Properties

Label 855.2.dl.a.523.6
Level $855$
Weight $2$
Character 855.523
Analytic conductor $6.827$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(127,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([0, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.dl (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,12,0,0,12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 523.6
Character \(\chi\) \(=\) 855.523
Dual form 855.2.dl.a.667.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.983828 - 1.40505i) q^{2} +(-0.322212 - 0.885271i) q^{4} +(-2.19633 + 0.419667i) q^{5} +(0.0743036 + 0.277305i) q^{7} +(1.75276 + 0.469650i) q^{8} +(-1.57116 + 3.49884i) q^{10} +(2.29500 + 3.97505i) q^{11} +(2.46682 - 0.215819i) q^{13} +(0.462730 + 0.168420i) q^{14} +(3.82765 - 3.21178i) q^{16} +(-3.94756 - 2.76411i) q^{17} +(1.73832 + 3.99728i) q^{19} +(1.07920 + 1.80913i) q^{20} +(7.84303 + 0.686176i) q^{22} +(6.88562 + 3.21082i) q^{23} +(4.64776 - 1.84346i) q^{25} +(2.12369 - 3.67833i) q^{26} +(0.221548 - 0.155130i) q^{28} +(-0.000506761 + 0.00287398i) q^{29} +(2.87440 + 1.65954i) q^{31} +(-0.430665 - 4.92252i) q^{32} +(-7.76743 + 2.82711i) q^{34} +(-0.279571 - 0.577871i) q^{35} +(-5.46158 - 5.46158i) q^{37} +(7.32659 + 1.49020i) q^{38} +(-4.04674 - 0.295934i) q^{40} +(-0.132829 - 0.158299i) q^{41} +(0.0847905 + 0.181834i) q^{43} +(2.77952 - 3.31250i) q^{44} +(11.2856 - 6.51576i) q^{46} +(2.89119 + 4.12905i) q^{47} +(5.99080 - 3.45879i) q^{49} +(1.98245 - 8.34398i) q^{50} +(-0.985897 - 2.11426i) q^{52} +(1.11603 - 2.39334i) q^{53} +(-6.70877 - 7.76740i) q^{55} +0.520945i q^{56} +(0.00353953 + 0.00353953i) q^{58} +(-0.369926 - 2.09795i) q^{59} +(-3.76621 + 1.37079i) q^{61} +(5.15965 - 2.40598i) q^{62} +(1.31435 + 0.758840i) q^{64} +(-5.32738 + 1.50925i) q^{65} +(7.42839 - 5.20141i) q^{67} +(-1.17503 + 4.38529i) q^{68} +(-1.08699 - 0.175714i) q^{70} +(-4.33266 + 11.9039i) q^{71} +(-10.7580 - 0.941200i) q^{73} +(-13.0471 + 2.30055i) q^{74} +(2.97856 - 2.82686i) q^{76} +(-0.931774 + 0.931774i) q^{77} +(-4.20092 + 3.52499i) q^{79} +(-7.05892 + 8.66048i) q^{80} +(-0.353099 + 0.0308922i) q^{82} +(-15.4419 + 4.13763i) q^{83} +(9.83016 + 4.41425i) q^{85} +(0.338905 + 0.0597581i) q^{86} +(2.15569 + 8.04514i) q^{88} +(12.1125 + 10.1636i) q^{89} +(0.243141 + 0.668024i) q^{91} +(0.623812 - 7.13020i) q^{92} +8.64596 q^{94} +(-5.49546 - 8.04984i) q^{95} +(-3.42156 + 4.88649i) q^{97} +(1.03414 - 11.8202i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{2} + 12 q^{5} + 18 q^{8} - 12 q^{10} + 12 q^{11} - 12 q^{13} + 12 q^{16} + 30 q^{17} + 84 q^{20} - 24 q^{22} + 12 q^{25} + 48 q^{26} - 36 q^{31} - 18 q^{32} + 30 q^{35} - 54 q^{38} + 54 q^{40}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.983828 1.40505i 0.695671 0.993521i −0.303501 0.952831i \(-0.598155\pi\)
0.999172 0.0406901i \(-0.0129556\pi\)
\(3\) 0 0
\(4\) −0.322212 0.885271i −0.161106 0.442635i
\(5\) −2.19633 + 0.419667i −0.982230 + 0.187681i
\(6\) 0 0
\(7\) 0.0743036 + 0.277305i 0.0280841 + 0.104811i 0.978545 0.206032i \(-0.0660551\pi\)
−0.950461 + 0.310844i \(0.899388\pi\)
\(8\) 1.75276 + 0.469650i 0.619693 + 0.166046i
\(9\) 0 0
\(10\) −1.57116 + 3.49884i −0.496844 + 1.10643i
\(11\) 2.29500 + 3.97505i 0.691967 + 1.19852i 0.971192 + 0.238297i \(0.0765891\pi\)
−0.279225 + 0.960226i \(0.590078\pi\)
\(12\) 0 0
\(13\) 2.46682 0.215819i 0.684172 0.0598573i 0.260230 0.965547i \(-0.416202\pi\)
0.423942 + 0.905689i \(0.360646\pi\)
\(14\) 0.462730 + 0.168420i 0.123670 + 0.0450121i
\(15\) 0 0
\(16\) 3.82765 3.21178i 0.956913 0.802946i
\(17\) −3.94756 2.76411i −0.957423 0.670395i −0.0132738 0.999912i \(-0.504225\pi\)
−0.944150 + 0.329517i \(0.893114\pi\)
\(18\) 0 0
\(19\) 1.73832 + 3.99728i 0.398799 + 0.917038i
\(20\) 1.07920 + 1.80913i 0.241317 + 0.404533i
\(21\) 0 0
\(22\) 7.84303 + 0.686176i 1.67214 + 0.146293i
\(23\) 6.88562 + 3.21082i 1.43575 + 0.669501i 0.975845 0.218466i \(-0.0701053\pi\)
0.459906 + 0.887968i \(0.347883\pi\)
\(24\) 0 0
\(25\) 4.64776 1.84346i 0.929552 0.368691i
\(26\) 2.12369 3.67833i 0.416489 0.721380i
\(27\) 0 0
\(28\) 0.221548 0.155130i 0.0418687 0.0293168i
\(29\) −0.000506761 0.00287398i −9.41031e−5 0.000533685i −0.984855 0.173381i \(-0.944531\pi\)
0.984761 + 0.173915i \(0.0556418\pi\)
\(30\) 0 0
\(31\) 2.87440 + 1.65954i 0.516258 + 0.298062i 0.735402 0.677631i \(-0.236993\pi\)
−0.219144 + 0.975692i \(0.570327\pi\)
\(32\) −0.430665 4.92252i −0.0761315 0.870187i
\(33\) 0 0
\(34\) −7.76743 + 2.82711i −1.33210 + 0.484846i
\(35\) −0.279571 0.577871i −0.0472562 0.0976781i
\(36\) 0 0
\(37\) −5.46158 5.46158i −0.897878 0.897878i 0.0973701 0.995248i \(-0.468957\pi\)
−0.995248 + 0.0973701i \(0.968957\pi\)
\(38\) 7.32659 + 1.49020i 1.18853 + 0.241742i
\(39\) 0 0
\(40\) −4.04674 0.295934i −0.639845 0.0467913i
\(41\) −0.132829 0.158299i −0.0207444 0.0247222i 0.755573 0.655065i \(-0.227359\pi\)
−0.776317 + 0.630343i \(0.782914\pi\)
\(42\) 0 0
\(43\) 0.0847905 + 0.181834i 0.0129304 + 0.0277294i 0.912667 0.408704i \(-0.134019\pi\)
−0.899737 + 0.436433i \(0.856241\pi\)
\(44\) 2.77952 3.31250i 0.419028 0.499379i
\(45\) 0 0
\(46\) 11.2856 6.51576i 1.66397 0.960696i
\(47\) 2.89119 + 4.12905i 0.421724 + 0.602284i 0.972652 0.232269i \(-0.0746150\pi\)
−0.550928 + 0.834553i \(0.685726\pi\)
\(48\) 0 0
\(49\) 5.99080 3.45879i 0.855829 0.494113i
\(50\) 1.98245 8.34398i 0.280360 1.18002i
\(51\) 0 0
\(52\) −0.985897 2.11426i −0.136719 0.293195i
\(53\) 1.11603 2.39334i 0.153299 0.328751i −0.814627 0.579985i \(-0.803058\pi\)
0.967926 + 0.251234i \(0.0808363\pi\)
\(54\) 0 0
\(55\) −6.70877 7.76740i −0.904610 1.04736i
\(56\) 0.520945i 0.0696142i
\(57\) 0 0
\(58\) 0.00353953 + 0.00353953i 0.000464763 + 0.000464763i
\(59\) −0.369926 2.09795i −0.0481602 0.273130i 0.951213 0.308536i \(-0.0998389\pi\)
−0.999373 + 0.0354053i \(0.988728\pi\)
\(60\) 0 0
\(61\) −3.76621 + 1.37079i −0.482214 + 0.175511i −0.571677 0.820479i \(-0.693707\pi\)
0.0894634 + 0.995990i \(0.471485\pi\)
\(62\) 5.15965 2.40598i 0.655276 0.305560i
\(63\) 0 0
\(64\) 1.31435 + 0.758840i 0.164294 + 0.0948550i
\(65\) −5.32738 + 1.50925i −0.660780 + 0.187199i
\(66\) 0 0
\(67\) 7.42839 5.20141i 0.907522 0.635454i −0.0237737 0.999717i \(-0.507568\pi\)
0.931296 + 0.364263i \(0.118679\pi\)
\(68\) −1.17503 + 4.38529i −0.142494 + 0.531794i
\(69\) 0 0
\(70\) −1.08699 0.175714i −0.129920 0.0210018i
\(71\) −4.33266 + 11.9039i −0.514192 + 1.41273i 0.362639 + 0.931930i \(0.381876\pi\)
−0.876830 + 0.480800i \(0.840346\pi\)
\(72\) 0 0
\(73\) −10.7580 0.941200i −1.25912 0.110159i −0.562017 0.827126i \(-0.689974\pi\)
−0.697108 + 0.716967i \(0.745530\pi\)
\(74\) −13.0471 + 2.30055i −1.51669 + 0.267433i
\(75\) 0 0
\(76\) 2.97856 2.82686i 0.341665 0.324263i
\(77\) −0.931774 + 0.931774i −0.106186 + 0.106186i
\(78\) 0 0
\(79\) −4.20092 + 3.52499i −0.472641 + 0.396592i −0.847757 0.530385i \(-0.822047\pi\)
0.375116 + 0.926978i \(0.377603\pi\)
\(80\) −7.05892 + 8.66048i −0.789212 + 0.968271i
\(81\) 0 0
\(82\) −0.353099 + 0.0308922i −0.0389933 + 0.00341147i
\(83\) −15.4419 + 4.13763i −1.69496 + 0.454164i −0.971664 0.236368i \(-0.924043\pi\)
−0.723301 + 0.690533i \(0.757376\pi\)
\(84\) 0 0
\(85\) 9.83016 + 4.41425i 1.06623 + 0.478793i
\(86\) 0.338905 + 0.0597581i 0.0365451 + 0.00644388i
\(87\) 0 0
\(88\) 2.15569 + 8.04514i 0.229797 + 0.857615i
\(89\) 12.1125 + 10.1636i 1.28392 + 1.07734i 0.992691 + 0.120683i \(0.0385084\pi\)
0.291228 + 0.956654i \(0.405936\pi\)
\(90\) 0 0
\(91\) 0.243141 + 0.668024i 0.0254881 + 0.0700280i
\(92\) 0.623812 7.13020i 0.0650369 0.743375i
\(93\) 0 0
\(94\) 8.64596 0.891763
\(95\) −5.49546 8.04984i −0.563823 0.825896i
\(96\) 0 0
\(97\) −3.42156 + 4.88649i −0.347407 + 0.496148i −0.954389 0.298567i \(-0.903491\pi\)
0.606982 + 0.794716i \(0.292380\pi\)
\(98\) 1.03414 11.8202i 0.104464 1.19402i
\(99\) 0 0
\(100\) −3.12952 3.52054i −0.312952 0.352054i
\(101\) −8.53219 7.15936i −0.848985 0.712383i 0.110581 0.993867i \(-0.464729\pi\)
−0.959566 + 0.281484i \(0.909173\pi\)
\(102\) 0 0
\(103\) −0.797004 0.213557i −0.0785312 0.0210424i 0.219340 0.975649i \(-0.429610\pi\)
−0.297871 + 0.954606i \(0.596276\pi\)
\(104\) 4.42509 + 0.780263i 0.433916 + 0.0765111i
\(105\) 0 0
\(106\) −2.26479 3.92272i −0.219975 0.381009i
\(107\) 15.0602 4.03536i 1.45592 0.390113i 0.557842 0.829947i \(-0.311630\pi\)
0.898079 + 0.439835i \(0.144963\pi\)
\(108\) 0 0
\(109\) −8.88129 3.23252i −0.850673 0.309620i −0.120358 0.992731i \(-0.538404\pi\)
−0.730315 + 0.683111i \(0.760627\pi\)
\(110\) −17.5139 + 1.78438i −1.66988 + 0.170134i
\(111\) 0 0
\(112\) 1.17505 + 0.822780i 0.111032 + 0.0777454i
\(113\) −1.30423 + 1.30423i −0.122692 + 0.122692i −0.765787 0.643095i \(-0.777650\pi\)
0.643095 + 0.765787i \(0.277650\pi\)
\(114\) 0 0
\(115\) −16.4706 4.16236i −1.53589 0.388142i
\(116\) 0.00270754 0.000477412i 0.000251389 4.43266e-5i
\(117\) 0 0
\(118\) −3.31168 1.54426i −0.304864 0.142161i
\(119\) 0.473183 1.30006i 0.0433767 0.119176i
\(120\) 0 0
\(121\) −5.03401 + 8.71916i −0.457637 + 0.792651i
\(122\) −1.77927 + 6.64034i −0.161088 + 0.601188i
\(123\) 0 0
\(124\) 0.542972 3.07935i 0.0487603 0.276534i
\(125\) −9.43439 + 5.99935i −0.843838 + 0.536598i
\(126\) 0 0
\(127\) −0.878208 10.0380i −0.0779284 0.890725i −0.930062 0.367402i \(-0.880247\pi\)
0.852134 0.523324i \(-0.175308\pi\)
\(128\) 11.3160 5.27675i 1.00020 0.466403i
\(129\) 0 0
\(130\) −3.12065 + 8.97008i −0.273699 + 0.786728i
\(131\) −3.39696 19.2651i −0.296794 1.68320i −0.659820 0.751423i \(-0.729368\pi\)
0.363026 0.931779i \(-0.381744\pi\)
\(132\) 0 0
\(133\) −0.979301 + 0.779058i −0.0849162 + 0.0675529i
\(134\) 15.5546i 1.34371i
\(135\) 0 0
\(136\) −5.62095 6.69879i −0.481992 0.574416i
\(137\) 4.50418 9.65926i 0.384818 0.825246i −0.614521 0.788901i \(-0.710651\pi\)
0.999339 0.0363453i \(-0.0115716\pi\)
\(138\) 0 0
\(139\) −9.87278 + 11.7659i −0.837399 + 0.997973i 0.162538 + 0.986702i \(0.448032\pi\)
−0.999936 + 0.0112706i \(0.996412\pi\)
\(140\) −0.421492 + 0.433694i −0.0356225 + 0.0366538i
\(141\) 0 0
\(142\) 12.4630 + 17.7990i 1.04587 + 1.49366i
\(143\) 6.51922 + 9.31042i 0.545165 + 0.778576i
\(144\) 0 0
\(145\) −9.30989e−5 0.00652489i −7.73144e−6 0.000541863i
\(146\) −11.9064 + 14.1895i −0.985382 + 1.17433i
\(147\) 0 0
\(148\) −3.07519 + 6.59477i −0.252779 + 0.542086i
\(149\) −6.22102 7.41392i −0.509646 0.607372i 0.448454 0.893806i \(-0.351975\pi\)
−0.958100 + 0.286434i \(0.907530\pi\)
\(150\) 0 0
\(151\) 3.10459i 0.252648i 0.991989 + 0.126324i \(0.0403179\pi\)
−0.991989 + 0.126324i \(0.959682\pi\)
\(152\) 1.16954 + 7.82266i 0.0948623 + 0.634502i
\(153\) 0 0
\(154\) 0.392486 + 2.22590i 0.0316274 + 0.179368i
\(155\) −7.00960 2.43861i −0.563024 0.195874i
\(156\) 0 0
\(157\) 14.6336 6.82378i 1.16789 0.544597i 0.260744 0.965408i \(-0.416032\pi\)
0.907148 + 0.420811i \(0.138254\pi\)
\(158\) 0.819812 + 9.37049i 0.0652207 + 0.745476i
\(159\) 0 0
\(160\) 3.01170 + 10.6308i 0.238096 + 0.840436i
\(161\) −0.378749 + 2.14799i −0.0298496 + 0.169285i
\(162\) 0 0
\(163\) 0.0214015 0.0798713i 0.00167629 0.00625600i −0.965083 0.261946i \(-0.915636\pi\)
0.966759 + 0.255690i \(0.0823025\pi\)
\(164\) −0.0973387 + 0.168596i −0.00760088 + 0.0131651i
\(165\) 0 0
\(166\) −9.37854 + 25.7673i −0.727916 + 1.99993i
\(167\) −7.81520 3.64429i −0.604758 0.282003i 0.0960237 0.995379i \(-0.469388\pi\)
−0.700782 + 0.713376i \(0.747165\pi\)
\(168\) 0 0
\(169\) −6.76389 + 1.19266i −0.520299 + 0.0917428i
\(170\) 15.8734 9.46902i 1.21744 0.726240i
\(171\) 0 0
\(172\) 0.133652 0.133652i 0.0101908 0.0101908i
\(173\) 7.73878 + 5.41875i 0.588369 + 0.411980i 0.829495 0.558514i \(-0.188628\pi\)
−0.241127 + 0.970494i \(0.577517\pi\)
\(174\) 0 0
\(175\) 0.856545 + 1.15187i 0.0647487 + 0.0870733i
\(176\) 21.5514 + 7.84408i 1.62450 + 0.591270i
\(177\) 0 0
\(178\) 26.1969 7.01944i 1.96354 0.526130i
\(179\) −3.58941 6.21705i −0.268285 0.464684i 0.700134 0.714012i \(-0.253124\pi\)
−0.968419 + 0.249328i \(0.919790\pi\)
\(180\) 0 0
\(181\) −1.58706 0.279841i −0.117965 0.0208004i 0.114354 0.993440i \(-0.463520\pi\)
−0.232319 + 0.972640i \(0.574631\pi\)
\(182\) 1.17782 + 0.315595i 0.0873056 + 0.0233935i
\(183\) 0 0
\(184\) 10.5609 + 8.86161i 0.778557 + 0.653287i
\(185\) 14.2875 + 9.70341i 1.05044 + 0.713409i
\(186\) 0 0
\(187\) 1.92784 22.0354i 0.140978 1.61139i
\(188\) 2.72375 3.88992i 0.198650 0.283702i
\(189\) 0 0
\(190\) −16.7170 0.198243i −1.21278 0.0143820i
\(191\) −4.58246 −0.331575 −0.165787 0.986162i \(-0.553017\pi\)
−0.165787 + 0.986162i \(0.553017\pi\)
\(192\) 0 0
\(193\) 1.06893 12.2179i 0.0769431 0.879464i −0.855419 0.517937i \(-0.826700\pi\)
0.932362 0.361526i \(-0.117744\pi\)
\(194\) 3.49955 + 9.61494i 0.251253 + 0.690312i
\(195\) 0 0
\(196\) −4.99228 4.18902i −0.356591 0.299216i
\(197\) −0.0436698 0.162978i −0.00311135 0.0116117i 0.964353 0.264620i \(-0.0852466\pi\)
−0.967464 + 0.253009i \(0.918580\pi\)
\(198\) 0 0
\(199\) −4.92176 0.867839i −0.348894 0.0615195i −0.00354503 0.999994i \(-0.501128\pi\)
−0.345349 + 0.938474i \(0.612240\pi\)
\(200\) 9.01218 1.04831i 0.637257 0.0741267i
\(201\) 0 0
\(202\) −18.4535 + 4.94459i −1.29838 + 0.347900i
\(203\) −0.000834624 0 7.30201e-5i −5.85791e−5 0 5.12501e-6i
\(204\) 0 0
\(205\) 0.358169 + 0.291934i 0.0250156 + 0.0203896i
\(206\) −1.08417 + 0.909729i −0.0755379 + 0.0633838i
\(207\) 0 0
\(208\) 8.74896 8.74896i 0.606631 0.606631i
\(209\) −11.8999 + 16.0837i −0.823135 + 1.11253i
\(210\) 0 0
\(211\) −0.0936993 + 0.0165217i −0.00645053 + 0.00113740i −0.176873 0.984234i \(-0.556598\pi\)
0.170422 + 0.985371i \(0.445487\pi\)
\(212\) −2.47836 0.216828i −0.170214 0.0148918i
\(213\) 0 0
\(214\) 9.14671 25.1304i 0.625257 1.71788i
\(215\) −0.262538 0.363784i −0.0179049 0.0248098i
\(216\) 0 0
\(217\) −0.246619 + 0.920396i −0.0167416 + 0.0624805i
\(218\) −13.2795 + 9.29842i −0.899402 + 0.629768i
\(219\) 0 0
\(220\) −4.71461 + 8.44183i −0.317859 + 0.569148i
\(221\) −10.3344 5.96660i −0.695170 0.401357i
\(222\) 0 0
\(223\) 0.622900 0.290463i 0.0417125 0.0194508i −0.401650 0.915793i \(-0.631563\pi\)
0.443363 + 0.896342i \(0.353785\pi\)
\(224\) 1.33304 0.485187i 0.0890675 0.0324179i
\(225\) 0 0
\(226\) 0.549375 + 3.11566i 0.0365439 + 0.207250i
\(227\) −3.13234 3.13234i −0.207901 0.207901i 0.595474 0.803375i \(-0.296964\pi\)
−0.803375 + 0.595474i \(0.796964\pi\)
\(228\) 0 0
\(229\) 1.64132i 0.108462i −0.998528 0.0542308i \(-0.982729\pi\)
0.998528 0.0542308i \(-0.0172707\pi\)
\(230\) −22.0525 + 19.0470i −1.45410 + 1.25592i
\(231\) 0 0
\(232\) −0.00223799 + 0.00479939i −0.000146932 + 0.000315096i
\(233\) −4.08407 8.75832i −0.267556 0.573776i 0.725925 0.687774i \(-0.241412\pi\)
−0.993481 + 0.113998i \(0.963634\pi\)
\(234\) 0 0
\(235\) −8.08285 7.85543i −0.527267 0.512432i
\(236\) −1.73806 + 1.00347i −0.113138 + 0.0653204i
\(237\) 0 0
\(238\) −1.36112 1.94388i −0.0882284 0.126003i
\(239\) 5.41584 3.12684i 0.350321 0.202258i −0.314505 0.949256i \(-0.601839\pi\)
0.664827 + 0.746998i \(0.268505\pi\)
\(240\) 0 0
\(241\) −8.06290 + 9.60899i −0.519377 + 0.618970i −0.960433 0.278510i \(-0.910159\pi\)
0.441056 + 0.897479i \(0.354604\pi\)
\(242\) 7.29827 + 15.6512i 0.469151 + 1.00610i
\(243\) 0 0
\(244\) 2.42704 + 2.89243i 0.155375 + 0.185169i
\(245\) −11.7063 + 10.1108i −0.747885 + 0.645955i
\(246\) 0 0
\(247\) 5.15081 + 9.48539i 0.327739 + 0.603541i
\(248\) 4.25873 + 4.25873i 0.270430 + 0.270430i
\(249\) 0 0
\(250\) −0.852420 + 19.1581i −0.0539118 + 1.21167i
\(251\) 8.58890 3.12610i 0.542127 0.197318i −0.0564182 0.998407i \(-0.517968\pi\)
0.598545 + 0.801089i \(0.295746\pi\)
\(252\) 0 0
\(253\) 3.03931 + 34.7395i 0.191080 + 2.18405i
\(254\) −14.9679 8.64170i −0.939167 0.542228i
\(255\) 0 0
\(256\) 3.19183 18.1018i 0.199489 1.13136i
\(257\) 24.3625 17.0588i 1.51969 1.06410i 0.545576 0.838062i \(-0.316311\pi\)
0.974118 0.226040i \(-0.0725779\pi\)
\(258\) 0 0
\(259\) 1.10871 1.92034i 0.0688918 0.119324i
\(260\) 3.05264 + 4.22988i 0.189317 + 0.262326i
\(261\) 0 0
\(262\) −30.4105 14.1807i −1.87877 0.876084i
\(263\) 15.7124 + 1.37466i 0.968867 + 0.0847649i 0.560590 0.828093i \(-0.310574\pi\)
0.408277 + 0.912858i \(0.366130\pi\)
\(264\) 0 0
\(265\) −1.44678 + 5.72494i −0.0888748 + 0.351680i
\(266\) 0.131154 + 2.14243i 0.00804154 + 0.131361i
\(267\) 0 0
\(268\) −6.99818 4.90018i −0.427482 0.299326i
\(269\) 8.63004 7.24147i 0.526183 0.441520i −0.340598 0.940209i \(-0.610629\pi\)
0.866781 + 0.498689i \(0.166185\pi\)
\(270\) 0 0
\(271\) −19.5383 7.11134i −1.18686 0.431983i −0.328243 0.944593i \(-0.606456\pi\)
−0.858621 + 0.512610i \(0.828679\pi\)
\(272\) −23.9876 + 2.09864i −1.45446 + 0.127249i
\(273\) 0 0
\(274\) −9.14041 15.8317i −0.552192 0.956425i
\(275\) 17.9944 + 14.2444i 1.08510 + 0.858967i
\(276\) 0 0
\(277\) 7.37493 + 1.97611i 0.443116 + 0.118733i 0.473477 0.880806i \(-0.342999\pi\)
−0.0303603 + 0.999539i \(0.509665\pi\)
\(278\) 6.81861 + 25.4474i 0.408953 + 1.52623i
\(279\) 0 0
\(280\) −0.218623 1.14417i −0.0130652 0.0683772i
\(281\) 1.88216 + 5.17119i 0.112280 + 0.308488i 0.983087 0.183137i \(-0.0586253\pi\)
−0.870807 + 0.491625i \(0.836403\pi\)
\(282\) 0 0
\(283\) 6.62055 9.45513i 0.393551 0.562049i −0.572663 0.819791i \(-0.694090\pi\)
0.966214 + 0.257742i \(0.0829785\pi\)
\(284\) 11.9342 0.708164
\(285\) 0 0
\(286\) 19.4954 1.15279
\(287\) 0.0340275 0.0485963i 0.00200858 0.00286855i
\(288\) 0 0
\(289\) 2.12857 + 5.84820i 0.125210 + 0.344012i
\(290\) −0.00925940 0.00628856i −0.000543731 0.000369277i
\(291\) 0 0
\(292\) 2.63313 + 9.82698i 0.154092 + 0.575080i
\(293\) −23.4584 6.28567i −1.37046 0.367213i −0.502811 0.864397i \(-0.667701\pi\)
−0.867645 + 0.497184i \(0.834367\pi\)
\(294\) 0 0
\(295\) 1.69292 + 4.45256i 0.0985657 + 0.259238i
\(296\) −7.00780 12.1379i −0.407320 0.705499i
\(297\) 0 0
\(298\) −16.5374 + 1.44683i −0.957983 + 0.0838127i
\(299\) 17.6785 + 6.43445i 1.02237 + 0.372114i
\(300\) 0 0
\(301\) −0.0441232 + 0.0370237i −0.00254322 + 0.00213401i
\(302\) 4.36211 + 3.05438i 0.251011 + 0.175760i
\(303\) 0 0
\(304\) 19.4921 + 9.71707i 1.11795 + 0.557312i
\(305\) 7.69658 4.59126i 0.440705 0.262895i
\(306\) 0 0
\(307\) 4.54580 + 0.397706i 0.259442 + 0.0226983i 0.216135 0.976364i \(-0.430655\pi\)
0.0433075 + 0.999062i \(0.486210\pi\)
\(308\) 1.12510 + 0.524644i 0.0641086 + 0.0298943i
\(309\) 0 0
\(310\) −10.3226 + 7.44968i −0.586284 + 0.423113i
\(311\) 2.78134 4.81742i 0.157715 0.273171i −0.776329 0.630328i \(-0.782921\pi\)
0.934044 + 0.357157i \(0.116254\pi\)
\(312\) 0 0
\(313\) 8.29578 5.80877i 0.468905 0.328331i −0.315129 0.949049i \(-0.602048\pi\)
0.784034 + 0.620718i \(0.213159\pi\)
\(314\) 4.80922 27.2744i 0.271400 1.53919i
\(315\) 0 0
\(316\) 4.47416 + 2.58316i 0.251691 + 0.145314i
\(317\) −2.24516 25.6623i −0.126101 1.44134i −0.750829 0.660497i \(-0.770346\pi\)
0.624728 0.780843i \(-0.285210\pi\)
\(318\) 0 0
\(319\) −0.0125872 + 0.00458138i −0.000704750 + 0.000256508i
\(320\) −3.20521 1.11508i −0.179177 0.0623347i
\(321\) 0 0
\(322\) 2.64541 + 2.64541i 0.147423 + 0.147423i
\(323\) 4.18678 20.5844i 0.232959 1.14535i
\(324\) 0 0
\(325\) 11.0673 5.55054i 0.613905 0.307888i
\(326\) −0.0911679 0.108650i −0.00504933 0.00601755i
\(327\) 0 0
\(328\) −0.158472 0.339844i −0.00875013 0.0187647i
\(329\) −0.930180 + 1.10855i −0.0512825 + 0.0611161i
\(330\) 0 0
\(331\) −11.0824 + 6.39845i −0.609146 + 0.351690i −0.772631 0.634855i \(-0.781060\pi\)
0.163485 + 0.986546i \(0.447726\pi\)
\(332\) 8.63849 + 12.3370i 0.474098 + 0.677083i
\(333\) 0 0
\(334\) −12.8092 + 7.39540i −0.700889 + 0.404658i
\(335\) −14.1324 + 14.5415i −0.772133 + 0.794486i
\(336\) 0 0
\(337\) 8.64171 + 18.5322i 0.470744 + 1.00951i 0.988110 + 0.153749i \(0.0491347\pi\)
−0.517366 + 0.855764i \(0.673087\pi\)
\(338\) −4.97876 + 10.6770i −0.270809 + 0.580751i
\(339\) 0 0
\(340\) 0.740409 10.1247i 0.0401543 0.549088i
\(341\) 15.2345i 0.824996i
\(342\) 0 0
\(343\) 2.82529 + 2.82529i 0.152551 + 0.152551i
\(344\) 0.0632189 + 0.358532i 0.00340854 + 0.0193308i
\(345\) 0 0
\(346\) 15.2272 5.54227i 0.818622 0.297954i
\(347\) −16.0127 + 7.46684i −0.859606 + 0.400841i −0.801875 0.597491i \(-0.796164\pi\)
−0.0577308 + 0.998332i \(0.518386\pi\)
\(348\) 0 0
\(349\) −10.6670 6.15858i −0.570990 0.329661i 0.186555 0.982445i \(-0.440268\pi\)
−0.757545 + 0.652783i \(0.773601\pi\)
\(350\) 2.46113 0.0702464i 0.131553 0.00375483i
\(351\) 0 0
\(352\) 18.5789 13.0091i 0.990258 0.693386i
\(353\) 1.47805 5.51616i 0.0786687 0.293596i −0.915371 0.402610i \(-0.868103\pi\)
0.994040 + 0.109015i \(0.0347696\pi\)
\(354\) 0 0
\(355\) 4.52030 27.9631i 0.239913 1.48413i
\(356\) 5.09473 13.9976i 0.270020 0.741874i
\(357\) 0 0
\(358\) −12.2666 1.07319i −0.648312 0.0567199i
\(359\) −25.5870 + 4.51167i −1.35043 + 0.238117i −0.801621 0.597832i \(-0.796029\pi\)
−0.548807 + 0.835949i \(0.684918\pi\)
\(360\) 0 0
\(361\) −12.9565 + 13.8971i −0.681919 + 0.731428i
\(362\) −1.95458 + 1.95458i −0.102731 + 0.102731i
\(363\) 0 0
\(364\) 0.513040 0.430491i 0.0268906 0.0225639i
\(365\) 24.0231 2.44757i 1.25742 0.128112i
\(366\) 0 0
\(367\) −0.0825751 + 0.00722438i −0.00431038 + 0.000377110i −0.0893107 0.996004i \(-0.528466\pi\)
0.0850003 + 0.996381i \(0.472911\pi\)
\(368\) 36.6682 9.82521i 1.91146 0.512175i
\(369\) 0 0
\(370\) 27.6902 10.5282i 1.43955 0.547334i
\(371\) 0.746612 + 0.131648i 0.0387621 + 0.00683481i
\(372\) 0 0
\(373\) 0.678465 + 2.53207i 0.0351296 + 0.131105i 0.981264 0.192670i \(-0.0617146\pi\)
−0.946134 + 0.323775i \(0.895048\pi\)
\(374\) −29.0641 24.3877i −1.50287 1.26106i
\(375\) 0 0
\(376\) 3.12835 + 8.59507i 0.161332 + 0.443257i
\(377\) −0.000629827 0.00719896i −3.24377e−5 0.000370765i
\(378\) 0 0
\(379\) 29.0243 1.49088 0.745440 0.666573i \(-0.232239\pi\)
0.745440 + 0.666573i \(0.232239\pi\)
\(380\) −5.35558 + 7.45873i −0.274736 + 0.382625i
\(381\) 0 0
\(382\) −4.50835 + 6.43858i −0.230667 + 0.329427i
\(383\) −1.84015 + 21.0330i −0.0940271 + 1.07473i 0.791819 + 0.610756i \(0.209134\pi\)
−0.885846 + 0.463979i \(0.846421\pi\)
\(384\) 0 0
\(385\) 1.65545 2.43752i 0.0843697 0.124228i
\(386\) −16.1151 13.5222i −0.820239 0.688262i
\(387\) 0 0
\(388\) 5.42834 + 1.45452i 0.275582 + 0.0738420i
\(389\) 4.17947 + 0.736954i 0.211908 + 0.0373650i 0.278594 0.960409i \(-0.410132\pi\)
−0.0666864 + 0.997774i \(0.521243\pi\)
\(390\) 0 0
\(391\) −18.3063 31.7075i −0.925791 1.60352i
\(392\) 12.1248 3.24884i 0.612397 0.164091i
\(393\) 0 0
\(394\) −0.271956 0.0989839i −0.0137009 0.00498674i
\(395\) 7.74730 9.50504i 0.389809 0.478251i
\(396\) 0 0
\(397\) −16.9218 11.8488i −0.849282 0.594674i 0.0658493 0.997830i \(-0.479024\pi\)
−0.915131 + 0.403156i \(0.867913\pi\)
\(398\) −6.06152 + 6.06152i −0.303837 + 0.303837i
\(399\) 0 0
\(400\) 11.8692 21.9837i 0.593462 1.09918i
\(401\) −17.8894 + 3.15438i −0.893354 + 0.157522i −0.601436 0.798921i \(-0.705404\pi\)
−0.291918 + 0.956443i \(0.594293\pi\)
\(402\) 0 0
\(403\) 7.44878 + 3.47342i 0.371050 + 0.173024i
\(404\) −3.58880 + 9.86014i −0.178549 + 0.490560i
\(405\) 0 0
\(406\) −0.000718529 0.00124453i −3.56600e−5 6.17649e-5i
\(407\) 9.17575 34.2444i 0.454825 1.69743i
\(408\) 0 0
\(409\) 2.14098 12.1421i 0.105865 0.600388i −0.885007 0.465578i \(-0.845846\pi\)
0.990871 0.134810i \(-0.0430425\pi\)
\(410\) 0.762560 0.216034i 0.0376601 0.0106691i
\(411\) 0 0
\(412\) 0.0677491 + 0.774375i 0.00333776 + 0.0381507i
\(413\) 0.554286 0.258468i 0.0272746 0.0127184i
\(414\) 0 0
\(415\) 32.1791 15.5681i 1.57961 0.764206i
\(416\) −2.12474 12.0500i −0.104174 0.590800i
\(417\) 0 0
\(418\) 10.8909 + 32.5436i 0.532691 + 1.59176i
\(419\) 30.7781i 1.50361i −0.659386 0.751805i \(-0.729184\pi\)
0.659386 0.751805i \(-0.270816\pi\)
\(420\) 0 0
\(421\) 10.7205 + 12.7761i 0.522483 + 0.622671i 0.961166 0.275971i \(-0.0889994\pi\)
−0.438683 + 0.898642i \(0.644555\pi\)
\(422\) −0.0689701 + 0.147907i −0.00335741 + 0.00720000i
\(423\) 0 0
\(424\) 3.08017 3.67081i 0.149586 0.178270i
\(425\) −23.4428 5.56977i −1.13714 0.270174i
\(426\) 0 0
\(427\) −0.659969 0.942534i −0.0319382 0.0456124i
\(428\) −8.42495 12.0321i −0.407235 0.581593i
\(429\) 0 0
\(430\) −0.769427 + 0.0109784i −0.0371050 + 0.000529424i
\(431\) −9.97761 + 11.8908i −0.480604 + 0.572762i −0.950802 0.309799i \(-0.899738\pi\)
0.470198 + 0.882561i \(0.344183\pi\)
\(432\) 0 0
\(433\) −5.44902 + 11.6855i −0.261863 + 0.561568i −0.992648 0.121041i \(-0.961377\pi\)
0.730784 + 0.682608i \(0.239155\pi\)
\(434\) 1.05057 + 1.25202i 0.0504291 + 0.0600990i
\(435\) 0 0
\(436\) 8.90391i 0.426420i
\(437\) −0.865085 + 33.1052i −0.0413826 + 1.58363i
\(438\) 0 0
\(439\) −5.84172 33.1300i −0.278810 1.58121i −0.726593 0.687068i \(-0.758898\pi\)
0.447783 0.894142i \(-0.352214\pi\)
\(440\) −8.11089 16.7651i −0.386672 0.799247i
\(441\) 0 0
\(442\) −18.5507 + 8.65033i −0.882366 + 0.411454i
\(443\) 1.46104 + 16.6998i 0.0694162 + 0.793431i 0.948503 + 0.316769i \(0.102598\pi\)
−0.879087 + 0.476662i \(0.841846\pi\)
\(444\) 0 0
\(445\) −30.8683 17.2394i −1.46330 0.817225i
\(446\) 0.204711 1.16097i 0.00969333 0.0549736i
\(447\) 0 0
\(448\) −0.112769 + 0.420860i −0.00532784 + 0.0198838i
\(449\) 8.68158 15.0369i 0.409709 0.709637i −0.585148 0.810927i \(-0.698964\pi\)
0.994857 + 0.101290i \(0.0322969\pi\)
\(450\) 0 0
\(451\) 0.324406 0.891298i 0.0152757 0.0419696i
\(452\) 1.57484 + 0.734361i 0.0740743 + 0.0345414i
\(453\) 0 0
\(454\) −7.48278 + 1.31942i −0.351184 + 0.0619233i
\(455\) −0.814366 1.36517i −0.0381781 0.0640000i
\(456\) 0 0
\(457\) −4.18473 + 4.18473i −0.195753 + 0.195753i −0.798177 0.602423i \(-0.794202\pi\)
0.602423 + 0.798177i \(0.294202\pi\)
\(458\) −2.30614 1.61478i −0.107759 0.0754535i
\(459\) 0 0
\(460\) 1.62221 + 15.9221i 0.0756358 + 0.742371i
\(461\) −13.1750 4.79530i −0.613620 0.223339i 0.0164665 0.999864i \(-0.494758\pi\)
−0.630086 + 0.776525i \(0.716981\pi\)
\(462\) 0 0
\(463\) 13.9101 3.72721i 0.646459 0.173218i 0.0793316 0.996848i \(-0.474721\pi\)
0.567127 + 0.823630i \(0.308055\pi\)
\(464\) 0.00729090 + 0.0126282i 0.000338472 + 0.000586250i
\(465\) 0 0
\(466\) −16.3239 2.87835i −0.756190 0.133337i
\(467\) 8.43685 + 2.26065i 0.390411 + 0.104610i 0.448684 0.893690i \(-0.351893\pi\)
−0.0582734 + 0.998301i \(0.518560\pi\)
\(468\) 0 0
\(469\) 1.99433 + 1.67345i 0.0920898 + 0.0772725i
\(470\) −18.9894 + 3.62842i −0.875916 + 0.167367i
\(471\) 0 0
\(472\) 0.336914 3.85094i 0.0155077 0.177254i
\(473\) −0.528204 + 0.754354i −0.0242869 + 0.0346852i
\(474\) 0 0
\(475\) 15.4481 + 15.3739i 0.708808 + 0.705401i
\(476\) −1.30337 −0.0597399
\(477\) 0 0
\(478\) 0.934886 10.6858i 0.0427607 0.488757i
\(479\) −6.83164 18.7698i −0.312145 0.857613i −0.992223 0.124473i \(-0.960276\pi\)
0.680078 0.733140i \(-0.261946\pi\)
\(480\) 0 0
\(481\) −14.6514 12.2940i −0.668048 0.560558i
\(482\) 5.56862 + 20.7824i 0.253644 + 0.946611i
\(483\) 0 0
\(484\) 9.34084 + 1.64704i 0.424584 + 0.0748656i
\(485\) 5.46419 12.1683i 0.248116 0.552533i
\(486\) 0 0
\(487\) 12.8690 3.44824i 0.583150 0.156254i 0.0448291 0.998995i \(-0.485726\pi\)
0.538320 + 0.842740i \(0.319059\pi\)
\(488\) −7.24504 + 0.633859i −0.327968 + 0.0286935i
\(489\) 0 0
\(490\) 2.68925 + 26.3952i 0.121488 + 1.19241i
\(491\) 18.9123 15.8693i 0.853501 0.716172i −0.107057 0.994253i \(-0.534143\pi\)
0.960558 + 0.278081i \(0.0896983\pi\)
\(492\) 0 0
\(493\) 0.00994447 0.00994447i 0.000447876 0.000447876i
\(494\) 18.3950 + 2.09483i 0.827629 + 0.0942507i
\(495\) 0 0
\(496\) 16.3323 2.87982i 0.733341 0.129308i
\(497\) −3.62294 0.316966i −0.162511 0.0142179i
\(498\) 0 0
\(499\) 6.45641 17.7388i 0.289028 0.794099i −0.707175 0.707039i \(-0.750031\pi\)
0.996203 0.0870601i \(-0.0277472\pi\)
\(500\) 8.35093 + 6.41893i 0.373465 + 0.287063i
\(501\) 0 0
\(502\) 4.05766 15.1434i 0.181102 0.675883i
\(503\) 11.7261 8.21072i 0.522842 0.366098i −0.282162 0.959367i \(-0.591052\pi\)
0.805005 + 0.593269i \(0.202163\pi\)
\(504\) 0 0
\(505\) 21.7441 + 12.1437i 0.967599 + 0.540386i
\(506\) 51.8009 + 29.9073i 2.30283 + 1.32954i
\(507\) 0 0
\(508\) −8.60335 + 4.01181i −0.381712 + 0.177995i
\(509\) −32.7191 + 11.9088i −1.45025 + 0.527847i −0.942661 0.333752i \(-0.891685\pi\)
−0.507588 + 0.861600i \(0.669463\pi\)
\(510\) 0 0
\(511\) −0.538357 3.05317i −0.0238155 0.135064i
\(512\) −4.63603 4.63603i −0.204886 0.204886i
\(513\) 0 0
\(514\) 51.0136i 2.25011i
\(515\) 1.84011 + 0.134566i 0.0810849 + 0.00592967i
\(516\) 0 0
\(517\) −9.77791 + 20.9688i −0.430032 + 0.922206i
\(518\) −1.60740 3.44707i −0.0706250 0.151456i
\(519\) 0 0
\(520\) −10.0464 + 0.143345i −0.440565 + 0.00628609i
\(521\) −3.47559 + 2.00663i −0.152268 + 0.0879121i −0.574198 0.818716i \(-0.694686\pi\)
0.421930 + 0.906628i \(0.361353\pi\)
\(522\) 0 0
\(523\) 18.5171 + 26.4451i 0.809695 + 1.15636i 0.985119 + 0.171872i \(0.0549815\pi\)
−0.175424 + 0.984493i \(0.556130\pi\)
\(524\) −15.9603 + 9.21469i −0.697230 + 0.402546i
\(525\) 0 0
\(526\) 17.3897 20.7243i 0.758228 0.903621i
\(527\) −6.75973 14.4963i −0.294458 0.631468i
\(528\) 0 0
\(529\) 22.3183 + 26.5979i 0.970360 + 1.15643i
\(530\) 6.62046 + 7.66515i 0.287574 + 0.332953i
\(531\) 0 0
\(532\) 1.00522 + 0.615925i 0.0435818 + 0.0267037i
\(533\) −0.361829 0.361829i −0.0156725 0.0156725i
\(534\) 0 0
\(535\) −31.3836 + 15.1832i −1.35683 + 0.656428i
\(536\) 15.4630 5.62808i 0.667900 0.243096i
\(537\) 0 0
\(538\) −1.68416 19.2500i −0.0726092 0.829927i
\(539\) 27.4977 + 15.8758i 1.18441 + 0.683820i
\(540\) 0 0
\(541\) −2.75071 + 15.6000i −0.118262 + 0.670698i 0.866821 + 0.498620i \(0.166160\pi\)
−0.985083 + 0.172079i \(0.944952\pi\)
\(542\) −29.2141 + 20.4559i −1.25485 + 0.878657i
\(543\) 0 0
\(544\) −11.9063 + 20.6223i −0.510479 + 0.884176i
\(545\) 20.8629 + 3.37252i 0.893666 + 0.144463i
\(546\) 0 0
\(547\) −38.1131 17.7724i −1.62960 0.759893i −0.629740 0.776806i \(-0.716838\pi\)
−0.999857 + 0.0169130i \(0.994616\pi\)
\(548\) −10.0024 0.875093i −0.427280 0.0373821i
\(549\) 0 0
\(550\) 37.7174 11.2691i 1.60828 0.480516i
\(551\) −0.0123690 + 0.00297025i −0.000526938 + 0.000126537i
\(552\) 0 0
\(553\) −1.28964 0.903017i −0.0548411 0.0384002i
\(554\) 10.0322 8.41800i 0.426227 0.357647i
\(555\) 0 0
\(556\) 13.5972 + 4.94896i 0.576648 + 0.209883i
\(557\) −19.2126 + 1.68089i −0.814066 + 0.0712215i −0.486582 0.873635i \(-0.661756\pi\)
−0.327484 + 0.944857i \(0.606201\pi\)
\(558\) 0 0
\(559\) 0.248406 + 0.430251i 0.0105064 + 0.0181977i
\(560\) −2.92610 1.31397i −0.123650 0.0555253i
\(561\) 0 0
\(562\) 9.11752 + 2.44303i 0.384599 + 0.103053i
\(563\) −4.96746 18.5388i −0.209354 0.781318i −0.988078 0.153952i \(-0.950800\pi\)
0.778725 0.627366i \(-0.215867\pi\)
\(564\) 0 0
\(565\) 2.31719 3.41188i 0.0974849 0.143539i
\(566\) −6.77146 18.6044i −0.284626 0.782002i
\(567\) 0 0
\(568\) −13.1848 + 18.8298i −0.553220 + 0.790080i
\(569\) 32.0305 1.34279 0.671393 0.741101i \(-0.265696\pi\)
0.671393 + 0.741101i \(0.265696\pi\)
\(570\) 0 0
\(571\) 24.9840 1.04555 0.522774 0.852471i \(-0.324897\pi\)
0.522774 + 0.852471i \(0.324897\pi\)
\(572\) 6.14167 8.77121i 0.256796 0.366743i
\(573\) 0 0
\(574\) −0.0348031 0.0956208i −0.00145265 0.00399114i
\(575\) 37.9217 + 2.22978i 1.58144 + 0.0929881i
\(576\) 0 0
\(577\) −0.896843 3.34706i −0.0373361 0.139340i 0.944742 0.327815i \(-0.106312\pi\)
−0.982078 + 0.188475i \(0.939646\pi\)
\(578\) 10.3112 + 2.76287i 0.428888 + 0.114920i
\(579\) 0 0
\(580\) −0.00574630 + 0.00218482i −0.000238602 + 9.07196e-5i
\(581\) −2.29477 3.97466i −0.0952032 0.164897i
\(582\) 0 0
\(583\) 12.0750 1.05642i 0.500094 0.0437525i
\(584\) −18.4141 6.70217i −0.761980 0.277338i
\(585\) 0 0
\(586\) −31.9107 + 26.7763i −1.31822 + 1.10612i
\(587\) −25.8643 18.1103i −1.06753 0.747494i −0.0986764 0.995120i \(-0.531461\pi\)
−0.968856 + 0.247625i \(0.920350\pi\)
\(588\) 0 0
\(589\) −1.63699 + 14.3746i −0.0674508 + 0.592295i
\(590\) 7.92162 + 2.00191i 0.326128 + 0.0824173i
\(591\) 0 0
\(592\) −38.4464 3.36363i −1.58014 0.138244i
\(593\) 8.33375 + 3.88609i 0.342226 + 0.159583i 0.586131 0.810217i \(-0.300651\pi\)
−0.243904 + 0.969799i \(0.578428\pi\)
\(594\) 0 0
\(595\) −0.493677 + 3.05395i −0.0202388 + 0.125200i
\(596\) −4.55884 + 7.89615i −0.186737 + 0.323439i
\(597\) 0 0
\(598\) 26.4333 18.5088i 1.08094 0.756882i
\(599\) −7.60255 + 43.1162i −0.310632 + 1.76168i 0.285102 + 0.958497i \(0.407973\pi\)
−0.595734 + 0.803182i \(0.703139\pi\)
\(600\) 0 0
\(601\) 26.5782 + 15.3449i 1.08415 + 0.625932i 0.932012 0.362428i \(-0.118052\pi\)
0.152134 + 0.988360i \(0.451385\pi\)
\(602\) 0.00861066 + 0.0984203i 0.000350944 + 0.00401131i
\(603\) 0 0
\(604\) 2.74840 1.00034i 0.111831 0.0407031i
\(605\) 7.39723 21.2628i 0.300740 0.864456i
\(606\) 0 0
\(607\) 7.95200 + 7.95200i 0.322762 + 0.322762i 0.849826 0.527064i \(-0.176707\pi\)
−0.527064 + 0.849826i \(0.676707\pi\)
\(608\) 18.9280 10.2784i 0.767634 0.416845i
\(609\) 0 0
\(610\) 1.12115 15.3311i 0.0453940 0.620738i
\(611\) 8.02317 + 9.56164i 0.324583 + 0.386822i
\(612\) 0 0
\(613\) −16.8269 36.0854i −0.679632 1.45748i −0.878644 0.477478i \(-0.841551\pi\)
0.199012 0.979997i \(-0.436227\pi\)
\(614\) 5.03108 5.99580i 0.203038 0.241971i
\(615\) 0 0
\(616\) −2.07078 + 1.19557i −0.0834342 + 0.0481708i
\(617\) 14.9718 + 21.3819i 0.602740 + 0.860803i 0.998339 0.0576212i \(-0.0183516\pi\)
−0.395598 + 0.918424i \(0.629463\pi\)
\(618\) 0 0
\(619\) −14.8409 + 8.56837i −0.596504 + 0.344392i −0.767665 0.640851i \(-0.778582\pi\)
0.171161 + 0.985243i \(0.445248\pi\)
\(620\) 0.0997514 + 6.99114i 0.00400611 + 0.280771i
\(621\) 0 0
\(622\) −4.03237 8.64743i −0.161683 0.346731i
\(623\) −1.91841 + 4.11404i −0.0768594 + 0.164825i
\(624\) 0 0
\(625\) 18.2033 17.1359i 0.728134 0.685435i
\(626\) 17.3708i 0.694277i
\(627\) 0 0
\(628\) −10.7560 10.7560i −0.429213 0.429213i
\(629\) 6.46350 + 36.6563i 0.257716 + 1.46158i
\(630\) 0 0
\(631\) 20.1799 7.34487i 0.803348 0.292395i 0.0924747 0.995715i \(-0.470522\pi\)
0.710873 + 0.703320i \(0.248300\pi\)
\(632\) −9.01871 + 4.20549i −0.358745 + 0.167286i
\(633\) 0 0
\(634\) −38.2657 22.0927i −1.51973 0.877415i
\(635\) 6.14144 + 21.6782i 0.243715 + 0.860272i
\(636\) 0 0
\(637\) 14.0317 9.82513i 0.555958 0.389286i
\(638\) −0.00594660 + 0.0221930i −0.000235428 + 0.000878629i
\(639\) 0 0
\(640\) −22.6393 + 16.3385i −0.894896 + 0.645834i
\(641\) −12.0700 + 33.1619i −0.476735 + 1.30982i 0.435515 + 0.900182i \(0.356566\pi\)
−0.912249 + 0.409636i \(0.865656\pi\)
\(642\) 0 0
\(643\) 18.7728 + 1.64241i 0.740327 + 0.0647702i 0.451079 0.892484i \(-0.351039\pi\)
0.289248 + 0.957254i \(0.406595\pi\)
\(644\) 2.02359 0.356814i 0.0797407 0.0140604i
\(645\) 0 0
\(646\) −24.8031 26.1341i −0.975864 1.02823i
\(647\) 17.6606 17.6606i 0.694309 0.694309i −0.268868 0.963177i \(-0.586650\pi\)
0.963177 + 0.268868i \(0.0866496\pi\)
\(648\) 0 0
\(649\) 7.49049 6.28527i 0.294027 0.246718i
\(650\) 3.08954 21.0109i 0.121182 0.824116i
\(651\) 0 0
\(652\) −0.0776036 + 0.00678943i −0.00303919 + 0.000265895i
\(653\) −5.40330 + 1.44781i −0.211447 + 0.0566572i −0.362988 0.931794i \(-0.618243\pi\)
0.151540 + 0.988451i \(0.451577\pi\)
\(654\) 0 0
\(655\) 15.5458 + 40.8871i 0.607424 + 1.59759i
\(656\) −1.01685 0.179297i −0.0397012 0.00700039i
\(657\) 0 0
\(658\) 0.642427 + 2.39757i 0.0250444 + 0.0934669i
\(659\) 5.03828 + 4.22762i 0.196264 + 0.164685i 0.735623 0.677391i \(-0.236889\pi\)
−0.539360 + 0.842075i \(0.681334\pi\)
\(660\) 0 0
\(661\) −13.4502 36.9540i −0.523150 1.43734i −0.866995 0.498317i \(-0.833951\pi\)
0.343844 0.939027i \(-0.388271\pi\)
\(662\) −1.91306 + 21.8664i −0.0743531 + 0.849860i
\(663\) 0 0
\(664\) −29.0091 −1.12577
\(665\) 1.82393 2.12205i 0.0707289 0.0822896i
\(666\) 0 0
\(667\) −0.0127172 + 0.0181620i −0.000492411 + 0.000703236i
\(668\) −0.708028 + 8.09280i −0.0273944 + 0.313120i
\(669\) 0 0
\(670\) 6.52773 + 34.1630i 0.252188 + 1.31983i
\(671\) −14.0924 11.8249i −0.544031 0.456496i
\(672\) 0 0
\(673\) 9.39609 + 2.51767i 0.362193 + 0.0970492i 0.435326 0.900273i \(-0.356633\pi\)
−0.0731333 + 0.997322i \(0.523300\pi\)
\(674\) 34.5406 + 6.09045i 1.33046 + 0.234595i
\(675\) 0 0
\(676\) 3.23523 + 5.60359i 0.124432 + 0.215523i
\(677\) −39.3476 + 10.5432i −1.51225 + 0.405207i −0.917182 0.398468i \(-0.869542\pi\)
−0.595069 + 0.803675i \(0.702875\pi\)
\(678\) 0 0
\(679\) −1.60928 0.585731i −0.0617586 0.0224783i
\(680\) 15.1567 + 12.3538i 0.581234 + 0.473748i
\(681\) 0 0
\(682\) 21.4053 + 14.9881i 0.819651 + 0.573926i
\(683\) −11.3169 + 11.3169i −0.433030 + 0.433030i −0.889658 0.456628i \(-0.849057\pi\)
0.456628 + 0.889658i \(0.349057\pi\)
\(684\) 0 0
\(685\) −5.83903 + 23.1052i −0.223098 + 0.882804i
\(686\) 6.74927 1.19008i 0.257688 0.0454374i
\(687\) 0 0
\(688\) 0.908559 + 0.423668i 0.0346385 + 0.0161522i
\(689\) 2.23652 6.14480i 0.0852048 0.234098i
\(690\) 0 0
\(691\) 1.45852 2.52622i 0.0554846 0.0961021i −0.836949 0.547281i \(-0.815663\pi\)
0.892434 + 0.451179i \(0.148996\pi\)
\(692\) 2.30353 8.59691i 0.0875672 0.326805i
\(693\) 0 0
\(694\) −5.26243 + 29.8447i −0.199759 + 1.13289i
\(695\) 16.7462 29.9852i 0.635218 1.13740i
\(696\) 0 0
\(697\) 0.0867931 + 0.992050i 0.00328752 + 0.0375766i
\(698\) −19.1476 + 8.92866i −0.724747 + 0.337955i
\(699\) 0 0
\(700\) 0.743729 1.12942i 0.0281103 0.0426881i
\(701\) 7.75792 + 43.9973i 0.293012 + 1.66176i 0.675173 + 0.737660i \(0.264069\pi\)
−0.382160 + 0.924096i \(0.624820\pi\)
\(702\) 0 0
\(703\) 12.3375 31.3254i 0.465316 1.18146i
\(704\) 6.96614i 0.262546i
\(705\) 0 0
\(706\) −6.29634 7.50369i −0.236966 0.282405i
\(707\) 1.35135 2.89799i 0.0508229 0.108990i
\(708\) 0 0
\(709\) −27.4318 + 32.6919i −1.03022 + 1.22777i −0.0568877 + 0.998381i \(0.518118\pi\)
−0.973334 + 0.229390i \(0.926327\pi\)
\(710\) −34.8425 33.8622i −1.30761 1.27082i
\(711\) 0 0
\(712\) 16.4569 + 23.5029i 0.616749 + 0.880808i
\(713\) 14.4636 + 20.6561i 0.541665 + 0.773577i
\(714\) 0 0
\(715\) −18.2257 17.7129i −0.681601 0.662424i
\(716\) −4.34722 + 5.18081i −0.162463 + 0.193616i
\(717\) 0 0
\(718\) −18.8340 + 40.3897i −0.702880 + 1.50733i
\(719\) 11.9438 + 14.2341i 0.445429 + 0.530841i 0.941307 0.337550i \(-0.109598\pi\)
−0.495879 + 0.868392i \(0.665154\pi\)
\(720\) 0 0
\(721\) 0.236881i 0.00882192i
\(722\) 6.77927 + 31.8769i 0.252298 + 1.18633i
\(723\) 0 0
\(724\) 0.263635 + 1.49515i 0.00979790 + 0.0555667i
\(725\) 0.00294276 + 0.0142918i 0.000109291 + 0.000530783i
\(726\) 0 0
\(727\) 16.0098 7.46550i 0.593771 0.276880i −0.102414 0.994742i \(-0.532657\pi\)
0.696186 + 0.717862i \(0.254879\pi\)
\(728\) 0.112430 + 1.28508i 0.00416692 + 0.0476281i
\(729\) 0 0
\(730\) 20.1956 36.1616i 0.747472 1.33840i
\(731\) 0.167893 0.952169i 0.00620975 0.0352173i
\(732\) 0 0
\(733\) −10.6117 + 39.6034i −0.391952 + 1.46279i 0.434957 + 0.900451i \(0.356764\pi\)
−0.826909 + 0.562335i \(0.809903\pi\)
\(734\) −0.0710890 + 0.123130i −0.00262394 + 0.00454480i
\(735\) 0 0
\(736\) 12.8399 35.2774i 0.473286 1.30034i
\(737\) 37.7240 + 17.5910i 1.38958 + 0.647973i
\(738\) 0 0
\(739\) 13.0374 2.29884i 0.479587 0.0845642i 0.0713718 0.997450i \(-0.477262\pi\)
0.408215 + 0.912886i \(0.366151\pi\)
\(740\) 3.98654 15.7749i 0.146548 0.579895i
\(741\) 0 0
\(742\) 0.919509 0.919509i 0.0337562 0.0337562i
\(743\) −0.404372 0.283145i −0.0148350 0.0103876i 0.566135 0.824312i \(-0.308438\pi\)
−0.580970 + 0.813925i \(0.697327\pi\)
\(744\) 0 0
\(745\) 16.7748 + 13.6727i 0.614581 + 0.500929i
\(746\) 4.22518 + 1.53784i 0.154695 + 0.0563043i
\(747\) 0 0
\(748\) −20.1284 + 5.39340i −0.735969 + 0.197202i
\(749\) 2.23805 + 3.87642i 0.0817765 + 0.141641i
\(750\) 0 0
\(751\) −41.0072 7.23068i −1.49637 0.263851i −0.635275 0.772286i \(-0.719113\pi\)
−0.861100 + 0.508435i \(0.830224\pi\)
\(752\) 24.3281 + 6.51869i 0.887154 + 0.237712i
\(753\) 0 0
\(754\) 0.00949526 + 0.00796747i 0.000345797 + 0.000290158i
\(755\) −1.30289 6.81871i −0.0474171 0.248158i
\(756\) 0 0
\(757\) −3.70042 + 42.2960i −0.134494 + 1.53728i 0.566472 + 0.824081i \(0.308308\pi\)
−0.700966 + 0.713195i \(0.747248\pi\)
\(758\) 28.5549 40.7807i 1.03716 1.48122i
\(759\) 0 0
\(760\) −5.85161 16.6904i −0.212260 0.605423i
\(761\) 24.7086 0.895686 0.447843 0.894112i \(-0.352192\pi\)
0.447843 + 0.894112i \(0.352192\pi\)
\(762\) 0 0
\(763\) 0.236483 2.70301i 0.00856126 0.0978557i
\(764\) 1.47652 + 4.05671i 0.0534187 + 0.146767i
\(765\) 0 0
\(766\) 27.7420 + 23.2783i 1.00236 + 0.841080i
\(767\) −1.36532 5.09543i −0.0492987 0.183985i
\(768\) 0 0
\(769\) 28.5485 + 5.03387i 1.02948 + 0.181526i 0.662782 0.748812i \(-0.269376\pi\)
0.366703 + 0.930338i \(0.380487\pi\)
\(770\) −1.79616 4.72410i −0.0647292 0.170245i
\(771\) 0 0
\(772\) −11.1606 + 2.99047i −0.401678 + 0.107629i
\(773\) −32.1932 + 2.81654i −1.15791 + 0.101304i −0.649880 0.760037i \(-0.725181\pi\)
−0.508028 + 0.861341i \(0.669625\pi\)
\(774\) 0 0
\(775\) 16.4188 + 2.41430i 0.589781 + 0.0867241i
\(776\) −8.29211 + 6.95791i −0.297669 + 0.249774i
\(777\) 0 0
\(778\) 5.14734 5.14734i 0.184541 0.184541i
\(779\) 0.401867 0.806130i 0.0143984 0.0288826i
\(780\) 0 0
\(781\) −57.2619 + 10.0968i −2.04899 + 0.361293i
\(782\) −62.5609 5.47337i −2.23717 0.195727i
\(783\) 0 0
\(784\) 11.8218 32.4802i 0.422208 1.16001i
\(785\) −29.2767 + 21.1285i −1.04493 + 0.754110i
\(786\) 0 0
\(787\) −4.81711 + 17.9777i −0.171711 + 0.640836i 0.825377 + 0.564582i \(0.190963\pi\)
−0.997088 + 0.0762539i \(0.975704\pi\)
\(788\) −0.130209 + 0.0911732i −0.00463850 + 0.00324791i
\(789\) 0 0
\(790\) −5.73306 20.2367i −0.203973 0.719989i
\(791\) −0.458580 0.264761i −0.0163052 0.00941383i
\(792\) 0 0
\(793\) −8.99471 + 4.19430i −0.319411 + 0.148944i
\(794\) −33.2963 + 12.1189i −1.18164 + 0.430082i
\(795\) 0 0
\(796\) 0.817579 + 4.63672i 0.0289783 + 0.164344i
\(797\) −17.8040 17.8040i −0.630650 0.630650i 0.317581 0.948231i \(-0.397129\pi\)
−0.948231 + 0.317581i \(0.897129\pi\)
\(798\) 0 0
\(799\) 24.2912i 0.859362i
\(800\) −11.0761 22.0848i −0.391598 0.780815i
\(801\) 0 0
\(802\) −13.1680 + 28.2389i −0.464979 + 0.997150i
\(803\) −20.9482 44.9235i −0.739245 1.58532i
\(804\) 0 0
\(805\) −0.0695813 4.87665i −0.00245242 0.171879i
\(806\) 12.2087 7.04867i 0.430032 0.248279i
\(807\) 0 0
\(808\) −11.5925 16.5558i −0.407822 0.582430i
\(809\) 9.34965 5.39802i 0.328716 0.189784i −0.326555 0.945178i \(-0.605888\pi\)
0.655271 + 0.755394i \(0.272554\pi\)
\(810\) 0 0
\(811\) −29.9351 + 35.6753i −1.05116 + 1.25273i −0.0845686 + 0.996418i \(0.526951\pi\)
−0.966595 + 0.256310i \(0.917493\pi\)
\(812\) 0.000333569 0 0.000715340i 1.17060e−5 0 2.51035e-5i
\(813\) 0 0
\(814\) −39.0877 46.5829i −1.37002 1.63273i
\(815\) −0.0134854 + 0.184405i −0.000472373 + 0.00645944i
\(816\) 0 0
\(817\) −0.579447 + 0.655017i −0.0202723 + 0.0229161i
\(818\) −14.9539 14.9539i −0.522852 0.522852i
\(819\) 0 0
\(820\) 0.143034 0.411142i 0.00499497 0.0143577i
\(821\) −42.5776 + 15.4970i −1.48597 + 0.540848i −0.952384 0.304900i \(-0.901377\pi\)
−0.533583 + 0.845748i \(0.679155\pi\)
\(822\) 0 0
\(823\) −4.79043 54.7548i −0.166984 1.90863i −0.369296 0.929312i \(-0.620401\pi\)
0.202312 0.979321i \(-0.435154\pi\)
\(824\) −1.29666 0.748626i −0.0451712 0.0260796i
\(825\) 0 0
\(826\) 0.182161 1.03309i 0.00633820 0.0359457i
\(827\) 5.78980 4.05406i 0.201331 0.140973i −0.468563 0.883430i \(-0.655228\pi\)
0.669894 + 0.742456i \(0.266339\pi\)
\(828\) 0 0
\(829\) 3.92941 6.80594i 0.136474 0.236380i −0.789685 0.613512i \(-0.789756\pi\)
0.926160 + 0.377132i \(0.123090\pi\)
\(830\) 9.78472 60.5295i 0.339632 2.10101i
\(831\) 0 0
\(832\) 3.40603 + 1.58826i 0.118083 + 0.0550630i
\(833\) −33.2095 2.90546i −1.15064 0.100668i
\(834\) 0 0
\(835\) 18.6942 + 4.72429i 0.646938 + 0.163491i
\(836\) 18.0727 + 5.35231i 0.625057 + 0.185113i
\(837\) 0 0
\(838\) −43.2448 30.2804i −1.49387 1.04602i
\(839\) −13.3579 + 11.2087i −0.461168 + 0.386966i −0.843560 0.537034i \(-0.819545\pi\)
0.382393 + 0.924000i \(0.375100\pi\)
\(840\) 0 0
\(841\) 27.2511 + 9.91858i 0.939692 + 0.342020i
\(842\) 28.4982 2.49327i 0.982113 0.0859238i
\(843\) 0 0
\(844\) 0.0448173 + 0.0776258i 0.00154267 + 0.00267199i
\(845\) 14.3552 5.45805i 0.493835 0.187763i
\(846\) 0 0
\(847\) −2.79191 0.748091i −0.0959313 0.0257047i
\(848\) −3.41511 12.7453i −0.117275 0.437677i
\(849\) 0 0
\(850\) −30.8895 + 27.4587i −1.05950 + 0.941824i
\(851\) −20.0702 55.1425i −0.687998 1.89026i
\(852\) 0 0
\(853\) −28.1590 + 40.2152i −0.964146 + 1.37694i −0.0382064 + 0.999270i \(0.512164\pi\)
−0.925939 + 0.377673i \(0.876724\pi\)
\(854\) −1.97360 −0.0675354
\(855\) 0 0
\(856\) 28.2920 0.967001
\(857\) −0.0631803 + 0.0902309i −0.00215820 + 0.00308223i −0.820230 0.572034i \(-0.806154\pi\)
0.818071 + 0.575117i \(0.195043\pi\)
\(858\) 0 0
\(859\) 13.8823 + 38.1414i 0.473659 + 1.30137i 0.914792 + 0.403926i \(0.132355\pi\)
−0.441132 + 0.897442i \(0.645423\pi\)
\(860\) −0.237454 + 0.349633i −0.00809713 + 0.0119224i
\(861\) 0 0
\(862\) 6.89101 + 25.7176i 0.234709 + 0.875945i
\(863\) −17.8927 4.79433i −0.609074 0.163201i −0.0589178 0.998263i \(-0.518765\pi\)
−0.550156 + 0.835062i \(0.685432\pi\)
\(864\) 0 0
\(865\) −19.2710 8.65368i −0.655234 0.294234i
\(866\) 11.0578 + 19.1526i 0.375759 + 0.650833i
\(867\) 0 0
\(868\) 0.894263 0.0782379i 0.0303533 0.00265557i
\(869\) −23.6531 8.60903i −0.802377 0.292041i
\(870\) 0 0
\(871\) 17.2019 14.4341i 0.582865 0.489082i
\(872\) −14.0486 9.83693i −0.475745 0.333121i
\(873\) 0 0
\(874\) 45.6634 + 33.7853i 1.54459 + 1.14280i
\(875\) −2.36466 2.17043i −0.0799401 0.0733740i
\(876\) 0 0
\(877\) 30.8351 + 2.69772i 1.04123 + 0.0910956i 0.594921 0.803784i \(-0.297183\pi\)
0.446307 + 0.894880i \(0.352739\pi\)
\(878\) −52.2966 24.3863i −1.76493 0.822998i
\(879\) 0 0
\(880\) −50.6260 8.18380i −1.70660 0.275876i
\(881\) −0.542908 + 0.940344i −0.0182910 + 0.0316810i −0.875026 0.484076i \(-0.839156\pi\)
0.856735 + 0.515757i \(0.172489\pi\)
\(882\) 0 0
\(883\) −22.0280 + 15.4242i −0.741302 + 0.519065i −0.882151 0.470966i \(-0.843905\pi\)
0.140850 + 0.990031i \(0.455017\pi\)
\(884\) −1.95217 + 11.0713i −0.0656585 + 0.372368i
\(885\) 0 0
\(886\) 24.9015 + 14.3769i 0.836582 + 0.483001i
\(887\) 2.05570 + 23.4968i 0.0690238 + 0.788946i 0.949277 + 0.314441i \(0.101817\pi\)
−0.880253 + 0.474504i \(0.842627\pi\)
\(888\) 0 0
\(889\) 2.71832 0.989389i 0.0911696 0.0331830i
\(890\) −54.5913 + 26.4110i −1.82991 + 0.885299i
\(891\) 0 0
\(892\) −0.457845 0.457845i −0.0153298 0.0153298i
\(893\) −11.4791 + 18.7345i −0.384134 + 0.626927i
\(894\) 0 0
\(895\) 10.4926 + 12.1484i 0.350730 + 0.406075i
\(896\) 2.30409 + 2.74591i 0.0769743 + 0.0917344i
\(897\) 0 0
\(898\) −12.5865 26.9918i −0.420017 0.900729i
\(899\) −0.00622611 + 0.00741999i −0.000207652 + 0.000247471i
\(900\) 0 0
\(901\) −11.0211 + 6.36302i −0.367165 + 0.211983i
\(902\) −0.933160 1.33269i −0.0310708 0.0443737i
\(903\) 0 0
\(904\) −2.89854 + 1.67347i −0.0964040 + 0.0556589i
\(905\) 3.60315 0.0514107i 0.119773 0.00170895i
\(906\) 0 0
\(907\) −2.75446 5.90696i −0.0914603 0.196137i 0.855256 0.518205i \(-0.173400\pi\)
−0.946716 + 0.322068i \(0.895622\pi\)
\(908\) −1.76369 + 3.78225i −0.0585301 + 0.125518i
\(909\) 0 0
\(910\) −2.71932 0.198862i −0.0901447 0.00659220i
\(911\) 27.6418i 0.915812i 0.889001 + 0.457906i \(0.151400\pi\)
−0.889001 + 0.457906i \(0.848600\pi\)
\(912\) 0 0
\(913\) −51.8863 51.8863i −1.71719 1.71719i
\(914\) 1.76271 + 9.99681i 0.0583052 + 0.330665i
\(915\) 0 0
\(916\) −1.45301 + 0.528854i −0.0480089 + 0.0174738i
\(917\) 5.08991 2.37346i 0.168084 0.0783787i
\(918\) 0 0
\(919\) 23.3008 + 13.4527i 0.768623 + 0.443764i 0.832383 0.554201i \(-0.186976\pi\)
−0.0637605 + 0.997965i \(0.520309\pi\)
\(920\) −26.9141 15.0310i −0.887331 0.495558i
\(921\) 0 0
\(922\) −19.6995 + 13.7938i −0.648770 + 0.454274i
\(923\) −8.11879 + 30.2997i −0.267233 + 0.997328i
\(924\) 0 0
\(925\) −35.4523 15.3159i −1.16566 0.503585i
\(926\) 8.44826 23.2114i 0.277627 0.762774i
\(927\) 0 0
\(928\) 0.0143655 + 0.00125682i 0.000471570 + 4.12570e-5i
\(929\) 49.9574 8.80883i 1.63905 0.289008i 0.723232 0.690605i \(-0.242656\pi\)
0.915817 + 0.401597i \(0.131545\pi\)
\(930\) 0 0
\(931\) 24.2397 + 17.9344i 0.794424 + 0.587776i
\(932\) −6.43755 + 6.43755i −0.210869 + 0.210869i
\(933\) 0 0
\(934\) 11.4767 9.63011i 0.375530 0.315107i
\(935\) 5.01331 + 49.2060i 0.163953 + 1.60921i
\(936\) 0 0
\(937\) 8.98755 0.786309i 0.293610 0.0256876i 0.0606010 0.998162i \(-0.480698\pi\)
0.233009 + 0.972474i \(0.425143\pi\)
\(938\) 4.31336 1.15576i 0.140836 0.0377369i
\(939\) 0 0
\(940\) −4.34980 + 9.68663i −0.141875 + 0.315943i
\(941\) 1.15162 + 0.203063i 0.0375419 + 0.00661965i 0.192388 0.981319i \(-0.438377\pi\)
−0.154846 + 0.987939i \(0.549488\pi\)
\(942\) 0 0
\(943\) −0.406339 1.51648i −0.0132322 0.0493833i
\(944\) −8.15412 6.84212i −0.265394 0.222692i
\(945\) 0 0
\(946\) 0.540244 + 1.48431i 0.0175648 + 0.0482590i
\(947\) −0.504745 + 5.76927i −0.0164020 + 0.187476i 0.983574 + 0.180507i \(0.0577739\pi\)
−0.999976 + 0.00696893i \(0.997782\pi\)
\(948\) 0 0
\(949\) −26.7411 −0.868051
\(950\) 36.7993 6.58017i 1.19393 0.213489i
\(951\) 0 0
\(952\) 1.43995 2.05646i 0.0466690 0.0666503i
\(953\) 0.183503 2.09745i 0.00594425 0.0679431i −0.992643 0.121077i \(-0.961365\pi\)
0.998587 + 0.0531335i \(0.0169209\pi\)
\(954\) 0 0
\(955\) 10.0646 1.92310i 0.325683 0.0622302i
\(956\) −4.51315 3.78698i −0.145966 0.122480i
\(957\) 0 0
\(958\) −33.0936 8.86741i −1.06921 0.286493i
\(959\) 3.01324 + 0.531315i 0.0973025 + 0.0171571i
\(960\) 0 0
\(961\) −9.99187 17.3064i −0.322319 0.558272i
\(962\) −31.6882 + 8.49082i −1.02167 + 0.273755i
\(963\) 0 0
\(964\) 11.1045 + 4.04172i 0.357653 + 0.130175i
\(965\) 2.77972 + 27.2832i 0.0894824 + 0.878276i
\(966\) 0 0
\(967\) −35.0900 24.5703i −1.12842 0.790127i −0.148379 0.988931i \(-0.547405\pi\)
−0.980039 + 0.198804i \(0.936294\pi\)
\(968\) −12.9184 + 12.9184i −0.415212 + 0.415212i
\(969\) 0 0
\(970\) −11.7212 19.6490i −0.376347 0.630890i
\(971\) −29.4711 + 5.19655i −0.945772 + 0.166765i −0.625205 0.780461i \(-0.714985\pi\)
−0.320567 + 0.947226i \(0.603874\pi\)
\(972\) 0 0
\(973\) −3.99633 1.86352i −0.128117 0.0597417i
\(974\) 7.81592 21.4741i 0.250438 0.688073i
\(975\) 0 0
\(976\) −10.0131 + 17.3431i −0.320511 + 0.555141i
\(977\) 4.89371 18.2636i 0.156564 0.584303i −0.842403 0.538848i \(-0.818860\pi\)
0.998966 0.0454549i \(-0.0144737\pi\)
\(978\) 0 0
\(979\) −12.6026 + 71.4730i −0.402782 + 2.28429i
\(980\) 12.7227 + 7.10539i 0.406412 + 0.226973i
\(981\) 0 0
\(982\) −3.69075 42.1854i −0.117777 1.34619i
\(983\) 46.3328 21.6053i 1.47779 0.689103i 0.494168 0.869367i \(-0.335473\pi\)
0.983618 + 0.180264i \(0.0576951\pi\)
\(984\) 0 0
\(985\) 0.164310 + 0.339627i 0.00523535 + 0.0108214i
\(986\) −0.00418885 0.0237561i −0.000133400 0.000756549i
\(987\) 0 0
\(988\) 6.73748 7.61618i 0.214348 0.242303i
\(989\) 1.52428i 0.0484694i
\(990\) 0 0
\(991\) 35.3727 + 42.1556i 1.12365 + 1.33912i 0.934003 + 0.357264i \(0.116290\pi\)
0.189648 + 0.981852i \(0.439265\pi\)
\(992\) 6.93120 14.8640i 0.220066 0.471933i
\(993\) 0 0
\(994\) −4.00970 + 4.77857i −0.127180 + 0.151567i
\(995\) 11.1740 0.159434i 0.354240 0.00505439i
\(996\) 0 0
\(997\) −8.15440 11.6457i −0.258252 0.368823i 0.668998 0.743264i \(-0.266723\pi\)
−0.927251 + 0.374441i \(0.877834\pi\)
\(998\) −18.5720 26.5235i −0.587886 0.839588i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.dl.a.523.6 96
3.2 odd 2 95.2.r.a.48.3 yes 96
5.2 odd 4 inner 855.2.dl.a.352.6 96
15.2 even 4 95.2.r.a.67.3 yes 96
15.8 even 4 475.2.bb.b.257.6 96
15.14 odd 2 475.2.bb.b.143.6 96
19.2 odd 18 inner 855.2.dl.a.838.6 96
57.2 even 18 95.2.r.a.78.3 yes 96
95.2 even 36 inner 855.2.dl.a.667.6 96
285.2 odd 36 95.2.r.a.2.3 96
285.59 even 18 475.2.bb.b.268.6 96
285.173 odd 36 475.2.bb.b.382.6 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.r.a.2.3 96 285.2 odd 36
95.2.r.a.48.3 yes 96 3.2 odd 2
95.2.r.a.67.3 yes 96 15.2 even 4
95.2.r.a.78.3 yes 96 57.2 even 18
475.2.bb.b.143.6 96 15.14 odd 2
475.2.bb.b.257.6 96 15.8 even 4
475.2.bb.b.268.6 96 285.59 even 18
475.2.bb.b.382.6 96 285.173 odd 36
855.2.dl.a.352.6 96 5.2 odd 4 inner
855.2.dl.a.523.6 96 1.1 even 1 trivial
855.2.dl.a.667.6 96 95.2 even 36 inner
855.2.dl.a.838.6 96 19.2 odd 18 inner