Properties

Label 855.2.dl.a.838.6
Level $855$
Weight $2$
Character 855.838
Analytic conductor $6.827$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(127,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([0, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.dl (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,12,0,0,12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 838.6
Character \(\chi\) \(=\) 855.838
Dual form 855.2.dl.a.352.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.40505 - 0.983828i) q^{2} +(0.322212 - 0.885271i) q^{4} +(-1.41273 + 1.73326i) q^{5} +(-0.277305 - 0.0743036i) q^{7} +(0.469650 + 1.75276i) q^{8} +(-0.279734 + 3.82520i) q^{10} +(2.29500 - 3.97505i) q^{11} +(-0.215819 + 2.46682i) q^{13} +(-0.462730 + 0.168420i) q^{14} +(3.82765 + 3.21178i) q^{16} +(2.76411 + 3.94756i) q^{17} +(-1.73832 + 3.99728i) q^{19} +(1.07920 + 1.80913i) q^{20} +(-0.686176 - 7.84303i) q^{22} +(3.21082 + 6.88562i) q^{23} +(-1.00837 - 4.89726i) q^{25} +(2.12369 + 3.67833i) q^{26} +(-0.155130 + 0.221548i) q^{28} +(0.000506761 + 0.00287398i) q^{29} +(2.87440 - 1.65954i) q^{31} +(4.92252 + 0.430665i) q^{32} +(7.76743 + 2.82711i) q^{34} +(0.520545 - 0.375670i) q^{35} +(5.46158 + 5.46158i) q^{37} +(1.49020 + 7.32659i) q^{38} +(-3.70147 - 1.66215i) q^{40} +(-0.132829 + 0.158299i) q^{41} +(0.181834 + 0.0847905i) q^{43} +(-2.77952 - 3.31250i) q^{44} +(11.2856 + 6.51576i) q^{46} +(-4.12905 - 2.89119i) q^{47} +(-5.99080 - 3.45879i) q^{49} +(-6.23488 - 5.88884i) q^{50} +(2.11426 + 0.985897i) q^{52} +(-2.39334 + 1.11603i) q^{53} +(3.64758 + 9.59350i) q^{55} -0.520945i q^{56} +(0.00353953 + 0.00353953i) q^{58} +(0.369926 - 2.09795i) q^{59} +(-3.76621 - 1.37079i) q^{61} +(2.40598 - 5.15965i) q^{62} +(-1.31435 + 0.758840i) q^{64} +(-3.97074 - 3.85902i) q^{65} +(5.20141 - 7.42839i) q^{67} +(4.38529 - 1.17503i) q^{68} +(0.361798 - 1.03996i) q^{70} +(-4.33266 - 11.9039i) q^{71} +(-0.941200 - 10.7580i) q^{73} +(13.0471 + 2.30055i) q^{74} +(2.97856 + 2.82686i) q^{76} +(-0.931774 + 0.931774i) q^{77} +(4.20092 + 3.52499i) q^{79} +(-10.9743 + 2.09692i) q^{80} +(-0.0308922 + 0.353099i) q^{82} +(4.13763 - 15.4419i) q^{83} +(-10.7471 - 0.785925i) q^{85} +(0.338905 - 0.0597581i) q^{86} +(8.04514 + 2.15569i) q^{88} +(-12.1125 + 10.1636i) q^{89} +(0.243141 - 0.668024i) q^{91} +(7.13020 - 0.623812i) q^{92} -8.64596 q^{94} +(-4.47253 - 8.66005i) q^{95} +(-4.88649 + 3.42156i) q^{97} +(-11.8202 + 1.03414i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{2} + 12 q^{5} + 18 q^{8} - 12 q^{10} + 12 q^{11} - 12 q^{13} + 12 q^{16} + 30 q^{17} + 84 q^{20} - 24 q^{22} + 12 q^{25} + 48 q^{26} - 36 q^{31} - 18 q^{32} + 30 q^{35} - 54 q^{38} + 54 q^{40}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40505 0.983828i 0.993521 0.695671i 0.0406901 0.999172i \(-0.487044\pi\)
0.952831 + 0.303501i \(0.0981555\pi\)
\(3\) 0 0
\(4\) 0.322212 0.885271i 0.161106 0.442635i
\(5\) −1.41273 + 1.73326i −0.631793 + 0.775137i
\(6\) 0 0
\(7\) −0.277305 0.0743036i −0.104811 0.0280841i 0.206032 0.978545i \(-0.433945\pi\)
−0.310844 + 0.950461i \(0.600612\pi\)
\(8\) 0.469650 + 1.75276i 0.166046 + 0.619693i
\(9\) 0 0
\(10\) −0.279734 + 3.82520i −0.0884596 + 1.20964i
\(11\) 2.29500 3.97505i 0.691967 1.19852i −0.279225 0.960226i \(-0.590078\pi\)
0.971192 0.238297i \(-0.0765891\pi\)
\(12\) 0 0
\(13\) −0.215819 + 2.46682i −0.0598573 + 0.684172i 0.905689 + 0.423942i \(0.139354\pi\)
−0.965547 + 0.260230i \(0.916202\pi\)
\(14\) −0.462730 + 0.168420i −0.123670 + 0.0450121i
\(15\) 0 0
\(16\) 3.82765 + 3.21178i 0.956913 + 0.802946i
\(17\) 2.76411 + 3.94756i 0.670395 + 0.957423i 0.999912 + 0.0132738i \(0.00422530\pi\)
−0.329517 + 0.944150i \(0.606886\pi\)
\(18\) 0 0
\(19\) −1.73832 + 3.99728i −0.398799 + 0.917038i
\(20\) 1.07920 + 1.80913i 0.241317 + 0.404533i
\(21\) 0 0
\(22\) −0.686176 7.84303i −0.146293 1.67214i
\(23\) 3.21082 + 6.88562i 0.669501 + 1.43575i 0.887968 + 0.459906i \(0.152117\pi\)
−0.218466 + 0.975845i \(0.570105\pi\)
\(24\) 0 0
\(25\) −1.00837 4.89726i −0.201675 0.979453i
\(26\) 2.12369 + 3.67833i 0.416489 + 0.721380i
\(27\) 0 0
\(28\) −0.155130 + 0.221548i −0.0293168 + 0.0418687i
\(29\) 0.000506761 0.00287398i 9.41031e−5 0.000533685i 0.984855 0.173381i \(-0.0554693\pi\)
−0.984761 + 0.173915i \(0.944358\pi\)
\(30\) 0 0
\(31\) 2.87440 1.65954i 0.516258 0.298062i −0.219144 0.975692i \(-0.570327\pi\)
0.735402 + 0.677631i \(0.236993\pi\)
\(32\) 4.92252 + 0.430665i 0.870187 + 0.0761315i
\(33\) 0 0
\(34\) 7.76743 + 2.82711i 1.33210 + 0.484846i
\(35\) 0.520545 0.375670i 0.0879882 0.0634998i
\(36\) 0 0
\(37\) 5.46158 + 5.46158i 0.897878 + 0.897878i 0.995248 0.0973701i \(-0.0310431\pi\)
−0.0973701 + 0.995248i \(0.531043\pi\)
\(38\) 1.49020 + 7.32659i 0.241742 + 1.18853i
\(39\) 0 0
\(40\) −3.70147 1.66215i −0.585254 0.262809i
\(41\) −0.132829 + 0.158299i −0.0207444 + 0.0247222i −0.776317 0.630343i \(-0.782914\pi\)
0.755573 + 0.655065i \(0.227359\pi\)
\(42\) 0 0
\(43\) 0.181834 + 0.0847905i 0.0277294 + 0.0129304i 0.436433 0.899737i \(-0.356241\pi\)
−0.408704 + 0.912667i \(0.634019\pi\)
\(44\) −2.77952 3.31250i −0.419028 0.499379i
\(45\) 0 0
\(46\) 11.2856 + 6.51576i 1.66397 + 0.960696i
\(47\) −4.12905 2.89119i −0.602284 0.421724i 0.232269 0.972652i \(-0.425385\pi\)
−0.834553 + 0.550928i \(0.814274\pi\)
\(48\) 0 0
\(49\) −5.99080 3.45879i −0.855829 0.494113i
\(50\) −6.23488 5.88884i −0.881745 0.832808i
\(51\) 0 0
\(52\) 2.11426 + 0.985897i 0.293195 + 0.136719i
\(53\) −2.39334 + 1.11603i −0.328751 + 0.153299i −0.579985 0.814627i \(-0.696942\pi\)
0.251234 + 0.967926i \(0.419164\pi\)
\(54\) 0 0
\(55\) 3.64758 + 9.59350i 0.491839 + 1.29359i
\(56\) 0.520945i 0.0696142i
\(57\) 0 0
\(58\) 0.00353953 + 0.00353953i 0.000464763 + 0.000464763i
\(59\) 0.369926 2.09795i 0.0481602 0.273130i −0.951213 0.308536i \(-0.900161\pi\)
0.999373 + 0.0354053i \(0.0112722\pi\)
\(60\) 0 0
\(61\) −3.76621 1.37079i −0.482214 0.175511i 0.0894634 0.995990i \(-0.471485\pi\)
−0.571677 + 0.820479i \(0.693707\pi\)
\(62\) 2.40598 5.15965i 0.305560 0.655276i
\(63\) 0 0
\(64\) −1.31435 + 0.758840i −0.164294 + 0.0948550i
\(65\) −3.97074 3.85902i −0.492510 0.478653i
\(66\) 0 0
\(67\) 5.20141 7.42839i 0.635454 0.907522i −0.364263 0.931296i \(-0.618679\pi\)
0.999717 + 0.0237737i \(0.00756811\pi\)
\(68\) 4.38529 1.17503i 0.531794 0.142494i
\(69\) 0 0
\(70\) 0.361798 1.03996i 0.0432431 0.124299i
\(71\) −4.33266 11.9039i −0.514192 1.41273i −0.876830 0.480800i \(-0.840346\pi\)
0.362639 0.931930i \(-0.381876\pi\)
\(72\) 0 0
\(73\) −0.941200 10.7580i −0.110159 1.25912i −0.827126 0.562017i \(-0.810026\pi\)
0.716967 0.697108i \(-0.245530\pi\)
\(74\) 13.0471 + 2.30055i 1.51669 + 0.267433i
\(75\) 0 0
\(76\) 2.97856 + 2.82686i 0.341665 + 0.324263i
\(77\) −0.931774 + 0.931774i −0.106186 + 0.106186i
\(78\) 0 0
\(79\) 4.20092 + 3.52499i 0.472641 + 0.396592i 0.847757 0.530385i \(-0.177953\pi\)
−0.375116 + 0.926978i \(0.622397\pi\)
\(80\) −10.9743 + 2.09692i −1.22696 + 0.234443i
\(81\) 0 0
\(82\) −0.0308922 + 0.353099i −0.00341147 + 0.0389933i
\(83\) 4.13763 15.4419i 0.454164 1.69496i −0.236368 0.971664i \(-0.575957\pi\)
0.690533 0.723301i \(-0.257376\pi\)
\(84\) 0 0
\(85\) −10.7471 0.785925i −1.16569 0.0852455i
\(86\) 0.338905 0.0597581i 0.0365451 0.00644388i
\(87\) 0 0
\(88\) 8.04514 + 2.15569i 0.857615 + 0.229797i
\(89\) −12.1125 + 10.1636i −1.28392 + 1.07734i −0.291228 + 0.956654i \(0.594064\pi\)
−0.992691 + 0.120683i \(0.961492\pi\)
\(90\) 0 0
\(91\) 0.243141 0.668024i 0.0254881 0.0700280i
\(92\) 7.13020 0.623812i 0.743375 0.0650369i
\(93\) 0 0
\(94\) −8.64596 −0.891763
\(95\) −4.47253 8.66005i −0.458872 0.888502i
\(96\) 0 0
\(97\) −4.88649 + 3.42156i −0.496148 + 0.347407i −0.794716 0.606982i \(-0.792380\pi\)
0.298567 + 0.954389i \(0.403491\pi\)
\(98\) −11.8202 + 1.03414i −1.19402 + 0.104464i
\(99\) 0 0
\(100\) −4.66031 0.685274i −0.466031 0.0685274i
\(101\) −8.53219 + 7.15936i −0.848985 + 0.712383i −0.959566 0.281484i \(-0.909173\pi\)
0.110581 + 0.993867i \(0.464729\pi\)
\(102\) 0 0
\(103\) −0.213557 0.797004i −0.0210424 0.0785312i 0.954606 0.297871i \(-0.0962764\pi\)
−0.975649 + 0.219340i \(0.929610\pi\)
\(104\) −4.42509 + 0.780263i −0.433916 + 0.0765111i
\(105\) 0 0
\(106\) −2.26479 + 3.92272i −0.219975 + 0.381009i
\(107\) 4.03536 15.0602i 0.390113 1.45592i −0.439835 0.898079i \(-0.644963\pi\)
0.829947 0.557842i \(-0.188370\pi\)
\(108\) 0 0
\(109\) 8.88129 3.23252i 0.850673 0.309620i 0.120358 0.992731i \(-0.461596\pi\)
0.730315 + 0.683111i \(0.239373\pi\)
\(110\) 14.5634 + 9.89078i 1.38856 + 0.943049i
\(111\) 0 0
\(112\) −0.822780 1.17505i −0.0777454 0.111032i
\(113\) 1.30423 1.30423i 0.122692 0.122692i −0.643095 0.765787i \(-0.722350\pi\)
0.765787 + 0.643095i \(0.222350\pi\)
\(114\) 0 0
\(115\) −16.4706 4.16236i −1.53589 0.388142i
\(116\) 0.00270754 0.000477412i 0.000251389 4.43266e-5i
\(117\) 0 0
\(118\) −1.54426 3.31168i −0.142161 0.304864i
\(119\) −0.473183 1.30006i −0.0433767 0.119176i
\(120\) 0 0
\(121\) −5.03401 8.71916i −0.457637 0.792651i
\(122\) −6.64034 + 1.77927i −0.601188 + 0.161088i
\(123\) 0 0
\(124\) −0.542972 3.07935i −0.0487603 0.276534i
\(125\) 9.91279 + 5.17075i 0.886627 + 0.462486i
\(126\) 0 0
\(127\) 10.0380 + 0.878208i 0.890725 + 0.0779284i 0.523324 0.852134i \(-0.324692\pi\)
0.367402 + 0.930062i \(0.380247\pi\)
\(128\) −5.27675 + 11.3160i −0.466403 + 1.00020i
\(129\) 0 0
\(130\) −9.37570 1.51560i −0.822304 0.132927i
\(131\) −3.39696 + 19.2651i −0.296794 + 1.68320i 0.363026 + 0.931779i \(0.381744\pi\)
−0.659820 + 0.751423i \(0.729368\pi\)
\(132\) 0 0
\(133\) 0.779058 0.979301i 0.0675529 0.0849162i
\(134\) 15.5546i 1.34371i
\(135\) 0 0
\(136\) −5.62095 + 6.69879i −0.481992 + 0.574416i
\(137\) 9.65926 4.50418i 0.825246 0.384818i 0.0363453 0.999339i \(-0.488428\pi\)
0.788901 + 0.614521i \(0.210651\pi\)
\(138\) 0 0
\(139\) 9.87278 + 11.7659i 0.837399 + 0.997973i 0.999936 + 0.0112706i \(0.00358761\pi\)
−0.162538 + 0.986702i \(0.551968\pi\)
\(140\) −0.164844 0.581869i −0.0139318 0.0491769i
\(141\) 0 0
\(142\) −17.7990 12.4630i −1.49366 1.04587i
\(143\) 9.31042 + 6.51922i 0.778576 + 0.545165i
\(144\) 0 0
\(145\) −0.00569727 0.00318182i −0.000473133 0.000264236i
\(146\) −11.9064 14.1895i −0.985382 1.17433i
\(147\) 0 0
\(148\) 6.59477 3.07519i 0.542086 0.252779i
\(149\) 6.22102 7.41392i 0.509646 0.607372i −0.448454 0.893806i \(-0.648025\pi\)
0.958100 + 0.286434i \(0.0924698\pi\)
\(150\) 0 0
\(151\) 3.10459i 0.252648i −0.991989 0.126324i \(-0.959682\pi\)
0.991989 0.126324i \(-0.0403179\pi\)
\(152\) −7.82266 1.16954i −0.634502 0.0948623i
\(153\) 0 0
\(154\) −0.392486 + 2.22590i −0.0316274 + 0.179368i
\(155\) −1.18435 + 7.32657i −0.0951296 + 0.588484i
\(156\) 0 0
\(157\) 6.82378 14.6336i 0.544597 1.16789i −0.420811 0.907148i \(-0.638254\pi\)
0.965408 0.260744i \(-0.0839678\pi\)
\(158\) 9.37049 + 0.819812i 0.745476 + 0.0652207i
\(159\) 0 0
\(160\) −7.70066 + 7.92359i −0.608791 + 0.626415i
\(161\) −0.378749 2.14799i −0.0298496 0.169285i
\(162\) 0 0
\(163\) −0.0798713 + 0.0214015i −0.00625600 + 0.00167629i −0.261946 0.965083i \(-0.584364\pi\)
0.255690 + 0.966759i \(0.417697\pi\)
\(164\) 0.0973387 + 0.168596i 0.00760088 + 0.0131651i
\(165\) 0 0
\(166\) −9.37854 25.7673i −0.727916 1.99993i
\(167\) 3.64429 + 7.81520i 0.282003 + 0.604758i 0.995379 0.0960237i \(-0.0306125\pi\)
−0.713376 + 0.700782i \(0.752835\pi\)
\(168\) 0 0
\(169\) 6.76389 + 1.19266i 0.520299 + 0.0917428i
\(170\) −15.8734 + 9.46902i −1.21744 + 0.726240i
\(171\) 0 0
\(172\) 0.133652 0.133652i 0.0101908 0.0101908i
\(173\) 5.41875 + 7.73878i 0.411980 + 0.588369i 0.970494 0.241127i \(-0.0775170\pi\)
−0.558514 + 0.829495i \(0.688628\pi\)
\(174\) 0 0
\(175\) −0.0842574 + 1.43296i −0.00636926 + 0.108322i
\(176\) 21.5514 7.84408i 1.62450 0.591270i
\(177\) 0 0
\(178\) −7.01944 + 26.1969i −0.526130 + 1.96354i
\(179\) 3.58941 6.21705i 0.268285 0.464684i −0.700134 0.714012i \(-0.746876\pi\)
0.968419 + 0.249328i \(0.0802096\pi\)
\(180\) 0 0
\(181\) −1.58706 + 0.279841i −0.117965 + 0.0208004i −0.232319 0.972640i \(-0.574631\pi\)
0.114354 + 0.993440i \(0.463520\pi\)
\(182\) −0.315595 1.17782i −0.0233935 0.0873056i
\(183\) 0 0
\(184\) −10.5609 + 8.86161i −0.778557 + 0.653287i
\(185\) −17.1821 + 1.75058i −1.26325 + 0.128705i
\(186\) 0 0
\(187\) 22.0354 1.92784i 1.61139 0.140978i
\(188\) −3.88992 + 2.72375i −0.283702 + 0.198650i
\(189\) 0 0
\(190\) −14.8041 7.76762i −1.07400 0.563522i
\(191\) −4.58246 −0.331575 −0.165787 0.986162i \(-0.553017\pi\)
−0.165787 + 0.986162i \(0.553017\pi\)
\(192\) 0 0
\(193\) −12.2179 + 1.06893i −0.879464 + 0.0769431i −0.517937 0.855419i \(-0.673300\pi\)
−0.361526 + 0.932362i \(0.617744\pi\)
\(194\) −3.49955 + 9.61494i −0.251253 + 0.690312i
\(195\) 0 0
\(196\) −4.99228 + 4.18902i −0.356591 + 0.299216i
\(197\) 0.162978 + 0.0436698i 0.0116117 + 0.00311135i 0.264620 0.964353i \(-0.414753\pi\)
−0.253009 + 0.967464i \(0.581420\pi\)
\(198\) 0 0
\(199\) 4.92176 0.867839i 0.348894 0.0615195i 0.00354503 0.999994i \(-0.498872\pi\)
0.345349 + 0.938474i \(0.387760\pi\)
\(200\) 8.11013 4.06743i 0.573473 0.287611i
\(201\) 0 0
\(202\) −4.94459 + 18.4535i −0.347900 + 1.29838i
\(203\) 7.30201e−5 0 0.000834624i 5.12501e−6 0 5.85791e-5i
\(204\) 0 0
\(205\) −0.0867220 0.453862i −0.00605693 0.0316991i
\(206\) −1.08417 0.909729i −0.0755379 0.0633838i
\(207\) 0 0
\(208\) −8.74896 + 8.74896i −0.606631 + 0.606631i
\(209\) 11.8999 + 16.0837i 0.823135 + 1.11253i
\(210\) 0 0
\(211\) −0.0936993 0.0165217i −0.00645053 0.00113740i 0.170422 0.985371i \(-0.445487\pi\)
−0.176873 + 0.984234i \(0.556598\pi\)
\(212\) 0.216828 + 2.47836i 0.0148918 + 0.170214i
\(213\) 0 0
\(214\) −9.14671 25.1304i −0.625257 1.71788i
\(215\) −0.403846 + 0.195379i −0.0275421 + 0.0133247i
\(216\) 0 0
\(217\) −0.920396 + 0.246619i −0.0624805 + 0.0167416i
\(218\) 9.29842 13.2795i 0.629768 0.899402i
\(219\) 0 0
\(220\) 9.66814 0.137948i 0.651826 0.00930042i
\(221\) −10.3344 + 5.96660i −0.695170 + 0.401357i
\(222\) 0 0
\(223\) −0.290463 + 0.622900i −0.0194508 + 0.0417125i −0.915793 0.401650i \(-0.868437\pi\)
0.896342 + 0.443363i \(0.146215\pi\)
\(224\) −1.33304 0.485187i −0.0890675 0.0324179i
\(225\) 0 0
\(226\) 0.549375 3.11566i 0.0365439 0.207250i
\(227\) 3.13234 + 3.13234i 0.207901 + 0.207901i 0.803375 0.595474i \(-0.203036\pi\)
−0.595474 + 0.803375i \(0.703036\pi\)
\(228\) 0 0
\(229\) 1.64132i 0.108462i −0.998528 0.0542308i \(-0.982729\pi\)
0.998528 0.0542308i \(-0.0172707\pi\)
\(230\) −27.2371 + 10.3559i −1.79596 + 0.682847i
\(231\) 0 0
\(232\) −0.00479939 + 0.00223799i −0.000315096 + 0.000146932i
\(233\) −8.75832 4.08407i −0.573776 0.267556i 0.113998 0.993481i \(-0.463634\pi\)
−0.687774 + 0.725925i \(0.741412\pi\)
\(234\) 0 0
\(235\) 10.8444 3.07223i 0.707413 0.200410i
\(236\) −1.73806 1.00347i −0.113138 0.0653204i
\(237\) 0 0
\(238\) −1.94388 1.36112i −0.126003 0.0882284i
\(239\) −5.41584 3.12684i −0.350321 0.202258i 0.314505 0.949256i \(-0.398161\pi\)
−0.664827 + 0.746998i \(0.731495\pi\)
\(240\) 0 0
\(241\) −8.06290 9.60899i −0.519377 0.618970i 0.441056 0.897479i \(-0.354604\pi\)
−0.960433 + 0.278510i \(0.910159\pi\)
\(242\) −15.6512 7.29827i −1.00610 0.469151i
\(243\) 0 0
\(244\) −2.42704 + 2.89243i −0.155375 + 0.185169i
\(245\) 14.4584 5.49726i 0.923712 0.351207i
\(246\) 0 0
\(247\) −9.48539 5.15081i −0.603541 0.327739i
\(248\) 4.25873 + 4.25873i 0.270430 + 0.270430i
\(249\) 0 0
\(250\) 19.0151 2.48730i 1.20262 0.157311i
\(251\) 8.58890 + 3.12610i 0.542127 + 0.197318i 0.598545 0.801089i \(-0.295746\pi\)
−0.0564182 + 0.998407i \(0.517968\pi\)
\(252\) 0 0
\(253\) 34.7395 + 3.03931i 2.18405 + 0.191080i
\(254\) 14.9679 8.64170i 0.939167 0.542228i
\(255\) 0 0
\(256\) 3.19183 + 18.1018i 0.199489 + 1.13136i
\(257\) 17.0588 24.3625i 1.06410 1.51969i 0.226040 0.974118i \(-0.427422\pi\)
0.838062 0.545576i \(-0.183689\pi\)
\(258\) 0 0
\(259\) −1.10871 1.92034i −0.0688918 0.119324i
\(260\) −4.69570 + 2.27176i −0.291215 + 0.140888i
\(261\) 0 0
\(262\) 14.1807 + 30.4105i 0.876084 + 1.87877i
\(263\) 1.37466 + 15.7124i 0.0847649 + 0.968867i 0.912858 + 0.408277i \(0.133870\pi\)
−0.828093 + 0.560590i \(0.810574\pi\)
\(264\) 0 0
\(265\) 1.44678 5.72494i 0.0888748 0.351680i
\(266\) 0.131154 2.14243i 0.00804154 0.131361i
\(267\) 0 0
\(268\) −4.90018 6.99818i −0.299326 0.427482i
\(269\) −8.63004 7.24147i −0.526183 0.441520i 0.340598 0.940209i \(-0.389371\pi\)
−0.866781 + 0.498689i \(0.833815\pi\)
\(270\) 0 0
\(271\) −19.5383 + 7.11134i −1.18686 + 0.431983i −0.858621 0.512610i \(-0.828679\pi\)
−0.328243 + 0.944593i \(0.606456\pi\)
\(272\) −2.09864 + 23.9876i −0.127249 + 1.45446i
\(273\) 0 0
\(274\) 9.14041 15.8317i 0.552192 0.956425i
\(275\) −21.7811 7.23086i −1.31345 0.436037i
\(276\) 0 0
\(277\) −1.97611 7.37493i −0.118733 0.443116i 0.880806 0.473477i \(-0.157001\pi\)
−0.999539 + 0.0303603i \(0.990335\pi\)
\(278\) 25.4474 + 6.81861i 1.52623 + 0.408953i
\(279\) 0 0
\(280\) 0.902933 + 0.735956i 0.0539606 + 0.0439818i
\(281\) 1.88216 5.17119i 0.112280 0.308488i −0.870807 0.491625i \(-0.836403\pi\)
0.983087 + 0.183137i \(0.0586253\pi\)
\(282\) 0 0
\(283\) −9.45513 + 6.62055i −0.562049 + 0.393551i −0.819791 0.572663i \(-0.805910\pi\)
0.257742 + 0.966214i \(0.417022\pi\)
\(284\) −11.9342 −0.708164
\(285\) 0 0
\(286\) 19.4954 1.15279
\(287\) 0.0485963 0.0340275i 0.00286855 0.00200858i
\(288\) 0 0
\(289\) −2.12857 + 5.84820i −0.125210 + 0.344012i
\(290\) −0.0111353 + 0.00113451i −0.000653889 + 6.66209e-5i
\(291\) 0 0
\(292\) −9.82698 2.63313i −0.575080 0.154092i
\(293\) −6.28567 23.4584i −0.367213 1.37046i −0.864397 0.502811i \(-0.832299\pi\)
0.497184 0.867645i \(-0.334367\pi\)
\(294\) 0 0
\(295\) 3.11369 + 3.60502i 0.181286 + 0.209893i
\(296\) −7.00780 + 12.1379i −0.407320 + 0.705499i
\(297\) 0 0
\(298\) 1.44683 16.5374i 0.0838127 0.957983i
\(299\) −17.6785 + 6.43445i −1.02237 + 0.372114i
\(300\) 0 0
\(301\) −0.0441232 0.0370237i −0.00254322 0.00213401i
\(302\) −3.05438 4.36211i −0.175760 0.251011i
\(303\) 0 0
\(304\) −19.4921 + 9.71707i −1.11795 + 0.557312i
\(305\) 7.69658 4.59126i 0.440705 0.262895i
\(306\) 0 0
\(307\) −0.397706 4.54580i −0.0226983 0.259442i −0.999062 0.0433075i \(-0.986210\pi\)
0.976364 0.216135i \(-0.0693451\pi\)
\(308\) 0.524644 + 1.12510i 0.0298943 + 0.0641086i
\(309\) 0 0
\(310\) 5.54400 + 11.4594i 0.314878 + 0.650850i
\(311\) 2.78134 + 4.81742i 0.157715 + 0.273171i 0.934044 0.357157i \(-0.116254\pi\)
−0.776329 + 0.630328i \(0.782921\pi\)
\(312\) 0 0
\(313\) −5.80877 + 8.29578i −0.328331 + 0.468905i −0.949049 0.315129i \(-0.897952\pi\)
0.620718 + 0.784034i \(0.286841\pi\)
\(314\) −4.80922 27.2744i −0.271400 1.53919i
\(315\) 0 0
\(316\) 4.47416 2.58316i 0.251691 0.145314i
\(317\) 25.6623 + 2.24516i 1.44134 + 0.126101i 0.780843 0.624728i \(-0.214790\pi\)
0.660497 + 0.750829i \(0.270346\pi\)
\(318\) 0 0
\(319\) 0.0125872 + 0.00458138i 0.000704750 + 0.000256508i
\(320\) 0.541558 3.35015i 0.0302740 0.187279i
\(321\) 0 0
\(322\) −2.64541 2.64541i −0.147423 0.147423i
\(323\) −20.5844 + 4.18678i −1.14535 + 0.232959i
\(324\) 0 0
\(325\) 12.2983 1.43055i 0.682186 0.0793528i
\(326\) −0.0911679 + 0.108650i −0.00504933 + 0.00601755i
\(327\) 0 0
\(328\) −0.339844 0.158472i −0.0187647 0.00875013i
\(329\) 0.930180 + 1.10855i 0.0512825 + 0.0611161i
\(330\) 0 0
\(331\) −11.0824 6.39845i −0.609146 0.351690i 0.163485 0.986546i \(-0.447726\pi\)
−0.772631 + 0.634855i \(0.781060\pi\)
\(332\) −12.3370 8.63849i −0.677083 0.474098i
\(333\) 0 0
\(334\) 12.8092 + 7.39540i 0.700889 + 0.404658i
\(335\) 5.52712 + 19.5097i 0.301979 + 1.06593i
\(336\) 0 0
\(337\) −18.5322 8.64171i −1.00951 0.470744i −0.153749 0.988110i \(-0.549135\pi\)
−0.855764 + 0.517366i \(0.826913\pi\)
\(338\) 10.6770 4.97876i 0.580751 0.270809i
\(339\) 0 0
\(340\) −4.15860 + 9.26085i −0.225532 + 0.502240i
\(341\) 15.2345i 0.824996i
\(342\) 0 0
\(343\) 2.82529 + 2.82529i 0.152551 + 0.152551i
\(344\) −0.0632189 + 0.358532i −0.00340854 + 0.0193308i
\(345\) 0 0
\(346\) 15.2272 + 5.54227i 0.818622 + 0.297954i
\(347\) −7.46684 + 16.0127i −0.400841 + 0.859606i 0.597491 + 0.801875i \(0.296164\pi\)
−0.998332 + 0.0577308i \(0.981614\pi\)
\(348\) 0 0
\(349\) 10.6670 6.15858i 0.570990 0.329661i −0.186555 0.982445i \(-0.559732\pi\)
0.757545 + 0.652783i \(0.226399\pi\)
\(350\) 1.29140 + 2.09628i 0.0690283 + 0.112051i
\(351\) 0 0
\(352\) 13.0091 18.5789i 0.693386 0.990258i
\(353\) −5.51616 + 1.47805i −0.293596 + 0.0786687i −0.402610 0.915371i \(-0.631897\pi\)
0.109015 + 0.994040i \(0.465230\pi\)
\(354\) 0 0
\(355\) 26.7534 + 9.30737i 1.41992 + 0.493984i
\(356\) 5.09473 + 13.9976i 0.270020 + 0.741874i
\(357\) 0 0
\(358\) −1.07319 12.2666i −0.0567199 0.648312i
\(359\) 25.5870 + 4.51167i 1.35043 + 0.238117i 0.801621 0.597832i \(-0.203971\pi\)
0.548807 + 0.835949i \(0.315082\pi\)
\(360\) 0 0
\(361\) −12.9565 13.8971i −0.681919 0.731428i
\(362\) −1.95458 + 1.95458i −0.102731 + 0.102731i
\(363\) 0 0
\(364\) −0.513040 0.430491i −0.0268906 0.0225639i
\(365\) 19.9760 + 13.5668i 1.04559 + 0.710118i
\(366\) 0 0
\(367\) −0.00722438 + 0.0825751i −0.000377110 + 0.00431038i −0.996381 0.0850003i \(-0.972911\pi\)
0.996004 + 0.0893107i \(0.0284664\pi\)
\(368\) −9.82521 + 36.6682i −0.512175 + 1.91146i
\(369\) 0 0
\(370\) −22.4194 + 19.3639i −1.16553 + 1.00668i
\(371\) 0.746612 0.131648i 0.0387621 0.00683481i
\(372\) 0 0
\(373\) 2.53207 + 0.678465i 0.131105 + 0.0351296i 0.323775 0.946134i \(-0.395048\pi\)
−0.192670 + 0.981264i \(0.561715\pi\)
\(374\) 29.0641 24.3877i 1.50287 1.26106i
\(375\) 0 0
\(376\) 3.12835 8.59507i 0.161332 0.443257i
\(377\) −0.00719896 0.000629827i −0.000370765 3.24377e-5i
\(378\) 0 0
\(379\) −29.0243 −1.49088 −0.745440 0.666573i \(-0.767761\pi\)
−0.745440 + 0.666573i \(0.767761\pi\)
\(380\) −9.10760 + 1.16903i −0.467210 + 0.0599698i
\(381\) 0 0
\(382\) −6.43858 + 4.50835i −0.329427 + 0.230667i
\(383\) 21.0330 1.84015i 1.07473 0.0940271i 0.463979 0.885846i \(-0.346421\pi\)
0.610756 + 0.791819i \(0.290866\pi\)
\(384\) 0 0
\(385\) −0.298658 2.93135i −0.0152210 0.149396i
\(386\) −16.1151 + 13.5222i −0.820239 + 0.688262i
\(387\) 0 0
\(388\) 1.45452 + 5.42834i 0.0738420 + 0.275582i
\(389\) −4.17947 + 0.736954i −0.211908 + 0.0373650i −0.278594 0.960409i \(-0.589868\pi\)
0.0666864 + 0.997774i \(0.478757\pi\)
\(390\) 0 0
\(391\) −18.3063 + 31.7075i −0.925791 + 1.60352i
\(392\) 3.24884 12.1248i 0.164091 0.612397i
\(393\) 0 0
\(394\) 0.271956 0.0989839i 0.0137009 0.00498674i
\(395\) −12.0445 + 2.30141i −0.606025 + 0.115797i
\(396\) 0 0
\(397\) 11.8488 + 16.9218i 0.594674 + 0.849282i 0.997830 0.0658493i \(-0.0209757\pi\)
−0.403156 + 0.915131i \(0.632087\pi\)
\(398\) 6.06152 6.06152i 0.303837 0.303837i
\(399\) 0 0
\(400\) 11.8692 21.9837i 0.593462 1.09918i
\(401\) −17.8894 3.15438i −0.893354 0.157522i −0.291918 0.956443i \(-0.594293\pi\)
−0.601436 + 0.798921i \(0.705404\pi\)
\(402\) 0 0
\(403\) 3.47342 + 7.44878i 0.173024 + 0.371050i
\(404\) 3.58880 + 9.86014i 0.178549 + 0.490560i
\(405\) 0 0
\(406\) −0.000718529 0.00124453i −3.56600e−5 6.17649e-5i
\(407\) 34.2444 9.17575i 1.69743 0.454825i
\(408\) 0 0
\(409\) −2.14098 12.1421i −0.105865 0.600388i −0.990871 0.134810i \(-0.956958\pi\)
0.885007 0.465578i \(-0.154154\pi\)
\(410\) −0.568370 0.552379i −0.0280698 0.0272801i
\(411\) 0 0
\(412\) −0.774375 0.0677491i −0.0381507 0.00333776i
\(413\) −0.258468 + 0.554286i −0.0127184 + 0.0272746i
\(414\) 0 0
\(415\) 20.9194 + 28.9868i 1.02689 + 1.42291i
\(416\) −2.12474 + 12.0500i −0.104174 + 0.590800i
\(417\) 0 0
\(418\) 32.5436 + 10.8909i 1.59176 + 0.532691i
\(419\) 30.7781i 1.50361i −0.659386 0.751805i \(-0.729184\pi\)
0.659386 0.751805i \(-0.270816\pi\)
\(420\) 0 0
\(421\) 10.7205 12.7761i 0.522483 0.622671i −0.438683 0.898642i \(-0.644555\pi\)
0.961166 + 0.275971i \(0.0889994\pi\)
\(422\) −0.147907 + 0.0689701i −0.00720000 + 0.00335741i
\(423\) 0 0
\(424\) −3.08017 3.67081i −0.149586 0.178270i
\(425\) 16.5450 17.5172i 0.802549 0.849708i
\(426\) 0 0
\(427\) 0.942534 + 0.659969i 0.0456124 + 0.0319382i
\(428\) −12.0321 8.42495i −0.581593 0.407235i
\(429\) 0 0
\(430\) −0.375206 + 0.671832i −0.0180940 + 0.0323986i
\(431\) −9.97761 11.8908i −0.480604 0.572762i 0.470198 0.882561i \(-0.344183\pi\)
−0.950802 + 0.309799i \(0.899738\pi\)
\(432\) 0 0
\(433\) 11.6855 5.44902i 0.561568 0.261863i −0.121041 0.992648i \(-0.538623\pi\)
0.682608 + 0.730784i \(0.260845\pi\)
\(434\) −1.05057 + 1.25202i −0.0504291 + 0.0600990i
\(435\) 0 0
\(436\) 8.90391i 0.426420i
\(437\) −33.1052 + 0.865085i −1.58363 + 0.0413826i
\(438\) 0 0
\(439\) 5.84172 33.1300i 0.278810 1.58121i −0.447783 0.894142i \(-0.647786\pi\)
0.726593 0.687068i \(-0.241102\pi\)
\(440\) −15.1020 + 10.8989i −0.719960 + 0.519585i
\(441\) 0 0
\(442\) −8.65033 + 18.5507i −0.411454 + 0.882366i
\(443\) 16.6998 + 1.46104i 0.793431 + 0.0694162i 0.476662 0.879087i \(-0.341846\pi\)
0.316769 + 0.948503i \(0.397402\pi\)
\(444\) 0 0
\(445\) −0.504418 35.3525i −0.0239117 1.67587i
\(446\) 0.204711 + 1.16097i 0.00969333 + 0.0549736i
\(447\) 0 0
\(448\) 0.420860 0.112769i 0.0198838 0.00532784i
\(449\) −8.68158 15.0369i −0.409709 0.709637i 0.585148 0.810927i \(-0.301036\pi\)
−0.994857 + 0.101290i \(0.967703\pi\)
\(450\) 0 0
\(451\) 0.324406 + 0.891298i 0.0152757 + 0.0419696i
\(452\) −0.734361 1.57484i −0.0345414 0.0740743i
\(453\) 0 0
\(454\) 7.48278 + 1.31942i 0.351184 + 0.0619233i
\(455\) 0.814366 + 1.36517i 0.0381781 + 0.0640000i
\(456\) 0 0
\(457\) −4.18473 + 4.18473i −0.195753 + 0.195753i −0.798177 0.602423i \(-0.794202\pi\)
0.602423 + 0.798177i \(0.294202\pi\)
\(458\) −1.61478 2.30614i −0.0754535 0.107759i
\(459\) 0 0
\(460\) −8.99184 + 13.2398i −0.419247 + 0.617307i
\(461\) −13.1750 + 4.79530i −0.613620 + 0.223339i −0.630086 0.776525i \(-0.716981\pi\)
0.0164665 + 0.999864i \(0.494758\pi\)
\(462\) 0 0
\(463\) −3.72721 + 13.9101i −0.173218 + 0.646459i 0.823630 + 0.567127i \(0.191945\pi\)
−0.996848 + 0.0793316i \(0.974721\pi\)
\(464\) −0.00729090 + 0.0126282i −0.000338472 + 0.000586250i
\(465\) 0 0
\(466\) −16.3239 + 2.87835i −0.756190 + 0.133337i
\(467\) −2.26065 8.43685i −0.104610 0.390411i 0.893690 0.448684i \(-0.148107\pi\)
−0.998301 + 0.0582734i \(0.981440\pi\)
\(468\) 0 0
\(469\) −1.99433 + 1.67345i −0.0920898 + 0.0772725i
\(470\) 12.2144 14.9857i 0.563410 0.691238i
\(471\) 0 0
\(472\) 3.85094 0.336914i 0.177254 0.0155077i
\(473\) 0.754354 0.528204i 0.0346852 0.0242869i
\(474\) 0 0
\(475\) 21.3286 + 4.48228i 0.978623 + 0.205661i
\(476\) −1.30337 −0.0597399
\(477\) 0 0
\(478\) −10.6858 + 0.934886i −0.488757 + 0.0427607i
\(479\) 6.83164 18.7698i 0.312145 0.857613i −0.680078 0.733140i \(-0.738054\pi\)
0.992223 0.124473i \(-0.0397239\pi\)
\(480\) 0 0
\(481\) −14.6514 + 12.2940i −0.668048 + 0.560558i
\(482\) −20.7824 5.56862i −0.946611 0.253644i
\(483\) 0 0
\(484\) −9.34084 + 1.64704i −0.424584 + 0.0748656i
\(485\) 0.972859 13.3033i 0.0441753 0.604072i
\(486\) 0 0
\(487\) 3.44824 12.8690i 0.156254 0.583150i −0.842740 0.538320i \(-0.819059\pi\)
0.998995 0.0448291i \(-0.0142743\pi\)
\(488\) 0.633859 7.24504i 0.0286935 0.327968i
\(489\) 0 0
\(490\) 14.9064 21.9485i 0.673403 0.991532i
\(491\) 18.9123 + 15.8693i 0.853501 + 0.716172i 0.960558 0.278081i \(-0.0896983\pi\)
−0.107057 + 0.994253i \(0.534143\pi\)
\(492\) 0 0
\(493\) −0.00994447 + 0.00994447i −0.000447876 + 0.000447876i
\(494\) −18.3950 + 2.09483i −0.827629 + 0.0942507i
\(495\) 0 0
\(496\) 16.3323 + 2.87982i 0.733341 + 0.129308i
\(497\) 0.316966 + 3.62294i 0.0142179 + 0.162511i
\(498\) 0 0
\(499\) −6.45641 17.7388i −0.289028 0.794099i −0.996203 0.0870601i \(-0.972253\pi\)
0.707175 0.707039i \(-0.249969\pi\)
\(500\) 7.77154 7.10942i 0.347554 0.317943i
\(501\) 0 0
\(502\) 15.1434 4.05766i 0.675883 0.181102i
\(503\) −8.21072 + 11.7261i −0.366098 + 0.522842i −0.959367 0.282162i \(-0.908948\pi\)
0.593269 + 0.805005i \(0.297837\pi\)
\(504\) 0 0
\(505\) −0.355319 24.9028i −0.0158115 1.10816i
\(506\) 51.8009 29.9073i 2.30283 1.32954i
\(507\) 0 0
\(508\) 4.01181 8.60335i 0.177995 0.381712i
\(509\) 32.7191 + 11.9088i 1.45025 + 0.527847i 0.942661 0.333752i \(-0.108315\pi\)
0.507588 + 0.861600i \(0.330537\pi\)
\(510\) 0 0
\(511\) −0.538357 + 3.05317i −0.0238155 + 0.135064i
\(512\) 4.63603 + 4.63603i 0.204886 + 0.204886i
\(513\) 0 0
\(514\) 51.0136i 2.25011i
\(515\) 1.68311 + 0.755805i 0.0741668 + 0.0333047i
\(516\) 0 0
\(517\) −20.9688 + 9.77791i −0.922206 + 0.430032i
\(518\) −3.44707 1.60740i −0.151456 0.0706250i
\(519\) 0 0
\(520\) 4.89907 8.77213i 0.214839 0.384684i
\(521\) −3.47559 2.00663i −0.152268 0.0879121i 0.421930 0.906628i \(-0.361353\pi\)
−0.574198 + 0.818716i \(0.694686\pi\)
\(522\) 0 0
\(523\) 26.4451 + 18.5171i 1.15636 + 0.809695i 0.984493 0.175424i \(-0.0561296\pi\)
0.171872 + 0.985119i \(0.445019\pi\)
\(524\) 15.9603 + 9.21469i 0.697230 + 0.402546i
\(525\) 0 0
\(526\) 17.3897 + 20.7243i 0.758228 + 0.903621i
\(527\) 14.4963 + 6.75973i 0.631468 + 0.294458i
\(528\) 0 0
\(529\) −22.3183 + 26.5979i −0.970360 + 1.15643i
\(530\) −3.59956 9.46722i −0.156355 0.411230i
\(531\) 0 0
\(532\) −0.615925 1.00522i −0.0267037 0.0435818i
\(533\) −0.361829 0.361829i −0.0156725 0.0156725i
\(534\) 0 0
\(535\) 20.4023 + 28.2703i 0.882067 + 1.22223i
\(536\) 15.4630 + 5.62808i 0.667900 + 0.243096i
\(537\) 0 0
\(538\) −19.2500 1.68416i −0.829927 0.0726092i
\(539\) −27.4977 + 15.8758i −1.18441 + 0.683820i
\(540\) 0 0
\(541\) −2.75071 15.6000i −0.118262 0.670698i −0.985083 0.172079i \(-0.944952\pi\)
0.866821 0.498620i \(-0.166160\pi\)
\(542\) −20.4559 + 29.2141i −0.878657 + 1.25485i
\(543\) 0 0
\(544\) 11.9063 + 20.6223i 0.510479 + 0.884176i
\(545\) −6.94408 + 19.9603i −0.297452 + 0.855004i
\(546\) 0 0
\(547\) 17.7724 + 38.1131i 0.759893 + 1.62960i 0.776806 + 0.629740i \(0.216838\pi\)
−0.0169130 + 0.999857i \(0.505384\pi\)
\(548\) −0.875093 10.0024i −0.0373821 0.427280i
\(549\) 0 0
\(550\) −37.7174 + 11.2691i −1.60828 + 0.480516i
\(551\) −0.0123690 0.00297025i −0.000526938 0.000126537i
\(552\) 0 0
\(553\) −0.903017 1.28964i −0.0384002 0.0548411i
\(554\) −10.0322 8.41800i −0.426227 0.357647i
\(555\) 0 0
\(556\) 13.5972 4.94896i 0.576648 0.209883i
\(557\) −1.68089 + 19.2126i −0.0712215 + 0.814066i 0.873635 + 0.486582i \(0.161756\pi\)
−0.944857 + 0.327484i \(0.893799\pi\)
\(558\) 0 0
\(559\) −0.248406 + 0.430251i −0.0105064 + 0.0181977i
\(560\) 3.19904 + 0.233943i 0.135184 + 0.00988589i
\(561\) 0 0
\(562\) −2.44303 9.11752i −0.103053 0.384599i
\(563\) −18.5388 4.96746i −0.781318 0.209354i −0.153952 0.988078i \(-0.549200\pi\)
−0.627366 + 0.778725i \(0.715867\pi\)
\(564\) 0 0
\(565\) 0.418042 + 4.10311i 0.0175871 + 0.172619i
\(566\) −6.77146 + 18.6044i −0.284626 + 0.782002i
\(567\) 0 0
\(568\) 18.8298 13.1848i 0.790080 0.553220i
\(569\) −32.0305 −1.34279 −0.671393 0.741101i \(-0.734304\pi\)
−0.671393 + 0.741101i \(0.734304\pi\)
\(570\) 0 0
\(571\) 24.9840 1.04555 0.522774 0.852471i \(-0.324897\pi\)
0.522774 + 0.852471i \(0.324897\pi\)
\(572\) 8.77121 6.14167i 0.366743 0.256796i
\(573\) 0 0
\(574\) 0.0348031 0.0956208i 0.00145265 0.00399114i
\(575\) 30.4830 22.6675i 1.27123 0.945299i
\(576\) 0 0
\(577\) 3.34706 + 0.896843i 0.139340 + 0.0373361i 0.327815 0.944742i \(-0.393688\pi\)
−0.188475 + 0.982078i \(0.560354\pi\)
\(578\) 2.76287 + 10.3112i 0.114920 + 0.428888i
\(579\) 0 0
\(580\) −0.00465250 + 0.00401841i −0.000193185 + 0.000166855i
\(581\) −2.29477 + 3.97466i −0.0952032 + 0.164897i
\(582\) 0 0
\(583\) −1.05642 + 12.0750i −0.0437525 + 0.500094i
\(584\) 18.4141 6.70217i 0.761980 0.277338i
\(585\) 0 0
\(586\) −31.9107 26.7763i −1.31822 1.10612i
\(587\) 18.1103 + 25.8643i 0.747494 + 1.06753i 0.995120 + 0.0986764i \(0.0314609\pi\)
−0.247625 + 0.968856i \(0.579650\pi\)
\(588\) 0 0
\(589\) 1.63699 + 14.3746i 0.0674508 + 0.592295i
\(590\) 7.92162 + 2.00191i 0.326128 + 0.0824173i
\(591\) 0 0
\(592\) 3.36363 + 38.4464i 0.138244 + 1.58014i
\(593\) 3.88609 + 8.33375i 0.159583 + 0.342226i 0.969799 0.243904i \(-0.0784283\pi\)
−0.810217 + 0.586131i \(0.800651\pi\)
\(594\) 0 0
\(595\) 2.92182 + 1.01649i 0.119783 + 0.0416720i
\(596\) −4.55884 7.89615i −0.186737 0.323439i
\(597\) 0 0
\(598\) −18.5088 + 26.4333i −0.756882 + 1.08094i
\(599\) 7.60255 + 43.1162i 0.310632 + 1.76168i 0.595734 + 0.803182i \(0.296861\pi\)
−0.285102 + 0.958497i \(0.592027\pi\)
\(600\) 0 0
\(601\) 26.5782 15.3449i 1.08415 0.625932i 0.152134 0.988360i \(-0.451385\pi\)
0.932012 + 0.362428i \(0.118052\pi\)
\(602\) −0.0984203 0.00861066i −0.00401131 0.000350944i
\(603\) 0 0
\(604\) −2.74840 1.00034i −0.111831 0.0407031i
\(605\) 22.2243 + 3.59260i 0.903546 + 0.146060i
\(606\) 0 0
\(607\) −7.95200 7.95200i −0.322762 0.322762i 0.527064 0.849826i \(-0.323293\pi\)
−0.849826 + 0.527064i \(0.823293\pi\)
\(608\) −10.2784 + 18.9280i −0.416845 + 0.767634i
\(609\) 0 0
\(610\) 6.29708 14.0231i 0.254961 0.567777i
\(611\) 8.02317 9.56164i 0.324583 0.386822i
\(612\) 0 0
\(613\) −36.0854 16.8269i −1.45748 0.679632i −0.477478 0.878644i \(-0.658449\pi\)
−0.979997 + 0.199012i \(0.936227\pi\)
\(614\) −5.03108 5.99580i −0.203038 0.241971i
\(615\) 0 0
\(616\) −2.07078 1.19557i −0.0834342 0.0481708i
\(617\) −21.3819 14.9718i −0.860803 0.602740i 0.0576212 0.998339i \(-0.481648\pi\)
−0.918424 + 0.395598i \(0.870537\pi\)
\(618\) 0 0
\(619\) 14.8409 + 8.56837i 0.596504 + 0.344392i 0.767665 0.640851i \(-0.221418\pi\)
−0.171161 + 0.985243i \(0.554752\pi\)
\(620\) 6.10438 + 3.40918i 0.245158 + 0.136916i
\(621\) 0 0
\(622\) 8.64743 + 4.03237i 0.346731 + 0.161683i
\(623\) 4.11404 1.91841i 0.164825 0.0768594i
\(624\) 0 0
\(625\) −22.9664 + 9.87654i −0.918655 + 0.395062i
\(626\) 17.3708i 0.694277i
\(627\) 0 0
\(628\) −10.7560 10.7560i −0.429213 0.429213i
\(629\) −6.46350 + 36.6563i −0.257716 + 1.46158i
\(630\) 0 0
\(631\) 20.1799 + 7.34487i 0.803348 + 0.292395i 0.710873 0.703320i \(-0.248300\pi\)
0.0924747 + 0.995715i \(0.470522\pi\)
\(632\) −4.20549 + 9.01871i −0.167286 + 0.358745i
\(633\) 0 0
\(634\) 38.2657 22.0927i 1.51973 0.877415i
\(635\) −15.7031 + 16.1577i −0.623159 + 0.641200i
\(636\) 0 0
\(637\) 9.82513 14.0317i 0.389286 0.555958i
\(638\) 0.0221930 0.00594660i 0.000878629 0.000235428i
\(639\) 0 0
\(640\) −12.1590 25.1325i −0.480625 0.993449i
\(641\) −12.0700 33.1619i −0.476735 1.30982i −0.912249 0.409636i \(-0.865656\pi\)
0.435515 0.900182i \(-0.356566\pi\)
\(642\) 0 0
\(643\) 1.64241 + 18.7728i 0.0647702 + 0.740327i 0.957254 + 0.289248i \(0.0934052\pi\)
−0.892484 + 0.451079i \(0.851039\pi\)
\(644\) −2.02359 0.356814i −0.0797407 0.0140604i
\(645\) 0 0
\(646\) −24.8031 + 26.1341i −0.975864 + 1.02823i
\(647\) 17.6606 17.6606i 0.694309 0.694309i −0.268868 0.963177i \(-0.586650\pi\)
0.963177 + 0.268868i \(0.0866496\pi\)
\(648\) 0 0
\(649\) −7.49049 6.28527i −0.294027 0.246718i
\(650\) 15.8723 14.1094i 0.622562 0.553416i
\(651\) 0 0
\(652\) −0.00678943 + 0.0776036i −0.000265895 + 0.00303919i
\(653\) 1.44781 5.40330i 0.0566572 0.211447i −0.931794 0.362988i \(-0.881757\pi\)
0.988451 + 0.151540i \(0.0484233\pi\)
\(654\) 0 0
\(655\) −28.5925 33.1043i −1.11720 1.29349i
\(656\) −1.01685 + 0.179297i −0.0397012 + 0.00700039i
\(657\) 0 0
\(658\) 2.39757 + 0.642427i 0.0934669 + 0.0250444i
\(659\) −5.03828 + 4.22762i −0.196264 + 0.164685i −0.735623 0.677391i \(-0.763111\pi\)
0.539360 + 0.842075i \(0.318666\pi\)
\(660\) 0 0
\(661\) −13.4502 + 36.9540i −0.523150 + 1.43734i 0.343844 + 0.939027i \(0.388271\pi\)
−0.866995 + 0.498317i \(0.833951\pi\)
\(662\) −21.8664 + 1.91306i −0.849860 + 0.0743531i
\(663\) 0 0
\(664\) 29.0091 1.12577
\(665\) 0.596781 + 2.73380i 0.0231422 + 0.106012i
\(666\) 0 0
\(667\) −0.0181620 + 0.0127172i −0.000703236 + 0.000492411i
\(668\) 8.09280 0.708028i 0.313120 0.0273944i
\(669\) 0 0
\(670\) 26.9601 + 21.9744i 1.04156 + 0.848947i
\(671\) −14.0924 + 11.8249i −0.544031 + 0.456496i
\(672\) 0 0
\(673\) 2.51767 + 9.39609i 0.0970492 + 0.362193i 0.997322 0.0731333i \(-0.0232998\pi\)
−0.900273 + 0.435326i \(0.856633\pi\)
\(674\) −34.5406 + 6.09045i −1.33046 + 0.234595i
\(675\) 0 0
\(676\) 3.23523 5.60359i 0.124432 0.215523i
\(677\) −10.5432 + 39.3476i −0.405207 + 1.51225i 0.398468 + 0.917182i \(0.369542\pi\)
−0.803675 + 0.595069i \(0.797125\pi\)
\(678\) 0 0
\(679\) 1.60928 0.585731i 0.0617586 0.0224783i
\(680\) −3.66983 19.2062i −0.140732 0.736522i
\(681\) 0 0
\(682\) −14.9881 21.4053i −0.573926 0.819651i
\(683\) 11.3169 11.3169i 0.433030 0.433030i −0.456628 0.889658i \(-0.650943\pi\)
0.889658 + 0.456628i \(0.150943\pi\)
\(684\) 0 0
\(685\) −5.83903 + 23.1052i −0.223098 + 0.882804i
\(686\) 6.74927 + 1.19008i 0.257688 + 0.0454374i
\(687\) 0 0
\(688\) 0.423668 + 0.908559i 0.0161522 + 0.0346385i
\(689\) −2.23652 6.14480i −0.0852048 0.234098i
\(690\) 0 0
\(691\) 1.45852 + 2.52622i 0.0554846 + 0.0961021i 0.892434 0.451179i \(-0.148996\pi\)
−0.836949 + 0.547281i \(0.815663\pi\)
\(692\) 8.59691 2.30353i 0.326805 0.0875672i
\(693\) 0 0
\(694\) 5.26243 + 29.8447i 0.199759 + 1.13289i
\(695\) −34.3410 + 0.489986i −1.30263 + 0.0185862i
\(696\) 0 0
\(697\) −0.992050 0.0867931i −0.0375766 0.00328752i
\(698\) 8.92866 19.1476i 0.337955 0.724747i
\(699\) 0 0
\(700\) 1.24141 + 0.536308i 0.0469209 + 0.0202705i
\(701\) 7.75792 43.9973i 0.293012 1.66176i −0.382160 0.924096i \(-0.624820\pi\)
0.675173 0.737660i \(-0.264069\pi\)
\(702\) 0 0
\(703\) −31.3254 + 12.3375i −1.18146 + 0.465316i
\(704\) 6.96614i 0.262546i
\(705\) 0 0
\(706\) −6.29634 + 7.50369i −0.236966 + 0.282405i
\(707\) 2.89799 1.35135i 0.108990 0.0508229i
\(708\) 0 0
\(709\) 27.4318 + 32.6919i 1.03022 + 1.22777i 0.973334 + 0.229390i \(0.0736733\pi\)
0.0568877 + 0.998381i \(0.481882\pi\)
\(710\) 46.7467 13.2434i 1.75437 0.497015i
\(711\) 0 0
\(712\) −23.5029 16.4569i −0.880808 0.616749i
\(713\) 20.6561 + 14.4636i 0.773577 + 0.541665i
\(714\) 0 0
\(715\) −24.4526 + 6.92744i −0.914477 + 0.259072i
\(716\) −4.34722 5.18081i −0.162463 0.193616i
\(717\) 0 0
\(718\) 40.3897 18.8340i 1.50733 0.702880i
\(719\) −11.9438 + 14.2341i −0.445429 + 0.530841i −0.941307 0.337550i \(-0.890402\pi\)
0.495879 + 0.868392i \(0.334846\pi\)
\(720\) 0 0
\(721\) 0.236881i 0.00882192i
\(722\) −31.8769 6.77927i −1.18633 0.252298i
\(723\) 0 0
\(724\) −0.263635 + 1.49515i −0.00979790 + 0.0555667i
\(725\) 0.0135636 0.00537979i 0.000503741 0.000199800i
\(726\) 0 0
\(727\) 7.46550 16.0098i 0.276880 0.593771i −0.717862 0.696186i \(-0.754879\pi\)
0.994742 + 0.102414i \(0.0326568\pi\)
\(728\) 1.28508 + 0.112430i 0.0476281 + 0.00416692i
\(729\) 0 0
\(730\) 41.4147 0.590915i 1.53283 0.0218708i
\(731\) 0.167893 + 0.952169i 0.00620975 + 0.0352173i
\(732\) 0 0
\(733\) 39.6034 10.6117i 1.46279 0.391952i 0.562335 0.826909i \(-0.309903\pi\)
0.900451 + 0.434957i \(0.143236\pi\)
\(734\) 0.0710890 + 0.123130i 0.00262394 + 0.00454480i
\(735\) 0 0
\(736\) 12.8399 + 35.2774i 0.473286 + 1.30034i
\(737\) −17.5910 37.7240i −0.647973 1.38958i
\(738\) 0 0
\(739\) −13.0374 2.29884i −0.479587 0.0845642i −0.0713718 0.997450i \(-0.522738\pi\)
−0.408215 + 0.912886i \(0.633849\pi\)
\(740\) −3.98654 + 15.7749i −0.146548 + 0.579895i
\(741\) 0 0
\(742\) 0.919509 0.919509i 0.0337562 0.0337562i
\(743\) −0.283145 0.404372i −0.0103876 0.0148350i 0.813925 0.580970i \(-0.197327\pi\)
−0.824312 + 0.566135i \(0.808438\pi\)
\(744\) 0 0
\(745\) 4.06161 + 21.2565i 0.148806 + 0.778779i
\(746\) 4.22518 1.53784i 0.154695 0.0563043i
\(747\) 0 0
\(748\) 5.39340 20.1284i 0.197202 0.735969i
\(749\) −2.23805 + 3.87642i −0.0817765 + 0.141641i
\(750\) 0 0
\(751\) −41.0072 + 7.23068i −1.49637 + 0.263851i −0.861100 0.508435i \(-0.830224\pi\)
−0.635275 + 0.772286i \(0.719113\pi\)
\(752\) −6.51869 24.3281i −0.237712 0.887154i
\(753\) 0 0
\(754\) −0.00949526 + 0.00796747i −0.000345797 + 0.000290158i
\(755\) 5.38106 + 4.38595i 0.195837 + 0.159621i
\(756\) 0 0
\(757\) −42.2960 + 3.70042i −1.53728 + 0.134494i −0.824081 0.566472i \(-0.808308\pi\)
−0.713195 + 0.700966i \(0.752752\pi\)
\(758\) −40.7807 + 28.5549i −1.48122 + 1.03716i
\(759\) 0 0
\(760\) 13.0784 11.9065i 0.474405 0.431893i
\(761\) 24.7086 0.895686 0.447843 0.894112i \(-0.352192\pi\)
0.447843 + 0.894112i \(0.352192\pi\)
\(762\) 0 0
\(763\) −2.70301 + 0.236483i −0.0978557 + 0.00856126i
\(764\) −1.47652 + 4.05671i −0.0534187 + 0.146767i
\(765\) 0 0
\(766\) 27.7420 23.2783i 1.00236 0.841080i
\(767\) 5.09543 + 1.36532i 0.183985 + 0.0492987i
\(768\) 0 0
\(769\) −28.5485 + 5.03387i −1.02948 + 0.181526i −0.662782 0.748812i \(-0.730624\pi\)
−0.366703 + 0.930338i \(0.619513\pi\)
\(770\) −3.30358 3.82487i −0.119053 0.137839i
\(771\) 0 0
\(772\) −2.99047 + 11.1606i −0.107629 + 0.401678i
\(773\) 2.81654 32.1932i 0.101304 1.15791i −0.760037 0.649880i \(-0.774819\pi\)
0.861341 0.508028i \(-0.169625\pi\)
\(774\) 0 0
\(775\) −11.0257 12.4033i −0.396053 0.445539i
\(776\) −8.29211 6.95791i −0.297669 0.249774i
\(777\) 0 0
\(778\) −5.14734 + 5.14734i −0.184541 + 0.184541i
\(779\) −0.401867 0.806130i −0.0143984 0.0288826i
\(780\) 0 0
\(781\) −57.2619 10.0968i −2.04899 0.361293i
\(782\) 5.47337 + 62.5609i 0.195727 + 2.23717i
\(783\) 0 0
\(784\) −11.8218 32.4802i −0.422208 1.16001i
\(785\) 15.7237 + 32.5008i 0.561204 + 1.16000i
\(786\) 0 0
\(787\) −17.9777 + 4.81711i −0.640836 + 0.171711i −0.564582 0.825377i \(-0.690963\pi\)
−0.0762539 + 0.997088i \(0.524296\pi\)
\(788\) 0.0911732 0.130209i 0.00324791 0.00463850i
\(789\) 0 0
\(790\) −14.6589 + 15.0833i −0.521542 + 0.536640i
\(791\) −0.458580 + 0.264761i −0.0163052 + 0.00941383i
\(792\) 0 0
\(793\) 4.19430 8.99471i 0.148944 0.319411i
\(794\) 33.2963 + 12.1189i 1.18164 + 0.430082i
\(795\) 0 0
\(796\) 0.817579 4.63672i 0.0289783 0.164344i
\(797\) 17.8040 + 17.8040i 0.630650 + 0.630650i 0.948231 0.317581i \(-0.102871\pi\)
−0.317581 + 0.948231i \(0.602871\pi\)
\(798\) 0 0
\(799\) 24.2912i 0.859362i
\(800\) −2.85466 24.5412i −0.100928 0.867661i
\(801\) 0 0
\(802\) −28.2389 + 13.1680i −0.997150 + 0.464979i
\(803\) −44.9235 20.9482i −1.58532 0.739245i
\(804\) 0 0
\(805\) 4.25810 + 2.37807i 0.150078 + 0.0838159i
\(806\) 12.2087 + 7.04867i 0.430032 + 0.248279i
\(807\) 0 0
\(808\) −16.5558 11.5925i −0.582430 0.407822i
\(809\) −9.34965 5.39802i −0.328716 0.189784i 0.326555 0.945178i \(-0.394112\pi\)
−0.655271 + 0.755394i \(0.727446\pi\)
\(810\) 0 0
\(811\) −29.9351 35.6753i −1.05116 1.25273i −0.966595 0.256310i \(-0.917493\pi\)
−0.0845686 0.996418i \(-0.526951\pi\)
\(812\) −0.000715340 0 0.000333569i −2.51035e−5 0 1.17060e-5i
\(813\) 0 0
\(814\) 39.0877 46.5829i 1.37002 1.63273i
\(815\) 0.0757425 0.168672i 0.00265314 0.00590833i
\(816\) 0 0
\(817\) −0.655017 + 0.579447i −0.0229161 + 0.0202723i
\(818\) −14.9539 14.9539i −0.522852 0.522852i
\(819\) 0 0
\(820\) −0.429733 0.0694673i −0.0150069 0.00242590i
\(821\) −42.5776 15.4970i −1.48597 0.540848i −0.533583 0.845748i \(-0.679155\pi\)
−0.952384 + 0.304900i \(0.901377\pi\)
\(822\) 0 0
\(823\) −54.7548 4.79043i −1.90863 0.166984i −0.929312 0.369296i \(-0.879599\pi\)
−0.979321 + 0.202312i \(0.935154\pi\)
\(824\) 1.29666 0.748626i 0.0451712 0.0260796i
\(825\) 0 0
\(826\) 0.182161 + 1.03309i 0.00633820 + 0.0359457i
\(827\) 4.05406 5.78980i 0.140973 0.201331i −0.742456 0.669894i \(-0.766339\pi\)
0.883430 + 0.468563i \(0.155228\pi\)
\(828\) 0 0
\(829\) −3.92941 6.80594i −0.136474 0.236380i 0.789685 0.613512i \(-0.210244\pi\)
−0.926160 + 0.377132i \(0.876910\pi\)
\(830\) 57.9108 + 20.1469i 2.01011 + 0.699309i
\(831\) 0 0
\(832\) −1.58826 3.40603i −0.0550630 0.118083i
\(833\) −2.90546 33.2095i −0.100668 1.15064i
\(834\) 0 0
\(835\) −18.6942 4.72429i −0.646938 0.163491i
\(836\) 18.0727 5.35231i 0.625057 0.185113i
\(837\) 0 0
\(838\) −30.2804 43.2448i −1.04602 1.49387i
\(839\) 13.3579 + 11.2087i 0.461168 + 0.386966i 0.843560 0.537034i \(-0.180455\pi\)
−0.382393 + 0.924000i \(0.624900\pi\)
\(840\) 0 0
\(841\) 27.2511 9.91858i 0.939692 0.342020i
\(842\) 2.49327 28.4982i 0.0859238 0.982113i
\(843\) 0 0
\(844\) −0.0448173 + 0.0776258i −0.00154267 + 0.00267199i
\(845\) −11.6228 + 10.0387i −0.399835 + 0.345341i
\(846\) 0 0
\(847\) 0.748091 + 2.79191i 0.0257047 + 0.0959313i
\(848\) −12.7453 3.41511i −0.437677 0.117275i
\(849\) 0 0
\(850\) 6.01265 40.8899i 0.206232 1.40251i
\(851\) −20.0702 + 55.1425i −0.687998 + 1.89026i
\(852\) 0 0
\(853\) 40.2152 28.1590i 1.37694 0.964146i 0.377673 0.925939i \(-0.376724\pi\)
0.999270 0.0382064i \(-0.0121644\pi\)
\(854\) 1.97360 0.0675354
\(855\) 0 0
\(856\) 28.2920 0.967001
\(857\) −0.0902309 + 0.0631803i −0.00308223 + 0.00215820i −0.575117 0.818071i \(-0.695043\pi\)
0.572034 + 0.820230i \(0.306154\pi\)
\(858\) 0 0
\(859\) −13.8823 + 38.1414i −0.473659 + 1.30137i 0.441132 + 0.897442i \(0.354577\pi\)
−0.914792 + 0.403926i \(0.867645\pi\)
\(860\) 0.0428389 + 0.420467i 0.00146079 + 0.0143378i
\(861\) 0 0
\(862\) −25.7176 6.89101i −0.875945 0.234709i
\(863\) −4.79433 17.8927i −0.163201 0.609074i −0.998263 0.0589178i \(-0.981235\pi\)
0.835062 0.550156i \(-0.185432\pi\)
\(864\) 0 0
\(865\) −21.0686 1.54073i −0.716352 0.0523862i
\(866\) 11.0578 19.1526i 0.375759 0.650833i
\(867\) 0 0
\(868\) −0.0782379 + 0.894263i −0.00265557 + 0.0303533i
\(869\) 23.6531 8.60903i 0.802377 0.292041i
\(870\) 0 0
\(871\) 17.2019 + 14.4341i 0.582865 + 0.489082i
\(872\) 9.83693 + 14.0486i 0.333121 + 0.475745i
\(873\) 0 0
\(874\) −45.6634 + 33.7853i −1.54459 + 1.14280i
\(875\) −2.36466 2.17043i −0.0799401 0.0733740i
\(876\) 0 0
\(877\) −2.69772 30.8351i −0.0910956 1.04123i −0.894880 0.446307i \(-0.852739\pi\)
0.803784 0.594921i \(-0.202817\pi\)
\(878\) −24.3863 52.2966i −0.822998 1.76493i
\(879\) 0 0
\(880\) −16.8506 + 48.4358i −0.568033 + 1.63277i
\(881\) −0.542908 0.940344i −0.0182910 0.0316810i 0.856735 0.515757i \(-0.172489\pi\)
−0.875026 + 0.484076i \(0.839156\pi\)
\(882\) 0 0
\(883\) 15.4242 22.0280i 0.519065 0.741302i −0.470966 0.882151i \(-0.656095\pi\)
0.990031 + 0.140850i \(0.0449834\pi\)
\(884\) 1.95217 + 11.0713i 0.0656585 + 0.372368i
\(885\) 0 0
\(886\) 24.9015 14.3769i 0.836582 0.483001i
\(887\) −23.4968 2.05570i −0.788946 0.0690238i −0.314441 0.949277i \(-0.601817\pi\)
−0.474504 + 0.880253i \(0.657373\pi\)
\(888\) 0 0
\(889\) −2.71832 0.989389i −0.0911696 0.0331830i
\(890\) −35.4895 49.1758i −1.18961 1.64838i
\(891\) 0 0
\(892\) 0.457845 + 0.457845i 0.0153298 + 0.0153298i
\(893\) 18.7345 11.4791i 0.626927 0.384134i
\(894\) 0 0
\(895\) 5.70487 + 15.0044i 0.190693 + 0.501542i
\(896\) 2.30409 2.74591i 0.0769743 0.0917344i
\(897\) 0 0
\(898\) −26.9918 12.5865i −0.900729 0.420017i
\(899\) 0.00622611 + 0.00741999i 0.000207652 + 0.000247471i
\(900\) 0 0
\(901\) −11.0211 6.36302i −0.367165 0.211983i
\(902\) 1.33269 + 0.933160i 0.0443737 + 0.0310708i
\(903\) 0 0
\(904\) 2.89854 + 1.67347i 0.0964040 + 0.0556589i
\(905\) 1.75705 3.14613i 0.0584064 0.104581i
\(906\) 0 0
\(907\) 5.90696 + 2.75446i 0.196137 + 0.0914603i 0.518205 0.855256i \(-0.326600\pi\)
−0.322068 + 0.946716i \(0.604378\pi\)
\(908\) 3.78225 1.76369i 0.125518 0.0585301i
\(909\) 0 0
\(910\) 2.48731 + 1.11693i 0.0824537 + 0.0370260i
\(911\) 27.6418i 0.915812i −0.889001 0.457906i \(-0.848600\pi\)
0.889001 0.457906i \(-0.151400\pi\)
\(912\) 0 0
\(913\) −51.8863 51.8863i −1.71719 1.71719i
\(914\) −1.76271 + 9.99681i −0.0583052 + 0.330665i
\(915\) 0 0
\(916\) −1.45301 0.528854i −0.0480089 0.0174738i
\(917\) 2.37346 5.08991i 0.0783787 0.168084i
\(918\) 0 0
\(919\) −23.3008 + 13.4527i −0.768623 + 0.443764i −0.832383 0.554201i \(-0.813024\pi\)
0.0637605 + 0.997965i \(0.479691\pi\)
\(920\) −0.439802 30.8238i −0.0144998 1.01623i
\(921\) 0 0
\(922\) −13.7938 + 19.6995i −0.454274 + 0.648770i
\(923\) 30.2997 8.11879i 0.997328 0.267233i
\(924\) 0 0
\(925\) 21.2395 32.2541i 0.698350 1.06051i
\(926\) 8.44826 + 23.2114i 0.277627 + 0.762774i
\(927\) 0 0
\(928\) 0.00125682 + 0.0143655i 4.12570e−5 + 0.000471570i
\(929\) −49.9574 8.80883i −1.63905 0.289008i −0.723232 0.690605i \(-0.757344\pi\)
−0.915817 + 0.401597i \(0.868455\pi\)
\(930\) 0 0
\(931\) 24.2397 17.9344i 0.794424 0.587776i
\(932\) −6.43755 + 6.43755i −0.210869 + 0.210869i
\(933\) 0 0
\(934\) −11.4767 9.63011i −0.375530 0.315107i
\(935\) −27.7886 + 40.9165i −0.908785 + 1.33811i
\(936\) 0 0
\(937\) 0.786309 8.98755i 0.0256876 0.293610i −0.972474 0.233009i \(-0.925143\pi\)
0.998162 0.0606010i \(-0.0193017\pi\)
\(938\) −1.15576 + 4.31336i −0.0377369 + 0.140836i
\(939\) 0 0
\(940\) 0.774450 10.5902i 0.0252598 0.345413i
\(941\) 1.15162 0.203063i 0.0375419 0.00661965i −0.154846 0.987939i \(-0.549488\pi\)
0.192388 + 0.981319i \(0.438377\pi\)
\(942\) 0 0
\(943\) −1.51648 0.406339i −0.0493833 0.0132322i
\(944\) 8.15412 6.84212i 0.265394 0.222692i
\(945\) 0 0
\(946\) 0.540244 1.48431i 0.0175648 0.0482590i
\(947\) −5.76927 + 0.504745i −0.187476 + 0.0164020i −0.180507 0.983574i \(-0.557774\pi\)
−0.00696893 + 0.999976i \(0.502218\pi\)
\(948\) 0 0
\(949\) 26.7411 0.868051
\(950\) 34.3776 14.6858i 1.11536 0.476471i
\(951\) 0 0
\(952\) 2.05646 1.43995i 0.0666503 0.0466690i
\(953\) −2.09745 + 0.183503i −0.0679431 + 0.00594425i −0.121077 0.992643i \(-0.538635\pi\)
0.0531335 + 0.998587i \(0.483079\pi\)
\(954\) 0 0
\(955\) 6.47378 7.94258i 0.209487 0.257016i
\(956\) −4.51315 + 3.78698i −0.145966 + 0.122480i
\(957\) 0 0
\(958\) −8.86741 33.0936i −0.286493 1.06921i
\(959\) −3.01324 + 0.531315i −0.0973025 + 0.0171571i
\(960\) 0 0
\(961\) −9.99187 + 17.3064i −0.322319 + 0.558272i
\(962\) −8.49082 + 31.6882i −0.273755 + 1.02167i
\(963\) 0 0
\(964\) −11.1045 + 4.04172i −0.357653 + 0.130175i
\(965\) 15.4079 22.6869i 0.495998 0.730317i
\(966\) 0 0
\(967\) 24.5703 + 35.0900i 0.790127 + 1.12842i 0.988931 + 0.148379i \(0.0474055\pi\)
−0.198804 + 0.980039i \(0.563706\pi\)
\(968\) 12.9184 12.9184i 0.415212 0.415212i
\(969\) 0 0
\(970\) −11.7212 19.6490i −0.376347 0.630890i
\(971\) −29.4711 5.19655i −0.945772 0.166765i −0.320567 0.947226i \(-0.603874\pi\)
−0.625205 + 0.780461i \(0.714985\pi\)
\(972\) 0 0
\(973\) −1.86352 3.99633i −0.0597417 0.128117i
\(974\) −7.81592 21.4741i −0.250438 0.688073i
\(975\) 0 0
\(976\) −10.0131 17.3431i −0.320511 0.555141i
\(977\) 18.2636 4.89371i 0.584303 0.156564i 0.0454549 0.998966i \(-0.485526\pi\)
0.538848 + 0.842403i \(0.318860\pi\)
\(978\) 0 0
\(979\) 12.6026 + 71.4730i 0.402782 + 2.28429i
\(980\) −0.207901 14.5709i −0.00664115 0.465449i
\(981\) 0 0
\(982\) 42.1854 + 3.69075i 1.34619 + 0.117777i
\(983\) −21.6053 + 46.3328i −0.689103 + 1.47779i 0.180264 + 0.983618i \(0.442305\pi\)
−0.869367 + 0.494168i \(0.835473\pi\)
\(984\) 0 0
\(985\) −0.305935 + 0.220789i −0.00974792 + 0.00703493i
\(986\) −0.00418885 + 0.0237561i −0.000133400 + 0.000756549i
\(987\) 0 0
\(988\) −7.61618 + 6.73748i −0.242303 + 0.214348i
\(989\) 1.52428i 0.0484694i
\(990\) 0 0
\(991\) 35.3727 42.1556i 1.12365 1.33912i 0.189648 0.981852i \(-0.439265\pi\)
0.934003 0.357264i \(-0.116290\pi\)
\(992\) 14.8640 6.93120i 0.471933 0.220066i
\(993\) 0 0
\(994\) 4.00970 + 4.77857i 0.127180 + 0.151567i
\(995\) −5.44894 + 9.75671i −0.172743 + 0.309308i
\(996\) 0 0
\(997\) 11.6457 + 8.15440i 0.368823 + 0.258252i 0.743264 0.668998i \(-0.233277\pi\)
−0.374441 + 0.927251i \(0.622166\pi\)
\(998\) −26.5235 18.5720i −0.839588 0.587886i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.dl.a.838.6 96
3.2 odd 2 95.2.r.a.78.3 yes 96
5.2 odd 4 inner 855.2.dl.a.667.6 96
15.2 even 4 95.2.r.a.2.3 96
15.8 even 4 475.2.bb.b.382.6 96
15.14 odd 2 475.2.bb.b.268.6 96
19.10 odd 18 inner 855.2.dl.a.523.6 96
57.29 even 18 95.2.r.a.48.3 yes 96
95.67 even 36 inner 855.2.dl.a.352.6 96
285.29 even 18 475.2.bb.b.143.6 96
285.143 odd 36 475.2.bb.b.257.6 96
285.257 odd 36 95.2.r.a.67.3 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.r.a.2.3 96 15.2 even 4
95.2.r.a.48.3 yes 96 57.29 even 18
95.2.r.a.67.3 yes 96 285.257 odd 36
95.2.r.a.78.3 yes 96 3.2 odd 2
475.2.bb.b.143.6 96 285.29 even 18
475.2.bb.b.257.6 96 285.143 odd 36
475.2.bb.b.268.6 96 15.14 odd 2
475.2.bb.b.382.6 96 15.8 even 4
855.2.dl.a.352.6 96 95.67 even 36 inner
855.2.dl.a.523.6 96 19.10 odd 18 inner
855.2.dl.a.667.6 96 5.2 odd 4 inner
855.2.dl.a.838.6 96 1.1 even 1 trivial