Properties

Label 864.2.bn.a.35.13
Level $864$
Weight $2$
Character 864.35
Analytic conductor $6.899$
Analytic rank $0$
Dimension $368$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(35,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(24)) chi = DirichletCharacter(H, H._module([12, 9, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bn (of order \(24\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(368\)
Relative dimension: \(46\) over \(\Q(\zeta_{24})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

Embedding invariants

Embedding label 35.13
Character \(\chi\) \(=\) 864.35
Dual form 864.2.bn.a.395.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.886889 - 1.10156i) q^{2} +(-0.426855 + 1.95392i) q^{4} +(1.69953 + 1.30410i) q^{5} +(-0.980387 + 0.262694i) q^{7} +(2.53092 - 1.26270i) q^{8} +(-0.0707598 - 3.02872i) q^{10} +(0.561489 - 4.26493i) q^{11} +(1.48535 - 0.195551i) q^{13} +(1.15887 + 0.846971i) q^{14} +(-3.63559 - 1.66808i) q^{16} -5.39882 q^{17} +(6.75131 + 2.79649i) q^{19} +(-3.27355 + 2.76408i) q^{20} +(-5.19604 + 3.16401i) q^{22} +(0.606428 - 2.26322i) q^{23} +(-0.106358 - 0.396933i) q^{25} +(-1.53275 - 1.46277i) q^{26} +(-0.0947992 - 2.02773i) q^{28} +(2.70258 + 3.52207i) q^{29} +(8.30037 - 4.79222i) q^{31} +(1.38688 + 5.48421i) q^{32} +(4.78816 + 5.94711i) q^{34} +(-2.00877 - 0.832061i) q^{35} +(2.47820 + 5.98289i) q^{37} +(-2.90718 - 9.91713i) q^{38} +(5.94807 + 1.15456i) q^{40} +(3.87025 + 1.03703i) q^{41} +(8.39033 + 1.10461i) q^{43} +(8.09365 + 2.91761i) q^{44} +(-3.03090 + 1.33921i) q^{46} +(7.46917 + 4.31233i) q^{47} +(-5.17003 + 2.98492i) q^{49} +(-0.342916 + 0.469195i) q^{50} +(-0.251941 + 2.98573i) q^{52} +(-1.62188 - 3.91557i) q^{53} +(6.51614 - 6.51614i) q^{55} +(-2.14958 + 1.90280i) q^{56} +(1.48287 - 6.10073i) q^{58} +(1.79040 - 2.33330i) q^{59} +(0.267258 - 0.205074i) q^{61} +(-12.6404 - 4.89316i) q^{62} +(4.81116 - 6.39162i) q^{64} +(2.77942 + 1.60470i) q^{65} +(-5.23988 + 0.689843i) q^{67} +(2.30451 - 10.5489i) q^{68} +(0.864997 + 2.95072i) q^{70} +(-2.98357 + 2.98357i) q^{71} +(-1.45130 - 1.45130i) q^{73} +(4.39261 - 8.03604i) q^{74} +(-8.34593 + 11.9978i) q^{76} +(0.569895 + 4.32878i) q^{77} +(4.91023 - 8.50477i) q^{79} +(-4.00346 - 7.57610i) q^{80} +(-2.29014 - 5.18303i) q^{82} +(-1.33347 - 1.73781i) q^{83} +(-9.17546 - 7.04058i) q^{85} +(-6.22451 - 10.2221i) q^{86} +(-3.96426 - 11.5032i) q^{88} +(2.17841 + 2.17841i) q^{89} +(-1.40485 + 0.581909i) q^{91} +(4.16329 + 2.15098i) q^{92} +(-1.87405 - 12.0523i) q^{94} +(7.82717 + 13.5571i) q^{95} +(4.24778 - 7.35737i) q^{97} +(7.87330 + 3.04779i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 368 q + 12 q^{2} - 4 q^{4} + 12 q^{5} - 4 q^{7} - 16 q^{10} + 12 q^{11} - 4 q^{13} + 12 q^{14} - 4 q^{16} - 16 q^{19} + 12 q^{20} - 4 q^{22} + 12 q^{23} - 4 q^{25} - 16 q^{28} + 12 q^{29} + 12 q^{32} - 12 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.886889 1.10156i −0.627125 0.778918i
\(3\) 0 0
\(4\) −0.426855 + 1.95392i −0.213427 + 0.976959i
\(5\) 1.69953 + 1.30410i 0.760053 + 0.583209i 0.914402 0.404807i \(-0.132661\pi\)
−0.154349 + 0.988016i \(0.549328\pi\)
\(6\) 0 0
\(7\) −0.980387 + 0.262694i −0.370551 + 0.0992889i −0.439289 0.898346i \(-0.644770\pi\)
0.0687376 + 0.997635i \(0.478103\pi\)
\(8\) 2.53092 1.26270i 0.894817 0.446433i
\(9\) 0 0
\(10\) −0.0707598 3.02872i −0.0223762 0.957764i
\(11\) 0.561489 4.26493i 0.169295 1.28592i −0.670046 0.742320i \(-0.733726\pi\)
0.839341 0.543605i \(-0.182941\pi\)
\(12\) 0 0
\(13\) 1.48535 0.195551i 0.411963 0.0542360i 0.0783034 0.996930i \(-0.475050\pi\)
0.333660 + 0.942694i \(0.391716\pi\)
\(14\) 1.15887 + 0.846971i 0.309720 + 0.226363i
\(15\) 0 0
\(16\) −3.63559 1.66808i −0.908897 0.417020i
\(17\) −5.39882 −1.30941 −0.654703 0.755886i \(-0.727206\pi\)
−0.654703 + 0.755886i \(0.727206\pi\)
\(18\) 0 0
\(19\) 6.75131 + 2.79649i 1.54886 + 0.641558i 0.983109 0.183020i \(-0.0585874\pi\)
0.565748 + 0.824578i \(0.308587\pi\)
\(20\) −3.27355 + 2.76408i −0.731987 + 0.618068i
\(21\) 0 0
\(22\) −5.19604 + 3.16401i −1.10780 + 0.674569i
\(23\) 0.606428 2.26322i 0.126449 0.471914i −0.873438 0.486935i \(-0.838115\pi\)
0.999887 + 0.0150211i \(0.00478156\pi\)
\(24\) 0 0
\(25\) −0.106358 0.396933i −0.0212716 0.0793865i
\(26\) −1.53275 1.46277i −0.300598 0.286873i
\(27\) 0 0
\(28\) −0.0947992 2.02773i −0.0179154 0.383204i
\(29\) 2.70258 + 3.52207i 0.501856 + 0.654032i 0.973749 0.227624i \(-0.0730957\pi\)
−0.471893 + 0.881656i \(0.656429\pi\)
\(30\) 0 0
\(31\) 8.30037 4.79222i 1.49079 0.860708i 0.490846 0.871246i \(-0.336688\pi\)
0.999944 + 0.0105382i \(0.00335447\pi\)
\(32\) 1.38688 + 5.48421i 0.245168 + 0.969481i
\(33\) 0 0
\(34\) 4.78816 + 5.94711i 0.821162 + 1.01992i
\(35\) −2.00877 0.832061i −0.339545 0.140644i
\(36\) 0 0
\(37\) 2.47820 + 5.98289i 0.407413 + 0.983582i 0.985816 + 0.167831i \(0.0536762\pi\)
−0.578403 + 0.815751i \(0.696324\pi\)
\(38\) −2.90718 9.91713i −0.471607 1.60877i
\(39\) 0 0
\(40\) 5.94807 + 1.15456i 0.940472 + 0.182553i
\(41\) 3.87025 + 1.03703i 0.604432 + 0.161957i 0.548040 0.836452i \(-0.315374\pi\)
0.0563911 + 0.998409i \(0.482041\pi\)
\(42\) 0 0
\(43\) 8.39033 + 1.10461i 1.27951 + 0.168451i 0.739472 0.673187i \(-0.235075\pi\)
0.540042 + 0.841638i \(0.318408\pi\)
\(44\) 8.09365 + 2.91761i 1.22016 + 0.439846i
\(45\) 0 0
\(46\) −3.03090 + 1.33921i −0.446882 + 0.197456i
\(47\) 7.46917 + 4.31233i 1.08949 + 0.629018i 0.933441 0.358732i \(-0.116791\pi\)
0.156050 + 0.987749i \(0.450124\pi\)
\(48\) 0 0
\(49\) −5.17003 + 2.98492i −0.738575 + 0.426417i
\(50\) −0.342916 + 0.469195i −0.0484957 + 0.0663541i
\(51\) 0 0
\(52\) −0.251941 + 2.98573i −0.0349379 + 0.414046i
\(53\) −1.62188 3.91557i −0.222783 0.537845i 0.772483 0.635035i \(-0.219014\pi\)
−0.995266 + 0.0971903i \(0.969014\pi\)
\(54\) 0 0
\(55\) 6.51614 6.51614i 0.878636 0.878636i
\(56\) −2.14958 + 1.90280i −0.287250 + 0.254272i
\(57\) 0 0
\(58\) 1.48287 6.10073i 0.194711 0.801065i
\(59\) 1.79040 2.33330i 0.233090 0.303769i −0.662134 0.749386i \(-0.730349\pi\)
0.895224 + 0.445617i \(0.147016\pi\)
\(60\) 0 0
\(61\) 0.267258 0.205074i 0.0342188 0.0262570i −0.591510 0.806297i \(-0.701468\pi\)
0.625729 + 0.780040i \(0.284801\pi\)
\(62\) −12.6404 4.89316i −1.60533 0.621432i
\(63\) 0 0
\(64\) 4.81116 6.39162i 0.601395 0.798952i
\(65\) 2.77942 + 1.60470i 0.344745 + 0.199038i
\(66\) 0 0
\(67\) −5.23988 + 0.689843i −0.640153 + 0.0842777i −0.443613 0.896218i \(-0.646304\pi\)
−0.196539 + 0.980496i \(0.562970\pi\)
\(68\) 2.30451 10.5489i 0.279463 1.27924i
\(69\) 0 0
\(70\) 0.864997 + 2.95072i 0.103387 + 0.352679i
\(71\) −2.98357 + 2.98357i −0.354085 + 0.354085i −0.861627 0.507542i \(-0.830554\pi\)
0.507542 + 0.861627i \(0.330554\pi\)
\(72\) 0 0
\(73\) −1.45130 1.45130i −0.169862 0.169862i 0.617057 0.786919i \(-0.288325\pi\)
−0.786919 + 0.617057i \(0.788325\pi\)
\(74\) 4.39261 8.03604i 0.510631 0.934171i
\(75\) 0 0
\(76\) −8.34593 + 11.9978i −0.957344 + 1.37624i
\(77\) 0.569895 + 4.32878i 0.0649455 + 0.493310i
\(78\) 0 0
\(79\) 4.91023 8.50477i 0.552444 0.956861i −0.445653 0.895206i \(-0.647029\pi\)
0.998097 0.0616558i \(-0.0196381\pi\)
\(80\) −4.00346 7.57610i −0.447600 0.847034i
\(81\) 0 0
\(82\) −2.29014 5.18303i −0.252903 0.572370i
\(83\) −1.33347 1.73781i −0.146367 0.190750i 0.714416 0.699721i \(-0.246692\pi\)
−0.860783 + 0.508972i \(0.830026\pi\)
\(84\) 0 0
\(85\) −9.17546 7.04058i −0.995218 0.763658i
\(86\) −6.22451 10.2221i −0.671206 1.10228i
\(87\) 0 0
\(88\) −3.96426 11.5032i −0.422591 1.22625i
\(89\) 2.17841 + 2.17841i 0.230911 + 0.230911i 0.813073 0.582162i \(-0.197793\pi\)
−0.582162 + 0.813073i \(0.697793\pi\)
\(90\) 0 0
\(91\) −1.40485 + 0.581909i −0.147268 + 0.0610006i
\(92\) 4.16329 + 2.15098i 0.434053 + 0.224255i
\(93\) 0 0
\(94\) −1.87405 12.0523i −0.193294 1.24310i
\(95\) 7.82717 + 13.5571i 0.803051 + 1.39093i
\(96\) 0 0
\(97\) 4.24778 7.35737i 0.431297 0.747028i −0.565689 0.824619i \(-0.691390\pi\)
0.996985 + 0.0775912i \(0.0247229\pi\)
\(98\) 7.87330 + 3.04779i 0.795323 + 0.307873i
\(99\) 0 0
\(100\) 0.820973 0.0383817i 0.0820973 0.00383817i
\(101\) 1.31379 9.97923i 0.130727 0.992971i −0.792812 0.609466i \(-0.791384\pi\)
0.923539 0.383505i \(-0.125283\pi\)
\(102\) 0 0
\(103\) −4.33702 + 16.1860i −0.427339 + 1.59485i 0.331423 + 0.943482i \(0.392471\pi\)
−0.758762 + 0.651368i \(0.774195\pi\)
\(104\) 3.51240 2.37049i 0.344419 0.232445i
\(105\) 0 0
\(106\) −2.87479 + 5.25927i −0.279225 + 0.510826i
\(107\) −8.79307 + 3.64221i −0.850058 + 0.352106i −0.764811 0.644254i \(-0.777168\pi\)
−0.0852469 + 0.996360i \(0.527168\pi\)
\(108\) 0 0
\(109\) 2.67483 6.45762i 0.256203 0.618528i −0.742479 0.669870i \(-0.766350\pi\)
0.998681 + 0.0513420i \(0.0163499\pi\)
\(110\) −12.9570 1.39880i −1.23540 0.133371i
\(111\) 0 0
\(112\) 4.00248 + 0.680316i 0.378199 + 0.0642838i
\(113\) 3.88868 + 6.73539i 0.365816 + 0.633612i 0.988907 0.148537i \(-0.0474565\pi\)
−0.623091 + 0.782150i \(0.714123\pi\)
\(114\) 0 0
\(115\) 3.98209 3.05557i 0.371332 0.284933i
\(116\) −8.03545 + 3.77721i −0.746072 + 0.350705i
\(117\) 0 0
\(118\) −4.15814 + 0.0971466i −0.382788 + 0.00894307i
\(119\) 5.29293 1.41824i 0.485202 0.130010i
\(120\) 0 0
\(121\) −7.24917 1.94241i −0.659016 0.176583i
\(122\) −0.462928 0.112522i −0.0419116 0.0101872i
\(123\) 0 0
\(124\) 5.82055 + 18.2638i 0.522701 + 1.64014i
\(125\) 4.43582 10.7090i 0.396752 0.957844i
\(126\) 0 0
\(127\) 16.4140i 1.45650i −0.685309 0.728252i \(-0.740333\pi\)
0.685309 0.728252i \(-0.259667\pi\)
\(128\) −11.3077 + 0.368890i −0.999468 + 0.0326056i
\(129\) 0 0
\(130\) −0.697371 4.48488i −0.0611635 0.393350i
\(131\) −2.28810 17.3799i −0.199912 1.51849i −0.737540 0.675303i \(-0.764013\pi\)
0.537628 0.843182i \(-0.319321\pi\)
\(132\) 0 0
\(133\) −7.35352 0.968109i −0.637631 0.0839457i
\(134\) 5.40709 + 5.16021i 0.467101 + 0.445774i
\(135\) 0 0
\(136\) −13.6640 + 6.81711i −1.17168 + 0.584562i
\(137\) 5.42840 + 20.2591i 0.463780 + 1.73085i 0.660904 + 0.750470i \(0.270173\pi\)
−0.197125 + 0.980378i \(0.563160\pi\)
\(138\) 0 0
\(139\) −1.63763 + 2.13421i −0.138902 + 0.181021i −0.857625 0.514276i \(-0.828061\pi\)
0.718722 + 0.695297i \(0.244727\pi\)
\(140\) 2.48323 3.56981i 0.209872 0.301704i
\(141\) 0 0
\(142\) 5.93267 + 0.640476i 0.497859 + 0.0537476i
\(143\) 6.44473i 0.538935i
\(144\) 0 0
\(145\) 9.51028i 0.789786i
\(146\) −0.311547 + 2.88583i −0.0257838 + 0.238833i
\(147\) 0 0
\(148\) −12.7479 + 2.28836i −1.04787 + 0.188102i
\(149\) −10.2620 + 13.3737i −0.840695 + 1.09561i 0.153514 + 0.988146i \(0.450941\pi\)
−0.994209 + 0.107468i \(0.965726\pi\)
\(150\) 0 0
\(151\) 3.08432 + 11.5109i 0.250999 + 0.936740i 0.970273 + 0.242014i \(0.0778078\pi\)
−0.719274 + 0.694726i \(0.755525\pi\)
\(152\) 20.6182 1.44721i 1.67236 0.117385i
\(153\) 0 0
\(154\) 4.26296 4.46692i 0.343519 0.359955i
\(155\) 20.3562 + 2.67995i 1.63505 + 0.215259i
\(156\) 0 0
\(157\) −1.93241 14.6781i −0.154223 1.17144i −0.877046 0.480407i \(-0.840489\pi\)
0.722823 0.691033i \(-0.242844\pi\)
\(158\) −13.7233 + 2.13389i −1.09177 + 0.169763i
\(159\) 0 0
\(160\) −4.79488 + 11.1292i −0.379069 + 0.879841i
\(161\) 2.37813i 0.187423i
\(162\) 0 0
\(163\) 1.16595 2.81484i 0.0913240 0.220476i −0.871617 0.490187i \(-0.836928\pi\)
0.962941 + 0.269712i \(0.0869284\pi\)
\(164\) −3.67831 + 7.11949i −0.287228 + 0.555939i
\(165\) 0 0
\(166\) −0.731658 + 3.01014i −0.0567877 + 0.233632i
\(167\) −3.51362 0.941472i −0.271892 0.0728533i 0.120297 0.992738i \(-0.461615\pi\)
−0.392189 + 0.919885i \(0.628282\pi\)
\(168\) 0 0
\(169\) −10.3890 + 2.78372i −0.799154 + 0.214133i
\(170\) 0.382020 + 16.3515i 0.0292996 + 1.25410i
\(171\) 0 0
\(172\) −5.73977 + 15.9225i −0.437653 + 1.21408i
\(173\) −15.0058 + 11.5144i −1.14087 + 0.875420i −0.993519 0.113664i \(-0.963741\pi\)
−0.147351 + 0.989084i \(0.547075\pi\)
\(174\) 0 0
\(175\) 0.208544 + 0.361208i 0.0157644 + 0.0273048i
\(176\) −9.15558 + 14.5689i −0.690128 + 1.09817i
\(177\) 0 0
\(178\) 0.467633 4.33164i 0.0350506 0.324670i
\(179\) 2.08061 5.02303i 0.155512 0.375439i −0.826852 0.562420i \(-0.809870\pi\)
0.982363 + 0.186981i \(0.0598704\pi\)
\(180\) 0 0
\(181\) −1.19920 + 0.496727i −0.0891362 + 0.0369214i −0.426806 0.904343i \(-0.640361\pi\)
0.337670 + 0.941265i \(0.390361\pi\)
\(182\) 1.88695 + 1.03144i 0.139870 + 0.0764551i
\(183\) 0 0
\(184\) −1.32295 6.49377i −0.0975293 0.478727i
\(185\) −3.59050 + 13.3999i −0.263978 + 0.985181i
\(186\) 0 0
\(187\) −3.03138 + 23.0256i −0.221676 + 1.68380i
\(188\) −11.6142 + 12.7534i −0.847052 + 0.930138i
\(189\) 0 0
\(190\) 7.99204 20.6457i 0.579804 1.49780i
\(191\) 9.67208 16.7525i 0.699847 1.21217i −0.268672 0.963232i \(-0.586585\pi\)
0.968519 0.248939i \(-0.0800819\pi\)
\(192\) 0 0
\(193\) 7.28617 + 12.6200i 0.524470 + 0.908408i 0.999594 + 0.0284897i \(0.00906978\pi\)
−0.475124 + 0.879919i \(0.657597\pi\)
\(194\) −11.8719 + 1.84600i −0.852351 + 0.132535i
\(195\) 0 0
\(196\) −3.62543 11.3759i −0.258959 0.812567i
\(197\) 9.24225 3.82826i 0.658483 0.272753i −0.0283171 0.999599i \(-0.509015\pi\)
0.686800 + 0.726846i \(0.259015\pi\)
\(198\) 0 0
\(199\) −18.4609 18.4609i −1.30866 1.30866i −0.922383 0.386276i \(-0.873761\pi\)
−0.386276 0.922383i \(-0.626239\pi\)
\(200\) −0.770392 0.870308i −0.0544749 0.0615401i
\(201\) 0 0
\(202\) −12.1579 + 7.40326i −0.855426 + 0.520892i
\(203\) −3.57480 2.74304i −0.250902 0.192524i
\(204\) 0 0
\(205\) 5.22522 + 6.80964i 0.364945 + 0.475606i
\(206\) 21.6762 9.57769i 1.51025 0.667309i
\(207\) 0 0
\(208\) −5.72633 1.76675i −0.397050 0.122502i
\(209\) 15.7176 27.2237i 1.08721 1.88310i
\(210\) 0 0
\(211\) 1.00560 + 7.63830i 0.0692285 + 0.525842i 0.990562 + 0.137068i \(0.0437680\pi\)
−0.921333 + 0.388774i \(0.872899\pi\)
\(212\) 8.34301 1.49764i 0.573000 0.102859i
\(213\) 0 0
\(214\) 11.8106 + 6.45583i 0.807355 + 0.441312i
\(215\) 12.8191 + 12.8191i 0.874256 + 0.874256i
\(216\) 0 0
\(217\) −6.87868 + 6.87868i −0.466956 + 0.466956i
\(218\) −9.48572 + 2.78071i −0.642454 + 0.188334i
\(219\) 0 0
\(220\) 9.95056 + 15.5135i 0.670866 + 1.04592i
\(221\) −8.01916 + 1.05574i −0.539427 + 0.0710169i
\(222\) 0 0
\(223\) 15.0037 + 8.66241i 1.00472 + 0.580078i 0.909643 0.415392i \(-0.136355\pi\)
0.0950816 + 0.995469i \(0.469689\pi\)
\(224\) −2.80035 5.01232i −0.187106 0.334900i
\(225\) 0 0
\(226\) 3.97059 10.2571i 0.264120 0.682295i
\(227\) −20.3919 + 15.6473i −1.35346 + 1.03855i −0.359010 + 0.933334i \(0.616886\pi\)
−0.994450 + 0.105213i \(0.966448\pi\)
\(228\) 0 0
\(229\) −1.90619 + 2.48419i −0.125964 + 0.164160i −0.852078 0.523415i \(-0.824658\pi\)
0.726114 + 0.687575i \(0.241325\pi\)
\(230\) −6.89756 1.67655i −0.454812 0.110549i
\(231\) 0 0
\(232\) 11.2874 + 5.50154i 0.741051 + 0.361194i
\(233\) −20.9855 + 20.9855i −1.37481 + 1.37481i −0.521645 + 0.853163i \(0.674681\pi\)
−0.853163 + 0.521645i \(0.825319\pi\)
\(234\) 0 0
\(235\) 7.07039 + 17.0694i 0.461222 + 1.11349i
\(236\) 3.79483 + 4.49427i 0.247022 + 0.292552i
\(237\) 0 0
\(238\) −6.25651 4.57265i −0.405550 0.296401i
\(239\) 3.78438 2.18491i 0.244791 0.141330i −0.372586 0.927998i \(-0.621529\pi\)
0.617377 + 0.786667i \(0.288195\pi\)
\(240\) 0 0
\(241\) 6.71220 + 3.87529i 0.432371 + 0.249629i 0.700356 0.713794i \(-0.253025\pi\)
−0.267985 + 0.963423i \(0.586358\pi\)
\(242\) 4.28954 + 9.70808i 0.275742 + 0.624059i
\(243\) 0 0
\(244\) 0.286617 + 0.609736i 0.0183488 + 0.0390344i
\(245\) −12.6792 1.66925i −0.810046 0.106645i
\(246\) 0 0
\(247\) 10.5749 + 2.83355i 0.672868 + 0.180294i
\(248\) 14.9565 22.6097i 0.949736 1.43571i
\(249\) 0 0
\(250\) −15.7307 + 4.61141i −0.994895 + 0.291651i
\(251\) 2.35690 + 5.69006i 0.148766 + 0.359153i 0.980642 0.195808i \(-0.0627330\pi\)
−0.831876 + 0.554961i \(0.812733\pi\)
\(252\) 0 0
\(253\) −9.31197 3.85714i −0.585438 0.242497i
\(254\) −18.0809 + 14.5574i −1.13450 + 0.913411i
\(255\) 0 0
\(256\) 10.4350 + 12.1289i 0.652189 + 0.758056i
\(257\) −13.5420 + 7.81847i −0.844726 + 0.487703i −0.858868 0.512197i \(-0.828832\pi\)
0.0141420 + 0.999900i \(0.495498\pi\)
\(258\) 0 0
\(259\) −4.00126 5.21454i −0.248626 0.324016i
\(260\) −4.32186 + 4.74578i −0.268030 + 0.294321i
\(261\) 0 0
\(262\) −17.1156 + 17.9345i −1.05741 + 1.10800i
\(263\) −1.32028 4.92734i −0.0814117 0.303833i 0.913199 0.407514i \(-0.133604\pi\)
−0.994611 + 0.103682i \(0.966938\pi\)
\(264\) 0 0
\(265\) 2.34984 8.76972i 0.144349 0.538719i
\(266\) 5.45533 + 8.95892i 0.334488 + 0.549307i
\(267\) 0 0
\(268\) 0.888771 10.5327i 0.0542903 0.643390i
\(269\) −1.56831 0.649614i −0.0956214 0.0396077i 0.334360 0.942445i \(-0.391480\pi\)
−0.429981 + 0.902838i \(0.641480\pi\)
\(270\) 0 0
\(271\) −1.58685 −0.0963942 −0.0481971 0.998838i \(-0.515348\pi\)
−0.0481971 + 0.998838i \(0.515348\pi\)
\(272\) 19.6279 + 9.00566i 1.19012 + 0.546048i
\(273\) 0 0
\(274\) 17.5021 23.9472i 1.05734 1.44671i
\(275\) −1.75261 + 0.230735i −0.105686 + 0.0139139i
\(276\) 0 0
\(277\) 1.70800 12.9736i 0.102624 0.779506i −0.860310 0.509770i \(-0.829730\pi\)
0.962934 0.269736i \(-0.0869363\pi\)
\(278\) 3.80335 0.0888576i 0.228110 0.00532932i
\(279\) 0 0
\(280\) −6.13470 + 0.430601i −0.366619 + 0.0257334i
\(281\) −2.60992 + 0.699325i −0.155695 + 0.0417182i −0.335824 0.941925i \(-0.609015\pi\)
0.180130 + 0.983643i \(0.442348\pi\)
\(282\) 0 0
\(283\) −4.77941 3.66737i −0.284106 0.218002i 0.456870 0.889533i \(-0.348970\pi\)
−0.740977 + 0.671531i \(0.765637\pi\)
\(284\) −4.55610 7.10321i −0.270355 0.421498i
\(285\) 0 0
\(286\) −7.09924 + 5.71576i −0.419787 + 0.337980i
\(287\) −4.06676 −0.240053
\(288\) 0 0
\(289\) 12.1473 0.714545
\(290\) 10.4761 8.43457i 0.615179 0.495295i
\(291\) 0 0
\(292\) 3.45522 2.21623i 0.202201 0.129695i
\(293\) −6.94632 5.33010i −0.405808 0.311388i 0.385611 0.922662i \(-0.373991\pi\)
−0.791419 + 0.611274i \(0.790657\pi\)
\(294\) 0 0
\(295\) 6.08568 1.63065i 0.354322 0.0949403i
\(296\) 13.8268 + 12.0130i 0.803664 + 0.698243i
\(297\) 0 0
\(298\) 23.8331 0.556812i 1.38062 0.0322553i
\(299\) 0.458186 3.48027i 0.0264976 0.201269i
\(300\) 0 0
\(301\) −8.51594 + 1.12115i −0.490851 + 0.0646217i
\(302\) 9.94440 13.6064i 0.572236 0.782961i
\(303\) 0 0
\(304\) −19.8802 21.4286i −1.14021 1.22901i
\(305\) 0.721648 0.0413214
\(306\) 0 0
\(307\) −25.8866 10.7226i −1.47742 0.611969i −0.508886 0.860834i \(-0.669942\pi\)
−0.968538 + 0.248865i \(0.919942\pi\)
\(308\) −8.70134 0.734234i −0.495805 0.0418369i
\(309\) 0 0
\(310\) −15.1016 24.8004i −0.857714 1.40857i
\(311\) −0.221754 + 0.827596i −0.0125745 + 0.0469287i −0.971928 0.235278i \(-0.924400\pi\)
0.959354 + 0.282207i \(0.0910665\pi\)
\(312\) 0 0
\(313\) −4.71691 17.6037i −0.266615 0.995022i −0.961254 0.275663i \(-0.911102\pi\)
0.694639 0.719359i \(-0.255564\pi\)
\(314\) −14.4549 + 15.1465i −0.815739 + 0.854767i
\(315\) 0 0
\(316\) 14.5217 + 13.2245i 0.816908 + 0.743936i
\(317\) 7.31614 + 9.53458i 0.410915 + 0.535515i 0.952261 0.305285i \(-0.0987517\pi\)
−0.541346 + 0.840800i \(0.682085\pi\)
\(318\) 0 0
\(319\) 16.5389 9.54871i 0.925998 0.534625i
\(320\) 16.5120 4.58853i 0.923048 0.256507i
\(321\) 0 0
\(322\) 2.61965 2.10914i 0.145987 0.117538i
\(323\) −36.4491 15.0977i −2.02808 0.840060i
\(324\) 0 0
\(325\) −0.235599 0.568787i −0.0130687 0.0315506i
\(326\) −4.13478 + 1.21210i −0.229004 + 0.0671319i
\(327\) 0 0
\(328\) 11.1048 2.26233i 0.613159 0.124916i
\(329\) −8.45550 2.26564i −0.466167 0.124909i
\(330\) 0 0
\(331\) −16.0077 2.10746i −0.879864 0.115836i −0.322960 0.946413i \(-0.604678\pi\)
−0.556905 + 0.830576i \(0.688011\pi\)
\(332\) 3.96474 1.86370i 0.217593 0.102284i
\(333\) 0 0
\(334\) 2.07911 + 4.70544i 0.113764 + 0.257470i
\(335\) −9.80494 5.66089i −0.535701 0.309287i
\(336\) 0 0
\(337\) 11.5406 6.66299i 0.628658 0.362956i −0.151574 0.988446i \(-0.548434\pi\)
0.780232 + 0.625490i \(0.215101\pi\)
\(338\) 12.2803 + 8.97522i 0.667961 + 0.488188i
\(339\) 0 0
\(340\) 17.6733 14.9228i 0.958469 0.809302i
\(341\) −15.7779 38.0913i −0.854422 2.06276i
\(342\) 0 0
\(343\) 9.30836 9.30836i 0.502604 0.502604i
\(344\) 22.6301 7.79882i 1.22013 0.420484i
\(345\) 0 0
\(346\) 25.9922 + 6.31778i 1.39735 + 0.339646i
\(347\) 3.32426 4.33225i 0.178455 0.232568i −0.695557 0.718471i \(-0.744842\pi\)
0.874013 + 0.485903i \(0.161509\pi\)
\(348\) 0 0
\(349\) −26.2821 + 20.1669i −1.40685 + 1.07951i −0.421902 + 0.906642i \(0.638637\pi\)
−0.984945 + 0.172870i \(0.944696\pi\)
\(350\) 0.212936 0.550074i 0.0113819 0.0294027i
\(351\) 0 0
\(352\) 24.1685 2.83563i 1.28818 0.151140i
\(353\) −29.4504 17.0032i −1.56748 0.904988i −0.996461 0.0840537i \(-0.973213\pi\)
−0.571023 0.820934i \(-0.693453\pi\)
\(354\) 0 0
\(355\) −8.96153 + 1.17981i −0.475629 + 0.0626177i
\(356\) −5.18629 + 3.32656i −0.274873 + 0.176308i
\(357\) 0 0
\(358\) −7.37842 + 2.16296i −0.389962 + 0.114316i
\(359\) 13.1660 13.1660i 0.694877 0.694877i −0.268424 0.963301i \(-0.586503\pi\)
0.963301 + 0.268424i \(0.0865027\pi\)
\(360\) 0 0
\(361\) 24.3249 + 24.3249i 1.28026 + 1.28026i
\(362\) 1.61073 + 0.880450i 0.0846583 + 0.0462754i
\(363\) 0 0
\(364\) −0.537334 2.99335i −0.0281639 0.156894i
\(365\) −0.573894 4.35916i −0.0300390 0.228169i
\(366\) 0 0
\(367\) −0.868465 + 1.50423i −0.0453335 + 0.0785199i −0.887802 0.460226i \(-0.847768\pi\)
0.842468 + 0.538746i \(0.181102\pi\)
\(368\) −5.97995 + 7.21657i −0.311726 + 0.376189i
\(369\) 0 0
\(370\) 17.9451 7.92910i 0.932923 0.412214i
\(371\) 2.61867 + 3.41271i 0.135954 + 0.177179i
\(372\) 0 0
\(373\) −24.9233 19.1243i −1.29048 0.990220i −0.999438 0.0335095i \(-0.989332\pi\)
−0.291041 0.956710i \(-0.594002\pi\)
\(374\) 28.0525 17.0819i 1.45056 0.883285i
\(375\) 0 0
\(376\) 24.3491 + 1.48283i 1.25571 + 0.0764710i
\(377\) 4.70303 + 4.70303i 0.242218 + 0.242218i
\(378\) 0 0
\(379\) −24.9141 + 10.3198i −1.27975 + 0.530091i −0.915915 0.401372i \(-0.868534\pi\)
−0.363837 + 0.931462i \(0.618534\pi\)
\(380\) −29.8305 + 9.50676i −1.53027 + 0.487686i
\(381\) 0 0
\(382\) −27.0319 + 4.20330i −1.38307 + 0.215059i
\(383\) 5.45733 + 9.45238i 0.278857 + 0.482994i 0.971101 0.238669i \(-0.0767112\pi\)
−0.692244 + 0.721663i \(0.743378\pi\)
\(384\) 0 0
\(385\) −4.67659 + 8.10009i −0.238341 + 0.412819i
\(386\) 7.43964 19.2187i 0.378668 0.978205i
\(387\) 0 0
\(388\) 12.5625 + 11.4403i 0.637765 + 0.580795i
\(389\) −0.404985 + 3.07617i −0.0205336 + 0.155968i −0.998640 0.0521379i \(-0.983396\pi\)
0.978106 + 0.208106i \(0.0667298\pi\)
\(390\) 0 0
\(391\) −3.27399 + 12.2187i −0.165573 + 0.617927i
\(392\) −9.31589 + 14.0828i −0.470523 + 0.711289i
\(393\) 0 0
\(394\) −12.4139 6.78562i −0.625403 0.341854i
\(395\) 19.4361 8.05070i 0.977937 0.405075i
\(396\) 0 0
\(397\) −9.05217 + 21.8539i −0.454316 + 1.09681i 0.516349 + 0.856378i \(0.327291\pi\)
−0.970665 + 0.240437i \(0.922709\pi\)
\(398\) −3.96296 + 36.7085i −0.198645 + 1.84003i
\(399\) 0 0
\(400\) −0.275442 + 1.62050i −0.0137721 + 0.0810249i
\(401\) 7.88970 + 13.6654i 0.393993 + 0.682416i 0.992972 0.118349i \(-0.0377601\pi\)
−0.598979 + 0.800765i \(0.704427\pi\)
\(402\) 0 0
\(403\) 11.3919 8.74129i 0.567469 0.435435i
\(404\) 18.9378 + 6.82673i 0.942191 + 0.339642i
\(405\) 0 0
\(406\) 0.148837 + 6.37062i 0.00738663 + 0.316168i
\(407\) 26.9081 7.21001i 1.33379 0.357387i
\(408\) 0 0
\(409\) 25.6939 + 6.88466i 1.27048 + 0.340425i 0.830215 0.557443i \(-0.188217\pi\)
0.440266 + 0.897867i \(0.354884\pi\)
\(410\) 2.86701 11.7953i 0.141592 0.582527i
\(411\) 0 0
\(412\) −29.7748 15.3832i −1.46690 0.757878i
\(413\) −1.14234 + 2.75786i −0.0562110 + 0.135705i
\(414\) 0 0
\(415\) 4.69243i 0.230342i
\(416\) 3.13245 + 7.87479i 0.153581 + 0.386093i
\(417\) 0 0
\(418\) −43.9282 + 6.83056i −2.14860 + 0.334094i
\(419\) 2.32281 + 17.6435i 0.113477 + 0.861942i 0.949614 + 0.313421i \(0.101475\pi\)
−0.836137 + 0.548520i \(0.815191\pi\)
\(420\) 0 0
\(421\) 10.3511 + 1.36274i 0.504480 + 0.0664160i 0.378471 0.925613i \(-0.376450\pi\)
0.126009 + 0.992029i \(0.459783\pi\)
\(422\) 7.52217 7.88206i 0.366173 0.383692i
\(423\) 0 0
\(424\) −9.04907 7.86206i −0.439462 0.381815i
\(425\) 0.574207 + 2.14297i 0.0278531 + 0.103949i
\(426\) 0 0
\(427\) −0.208144 + 0.271259i −0.0100728 + 0.0131271i
\(428\) −3.36321 18.7356i −0.162567 0.905621i
\(429\) 0 0
\(430\) 2.75185 25.4901i 0.132706 1.22924i
\(431\) 33.1788i 1.59817i −0.601220 0.799084i \(-0.705318\pi\)
0.601220 0.799084i \(-0.294682\pi\)
\(432\) 0 0
\(433\) 12.9633i 0.622976i 0.950250 + 0.311488i \(0.100827\pi\)
−0.950250 + 0.311488i \(0.899173\pi\)
\(434\) 13.6779 + 1.47663i 0.656560 + 0.0708805i
\(435\) 0 0
\(436\) 11.4759 + 7.98287i 0.549596 + 0.382310i
\(437\) 10.4232 13.5838i 0.498611 0.649803i
\(438\) 0 0
\(439\) −3.27390 12.2184i −0.156255 0.583151i −0.998995 0.0448299i \(-0.985725\pi\)
0.842740 0.538321i \(-0.180941\pi\)
\(440\) 8.26391 24.7198i 0.393966 1.17847i
\(441\) 0 0
\(442\) 8.27507 + 7.89724i 0.393605 + 0.375633i
\(443\) −8.49813 1.11880i −0.403759 0.0531558i −0.0740876 0.997252i \(-0.523604\pi\)
−0.329671 + 0.944096i \(0.606938\pi\)
\(444\) 0 0
\(445\) 0.861417 + 6.54312i 0.0408351 + 0.310173i
\(446\) −3.76451 24.2101i −0.178255 1.14638i
\(447\) 0 0
\(448\) −3.03776 + 7.53012i −0.143521 + 0.355765i
\(449\) 14.4515i 0.682010i 0.940061 + 0.341005i \(0.110767\pi\)
−0.940061 + 0.341005i \(0.889233\pi\)
\(450\) 0 0
\(451\) 6.59596 15.9241i 0.310592 0.749835i
\(452\) −14.8203 + 4.72313i −0.697089 + 0.222157i
\(453\) 0 0
\(454\) 35.3218 + 8.58547i 1.65773 + 0.402936i
\(455\) −3.14645 0.843089i −0.147508 0.0395246i
\(456\) 0 0
\(457\) −40.5132 + 10.8555i −1.89513 + 0.507797i −0.897335 + 0.441349i \(0.854500\pi\)
−0.997790 + 0.0664480i \(0.978833\pi\)
\(458\) 4.42706 0.103429i 0.206863 0.00483293i
\(459\) 0 0
\(460\) 4.27055 + 9.08497i 0.199116 + 0.423589i
\(461\) 29.5975 22.7110i 1.37850 1.05776i 0.387787 0.921749i \(-0.373239\pi\)
0.990708 0.136008i \(-0.0434272\pi\)
\(462\) 0 0
\(463\) −3.54843 6.14606i −0.164910 0.285632i 0.771714 0.635970i \(-0.219400\pi\)
−0.936623 + 0.350339i \(0.886067\pi\)
\(464\) −3.95038 17.3129i −0.183392 0.803732i
\(465\) 0 0
\(466\) 41.7286 + 4.50491i 1.93304 + 0.208686i
\(467\) 4.76497 11.5037i 0.220497 0.532326i −0.774461 0.632622i \(-0.781979\pi\)
0.994958 + 0.100296i \(0.0319789\pi\)
\(468\) 0 0
\(469\) 4.95589 2.05280i 0.228842 0.0947893i
\(470\) 12.5323 22.9271i 0.578072 1.05755i
\(471\) 0 0
\(472\) 1.58511 8.16614i 0.0729605 0.375877i
\(473\) 9.42215 35.1640i 0.433231 1.61684i
\(474\) 0 0
\(475\) 0.391962 2.97725i 0.0179844 0.136605i
\(476\) 0.511804 + 10.9473i 0.0234585 + 0.501770i
\(477\) 0 0
\(478\) −5.76314 2.23094i −0.263600 0.102041i
\(479\) 17.9620 31.1111i 0.820706 1.42150i −0.0844520 0.996428i \(-0.526914\pi\)
0.905158 0.425076i \(-0.139753\pi\)
\(480\) 0 0
\(481\) 4.85096 + 8.40210i 0.221185 + 0.383103i
\(482\) −1.68412 10.8308i −0.0767098 0.493330i
\(483\) 0 0
\(484\) 6.88966 13.3352i 0.313166 0.606144i
\(485\) 16.8139 6.96456i 0.763482 0.316244i
\(486\) 0 0
\(487\) 1.72336 + 1.72336i 0.0780927 + 0.0780927i 0.745074 0.666982i \(-0.232414\pi\)
−0.666982 + 0.745074i \(0.732414\pi\)
\(488\) 0.417461 0.856494i 0.0188976 0.0387717i
\(489\) 0 0
\(490\) 9.40630 + 15.4473i 0.424933 + 0.697840i
\(491\) −5.69994 4.37372i −0.257235 0.197383i 0.472091 0.881550i \(-0.343499\pi\)
−0.729326 + 0.684167i \(0.760166\pi\)
\(492\) 0 0
\(493\) −14.5907 19.0150i −0.657134 0.856394i
\(494\) −6.25749 14.1619i −0.281538 0.637176i
\(495\) 0 0
\(496\) −38.1705 + 3.57687i −1.71391 + 0.160606i
\(497\) 2.14129 3.70882i 0.0960499 0.166363i
\(498\) 0 0
\(499\) 4.62069 + 35.0976i 0.206850 + 1.57118i 0.708245 + 0.705966i \(0.249487\pi\)
−0.501395 + 0.865218i \(0.667180\pi\)
\(500\) 19.0311 + 13.2384i 0.851096 + 0.592041i
\(501\) 0 0
\(502\) 4.17761 7.64271i 0.186456 0.341111i
\(503\) −14.0204 14.0204i −0.625137 0.625137i 0.321704 0.946840i \(-0.395745\pi\)
−0.946840 + 0.321704i \(0.895745\pi\)
\(504\) 0 0
\(505\) 15.2467 15.2467i 0.678469 0.678469i
\(506\) 4.00982 + 13.6785i 0.178258 + 0.608084i
\(507\) 0 0
\(508\) 32.0716 + 7.00639i 1.42295 + 0.310858i
\(509\) 30.9407 4.07342i 1.37142 0.180551i 0.591438 0.806351i \(-0.298561\pi\)
0.779984 + 0.625800i \(0.215227\pi\)
\(510\) 0 0
\(511\) 1.80408 + 1.04159i 0.0798079 + 0.0460771i
\(512\) 4.10596 22.2518i 0.181460 0.983398i
\(513\) 0 0
\(514\) 20.6227 + 7.98315i 0.909629 + 0.352122i
\(515\) −28.4789 + 21.8527i −1.25493 + 0.962943i
\(516\) 0 0
\(517\) 22.5856 29.4342i 0.993315 1.29451i
\(518\) −2.19544 + 9.03234i −0.0964622 + 0.396858i
\(519\) 0 0
\(520\) 9.06076 + 0.551788i 0.397341 + 0.0241975i
\(521\) −6.89274 + 6.89274i −0.301977 + 0.301977i −0.841787 0.539810i \(-0.818496\pi\)
0.539810 + 0.841787i \(0.318496\pi\)
\(522\) 0 0
\(523\) −0.948159 2.28906i −0.0414601 0.100094i 0.901793 0.432168i \(-0.142251\pi\)
−0.943253 + 0.332075i \(0.892251\pi\)
\(524\) 34.9355 + 2.94792i 1.52617 + 0.128780i
\(525\) 0 0
\(526\) −4.25680 + 5.82436i −0.185605 + 0.253954i
\(527\) −44.8122 + 25.8723i −1.95205 + 1.12702i
\(528\) 0 0
\(529\) 15.1642 + 8.75504i 0.659312 + 0.380654i
\(530\) −11.7444 + 5.18929i −0.510144 + 0.225408i
\(531\) 0 0
\(532\) 5.03049 13.9549i 0.218099 0.605023i
\(533\) 5.95148 + 0.783528i 0.257787 + 0.0339384i
\(534\) 0 0
\(535\) −19.6939 5.27696i −0.851440 0.228143i
\(536\) −12.3907 + 8.36235i −0.535195 + 0.361199i
\(537\) 0 0
\(538\) 0.675328 + 2.30371i 0.0291154 + 0.0993202i
\(539\) 9.82755 + 23.7258i 0.423303 + 1.02194i
\(540\) 0 0
\(541\) −33.1384 13.7264i −1.42473 0.590142i −0.468685 0.883365i \(-0.655272\pi\)
−0.956044 + 0.293223i \(0.905272\pi\)
\(542\) 1.40736 + 1.74800i 0.0604512 + 0.0750832i
\(543\) 0 0
\(544\) −7.48752 29.6083i −0.321025 1.26944i
\(545\) 12.9673 7.48668i 0.555459 0.320694i
\(546\) 0 0
\(547\) −13.7601 17.9325i −0.588340 0.766740i 0.400407 0.916338i \(-0.368869\pi\)
−0.988747 + 0.149598i \(0.952202\pi\)
\(548\) −41.9017 + 1.95897i −1.78995 + 0.0836828i
\(549\) 0 0
\(550\) 1.80854 + 1.72596i 0.0771163 + 0.0735953i
\(551\) 8.39654 + 31.3363i 0.357705 + 1.33497i
\(552\) 0 0
\(553\) −2.57977 + 9.62785i −0.109703 + 0.409418i
\(554\) −15.8059 + 9.62465i −0.671530 + 0.408912i
\(555\) 0 0
\(556\) −3.47103 4.11080i −0.147205 0.174337i
\(557\) 27.8912 + 11.5529i 1.18179 + 0.489513i 0.885073 0.465453i \(-0.154108\pi\)
0.296716 + 0.954966i \(0.404108\pi\)
\(558\) 0 0
\(559\) 12.6786 0.536249
\(560\) 5.91513 + 6.37583i 0.249960 + 0.269428i
\(561\) 0 0
\(562\) 3.08505 + 2.25475i 0.130135 + 0.0951108i
\(563\) −22.8162 + 3.00381i −0.961588 + 0.126595i −0.594945 0.803766i \(-0.702826\pi\)
−0.366643 + 0.930362i \(0.619493\pi\)
\(564\) 0 0
\(565\) −2.17466 + 16.5182i −0.0914888 + 0.694926i
\(566\) 0.198990 + 8.51734i 0.00836419 + 0.358011i
\(567\) 0 0
\(568\) −3.78383 + 11.3186i −0.158766 + 0.474917i
\(569\) −32.3753 + 8.67494i −1.35724 + 0.363673i −0.862804 0.505539i \(-0.831294\pi\)
−0.494441 + 0.869211i \(0.664627\pi\)
\(570\) 0 0
\(571\) 1.71995 + 1.31976i 0.0719776 + 0.0552303i 0.644124 0.764921i \(-0.277222\pi\)
−0.572146 + 0.820152i \(0.693889\pi\)
\(572\) 12.5925 + 2.75097i 0.526518 + 0.115024i
\(573\) 0 0
\(574\) 3.60677 + 4.47977i 0.150544 + 0.186982i
\(575\) −0.962844 −0.0401534
\(576\) 0 0
\(577\) 26.0027 1.08251 0.541254 0.840859i \(-0.317950\pi\)
0.541254 + 0.840859i \(0.317950\pi\)
\(578\) −10.7733 13.3809i −0.448110 0.556572i
\(579\) 0 0
\(580\) −18.5823 4.05951i −0.771589 0.168562i
\(581\) 1.76383 + 1.35343i 0.0731759 + 0.0561498i
\(582\) 0 0
\(583\) −17.6103 + 4.71867i −0.729344 + 0.195427i
\(584\) −5.50569 1.84057i −0.227827 0.0761633i
\(585\) 0 0
\(586\) 0.289210 + 12.3790i 0.0119471 + 0.511371i
\(587\) −0.394924 + 2.99975i −0.0163003 + 0.123813i −0.997660 0.0683651i \(-0.978222\pi\)
0.981360 + 0.192178i \(0.0615551\pi\)
\(588\) 0 0
\(589\) 69.4398 9.14192i 2.86122 0.376686i
\(590\) −7.19358 5.25751i −0.296155 0.216448i
\(591\) 0 0
\(592\) 0.970237 25.8852i 0.0398765 1.06387i
\(593\) 11.5374 0.473783 0.236891 0.971536i \(-0.423871\pi\)
0.236891 + 0.971536i \(0.423871\pi\)
\(594\) 0 0
\(595\) 10.8450 + 4.49215i 0.444602 + 0.184160i
\(596\) −21.7507 25.7597i −0.890943 1.05516i
\(597\) 0 0
\(598\) −4.24007 + 2.58189i −0.173390 + 0.105582i
\(599\) −11.1639 + 41.6644i −0.456146 + 1.70236i 0.228551 + 0.973532i \(0.426601\pi\)
−0.684697 + 0.728828i \(0.740065\pi\)
\(600\) 0 0
\(601\) −8.54420 31.8874i −0.348525 1.30071i −0.888440 0.458994i \(-0.848210\pi\)
0.539914 0.841720i \(-0.318457\pi\)
\(602\) 8.78770 + 8.38646i 0.358160 + 0.341807i
\(603\) 0 0
\(604\) −23.8078 + 1.11305i −0.968726 + 0.0452894i
\(605\) −9.78710 12.7548i −0.397902 0.518556i
\(606\) 0 0
\(607\) −18.3285 + 10.5819i −0.743929 + 0.429508i −0.823496 0.567322i \(-0.807980\pi\)
0.0795670 + 0.996830i \(0.474646\pi\)
\(608\) −5.97324 + 40.9040i −0.242247 + 1.65888i
\(609\) 0 0
\(610\) −0.640022 0.794936i −0.0259137 0.0321860i
\(611\) 11.9376 + 4.94473i 0.482945 + 0.200042i
\(612\) 0 0
\(613\) −7.04864 17.0169i −0.284692 0.687307i 0.715241 0.698878i \(-0.246317\pi\)
−0.999933 + 0.0115710i \(0.996317\pi\)
\(614\) 11.1470 + 38.0252i 0.449856 + 1.53457i
\(615\) 0 0
\(616\) 6.90833 + 10.2362i 0.278344 + 0.412429i
\(617\) 14.1277 + 3.78551i 0.568760 + 0.152399i 0.531728 0.846915i \(-0.321543\pi\)
0.0370322 + 0.999314i \(0.488210\pi\)
\(618\) 0 0
\(619\) 35.0162 + 4.60997i 1.40742 + 0.185290i 0.795655 0.605750i \(-0.207127\pi\)
0.611765 + 0.791040i \(0.290460\pi\)
\(620\) −13.9256 + 38.6305i −0.559264 + 1.55144i
\(621\) 0 0
\(622\) 1.10831 0.489712i 0.0444394 0.0196356i
\(623\) −2.70793 1.56343i −0.108491 0.0626374i
\(624\) 0 0
\(625\) 19.7250 11.3882i 0.789000 0.455529i
\(626\) −15.2081 + 20.8085i −0.607840 + 0.831675i
\(627\) 0 0
\(628\) 29.5047 + 2.48965i 1.17736 + 0.0993480i
\(629\) −13.3793 32.3006i −0.533469 1.28791i
\(630\) 0 0
\(631\) −18.2865 + 18.2865i −0.727975 + 0.727975i −0.970216 0.242241i \(-0.922117\pi\)
0.242241 + 0.970216i \(0.422117\pi\)
\(632\) 1.68842 27.7251i 0.0671618 1.10285i
\(633\) 0 0
\(634\) 4.01427 16.5153i 0.159427 0.655905i
\(635\) 21.4054 27.8960i 0.849447 1.10702i
\(636\) 0 0
\(637\) −7.09562 + 5.44466i −0.281139 + 0.215725i
\(638\) −25.1866 9.74984i −0.997146 0.386000i
\(639\) 0 0
\(640\) −19.6988 14.1194i −0.778665 0.558117i
\(641\) 26.6775 + 15.4023i 1.05370 + 0.608352i 0.923682 0.383160i \(-0.125164\pi\)
0.130015 + 0.991512i \(0.458497\pi\)
\(642\) 0 0
\(643\) −14.3097 + 1.88391i −0.564319 + 0.0742941i −0.407288 0.913300i \(-0.633526\pi\)
−0.157031 + 0.987594i \(0.550192\pi\)
\(644\) −4.64668 1.01512i −0.183105 0.0400013i
\(645\) 0 0
\(646\) 15.6953 + 53.5408i 0.617525 + 2.10653i
\(647\) −24.9147 + 24.9147i −0.979498 + 0.979498i −0.999794 0.0202960i \(-0.993539\pi\)
0.0202960 + 0.999794i \(0.493539\pi\)
\(648\) 0 0
\(649\) −8.94605 8.94605i −0.351163 0.351163i
\(650\) −0.417601 + 0.763978i −0.0163797 + 0.0299657i
\(651\) 0 0
\(652\) 5.00228 + 3.47969i 0.195905 + 0.136275i
\(653\) −0.0340762 0.258835i −0.00133351 0.0101290i 0.990765 0.135589i \(-0.0432927\pi\)
−0.992099 + 0.125460i \(0.959959\pi\)
\(654\) 0 0
\(655\) 18.7763 32.5215i 0.733651 1.27072i
\(656\) −12.3408 10.2261i −0.481827 0.399262i
\(657\) 0 0
\(658\) 5.00335 + 11.3236i 0.195051 + 0.441439i
\(659\) −5.80030 7.55910i −0.225948 0.294461i 0.666598 0.745417i \(-0.267750\pi\)
−0.892546 + 0.450956i \(0.851083\pi\)
\(660\) 0 0
\(661\) −5.86632 4.50139i −0.228173 0.175084i 0.488347 0.872649i \(-0.337600\pi\)
−0.716521 + 0.697566i \(0.754267\pi\)
\(662\) 11.8756 + 19.5025i 0.461558 + 0.757986i
\(663\) 0 0
\(664\) −5.56925 2.71449i −0.216129 0.105343i
\(665\) −11.2350 11.2350i −0.435675 0.435675i
\(666\) 0 0
\(667\) 9.61014 3.98065i 0.372106 0.154131i
\(668\) 3.33937 6.46346i 0.129204 0.250079i
\(669\) 0 0
\(670\) 2.46011 + 15.8213i 0.0950424 + 0.611230i
\(671\) −0.724564 1.25498i −0.0279715 0.0484480i
\(672\) 0 0
\(673\) −2.66322 + 4.61284i −0.102660 + 0.177812i −0.912780 0.408452i \(-0.866069\pi\)
0.810120 + 0.586264i \(0.199402\pi\)
\(674\) −17.5749 6.80333i −0.676961 0.262054i
\(675\) 0 0
\(676\) −1.00457 21.4875i −0.0386374 0.826442i
\(677\) −2.55792 + 19.4294i −0.0983090 + 0.746731i 0.869301 + 0.494283i \(0.164569\pi\)
−0.967610 + 0.252448i \(0.918764\pi\)
\(678\) 0 0
\(679\) −2.23173 + 8.32893i −0.0856460 + 0.319635i
\(680\) −32.1126 6.23328i −1.23146 0.239036i
\(681\) 0 0
\(682\) −27.9664 + 51.1630i −1.07089 + 1.95913i
\(683\) −19.9067 + 8.24564i −0.761710 + 0.315510i −0.729509 0.683971i \(-0.760251\pi\)
−0.0322004 + 0.999481i \(0.510251\pi\)
\(684\) 0 0
\(685\) −17.1940 + 41.5100i −0.656950 + 1.58602i
\(686\) −18.5092 1.99820i −0.706683 0.0762917i
\(687\) 0 0
\(688\) −28.6612 18.0116i −1.09270 0.686687i
\(689\) −3.17476 5.49885i −0.120949 0.209489i
\(690\) 0 0
\(691\) 22.8987 17.5708i 0.871106 0.668423i −0.0732626 0.997313i \(-0.523341\pi\)
0.944368 + 0.328890i \(0.106674\pi\)
\(692\) −16.0928 34.2351i −0.611757 1.30142i
\(693\) 0 0
\(694\) −7.72047 + 0.180373i −0.293065 + 0.00684687i
\(695\) −5.56642 + 1.49152i −0.211146 + 0.0565765i
\(696\) 0 0
\(697\) −20.8948 5.59874i −0.791447 0.212067i
\(698\) 45.5243 + 11.0653i 1.72312 + 0.418830i
\(699\) 0 0
\(700\) −0.794789 + 0.253293i −0.0300402 + 0.00957359i
\(701\) −17.0186 + 41.0865i −0.642784 + 1.55182i 0.180125 + 0.983644i \(0.442350\pi\)
−0.822909 + 0.568174i \(0.807650\pi\)
\(702\) 0 0
\(703\) 47.3226i 1.78481i
\(704\) −24.5584 24.1081i −0.925579 0.908607i
\(705\) 0 0
\(706\) 7.38925 + 47.5212i 0.278098 + 1.78848i
\(707\) 1.33346 + 10.1286i 0.0501499 + 0.380926i
\(708\) 0 0
\(709\) −12.8554 1.69244i −0.482794 0.0635610i −0.114799 0.993389i \(-0.536622\pi\)
−0.367995 + 0.929828i \(0.619956\pi\)
\(710\) 9.24751 + 8.82528i 0.347053 + 0.331207i
\(711\) 0 0
\(712\) 8.26406 + 2.76270i 0.309709 + 0.103537i
\(713\) −5.81227 21.6917i −0.217671 0.812360i
\(714\) 0 0
\(715\) 8.40454 10.9530i 0.314312 0.409619i
\(716\) 8.92647 + 6.20944i 0.333598 + 0.232058i
\(717\) 0 0
\(718\) −26.1800 2.82632i −0.977028 0.105477i
\(719\) 18.1643i 0.677416i 0.940892 + 0.338708i \(0.109990\pi\)
−0.940892 + 0.338708i \(0.890010\pi\)
\(720\) 0 0
\(721\) 17.0078i 0.633404i
\(722\) 5.22176 48.3687i 0.194334 1.80010i
\(723\) 0 0
\(724\) −0.458677 2.55518i −0.0170466 0.0949624i
\(725\) 1.11058 1.44734i 0.0412461 0.0537529i
\(726\) 0 0
\(727\) 10.6602 + 39.7845i 0.395366 + 1.47552i 0.821157 + 0.570703i \(0.193329\pi\)
−0.425791 + 0.904822i \(0.640004\pi\)
\(728\) −2.82080 + 3.24668i −0.104546 + 0.120330i
\(729\) 0 0
\(730\) −4.29288 + 4.49827i −0.158887 + 0.166488i
\(731\) −45.2979 5.96358i −1.67540 0.220571i
\(732\) 0 0
\(733\) 3.65188 + 27.7388i 0.134885 + 1.02456i 0.916285 + 0.400526i \(0.131173\pi\)
−0.781400 + 0.624030i \(0.785494\pi\)
\(734\) 2.42722 0.377418i 0.0895904 0.0139307i
\(735\) 0 0
\(736\) 13.2530 + 0.186961i 0.488512 + 0.00689146i
\(737\) 22.7350i 0.837456i
\(738\) 0 0
\(739\) −10.8083 + 26.0935i −0.397590 + 0.959866i 0.590646 + 0.806931i \(0.298873\pi\)
−0.988236 + 0.152936i \(0.951127\pi\)
\(740\) −24.6497 12.7354i −0.906141 0.468161i
\(741\) 0 0
\(742\) 1.43683 5.91131i 0.0527477 0.217011i
\(743\) 20.2082 + 5.41476i 0.741366 + 0.198648i 0.609685 0.792644i \(-0.291296\pi\)
0.131681 + 0.991292i \(0.457963\pi\)
\(744\) 0 0
\(745\) −34.8811 + 9.34636i −1.27794 + 0.342424i
\(746\) 1.03768 + 44.4156i 0.0379922 + 1.62617i
\(747\) 0 0
\(748\) −43.6962 15.7517i −1.59769 0.575937i
\(749\) 7.66382 5.88066i 0.280030 0.214875i
\(750\) 0 0
\(751\) −5.34187 9.25238i −0.194927 0.337624i 0.751949 0.659221i \(-0.229114\pi\)
−0.946877 + 0.321597i \(0.895780\pi\)
\(752\) −19.9615 28.1370i −0.727922 1.02605i
\(753\) 0 0
\(754\) 1.00959 9.35172i 0.0367670 0.340570i
\(755\) −9.76935 + 23.5853i −0.355543 + 0.858356i
\(756\) 0 0
\(757\) 8.88251 3.67926i 0.322840 0.133725i −0.215377 0.976531i \(-0.569098\pi\)
0.538217 + 0.842806i \(0.319098\pi\)
\(758\) 33.4639 + 18.2918i 1.21546 + 0.664389i
\(759\) 0 0
\(760\) 36.9285 + 24.4285i 1.33954 + 0.886115i
\(761\) −3.39875 + 12.6843i −0.123204 + 0.459805i −0.999769 0.0214785i \(-0.993163\pi\)
0.876565 + 0.481284i \(0.159829\pi\)
\(762\) 0 0
\(763\) −0.925995 + 7.03363i −0.0335233 + 0.254634i
\(764\) 28.6045 + 26.0494i 1.03487 + 0.942433i
\(765\) 0 0
\(766\) 5.57228 14.3948i 0.201335 0.520104i
\(767\) 2.20310 3.81588i 0.0795494 0.137784i
\(768\) 0 0
\(769\) −10.0871 17.4713i −0.363750 0.630033i 0.624825 0.780765i \(-0.285170\pi\)
−0.988575 + 0.150732i \(0.951837\pi\)
\(770\) 13.0703 2.03235i 0.471022 0.0732409i
\(771\) 0 0
\(772\) −27.7686 + 8.84966i −0.999414 + 0.318506i
\(773\) 29.7330 12.3158i 1.06942 0.442969i 0.222635 0.974902i \(-0.428534\pi\)
0.846786 + 0.531933i \(0.178534\pi\)
\(774\) 0 0
\(775\) −2.78500 2.78500i −0.100040 0.100040i
\(776\) 1.46063 23.9846i 0.0524336 0.860998i
\(777\) 0 0
\(778\) 3.74775 2.28211i 0.134363 0.0818174i
\(779\) 23.2292 + 17.8244i 0.832274 + 0.638626i
\(780\) 0 0
\(781\) 11.0495 + 14.4000i 0.395382 + 0.515272i
\(782\) 16.3633 7.23015i 0.585150 0.258550i
\(783\) 0 0
\(784\) 23.7752 2.22792i 0.849113 0.0795685i
\(785\) 15.8575 27.4659i 0.565977 0.980300i
\(786\) 0 0
\(787\) −2.70462 20.5437i −0.0964095 0.732303i −0.969560 0.244853i \(-0.921260\pi\)
0.873151 0.487450i \(-0.162073\pi\)
\(788\) 3.53501 + 19.6927i 0.125930 + 0.701524i
\(789\) 0 0
\(790\) −26.1060 14.2699i −0.928809 0.507700i
\(791\) −5.58176 5.58176i −0.198464 0.198464i
\(792\) 0 0
\(793\) 0.356870 0.356870i 0.0126728 0.0126728i
\(794\) 32.1016 9.41049i 1.13924 0.333966i
\(795\) 0 0
\(796\) 43.9512 28.1910i 1.55781 0.999203i
\(797\) −25.3840 + 3.34187i −0.899148 + 0.118375i −0.565909 0.824467i \(-0.691475\pi\)
−0.333239 + 0.942843i \(0.608141\pi\)
\(798\) 0 0
\(799\) −40.3247 23.2815i −1.42659 0.823640i
\(800\) 2.02936 1.13379i 0.0717486 0.0400854i
\(801\) 0 0
\(802\) 8.05588 20.8106i 0.284463 0.734849i
\(803\) −7.00458 + 5.37480i −0.247186 + 0.189673i
\(804\) 0 0
\(805\) −3.10131 + 4.04171i −0.109307 + 0.142452i
\(806\) −19.7323 4.79624i −0.695042 0.168940i
\(807\) 0 0
\(808\) −9.27571 26.9156i −0.326318 0.946888i
\(809\) −10.6460 + 10.6460i −0.374293 + 0.374293i −0.869038 0.494745i \(-0.835261\pi\)
0.494745 + 0.869038i \(0.335261\pi\)
\(810\) 0 0
\(811\) −4.07895 9.84747i −0.143231 0.345791i 0.835942 0.548818i \(-0.184922\pi\)
−0.979173 + 0.203027i \(0.934922\pi\)
\(812\) 6.88560 5.81398i 0.241637 0.204031i
\(813\) 0 0
\(814\) −31.8067 23.2463i −1.11483 0.814784i
\(815\) 5.65239 3.26341i 0.197994 0.114312i
\(816\) 0 0
\(817\) 53.5567 + 30.9210i 1.87371 + 1.08179i
\(818\) −15.2038 34.4092i −0.531588 1.20309i
\(819\) 0 0
\(820\) −15.5359 + 7.30292i −0.542537 + 0.255029i
\(821\) 31.0074 + 4.08220i 1.08217 + 0.142470i 0.650457 0.759543i \(-0.274577\pi\)
0.431709 + 0.902013i \(0.357911\pi\)
\(822\) 0 0
\(823\) 5.03815 + 1.34997i 0.175619 + 0.0470569i 0.345557 0.938398i \(-0.387690\pi\)
−0.169938 + 0.985455i \(0.554357\pi\)
\(824\) 9.46142 + 46.4418i 0.329604 + 1.61788i
\(825\) 0 0
\(826\) 4.05107 1.18756i 0.140955 0.0413205i
\(827\) 7.61758 + 18.3905i 0.264889 + 0.639499i 0.999228 0.0392837i \(-0.0125076\pi\)
−0.734339 + 0.678783i \(0.762508\pi\)
\(828\) 0 0
\(829\) 39.0063 + 16.1569i 1.35475 + 0.561154i 0.937609 0.347690i \(-0.113034\pi\)
0.417136 + 0.908844i \(0.363034\pi\)
\(830\) −5.16898 + 4.16167i −0.179418 + 0.144454i
\(831\) 0 0
\(832\) 5.89639 10.4346i 0.204421 0.361756i
\(833\) 27.9121 16.1150i 0.967095 0.558353i
\(834\) 0 0
\(835\) −4.74374 6.18216i −0.164164 0.213942i
\(836\) 46.4837 + 42.3315i 1.60767 + 1.46406i
\(837\) 0 0
\(838\) 17.3752 18.2065i 0.600218 0.628935i
\(839\) 5.11950 + 19.1062i 0.176745 + 0.659620i 0.996248 + 0.0865457i \(0.0275829\pi\)
−0.819503 + 0.573075i \(0.805750\pi\)
\(840\) 0 0
\(841\) 2.40471 8.97450i 0.0829210 0.309465i
\(842\) −7.67910 12.6109i −0.264639 0.434600i
\(843\) 0 0
\(844\) −15.3539 1.29558i −0.528502 0.0445959i
\(845\) −21.2867 8.81722i −0.732283 0.303322i
\(846\) 0 0
\(847\) 7.61725 0.261732
\(848\) −0.634982 + 16.9408i −0.0218054 + 0.581751i
\(849\) 0 0
\(850\) 1.85134 2.53310i 0.0635006 0.0868845i
\(851\) 15.0434 1.98051i 0.515683 0.0678909i
\(852\) 0 0
\(853\) 4.95062 37.6037i 0.169506 1.28753i −0.669258 0.743030i \(-0.733388\pi\)
0.838764 0.544496i \(-0.183279\pi\)
\(854\) 0.483408 0.0112938i 0.0165419 0.000386467i
\(855\) 0 0
\(856\) −17.6556 + 20.3212i −0.603455 + 0.694564i
\(857\) 27.0897 7.25866i 0.925366 0.247951i 0.235488 0.971877i \(-0.424331\pi\)
0.689878 + 0.723926i \(0.257664\pi\)
\(858\) 0 0
\(859\) −26.3697 20.2342i −0.899722 0.690381i 0.0515707 0.998669i \(-0.483577\pi\)
−0.951293 + 0.308288i \(0.900244\pi\)
\(860\) −30.5194 + 19.5756i −1.04070 + 0.667522i
\(861\) 0 0
\(862\) −36.5484 + 29.4259i −1.24484 + 1.00225i
\(863\) 33.6814 1.14653 0.573264 0.819371i \(-0.305677\pi\)
0.573264 + 0.819371i \(0.305677\pi\)
\(864\) 0 0
\(865\) −40.5186 −1.37767
\(866\) 14.2798 11.4970i 0.485247 0.390684i
\(867\) 0 0
\(868\) −10.5042 16.3766i −0.356535 0.555858i
\(869\) −33.5152 25.7171i −1.13693 0.872394i
\(870\) 0 0
\(871\) −7.64817 + 2.04932i −0.259148 + 0.0694386i
\(872\) −1.38426 19.7213i −0.0468769 0.667847i
\(873\) 0 0
\(874\) −24.2076 + 0.565562i −0.818835 + 0.0191304i
\(875\) −1.53563 + 11.6642i −0.0519137 + 0.394323i
\(876\) 0 0
\(877\) 31.7025 4.17372i 1.07052 0.140936i 0.425390 0.905010i \(-0.360137\pi\)
0.645129 + 0.764074i \(0.276804\pi\)
\(878\) −10.5556 + 14.4427i −0.356236 + 0.487419i
\(879\) 0 0
\(880\) −34.5595 + 12.8206i −1.16500 + 0.432182i
\(881\) 1.81478 0.0611416 0.0305708 0.999533i \(-0.490267\pi\)
0.0305708 + 0.999533i \(0.490267\pi\)
\(882\) 0 0
\(883\) −40.2761 16.6829i −1.35540 0.561425i −0.417610 0.908627i \(-0.637132\pi\)
−0.937791 + 0.347201i \(0.887132\pi\)
\(884\) 1.36018 16.1194i 0.0457480 0.542155i
\(885\) 0 0
\(886\) 6.30448 + 10.3534i 0.211803 + 0.347830i
\(887\) 3.06187 11.4271i 0.102808 0.383683i −0.895280 0.445505i \(-0.853024\pi\)
0.998087 + 0.0618215i \(0.0196910\pi\)
\(888\) 0 0
\(889\) 4.31185 + 16.0920i 0.144615 + 0.539710i
\(890\) 6.44363 6.75192i 0.215991 0.226325i
\(891\) 0 0
\(892\) −23.3301 + 25.6185i −0.781148 + 0.857770i
\(893\) 38.3673 + 50.0013i 1.28391 + 1.67323i
\(894\) 0 0
\(895\) 10.0866 5.82348i 0.337156 0.194657i
\(896\) 10.9890 3.33212i 0.367117 0.111318i
\(897\) 0 0
\(898\) 15.9192 12.8169i 0.531230 0.427706i
\(899\) 39.3109 + 16.2831i 1.31109 + 0.543073i
\(900\) 0 0
\(901\) 8.75625 + 21.1395i 0.291713 + 0.704258i
\(902\) −23.3912 + 6.85705i −0.778840 + 0.228315i
\(903\) 0 0
\(904\) 18.3468 + 12.1365i 0.610204 + 0.403655i
\(905\) −2.68586 0.719675i −0.0892811 0.0239228i
\(906\) 0 0
\(907\) 6.90261 + 0.908745i 0.229197 + 0.0301744i 0.244250 0.969712i \(-0.421458\pi\)
−0.0150527 + 0.999887i \(0.504792\pi\)
\(908\) −21.8691 46.5233i −0.725752 1.54393i
\(909\) 0 0
\(910\) 1.86184 + 4.21372i 0.0617195 + 0.139683i
\(911\) −4.22132 2.43718i −0.139859 0.0807474i 0.428438 0.903571i \(-0.359064\pi\)
−0.568297 + 0.822824i \(0.692397\pi\)
\(912\) 0 0
\(913\) −8.16037 + 4.71139i −0.270069 + 0.155924i
\(914\) 47.8886 + 34.9999i 1.58401 + 1.15770i
\(915\) 0 0
\(916\) −4.04024 4.78492i −0.133493 0.158098i
\(917\) 6.80881 + 16.4379i 0.224847 + 0.542828i
\(918\) 0 0
\(919\) 23.9876 23.9876i 0.791278 0.791278i −0.190424 0.981702i \(-0.560986\pi\)
0.981702 + 0.190424i \(0.0609862\pi\)
\(920\) 6.22010 12.7616i 0.205071 0.420738i
\(921\) 0 0
\(922\) −51.2672 12.4612i −1.68840 0.410389i
\(923\) −3.84822 + 5.01510i −0.126666 + 0.165074i
\(924\) 0 0
\(925\) 2.11123 1.62000i 0.0694169 0.0532654i
\(926\) −3.62317 + 9.35967i −0.119065 + 0.307578i
\(927\) 0 0
\(928\) −15.5676 + 19.7062i −0.511032 + 0.646888i
\(929\) −0.758151 0.437718i −0.0248741 0.0143611i 0.487511 0.873117i \(-0.337905\pi\)
−0.512385 + 0.858756i \(0.671238\pi\)
\(930\) 0 0
\(931\) −43.2518 + 5.69420i −1.41752 + 0.186620i
\(932\) −32.0462 49.9618i −1.04971 1.63655i
\(933\) 0 0
\(934\) −16.8979 + 4.95359i −0.552918 + 0.162086i
\(935\) −35.1795 + 35.1795i −1.15049 + 1.15049i
\(936\) 0 0
\(937\) 24.9448 + 24.9448i 0.814909 + 0.814909i 0.985365 0.170456i \(-0.0545240\pi\)
−0.170456 + 0.985365i \(0.554524\pi\)
\(938\) −6.65659 3.63859i −0.217345 0.118804i
\(939\) 0 0
\(940\) −36.3703 + 6.52879i −1.18627 + 0.212946i
\(941\) −6.27508 47.6639i −0.204562 1.55380i −0.718227 0.695809i \(-0.755046\pi\)
0.513665 0.857991i \(-0.328287\pi\)
\(942\) 0 0
\(943\) 4.69405 8.13034i 0.152859 0.264760i
\(944\) −10.4013 + 5.49638i −0.338533 + 0.178892i
\(945\) 0 0
\(946\) −47.0915 + 20.8075i −1.53108 + 0.676510i
\(947\) 4.50923 + 5.87654i 0.146530 + 0.190962i 0.860852 0.508856i \(-0.169931\pi\)
−0.714322 + 0.699817i \(0.753265\pi\)
\(948\) 0 0
\(949\) −2.43950 1.87189i −0.0791894 0.0607642i
\(950\) −3.62723 + 2.20872i −0.117683 + 0.0716603i
\(951\) 0 0
\(952\) 11.6052 10.2729i 0.376127 0.332945i
\(953\) −20.7163 20.7163i −0.671065 0.671065i 0.286896 0.957962i \(-0.407377\pi\)
−0.957962 + 0.286896i \(0.907377\pi\)
\(954\) 0 0
\(955\) 38.2849 15.8581i 1.23887 0.513157i
\(956\) 2.65376 + 8.32702i 0.0858288 + 0.269315i
\(957\) 0 0
\(958\) −50.2010 + 7.80594i −1.62192 + 0.252198i
\(959\) −10.6439 18.4357i −0.343708 0.595320i
\(960\) 0 0
\(961\) 30.4308 52.7076i 0.981637 1.70025i
\(962\) 4.95313 12.7953i 0.159695 0.412538i
\(963\) 0 0
\(964\) −10.4371 + 11.4609i −0.336157 + 0.369131i
\(965\) −4.07464 + 30.9499i −0.131167 + 0.996314i
\(966\) 0 0
\(967\) 4.54228 16.9520i 0.146070 0.545140i −0.853635 0.520871i \(-0.825607\pi\)
0.999705 0.0242696i \(-0.00772602\pi\)
\(968\) −20.7998 + 4.23746i −0.668531 + 0.136197i
\(969\) 0 0
\(970\) −22.5840 12.3447i −0.725127 0.396365i
\(971\) 28.6212 11.8553i 0.918497 0.380454i 0.127194 0.991878i \(-0.459403\pi\)
0.791303 + 0.611424i \(0.209403\pi\)
\(972\) 0 0
\(973\) 1.04487 2.52254i 0.0334971 0.0808691i
\(974\) 0.369949 3.42680i 0.0118539 0.109802i
\(975\) 0 0
\(976\) −1.31372 + 0.299758i −0.0420511 + 0.00959502i
\(977\) −2.69148 4.66178i −0.0861081 0.149144i 0.819755 0.572715i \(-0.194110\pi\)
−0.905863 + 0.423571i \(0.860776\pi\)
\(978\) 0 0
\(979\) 10.5139 8.06760i 0.336026 0.257842i
\(980\) 8.67378 24.0616i 0.277074 0.768621i
\(981\) 0 0
\(982\) 0.237317 + 10.1578i 0.00757308 + 0.324149i
\(983\) −34.5510 + 9.25791i −1.10200 + 0.295281i −0.763581 0.645712i \(-0.776561\pi\)
−0.338424 + 0.940994i \(0.609894\pi\)
\(984\) 0 0
\(985\) 20.6999 + 5.54652i 0.659554 + 0.176727i
\(986\) −8.00576 + 32.9368i −0.254955 + 1.04892i
\(987\) 0 0
\(988\) −10.0505 + 19.4531i −0.319749 + 0.618884i
\(989\) 7.58810 18.3193i 0.241288 0.582520i
\(990\) 0 0
\(991\) 24.3967i 0.774986i 0.921873 + 0.387493i \(0.126659\pi\)
−0.921873 + 0.387493i \(0.873341\pi\)
\(992\) 37.7932 + 38.8747i 1.19993 + 1.23427i
\(993\) 0 0
\(994\) −5.98456 + 0.930562i −0.189819 + 0.0295156i
\(995\) −7.30009 55.4497i −0.231428 1.75787i
\(996\) 0 0
\(997\) 38.2846 + 5.04027i 1.21249 + 0.159627i 0.709524 0.704682i \(-0.248910\pi\)
0.502962 + 0.864308i \(0.332243\pi\)
\(998\) 34.5640 36.2176i 1.09410 1.14645i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bn.a.35.13 368
3.2 odd 2 288.2.bf.a.227.34 yes 368
9.4 even 3 288.2.bf.a.131.45 yes 368
9.5 odd 6 inner 864.2.bn.a.611.2 368
32.11 odd 8 inner 864.2.bn.a.683.2 368
96.11 even 8 288.2.bf.a.11.45 368
288.139 odd 24 288.2.bf.a.203.34 yes 368
288.203 even 24 inner 864.2.bn.a.395.13 368
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.bf.a.11.45 368 96.11 even 8
288.2.bf.a.131.45 yes 368 9.4 even 3
288.2.bf.a.203.34 yes 368 288.139 odd 24
288.2.bf.a.227.34 yes 368 3.2 odd 2
864.2.bn.a.35.13 368 1.1 even 1 trivial
864.2.bn.a.395.13 368 288.203 even 24 inner
864.2.bn.a.611.2 368 9.5 odd 6 inner
864.2.bn.a.683.2 368 32.11 odd 8 inner