(215\) −18.2421 18.2421i −1.24410 1.24410i
\(216\) 0 0
\(217\) 0.665236 0.665236i 0.0451592 0.0451592i
\(218\) −6.35847 + 0.951278i −0.430650 + 0.0644286i
\(219\) 0 0
\(220\) −4.62701 15.1177i −0.311953 1.01923i
\(221\) −16.1837 + 2.13063i −1.08864 + 0.143322i
\(222\) 0 0
\(223\) −10.4284 6.02086i −0.698339 0.403186i 0.108389 0.994109i \(-0.465431\pi\)
−0.806729 + 0.590922i \(0.798764\pi\)
\(224\) 0.330408 1.88228i 0.0220763 0.125765i
\(225\) 0 0
\(226\) −8.01275 + 14.4606i −0.533000 + 0.961906i
\(227\) 6.40250 4.91281i 0.424949 0.326075i −0.374049 0.927409i \(-0.622031\pi\)
0.798998 + 0.601334i \(0.205364\pi\)
\(228\) 0 0
\(229\) 1.54865 2.01824i 0.102338 0.133369i −0.739377 0.673292i \(-0.764880\pi\)
0.841715 + 0.539923i \(0.181546\pi\)
\(230\) −24.8664 9.79075i −1.63964 0.645583i
\(231\) 0 0
\(232\) 2.07145 + 2.42310i 0.135998 + 0.159084i
\(233\) 4.35606 4.35606i 0.285375 0.285375i −0.549873 0.835248i \(-0.685324\pi\)
0.835248 + 0.549873i \(0.185324\pi\)
\(234\) 0 0
\(235\) −6.56257 15.8434i −0.428095 1.03351i
\(236\) −10.2261 22.4208i −0.665661 1.45947i
\(237\) 0 0
\(238\) −1.78517 1.72339i −0.115716 0.111711i
\(239\) 15.0367 8.68147i 0.972646 0.561558i 0.0726043 0.997361i \(-0.476869\pi\)
0.900042 + 0.435803i \(0.143536\pi\)
\(240\) 0 0
\(241\) −6.10357 3.52390i −0.393166 0.226994i 0.290365 0.956916i \(-0.406223\pi\)
−0.683531 + 0.729922i \(0.739557\pi\)
\(242\) −2.42359 8.44715i −0.155794 0.543004i
\(243\) 0 0
\(244\) 0.869166 + 5.18415i 0.0556426 + 0.331881i
\(245\) 24.6684 + 3.24766i 1.57601 + 0.207485i
\(246\) 0 0
\(247\) −19.7260 5.28557i −1.25514 0.336313i
\(248\) −6.60386 + 4.29292i −0.419345 + 0.272601i
\(249\) 0 0
\(250\) −15.4473 + 2.31104i −0.976976 + 0.146163i
\(251\) −4.83125 11.6637i −0.304946 0.736204i −0.999854 0.0171056i \(-0.994555\pi\)
0.694908 0.719099i \(-0.255445\pi\)
\(252\) 0 0
\(253\) 10.5701 + 4.37830i 0.664540 + 0.275261i
\(254\) 3.19658 1.92137i 0.200571 0.120557i
\(255\) 0 0
\(256\) −5.97549 + 14.8423i −0.373468 + 0.927643i
\(257\) 1.76322 1.01799i 0.109987 0.0635008i −0.443998 0.896028i \(-0.646440\pi\)
0.553984 + 0.832527i \(0.313107\pi\)
\(258\) 0 0
\(259\) −0.267890 0.349121i −0.0166459 0.0216933i
\(260\) 19.2586 12.0423i 1.19437 0.746833i
\(261\) 0 0
\(262\) 1.59677 1.27053i 0.0986488 0.0784936i
\(263\) −6.23478 23.2685i −0.384453 1.43480i −0.839028 0.544089i \(-0.816875\pi\)
0.454575 0.890709i \(-0.349791\pi\)
\(264\) 0 0
\(265\) 11.7104 43.7040i 0.719367 2.68471i
\(266\) −1.23828 2.84666i −0.0759241 0.174540i
\(267\) 0 0
\(268\) 2.44158 6.53642i 0.149143 0.399275i
\(269\) −11.8731 4.91801i −0.723918 0.299857i −0.00986781 0.999951i \(-0.503141\pi\)
−0.714050 + 0.700095i \(0.753141\pi\)
\(270\) 0 0
\(271\) −17.3296 −1.05270 −0.526348 0.850269i \(-0.676439\pi\)
−0.526348 + 0.850269i \(0.676439\pi\)
\(272\) 11.6274 + 17.2156i 0.705017 + 1.04385i
\(273\) 0 0
\(274\) −19.5690 + 20.2705i −1.18221 + 1.22459i
\(275\) 17.4744 2.30055i 1.05375 0.138728i
\(276\) 0 0
\(277\) −1.13328 + 8.60814i −0.0680924 + 0.517213i 0.923077 + 0.384614i \(0.125665\pi\)
−0.991170 + 0.132599i \(0.957668\pi\)
\(278\) 14.5972 + 1.66088i 0.875484 + 0.0996127i
\(279\) 0 0
\(280\) 3.25519 + 1.15104i 0.194535 + 0.0687876i
\(281\) 19.9277 5.33960i 1.18878 0.318534i 0.390379 0.920654i \(-0.372344\pi\)
0.798405 + 0.602120i \(0.205677\pi\)
\(282\) 0 0
\(283\) −6.29803 4.83265i −0.374379 0.287271i 0.404384 0.914589i \(-0.367486\pi\)
−0.778763 + 0.627318i \(0.784153\pi\)
\(284\) −3.80454 12.4304i −0.225758 0.737611i
\(285\) 0 0
\(286\) −8.33430 + 5.00949i −0.492817 + 0.296218i
\(287\) −3.01862 −0.178184
\(288\) 0 0
\(289\) 9.97334 0.586667
\(290\) −4.93636 + 2.96710i −0.289873 + 0.174234i
\(291\) 0 0
\(292\) 26.3939 8.07828i 1.54459 0.472746i
\(293\) −4.90011 3.75999i −0.286268 0.219661i 0.455638 0.890165i \(-0.349411\pi\)
−0.741906 + 0.670504i \(0.766078\pi\)
\(294\) 0 0
\(295\) 43.0049 11.5231i 2.50384 0.670902i
\(296\) 1.58766 + 3.32466i 0.0922808 + 0.193242i
\(297\) 0 0
\(298\) −8.42739 0.958870i −0.488186 0.0555458i
\(299\) −2.14546 + 16.2964i −0.124075 + 0.942446i
\(300\) 0 0
\(301\) −2.39136 + 0.314828i −0.137835 + 0.0181464i
\(302\) 0.789778 0.818091i 0.0454466 0.0470758i
\(303\) 0 0
\(304\) 5.19728 + 25.4654i 0.298084 + 1.46054i
\(305\) −9.49689 −0.543791
\(306\) 0 0
\(307\) −15.5108 6.42477i −0.885246 0.366681i −0.106717 0.994289i \(-0.534034\pi\)
−0.778529 + 0.627609i \(0.784034\pi\)
\(308\) −1.38469 0.517230i −0.0789001 0.0294719i
\(309\) 0 0
\(310\) −5.67640 13.0494i −0.322398 0.741154i
\(311\) −8.09305 + 30.2037i −0.458914 + 1.71269i 0.217403 + 0.976082i \(0.430241\pi\)
−0.676317 + 0.736610i \(0.736425\pi\)
\(312\) 0 0
\(313\) 5.43381 + 20.2793i 0.307137 + 1.14625i 0.931090 + 0.364790i \(0.118859\pi\)
−0.623952 + 0.781462i \(0.714474\pi\)
\(314\) −20.2671 + 16.1262i −1.14374 + 0.910057i
\(315\) 0 0
\(316\) −10.1086 16.1661i −0.568653 0.909413i
\(317\) 19.8745 + 25.9009i 1.11626 + 1.45474i 0.874900 + 0.484303i \(0.160927\pi\)
0.241360 + 0.970436i \(0.422406\pi\)
\(318\) 0 0
\(319\) 2.13534 1.23284i 0.119556 0.0690259i
\(320\) −24.6612 15.0812i −1.37860 0.843065i
\(321\) 0 0
\(322\) −2.14151 + 1.28720i −0.119342 + 0.0717328i
\(323\) 31.1771 + 12.9140i 1.73474 + 0.718552i
\(324\) 0 0
\(325\) 9.69018 + 23.3942i 0.537514 + 1.29767i
\(326\) −10.9342 + 1.63584i −0.605587 + 0.0906007i
\(327\) 0 0
\(328\) 24.7230 + 5.24314i 1.36510 + 0.289504i
\(329\) −1.54869 0.414969i −0.0853819 0.0228780i
\(330\) 0 0
\(331\) −25.9032 3.41022i −1.42377 0.187442i −0.621035 0.783783i \(-0.713288\pi\)
−0.802732 + 0.596340i \(0.796621\pi\)
\(332\) 19.8924 3.33513i 1.09174 0.183039i
\(333\) 0 0
\(334\) 3.40806 + 11.8784i 0.186481 + 0.649959i
\(335\) 10.9173 + 6.30313i 0.596478 + 0.344377i
\(336\) 0 0
\(337\) −11.6478 + 6.72488i −0.634498 + 0.366327i −0.782492 0.622661i \(-0.786052\pi\)
0.147994 + 0.988988i \(0.452718\pi\)
\(338\) 3.17608 + 3.06616i 0.172756 + 0.166777i
\(339\) 0 0
\(340\) −34.1487 + 15.5751i −1.85197 + 0.844679i
\(341\) 2.33140 + 5.62849i 0.126252 + 0.304800i
\(342\) 0 0
\(343\) 3.31710 3.31710i 0.179106 0.179106i
\(344\) 20.1324 + 1.57513i 1.08547 + 0.0849252i
\(345\) 0 0
\(346\) −3.93152 1.54797i −0.211360 0.0832194i
\(347\) 8.91361 11.6164i 0.478508 0.623603i −0.490259 0.871577i \(-0.663098\pi\)
0.968767 + 0.247973i \(0.0797645\pi\)
\(348\) 0 0
\(349\) 20.6796 15.8680i 1.10695 0.849394i 0.117331 0.993093i \(-0.462566\pi\)
0.989621 + 0.143699i \(0.0458996\pi\)
\(350\) −1.86558 + 3.36682i −0.0997197 + 0.179964i
\(351\) 0 0
\(352\) 10.4424 + 6.64130i 0.556583 + 0.353983i
\(353\) 14.8602 + 8.57952i 0.790927 + 0.456642i 0.840289 0.542139i \(-0.182385\pi\)
−0.0493620 + 0.998781i \(0.515719\pi\)
\(354\) 0 0
\(355\) 23.2854 3.06558i 1.23586 0.162704i
\(356\) 16.4220 5.02622i 0.870364 0.266389i
\(357\) 0 0
\(358\) 9.59592 1.43563i 0.507160 0.0758752i
\(359\) −8.04157 + 8.04157i −0.424418 + 0.424418i −0.886722 0.462304i \(-0.847023\pi\)
0.462304 + 0.886722i \(0.347023\pi\)
\(360\) 0 0
\(361\) 16.4181 + 16.4181i 0.864110 + 0.864110i
\(362\) −17.7243 13.1111i −0.931568 0.689103i
\(363\) 0 0
\(364\) 0.202889 2.11389i 0.0106343 0.110798i
\(365\) 6.50923 + 49.4425i 0.340709 + 2.58794i
\(366\) 0 0
\(367\) 0.666895 1.15510i 0.0348116 0.0602955i −0.848095 0.529845i \(-0.822250\pi\)
0.882906 + 0.469549i \(0.155584\pi\)
\(368\) 19.7751 6.82269i 1.03085 0.355657i
\(369\) 0 0
\(370\) −6.39824 + 1.83573i −0.332629 + 0.0954350i
\(371\) −2.57519 3.35606i −0.133697 0.174238i
\(372\) 0 0
\(373\) −12.9829 9.96215i −0.672231 0.515821i 0.215313 0.976545i \(-0.430923\pi\)
−0.887543 + 0.460725i \(0.847590\pi\)
\(374\) 14.7345 6.40945i 0.761905 0.331425i
\(375\) 0 0
\(376\) 11.9632 + 6.08862i 0.616955 + 0.313997i
\(377\) 2.50484 + 2.50484i 0.129006 + 0.129006i
\(378\) 0 0
\(379\) −2.28676 + 0.947206i −0.117463 + 0.0486547i −0.440641 0.897683i \(-0.645249\pi\)
0.323178 + 0.946338i \(0.395249\pi\)
\(380\) −46.9275 + 1.65317i −2.40733 + 0.0848056i
\(381\) 0 0
\(382\) 29.5773 0.520815i 1.51331 0.0266472i
\(383\) −11.9607 20.7165i −0.611162 1.05856i −0.991045 0.133529i \(-0.957369\pi\)
0.379883 0.925035i \(-0.375964\pi\)
\(384\) 0 0
\(385\) 1.33527 2.31276i 0.0680517 0.117869i
\(386\) −6.65271 + 12.0061i −0.338614 + 0.611097i
\(387\) 0 0
\(388\) −10.3827 16.6045i −0.527102 0.842964i
\(389\) −0.855262 + 6.49636i −0.0433635 + 0.329379i 0.955989 + 0.293402i \(0.0947875\pi\)
−0.999353 + 0.0359765i \(0.988546\pi\)
\(390\) 0 0
\(391\) 7.02982 26.2356i 0.355513 1.32679i
\(392\) −16.3292 + 10.6150i −0.824750 + 0.536139i
\(393\) 0 0
\(394\) 28.3364 + 20.9611i 1.42757 + 1.05601i
\(395\) 31.8249 13.1823i 1.60128 0.663274i
\(396\) 0 0
\(397\) 5.36519 12.9527i 0.269271 0.650078i −0.730178 0.683257i \(-0.760563\pi\)
0.999449 + 0.0331786i \(0.0105630\pi\)
\(398\) 7.69708 30.8915i 0.385820 1.54845i
\(399\) 0 0
\(400\) 21.1273 24.3344i 1.05637 1.21672i
\(401\) 11.7994 + 20.4372i 0.589236 + 1.02059i 0.994333 + 0.106312i \(0.0339044\pi\)
−0.405097 + 0.914274i \(0.632762\pi\)
\(402\) 0 0
\(403\) −6.94386 + 5.32821i −0.345898 + 0.265417i
\(404\) 8.83316 + 6.29654i 0.439466 + 0.313265i
\(405\) 0 0
\(406\) −0.0608752 + 0.535025i −0.00302118 + 0.0265528i
\(407\) 2.75257 0.737549i 0.136440 0.0365589i
\(408\) 0 0
\(409\) −4.14858 1.11161i −0.205134 0.0549655i 0.154789 0.987948i \(-0.450530\pi\)
−0.359923 + 0.932982i \(0.617197\pi\)
\(410\) −16.7280 + 42.4857i −0.826138 + 2.09822i
\(411\) 0 0
\(412\) −19.1906 17.8845i −0.945451 0.881105i
\(413\) 1.59294 3.84569i 0.0783834 0.189234i
\(414\) 0 0
\(415\) 36.4411i 1.78883i
\(416\) −5.33337 + 16.9607i −0.261490 + 0.831564i
\(417\) 0 0
\(418\) 20.0995 0.353924i 0.983099 0.0173110i
\(419\) −2.16132 16.4168i −0.105587 0.802015i −0.959522 0.281634i \(-0.909124\pi\)
0.853935 0.520380i \(-0.174210\pi\)
\(420\) 0 0
\(421\) −9.49857 1.25051i −0.462932 0.0609462i −0.104547 0.994520i \(-0.533339\pi\)
−0.358385 + 0.933574i \(0.616673\pi\)
\(422\) 22.5235 17.9216i 1.09643 0.872411i
\(423\) 0 0
\(424\) 15.2620 + 31.9595i 0.741188 + 1.55209i
\(425\) −10.8296 40.4166i −0.525313 1.96049i
\(426\) 0 0
\(427\) −0.540523 + 0.704424i −0.0261578 + 0.0340895i
\(428\) −0.581847 + 6.06222i −0.0281247 + 0.293028i
\(429\) 0 0
\(430\) −8.82090 + 35.4018i −0.425381 + 1.70723i
\(431\) 28.6503i 1.38004i 0.723791 + 0.690019i \(0.242398\pi\)
−0.723791 + 0.690019i \(0.757602\pi\)
\(432\) 0 0
\(433\) 2.24451i 0.107864i −0.998545 0.0539321i \(-0.982825\pi\)
0.998545 0.0539321i \(-0.0171755\pi\)
\(434\) −1.29100 0.321672i −0.0619701 0.0154408i
\(435\) 0 0
\(436\) 5.78558 + 7.01408i 0.277079 + 0.335913i
\(437\) 20.6862 26.9587i 0.989553 1.28961i
\(438\) 0 0
\(439\) 3.78576 + 14.1287i 0.180685 + 0.674324i 0.995513 + 0.0946223i \(0.0301643\pi\)
−0.814829 + 0.579702i \(0.803169\pi\)
\(440\) −14.9532 + 16.6226i −0.712864 + 0.792449i
\(441\) 0 0
\(442\) 14.3734 + 18.0641i 0.683672 + 0.859223i
\(443\) −18.8870 2.48652i −0.897349 0.118138i −0.332279 0.943181i \(-0.607817\pi\)
−0.565070 + 0.825043i \(0.691151\pi\)
\(444\) 0 0
\(445\) 4.04998 + 30.7626i 0.191987 + 1.45829i
\(446\) 0.299820 + 17.0269i 0.0141969 + 0.806248i
\(447\) 0 0
\(448\) −2.52225 + 0.970866i −0.119165 + 0.0458691i
\(449\) 6.68952i 0.315698i −0.987463 0.157849i \(-0.949544\pi\)
0.987463 0.157849i \(-0.0504559\pi\)
\(450\) 0 0
\(451\) 7.48056 18.0597i 0.352246 0.850397i
\(452\) 23.3656 0.823125i 1.09902 0.0387165i
\(453\) 0 0
\(454\) −10.6195 4.18123i −0.498396 0.196235i
\(455\) 3.70596 + 0.993010i 0.173738 + 0.0465530i
\(456\) 0 0
\(457\) −15.5301 + 4.16127i −0.726466 + 0.194656i −0.603055 0.797700i \(-0.706050\pi\)
−0.123411 + 0.992356i \(0.539383\pi\)
\(458\) −3.57461 0.406719i −0.167030 0.0190047i
\(459\) 0 0
\(460\) 6.24928 + 37.2739i 0.291374 + 1.73790i
\(461\) −0.276368 + 0.212065i −0.0128718 + 0.00987684i −0.615177 0.788389i \(-0.710916\pi\)
0.602306 + 0.798266i \(0.294249\pi\)
\(462\) 0 0
\(463\) 18.9935 + 32.8977i 0.882702 + 1.52888i 0.848325 + 0.529475i \(0.177611\pi\)
0.0343766 + 0.999409i \(0.489055\pi\)
\(464\) 1.42788 4.27620i 0.0662875 0.198517i
\(465\) 0 0
\(466\) −8.45366 2.10636i −0.391608 0.0975751i
\(467\) −3.91506 + 9.45180i −0.181168 + 0.437377i −0.988208 0.153119i \(-0.951068\pi\)
0.807040 + 0.590497i \(0.201068\pi\)
\(468\) 0 0
\(469\) 1.08890 0.451037i 0.0502807 0.0208269i
\(470\) −14.4227 + 19.4974i −0.665270 + 0.899349i
\(471\) 0 0
\(472\) −19.7261 + 28.7300i −0.907968 + 1.32241i
\(473\) 4.04257 15.0871i 0.185877 0.693704i
\(474\) 0 0
\(475\) 6.83281 51.9003i 0.313511 2.38135i
\(476\) −0.788329 + 3.41942i −0.0361330 + 0.156729i
\(477\) 0 0
\(478\) −21.4780 11.9012i −0.982382 0.544346i
\(479\) 3.42795 5.93739i 0.156627 0.271286i −0.777023 0.629472i \(-0.783271\pi\)
0.933650 + 0.358186i \(0.116605\pi\)
\(480\) 0 0
\(481\) 2.04702 + 3.54554i 0.0933361 + 0.161663i
\(482\) 0.175479 + 9.96554i 0.00799286 + 0.453918i
\(483\) 0 0
\(484\) −8.47312 + 9.09190i −0.385142 + 0.413268i
\(485\) 32.6879 13.5398i 1.48428 0.614810i
\(486\) 0 0
\(487\) −24.9342 24.9342i −1.12988 1.12988i −0.990197 0.139678i \(-0.955393\pi\)
−0.139678 0.990197i \(-0.544607\pi\)
\(488\) 5.65050 4.83049i 0.255786 0.218666i
\(489\) 0 0
\(490\) −14.0359 32.2669i −0.634078 1.45767i
\(491\) 0.263984 + 0.202562i 0.0119134 + 0.00914148i 0.614701 0.788760i \(-0.289277\pi\)
−0.602788 + 0.797902i \(0.705943\pi\)
\(492\) 0 0
\(493\) −3.56342 4.64393i −0.160488 0.209152i
\(494\) 7.96491 + 27.7609i 0.358358 + 1.24902i
\(495\) 0 0
\(496\) 10.0148 + 4.87692i 0.449677 + 0.218980i
\(497\) 1.09792 1.90165i 0.0492485 0.0853008i
\(498\) 0 0
\(499\) 1.29015 + 9.79966i 0.0577551 + 0.438693i 0.995754 + 0.0920549i \(0.0293435\pi\)
−0.937999 + 0.346638i \(0.887323\pi\)
\(500\) 14.0555 + 17.0401i 0.628583 + 0.762055i
\(501\) 0 0
\(502\) −10.6177 + 14.3537i −0.473893 + 0.640636i
\(503\) −16.8400 16.8400i −0.750858 0.750858i 0.223782 0.974639i \(-0.428160\pi\)
−0.974639 + 0.223782i \(0.928160\pi\)
\(504\) 0 0
\(505\) −13.8581 + 13.8581i −0.616678 + 0.616678i
\(506\) −2.39402 16.0020i −0.106427 0.711375i
\(507\) 0 0
\(508\) −4.65780 2.47476i −0.206657 0.109800i
\(509\) −19.1181 + 2.51695i −0.847395 + 0.111562i −0.541704 0.840569i \(-0.682221\pi\)
−0.305691 + 0.952131i \(0.598887\pi\)
\(510\) 0 0
\(511\) 4.03783 + 2.33124i 0.178623 + 0.103128i
\(512\) 22.3439 3.57058i 0.987471 0.157799i
\(513\) 0 0
\(514\) −2.51853 1.39554i −0.111087 0.0615545i
\(515\) 37.5999 28.8514i 1.65685 1.27135i
\(516\) 0 0
\(517\) 6.32051 8.23705i 0.277976 0.362265i
\(518\) −0.227998 + 0.579066i −0.0100176 + 0.0254427i
\(519\) 0 0
\(520\) −28.6276 14.5699i −1.25540 0.638932i
\(521\) −24.6409 + 24.6409i −1.07954 + 1.07954i −0.0829879 + 0.996551i \(0.526446\pi\)
−0.996551 + 0.0829879i \(0.973554\pi\)
\(522\) 0 0
\(523\) −1.23077 2.97134i −0.0538178 0.129928i 0.894684 0.446700i \(-0.147401\pi\)
−0.948502 + 0.316772i \(0.897401\pi\)
\(524\) −2.70336 1.00980i −0.118097 0.0441133i
\(525\) 0 0
\(526\) −23.6615 + 24.5097i −1.03169 + 1.06867i
\(527\) 12.5253 7.23150i 0.545612 0.315009i
\(528\) 0 0
\(529\) −3.76740 2.17511i −0.163800 0.0945700i
\(530\) −61.5056 + 17.6467i −2.67163 + 0.766522i
\(531\) 0 0
\(532\) −2.54829 + 3.57490i −0.110483 + 0.154991i
\(533\) 27.8433 + 3.66564i 1.20603 + 0.158777i
\(534\) 0 0
\(535\) −10.6280 2.84776i −0.459488 0.123119i
\(536\) −9.70166 + 1.80272i −0.419048 + 0.0778656i
\(537\) 0 0
\(538\) 2.68914 + 17.9746i 0.115937 + 0.774938i
\(539\) 5.76479 + 13.9174i 0.248307 + 0.599467i
\(540\) 0 0
\(541\) −4.07207 1.68670i −0.175072 0.0725171i 0.293426 0.955982i \(-0.405205\pi\)
−0.468498 + 0.883465i \(0.655205\pi\)
\(542\) 12.6256 + 21.0053i 0.542317 + 0.902254i
\(543\) 0 0
\(544\) 12.3958 26.6363i 0.531466 1.14202i
\(545\) −14.2262 + 8.21351i −0.609384 + 0.351828i
\(546\) 0 0
\(547\) 6.80220 + 8.86480i 0.290841 + 0.379032i 0.915806 0.401622i \(-0.131553\pi\)
−0.624965 + 0.780653i \(0.714887\pi\)
\(548\) 38.8273 + 8.95143i 1.65862 + 0.382386i
\(549\) 0 0
\(550\) −15.5197 19.5048i −0.661761 0.831686i
\(551\) −1.89540 7.07373i −0.0807467 0.301351i
\(552\) 0 0
\(553\) 0.833554 3.11087i 0.0354463 0.132287i
\(554\) 11.2596 4.89788i 0.478376 0.208091i
\(555\) 0 0
\(556\) −8.62180 18.9034i −0.365646 0.801684i
\(557\) −13.5251 5.60228i −0.573076 0.237376i 0.0772746 0.997010i \(-0.475378\pi\)
−0.650351 + 0.759634i \(0.725378\pi\)
\(558\) 0 0
\(559\) 22.4398 0.949102
\(560\) −0.976423 4.78423i −0.0412614 0.202171i
\(561\) 0 0
\(562\) −20.9907 20.2642i −0.885437 0.854794i
\(563\) −2.86087 + 0.376641i −0.120571 + 0.0158735i −0.190570 0.981674i \(-0.561034\pi\)
0.0699990 + 0.997547i \(0.477700\pi\)
\(564\) 0 0
\(565\) −5.51350 + 41.8792i −0.231955 + 1.76187i
\(566\) −1.26919 + 11.1547i −0.0533480 + 0.468869i
\(567\) 0 0
\(568\) −12.2952 + 13.6678i −0.515894 + 0.573489i
\(569\) −29.0618 + 7.78708i −1.21833 + 0.326451i −0.810026 0.586393i \(-0.800547\pi\)
−0.408307 + 0.912845i \(0.633881\pi\)
\(570\) 0 0
\(571\) −15.8500 12.1621i −0.663301 0.508969i 0.221367 0.975191i \(-0.428948\pi\)
−0.884668 + 0.466222i \(0.845615\pi\)
\(572\) 12.1441 + 6.45234i 0.507769 + 0.269786i
\(573\) 0 0
\(574\) 2.19925 + 3.65889i 0.0917949 + 0.152719i
\(575\) −42.1337 −1.75710
\(576\) 0 0
\(577\) −37.0391 −1.54196 −0.770978 0.636862i \(-0.780232\pi\)
−0.770978 + 0.636862i \(0.780232\pi\)
\(578\) −7.26618 12.0887i −0.302233 0.502826i
\(579\) 0 0
\(580\) 7.19287 + 3.82168i 0.298668 + 0.158687i
\(581\) 2.70299 + 2.07408i 0.112139 + 0.0860472i
\(582\) 0 0
\(583\) 26.4601 7.08997i 1.09587 0.293636i
\(584\) −29.0213 26.1067i −1.20091 1.08030i
\(585\) 0 0
\(586\) −0.987478 + 8.67883i −0.0407924 + 0.358519i
\(587\) −3.30190 + 25.0804i −0.136284 + 1.03518i 0.777472 + 0.628917i \(0.216502\pi\)
−0.913756 + 0.406263i \(0.866832\pi\)
\(588\) 0 0
\(589\) 17.9396 2.36179i 0.739187 0.0973158i
\(590\) −45.2988 43.7312i −1.86492 1.80038i
\(591\) 0 0
\(592\) 2.87313 4.34662i 0.118085 0.178645i
\(593\) 29.5317 1.21272 0.606360 0.795190i \(-0.292629\pi\)
0.606360 + 0.795190i \(0.292629\pi\)
\(594\) 0 0
\(595\) −5.85729 2.42617i −0.240126 0.0994633i
\(596\) 4.97761 + 10.9135i 0.203891 + 0.447034i
\(597\) 0 0
\(598\) 21.3161 9.27239i 0.871679 0.379176i
\(599\) 0.867041 3.23584i 0.0354263 0.132213i −0.945948 0.324319i \(-0.894865\pi\)
0.981374 + 0.192106i \(0.0615317\pi\)
\(600\) 0 0
\(601\) −6.88998 25.7137i −0.281048 1.04889i −0.951679 0.307094i \(-0.900643\pi\)
0.670631 0.741791i \(-0.266023\pi\)
\(602\) 2.12385 + 2.66921i 0.0865617 + 0.108789i
\(603\) 0 0
\(604\) −1.56701 0.361267i −0.0637609 0.0146997i
\(605\) −13.6689 17.8137i −0.555721 0.724229i
\(606\) 0 0
\(607\) −23.0060 + 13.2825i −0.933785 + 0.539121i −0.888007 0.459830i \(-0.847910\pi\)
−0.0457787 + 0.998952i \(0.514577\pi\)
\(608\) 27.0802 24.8527i 1.09825 1.00791i
\(609\) 0 0
\(610\) 6.91906 + 11.5112i 0.280144 + 0.466077i
\(611\) 13.7809 + 5.70825i 0.557517 + 0.230931i
\(612\) 0 0
\(613\) 1.77061 + 4.27462i 0.0715141 + 0.172650i 0.955595 0.294684i \(-0.0952144\pi\)
−0.884081 + 0.467334i \(0.845214\pi\)
\(614\) 3.51302 + 23.4815i 0.141774 + 0.947636i
\(615\) 0 0
\(616\) 0.381892 + 2.05522i 0.0153869 + 0.0828074i
\(617\) 32.5448 + 8.72036i 1.31021 + 0.351069i 0.845300 0.534292i \(-0.179422\pi\)
0.464905 + 0.885360i \(0.346088\pi\)
\(618\) 0 0
\(619\) −12.2571 1.61368i −0.492654 0.0648592i −0.119894 0.992787i \(-0.538255\pi\)
−0.372761 + 0.927928i \(0.621589\pi\)
\(620\) −11.6816 + 16.3876i −0.469144 + 0.658143i
\(621\) 0 0
\(622\) 42.5063 12.1955i 1.70435 0.488997i
\(623\) 2.51230 + 1.45048i 0.100653 + 0.0581121i
\(624\) 0 0
\(625\) 0.324562 0.187386i 0.0129825 0.00749545i
\(626\) 20.6218 21.3610i 0.824211 0.853758i
\(627\) 0 0
\(628\) 34.3125 + 12.8169i 1.36922 + 0.511451i
\(629\) −2.58890 6.25017i −0.103226 0.249211i
\(630\) 0 0
\(631\) 13.3996 13.3996i 0.533428 0.533428i −0.388163 0.921591i \(-0.626890\pi\)
0.921591 + 0.388163i \(0.126890\pi\)
\(632\) −12.2303 + 24.0306i −0.486495 + 0.955887i
\(633\) 0 0
\(634\) 16.9149 42.9603i 0.671776 1.70617i
\(635\) 5.80105 7.56008i 0.230208 0.300012i
\(636\) 0 0
\(637\) −17.1699 + 13.1750i −0.680298 + 0.522011i
\(638\) −3.05006 1.69006i −0.120753 0.0669103i
\(639\) 0 0
\(640\) −0.312828 + 40.8796i −0.0123656 + 1.61591i
\(641\) −31.5373 18.2081i −1.24565 0.719175i −0.275410 0.961327i \(-0.588813\pi\)
−0.970238 + 0.242152i \(0.922147\pi\)
\(642\) 0 0
\(643\) 37.0620 4.87931i 1.46158 0.192421i 0.642584 0.766215i \(-0.277862\pi\)
0.819000 + 0.573794i \(0.194529\pi\)
\(644\) 3.12044 + 1.65794i 0.122963 + 0.0653320i
\(645\) 0 0
\(646\) −7.06127 47.1985i −0.277822 1.85700i
\(647\) 4.70488 4.70488i 0.184968 0.184968i −0.608549 0.793517i \(-0.708248\pi\)
0.793517 + 0.608549i \(0.208248\pi\)
\(648\) 0 0
\(649\) 19.0603 + 19.0603i 0.748182 + 0.748182i
\(650\) 21.2963 28.7896i 0.835311 1.12922i
\(651\) 0 0
\(652\) 9.94900 + 12.0616i 0.389633 + 0.472367i
\(653\) −6.00604 45.6204i −0.235034 1.78526i −0.548993 0.835827i \(-0.684989\pi\)
0.313959 0.949437i \(-0.398345\pi\)
\(654\) 0 0
\(655\) 2.60688 4.51524i 0.101859 0.176425i
\(656\) −11.6569 33.7868i −0.455127 1.31915i
\(657\) 0 0
\(658\) 0.625324 + 2.17950i 0.0243777 + 0.0849659i
\(659\) −7.21245 9.39944i −0.280957 0.366150i 0.631463 0.775406i \(-0.282455\pi\)
−0.912420 + 0.409256i \(0.865788\pi\)
\(660\) 0 0
\(661\) 11.5386 + 8.85387i 0.448799 + 0.344376i 0.808302 0.588768i \(-0.200387\pi\)
−0.359503 + 0.933144i \(0.617054\pi\)
\(662\) 14.7385 + 33.8819i 0.572827 + 1.31686i
\(663\) 0 0
\(664\) −18.5354 21.6819i −0.719312 0.841421i
\(665\) −5.60856 5.60856i −0.217491 0.217491i
\(666\) 0 0
\(667\) −5.44563 + 2.25565i −0.210855 + 0.0873392i
\(668\) 11.9150 12.7851i 0.461003 0.494670i
\(669\) 0 0
\(670\) −0.313876 17.8252i −0.0121261 0.688647i
\(671\) −2.87490 4.97947i −0.110984 0.192230i
\(672\) 0 0
\(673\) 5.34192 9.25247i 0.205916 0.356657i −0.744508 0.667613i \(-0.767316\pi\)
0.950424 + 0.310957i \(0.100649\pi\)
\(674\) 16.6374 + 9.21893i 0.640849 + 0.355100i
\(675\) 0 0
\(676\) 1.40255 6.08363i 0.0539442 0.233986i
\(677\) −3.15179 + 23.9402i −0.121133 + 0.920099i 0.817680 + 0.575673i \(0.195260\pi\)
−0.938814 + 0.344426i \(0.888074\pi\)
\(678\) 0 0
\(679\) 0.856158 3.19522i 0.0328563 0.122621i
\(680\) 43.7580 + 30.0444i 1.67804 + 1.15215i
\(681\) 0 0
\(682\) 5.12376 6.92659i 0.196199 0.265233i
\(683\) −20.4615 + 8.47545i −0.782939 + 0.324304i −0.738101 0.674690i \(-0.764277\pi\)
−0.0448383 + 0.998994i \(0.514277\pi\)
\(684\) 0 0
\(685\) −27.5490 + 66.5092i −1.05259 + 2.54118i
\(686\) −6.43737 1.60397i −0.245780 0.0612398i
\(687\) 0 0
\(688\) −12.7584 25.5502i −0.486411 0.974091i
\(689\) 19.6778 + 34.0829i 0.749663 + 1.29846i
\(690\) 0 0
\(691\) 11.5915 8.89447i 0.440961 0.338361i −0.364300 0.931282i \(-0.618692\pi\)
0.805261 + 0.592920i \(0.202025\pi\)
\(692\) 0.988044 + 5.89321i 0.0375598 + 0.224026i
\(693\) 0 0
\(694\) −20.5745 2.34096i −0.780996 0.0888618i
\(695\) 36.2582 9.71537i 1.37535 0.368525i
\(696\) 0 0
\(697\) −44.8250 12.0108i −1.69787 0.454942i
\(698\) −34.3000 13.5050i −1.29827 0.511174i
\(699\) 0 0
\(700\) 5.44013 0.191646i 0.205618 0.00724352i
\(701\) 10.6579 25.7305i 0.402544 0.971828i −0.584502 0.811392i \(-0.698710\pi\)
0.987046 0.160435i \(-0.0512898\pi\)
\(702\) 0 0
\(703\) 8.46372i 0.319215i
\(704\) 0.442024 17.4959i 0.0166594 0.659402i
\(705\) 0 0
\(706\) −0.427233 24.2628i −0.0160791 0.913142i
\(707\) 0.239168 + 1.81666i 0.00899483 + 0.0683225i
\(708\) 0 0
\(709\) 2.94957 + 0.388319i 0.110774 + 0.0145836i 0.185709 0.982605i \(-0.440542\pi\)
−0.0749356 + 0.997188i \(0.523875\pi\)
\(710\) −20.6806 25.9909i −0.776130 0.975421i
\(711\) 0 0
\(712\) −18.0567 16.2433i −0.676704 0.608743i
\(713\) −3.76936 14.0674i −0.141164 0.526830i
\(714\) 0 0
\(715\) −15.1248 + 19.7110i −0.565636 + 0.737151i
\(716\) −8.73133 10.5853i −0.326305 0.395592i
\(717\) 0 0
\(718\) 15.6060 + 3.88847i 0.582411 + 0.145116i
\(719\) 39.9035i 1.48815i 0.668096 + 0.744075i \(0.267110\pi\)
−0.668096 + 0.744075i \(0.732890\pi\)
\(720\) 0 0
\(721\) 4.43104i 0.165021i
\(722\) 7.93890 31.8620i 0.295455 1.18578i
\(723\) 0 0
\(724\) −2.97880 + 31.0359i −0.110706 + 1.15344i
\(725\) −5.52775 + 7.20390i −0.205295 + 0.267546i
\(726\) 0 0
\(727\) −2.39756 8.94781i −0.0889205 0.331856i 0.907107 0.420900i \(-0.138286\pi\)
−0.996028 + 0.0890438i \(0.971619\pi\)
\(728\) −2.71007 + 1.29417i −0.100442 + 0.0479651i
\(729\) 0 0
\(730\) 55.1872 43.9117i 2.04257 1.62525i
\(731\) −36.7631 4.83995i −1.35973 0.179012i
\(732\) 0 0
\(733\) −4.41392 33.5271i −0.163032 1.23835i −0.855844 0.517233i \(-0.826962\pi\)
0.692812 0.721118i \(-0.256371\pi\)
\(734\) −1.88597 + 0.0332093i −0.0696125 + 0.00122578i
\(735\) 0 0
\(736\) −22.6772 18.9988i −0.835891 0.700304i
\(737\) 7.63234i 0.281141i
\(738\) 0 0
\(739\) 1.57623 3.80535i 0.0579824 0.139982i −0.892233 0.451575i \(-0.850862\pi\)
0.950216 + 0.311593i \(0.100862\pi\)
\(740\) 6.88660 + 6.41791i 0.253157 + 0.235927i
\(741\) 0 0
\(742\) −2.19171 + 5.56649i −0.0804603 + 0.204352i
\(743\) 8.43884 + 2.26118i 0.309591 + 0.0829547i 0.410269 0.911964i \(-0.365435\pi\)
−0.100678 + 0.994919i \(0.532101\pi\)
\(744\) 0 0
\(745\) −20.9329 + 5.60895i −0.766922 + 0.205496i
\(746\) −2.61634 + 22.9947i −0.0957911 + 0.841896i
\(747\) 0 0
\(748\) −18.5039 13.1902i −0.676570 0.482280i
\(749\) −0.816130 + 0.626239i −0.0298208 + 0.0228823i
\(750\) 0 0
\(751\) 21.8306 + 37.8117i 0.796610 + 1.37977i 0.921812 + 0.387637i \(0.126709\pi\)
−0.125202 + 0.992131i \(0.539958\pi\)
\(752\) −1.33586 18.9366i −0.0487138 0.690547i
\(753\) 0 0
\(754\) 1.21121 4.86106i 0.0441095 0.177029i
\(755\) 1.11184 2.68422i 0.0404640 0.0976886i
\(756\) 0 0
\(757\) 16.7337 6.93133i 0.608197 0.251923i −0.0572605 0.998359i \(-0.518237\pi\)
0.665457 + 0.746436i \(0.268237\pi\)
\(758\) 2.81416 + 2.08170i 0.102215 + 0.0756106i
\(759\) 0 0
\(760\) 36.1933 + 55.6766i 1.31287 + 2.01960i
\(761\) −11.2400 + 41.9483i −0.407451 + 1.52063i 0.392040 + 0.919948i \(0.371769\pi\)
−0.799491 + 0.600678i \(0.794897\pi\)
\(762\) 0 0
\(763\) −0.200467 + 1.52269i −0.00725738 + 0.0551253i
\(764\) −22.1801 35.4714i −0.802450 1.28331i
\(765\) 0 0
\(766\) −16.3965 + 29.5908i −0.592430 + 1.06916i
\(767\) −19.3630 + 33.5377i −0.699157 + 1.21098i
\(768\) 0 0
\(769\) 16.2165 + 28.0879i 0.584783 + 1.01287i 0.994902 + 0.100842i \(0.0321537\pi\)
−0.410119 + 0.912032i \(0.634513\pi\)
\(770\) −3.77613 + 0.0664924i −0.136082 + 0.00239622i
\(771\) 0 0
\(772\) 19.3996 0.683412i 0.698208 0.0245965i
\(773\) 25.6739 10.6345i 0.923428 0.382496i 0.130246 0.991482i \(-0.458423\pi\)
0.793181 + 0.608985i \(0.208423\pi\)
\(774\) 0 0
\(775\) −15.8645 15.8645i −0.569868 0.569868i
\(776\) −12.5619 + 24.6823i −0.450947 + 0.886043i
\(777\) 0 0
\(778\) 8.49739 3.69632i 0.304646 0.132519i
\(779\) −46.0604 35.3434i −1.65029 1.26631i
\(780\) 0 0
\(781\) 8.65632 + 11.2811i 0.309748 + 0.403671i
\(782\) −36.9220 + 10.5933i −1.32033 + 0.378817i
\(783\) 0 0
\(784\) 24.7633 + 12.0591i 0.884404 + 0.430681i
\(785\) −33.0879 + 57.3099i −1.18096 + 2.04548i
\(786\) 0 0
\(787\) −3.68563 27.9951i −0.131378 0.997918i −0.922429 0.386167i \(-0.873799\pi\)
0.791050 0.611751i \(-0.209535\pi\)
\(788\) 4.76232 49.6182i 0.169650 1.76757i
\(789\) 0 0
\(790\) −39.1647 28.9711i −1.39342 1.03074i
\(791\) 2.79255 + 2.79255i 0.0992916 + 0.0992916i
\(792\) 0 0
\(793\) 5.84111 5.84111i 0.207424 0.207424i
\(794\) −19.6089 + 2.93365i −0.695895 + 0.104111i
\(795\) 0 0
\(796\) −43.0516 + 13.1766i −1.52592 + 0.467034i
\(797\) −28.7850 + 3.78962i −1.01962 + 0.134235i −0.621757 0.783210i \(-0.713581\pi\)
−0.397861 + 0.917446i \(0.630247\pi\)
\(798\) 0 0
\(799\) −21.3461 12.3242i −0.755170 0.435997i
\(800\) −44.8884 7.87952i −1.58704 0.278583i
\(801\) 0 0
\(802\) 16.1755 29.1919i 0.571176 1.03080i
\(803\) −23.9536 + 18.3802i −0.845303 + 0.648623i
\(804\) 0 0
\(805\) −3.88635 + 5.06479i −0.136976 + 0.178510i
\(806\) 11.5174 + 4.53477i 0.405682 + 0.159731i
\(807\) 0 0
\(808\) 1.19659 15.2941i 0.0420959 0.538046i
\(809\) 10.8261 10.8261i 0.380624 0.380624i −0.490703 0.871327i \(-0.663260\pi\)
0.871327 + 0.490703i \(0.163260\pi\)
\(810\) 0 0
\(811\) 4.06716 + 9.81899i 0.142817 + 0.344791i 0.979061 0.203566i \(-0.0652532\pi\)
−0.836244 + 0.548358i \(0.815253\pi\)
\(812\) 0.692858 0.316010i 0.0243145 0.0110898i
\(813\) 0 0
\(814\) −2.89940 2.79906i −0.101624 0.0981069i
\(815\) −24.4637 + 14.1241i −0.856926 + 0.494747i
\(816\) 0 0
\(817\) −40.1753 23.1952i −1.40555 0.811497i
\(818\) 1.67510 + 5.83839i 0.0585686 + 0.204135i
\(819\) 0 0
\(820\) 63.6845 10.6772i 2.22396 0.372865i
\(821\) −1.37179 0.180600i −0.0478758 0.00630297i 0.106550 0.994307i \(-0.466020\pi\)
−0.154426 + 0.988004i \(0.549353\pi\)
\(822\) 0 0
\(823\) 33.2419 + 8.90714i 1.15874 + 0.310483i 0.786462 0.617638i \(-0.211910\pi\)
0.372277 + 0.928122i \(0.378577\pi\)
\(824\) −7.69641 + 36.2909i −0.268117 + 1.26425i
\(825\) 0 0
\(826\) −5.82194 + 0.871008i −0.202571 + 0.0303063i
\(827\) −12.7639 30.8147i −0.443843 1.07153i −0.974589 0.224000i \(-0.928088\pi\)
0.530746 0.847531i \(-0.321912\pi\)
\(828\) 0 0
\(829\) 36.2935 + 15.0332i 1.26052 + 0.522126i 0.910070 0.414454i \(-0.136027\pi\)
0.350454 + 0.936580i \(0.386027\pi\)
\(830\) 44.1705 26.5496i 1.53318 0.921548i
\(831\) 0 0
\(832\) 24.4438 5.89225i 0.847436 0.204277i
\(833\) 30.9711 17.8812i 1.07309 0.619546i
\(834\) 0 0
\(835\) 19.2213 + 25.0497i 0.665181 + 0.866881i
\(836\) −15.0727 24.1049i −0.521300 0.833684i
\(837\) 0 0
\(838\) −18.3243 + 14.5804i −0.633002 + 0.503671i
\(839\) −2.51155 9.37322i −0.0867082 0.323599i 0.908924 0.416962i \(-0.136905\pi\)
−0.995632 + 0.0933624i \(0.970238\pi\)
\(840\) 0 0
\(841\) 7.17698 26.7848i 0.247482 0.923615i
\(842\) 5.40453 + 12.4243i 0.186252 + 0.428171i
\(843\) 0 0
\(844\) −38.1326 14.2438i −1.31258 0.490294i
\(845\) 10.4210 + 4.31650i 0.358492 + 0.148492i
\(846\) 0 0
\(847\) −2.09929 −0.0721325
\(848\) 27.6191 41.7836i 0.948443 1.43485i
\(849\) 0 0
\(850\) −41.0992 + 42.5726i −1.40969 + 1.46023i
\(851\) −6.75395 + 0.889175i −0.231523 + 0.0304805i
\(852\) 0 0
\(853\) −3.57465 + 27.1522i −0.122394 + 0.929673i 0.814526 + 0.580128i \(0.196997\pi\)
−0.936919 + 0.349545i \(0.886336\pi\)
\(854\) 1.24764 + 0.141957i 0.0426934 + 0.00485766i
\(855\) 0 0
\(856\) 7.77196 3.71143i 0.265640 0.126854i
\(857\) 12.4894 3.34654i 0.426631 0.114316i −0.0391130 0.999235i \(-0.512453\pi\)
0.465745 + 0.884919i \(0.345787\pi\)
\(858\) 0 0
\(859\) −26.6945 20.4834i −0.910805 0.698885i 0.0430753 0.999072i \(-0.486284\pi\)
−0.953881 + 0.300186i \(0.902951\pi\)
\(860\) 49.3373 15.1005i 1.68239 0.514923i
\(861\) 0 0
\(862\) 34.7272 20.8735i 1.18281 0.710954i
\(863\) −17.8151 −0.606432 −0.303216 0.952922i \(-0.598060\pi\)
−0.303216 + 0.952922i \(0.598060\pi\)
\(864\) 0 0
\(865\) −10.7958 −0.367069
\(866\) −2.72058 + 1.63526i −0.0924492 + 0.0555684i
\(867\) 0 0
\(868\) 0.550671 + 1.79919i 0.0186910 + 0.0610684i
\(869\) 16.5459 + 12.6961i 0.561280 + 0.430685i
\(870\) 0 0
\(871\) −10.5915 + 2.83800i −0.358881 + 0.0961618i
\(872\) 4.28667 12.1229i 0.145165 0.410533i
\(873\) 0 0
\(874\) −47.7479 5.43277i −1.61510 0.183766i
\(875\) −0.487016 + 3.69925i −0.0164641 + 0.125058i
\(876\) 0 0
\(877\) −24.2406 + 3.19133i −0.818547 + 0.107764i −0.528159 0.849145i \(-0.677118\pi\)
−0.290387 + 0.956909i \(0.593784\pi\)
\(878\) 14.3673 14.8823i 0.484872 0.502254i
\(879\) 0 0
\(880\) 31.0426 + 6.01429i 1.04645 + 0.202742i
\(881\) −17.0010 −0.572778 −0.286389 0.958113i \(-0.592455\pi\)
−0.286389 + 0.958113i \(0.592455\pi\)
\(882\) 0 0
\(883\) −5.46596 2.26408i −0.183944 0.0761922i 0.288810 0.957386i \(-0.406740\pi\)
−0.472755 + 0.881194i \(0.656740\pi\)
\(884\) 11.4238 30.5829i 0.384223 1.02861i
\(885\) 0 0
\(886\) 10.7464 + 24.7046i 0.361032 + 0.829968i
\(887\) 3.02494 11.2892i 0.101568 0.379055i −0.896366 0.443316i \(-0.853802\pi\)
0.997933 + 0.0642603i \(0.0204688\pi\)
\(888\) 0 0
\(889\) −0.230591 0.860576i −0.00773376 0.0288628i
\(890\) 34.3369 27.3214i 1.15098 0.915816i
\(891\) 0 0
\(892\) 20.4200 12.7685i 0.683712 0.427522i
\(893\) −18.7724 24.4646i −0.628194 0.818678i
\(894\) 0 0
\(895\) 21.4696 12.3955i 0.717648 0.414334i
\(896\) 3.01440 + 2.34990i 0.100704 + 0.0785046i
\(897\) 0 0
\(898\) −8.10840 + 4.87371i −0.270581 + 0.162638i
\(899\) −2.89974 1.20111i −0.0967116 0.0400593i
\(900\) 0 0
\(901\) −24.8868 60.0822i −0.829101 2.00163i
\(902\) −27.3403 + 4.09032i −0.910331 + 0.136193i
\(903\) 0 0
\(904\) −18.0209 27.7219i −0.599367 0.922015i
\(905\) −54.4106 14.5793i −1.80867 0.484632i
\(906\) 0 0
\(907\) 11.8555 + 1.56081i 0.393656 + 0.0518258i 0.324756 0.945798i \(-0.394718\pi\)
0.0689000 + 0.997624i \(0.478051\pi\)
\(908\) 2.66881 + 15.9182i 0.0885677 + 0.528263i
\(909\) 0 0
\(910\) −1.49638 5.21549i −0.0496046 0.172892i
\(911\) 28.7369 + 16.5912i 0.952095 + 0.549692i 0.893731 0.448603i \(-0.148078\pi\)
0.0583639 + 0.998295i \(0.481412\pi\)
\(912\) 0 0
\(913\) −19.1071 + 11.0315i −0.632351 + 0.365088i
\(914\) 16.3585 + 15.7924i 0.541091 + 0.522365i
\(915\) 0 0
\(916\) 2.11133 + 4.62912i 0.0697603 + 0.152951i
\(917\) −0.186542 0.450351i −0.00616015 0.0148719i
\(918\) 0 0
\(919\) −13.1527 + 13.1527i −0.433868 + 0.433868i −0.889942 0.456074i \(-0.849255\pi\)
0.456074 + 0.889942i \(0.349255\pi\)
\(920\) 40.6270 34.7311i 1.33943 1.14505i
\(921\) 0 0
\(922\) 0.458396 + 0.180486i 0.0150965 + 0.00594398i
\(923\) −12.4363 + 16.2073i −0.409346 + 0.533470i
\(924\) 0 0
\(925\) −8.32578 + 6.38859i −0.273750 + 0.210056i
\(926\) 26.0376 46.9900i 0.855648 1.54419i
\(927\) 0 0
\(928\) −6.22350 + 1.38473i −0.204296 + 0.0454559i
\(929\) 5.07912 + 2.93243i 0.166641 + 0.0962099i 0.581001 0.813903i \(-0.302661\pi\)
−0.414360 + 0.910113i \(0.635995\pi\)
\(930\) 0 0
\(931\) 44.3588 5.83995i 1.45380 0.191397i
\(932\) 3.60587 + 11.7813i 0.118114 + 0.385911i
\(933\) 0 0
\(934\) 14.3089 2.14073i 0.468203 0.0700469i
\(935\) 29.0303 29.0303i 0.949393 0.949393i
\(936\) 0 0
\(937\) 36.0996 + 36.0996i 1.17932 + 1.17932i 0.979917 + 0.199407i \(0.0639014\pi\)
0.199407 + 0.979917i \(0.436099\pi\)
\(938\) −1.34003 0.991253i −0.0437536 0.0323656i
\(939\) 0 0
\(940\) 34.1407 + 3.27680i 1.11355 + 0.106878i
\(941\) 4.88844 + 37.1314i 0.159359 + 1.21045i 0.864961 + 0.501840i \(0.167343\pi\)
−0.705602 + 0.708608i \(0.749323\pi\)
\(942\) 0 0
\(943\) −23.3647 + 40.4688i −0.760858 + 1.31784i
\(944\) 49.1954 + 2.97861i 1.60118 + 0.0969454i
\(945\) 0 0
\(946\) −21.2324 + 6.09181i −0.690324 + 0.198062i
\(947\) −5.97671 7.78900i −0.194217 0.253109i 0.686086 0.727520i \(-0.259327\pi\)
−0.880303 + 0.474412i \(0.842661\pi\)
\(948\) 0 0
\(949\) −34.4134 26.4063i −1.11711 0.857186i
\(950\) −67.8868 + 29.5304i −2.20254 + 0.958093i
\(951\) 0 0
\(952\) 4.71904 1.53571i 0.152945 0.0497727i
\(953\) 10.0260 + 10.0260i 0.324773 + 0.324773i 0.850595 0.525822i \(-0.176242\pi\)
−0.525822 + 0.850595i \(0.676242\pi\)
\(954\) 0 0
\(955\) 69.8298 28.9245i 2.25964 0.935974i
\(956\) 1.22257 + 34.7044i 0.0395407 + 1.12242i
\(957\) 0 0
\(958\) −9.69421 + 0.170701i −0.313206 + 0.00551511i
\(959\) 3.36529 + 5.82885i 0.108671 + 0.188223i
\(960\) 0 0
\(961\) −11.6225 + 20.1308i −0.374919 + 0.649379i
\(962\) 2.80620 5.06435i 0.0904754 0.163281i
\(963\) 0 0
\(964\) 11.9514 7.47319i 0.384930 0.240695i
\(965\) −4.57767 + 34.7708i −0.147360 + 1.11931i
\(966\) 0 0
\(967\) −0.575958 + 2.14950i −0.0185216 + 0.0691234i −0.974568 0.224092i \(-0.928059\pi\)
0.956047 + 0.293215i \(0.0947252\pi\)
\(968\) 17.1935 + 3.64632i 0.552621 + 0.117197i
\(969\) 0 0
\(970\) −40.2268 29.7567i −1.29160 0.955429i
\(971\) 11.0650 4.58326i 0.355092 0.147084i −0.198005 0.980201i \(-0.563446\pi\)
0.553096 + 0.833117i \(0.313446\pi\)
\(972\) 0 0
\(973\) 1.34304 3.24238i 0.0430558 0.103946i
\(974\) −12.0568 + 48.3889i −0.386325 + 1.55048i
\(975\) 0 0
\(976\) −9.97179 3.32971i −0.319189 0.106581i
\(977\) −8.10950 14.0461i −0.259446 0.449374i 0.706648 0.707566i \(-0.250207\pi\)
−0.966094 + 0.258192i \(0.916873\pi\)
\(978\) 0 0
\(979\) −14.9036 + 11.4360i −0.476323 + 0.365495i
\(980\) −28.8848 + 40.5214i −0.922693 + 1.29441i
\(981\) 0 0
\(982\) 0.0531984 0.467554i 0.00169763 0.0149203i
\(983\) −14.5337 + 3.89430i −0.463554 + 0.124209i −0.483035 0.875601i \(-0.660465\pi\)
0.0194805 + 0.999810i \(0.493799\pi\)
\(984\) 0 0
\(985\) 86.9881 + 23.3084i 2.77167 + 0.742667i
\(986\) −3.03278 + 7.70262i −0.0965833 + 0.245301i
\(987\) 0 0
\(988\) 27.8462 29.8798i 0.885905 0.950602i
\(989\) −14.2888 + 34.4962i −0.454358 + 1.09692i
\(990\) 0 0
\(991\) 39.6344i 1.25903i −0.776990 0.629513i \(-0.783254\pi\)
0.776990 0.629513i \(-0.216746\pi\)
\(992\) −1.38502 15.6921i −0.0439743 0.498225i
\(993\) 0 0
\(994\) −3.10491 + 0.0546730i −0.0984817 + 0.00173412i
\(995\) −10.6173 80.6466i −0.336592 2.55667i
\(996\) 0 0
\(997\) 0.703567 + 0.0926264i 0.0222822 + 0.00293351i 0.141659 0.989916i \(-0.454756\pi\)
−0.119377 + 0.992849i \(0.538090\pi\)
\(998\) 10.9383 8.70344i 0.346245 0.275503i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bn.a.35.16 368
3.2 odd 2 288.2.bf.a.227.31 yes 368
9.4 even 3 288.2.bf.a.131.46 yes 368
9.5 odd 6 inner 864.2.bn.a.611.1 368
32.11 odd 8 inner 864.2.bn.a.683.1 368
96.11 even 8 288.2.bf.a.11.46 368
288.139 odd 24 288.2.bf.a.203.31 yes 368
288.203 even 24 inner 864.2.bn.a.395.16 368
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.bf.a.11.46 368 96.11 even 8
288.2.bf.a.131.46 yes 368 9.4 even 3
288.2.bf.a.203.31 yes 368 288.139 odd 24
288.2.bf.a.227.31 yes 368 3.2 odd 2
864.2.bn.a.35.16 368 1.1 even 1 trivial
864.2.bn.a.395.16 368 288.203 even 24 inner
864.2.bn.a.611.1 368 9.5 odd 6 inner
864.2.bn.a.683.1 368 32.11 odd 8 inner