Properties

Label 855.2.c.g.514.9
Level $855$
Weight $2$
Character 855.514
Analytic conductor $6.827$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(514,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.514"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-22,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 25x^{12} + 242x^{10} + 1134x^{8} + 2605x^{6} + 2545x^{4} + 552x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 285)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 514.9
Root \(0.498112i\) of defining polynomial
Character \(\chi\) \(=\) 855.514
Dual form 855.2.c.g.514.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.498112i q^{2} +1.75188 q^{4} +(-0.192457 - 2.22777i) q^{5} -4.62756i q^{7} +1.86886i q^{8} +(1.10968 - 0.0958652i) q^{10} -4.13949 q^{11} +2.39138i q^{13} +2.30504 q^{14} +2.57287 q^{16} -7.34369i q^{17} -1.00000 q^{19} +(-0.337163 - 3.90280i) q^{20} -2.06193i q^{22} +2.69642i q^{23} +(-4.92592 + 0.857501i) q^{25} -1.19117 q^{26} -8.10695i q^{28} +0.979369 q^{29} -5.10751 q^{31} +5.01929i q^{32} +3.65798 q^{34} +(-10.3091 + 0.890607i) q^{35} -9.85293i q^{37} -0.498112i q^{38} +(4.16339 - 0.359675i) q^{40} +4.52440 q^{41} +3.43961i q^{43} -7.25190 q^{44} -1.34312 q^{46} +5.09235i q^{47} -14.4143 q^{49} +(-0.427131 - 2.45366i) q^{50} +4.18942i q^{52} -3.36319i q^{53} +(0.796674 + 9.22182i) q^{55} +8.64825 q^{56} +0.487835i q^{58} +13.4994 q^{59} +6.64096 q^{61} -2.54411i q^{62} +2.64557 q^{64} +(5.32744 - 0.460238i) q^{65} -7.28441i q^{67} -12.8653i q^{68} +(-0.443622 - 5.13511i) q^{70} +7.28441 q^{71} -3.82343i q^{73} +4.90786 q^{74} -1.75188 q^{76} +19.1557i q^{77} +16.1586 q^{79} +(-0.495167 - 5.73176i) q^{80} +2.25366i q^{82} -3.92122i q^{83} +(-16.3601 + 1.41335i) q^{85} -1.71331 q^{86} -7.73611i q^{88} +2.34446 q^{89} +11.0662 q^{91} +4.72382i q^{92} -2.53656 q^{94} +(0.192457 + 2.22777i) q^{95} +2.34256i q^{97} -7.17994i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 22 q^{4} - 2 q^{5} + 2 q^{10} + 8 q^{11} - 8 q^{14} + 38 q^{16} - 14 q^{19} - 12 q^{20} - 4 q^{25} + 40 q^{26} - 12 q^{29} + 8 q^{31} - 4 q^{34} + 14 q^{35} + 18 q^{40} - 4 q^{41} - 64 q^{44} - 8 q^{46}+ \cdots + 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.498112i 0.352218i 0.984371 + 0.176109i \(0.0563512\pi\)
−0.984371 + 0.176109i \(0.943649\pi\)
\(3\) 0 0
\(4\) 1.75188 0.875942
\(5\) −0.192457 2.22777i −0.0860695 0.996289i
\(6\) 0 0
\(7\) 4.62756i 1.74905i −0.484977 0.874527i \(-0.661172\pi\)
0.484977 0.874527i \(-0.338828\pi\)
\(8\) 1.86886i 0.660741i
\(9\) 0 0
\(10\) 1.10968 0.0958652i 0.350911 0.0303152i
\(11\) −4.13949 −1.24810 −0.624051 0.781384i \(-0.714514\pi\)
−0.624051 + 0.781384i \(0.714514\pi\)
\(12\) 0 0
\(13\) 2.39138i 0.663249i 0.943411 + 0.331624i \(0.107597\pi\)
−0.943411 + 0.331624i \(0.892403\pi\)
\(14\) 2.30504 0.616049
\(15\) 0 0
\(16\) 2.57287 0.643217
\(17\) 7.34369i 1.78111i −0.454879 0.890553i \(-0.650317\pi\)
0.454879 0.890553i \(-0.349683\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) −0.337163 3.90280i −0.0753919 0.872692i
\(21\) 0 0
\(22\) 2.06193i 0.439604i
\(23\) 2.69642i 0.562243i 0.959672 + 0.281121i \(0.0907063\pi\)
−0.959672 + 0.281121i \(0.909294\pi\)
\(24\) 0 0
\(25\) −4.92592 + 0.857501i −0.985184 + 0.171500i
\(26\) −1.19117 −0.233608
\(27\) 0 0
\(28\) 8.10695i 1.53207i
\(29\) 0.979369 0.181864 0.0909321 0.995857i \(-0.471015\pi\)
0.0909321 + 0.995857i \(0.471015\pi\)
\(30\) 0 0
\(31\) −5.10751 −0.917336 −0.458668 0.888608i \(-0.651673\pi\)
−0.458668 + 0.888608i \(0.651673\pi\)
\(32\) 5.01929i 0.887294i
\(33\) 0 0
\(34\) 3.65798 0.627338
\(35\) −10.3091 + 0.890607i −1.74256 + 0.150540i
\(36\) 0 0
\(37\) 9.85293i 1.61981i −0.586560 0.809906i \(-0.699518\pi\)
0.586560 0.809906i \(-0.300482\pi\)
\(38\) 0.498112i 0.0808044i
\(39\) 0 0
\(40\) 4.16339 0.359675i 0.658289 0.0568697i
\(41\) 4.52440 0.706593 0.353296 0.935511i \(-0.385061\pi\)
0.353296 + 0.935511i \(0.385061\pi\)
\(42\) 0 0
\(43\) 3.43961i 0.524535i 0.964995 + 0.262268i \(0.0844703\pi\)
−0.964995 + 0.262268i \(0.915530\pi\)
\(44\) −7.25190 −1.09327
\(45\) 0 0
\(46\) −1.34312 −0.198032
\(47\) 5.09235i 0.742795i 0.928474 + 0.371398i \(0.121121\pi\)
−0.928474 + 0.371398i \(0.878879\pi\)
\(48\) 0 0
\(49\) −14.4143 −2.05919
\(50\) −0.427131 2.45366i −0.0604055 0.347000i
\(51\) 0 0
\(52\) 4.18942i 0.580968i
\(53\) 3.36319i 0.461970i −0.972957 0.230985i \(-0.925805\pi\)
0.972957 0.230985i \(-0.0741949\pi\)
\(54\) 0 0
\(55\) 0.796674 + 9.22182i 0.107423 + 1.24347i
\(56\) 8.64825 1.15567
\(57\) 0 0
\(58\) 0.487835i 0.0640559i
\(59\) 13.4994 1.75748 0.878738 0.477304i \(-0.158386\pi\)
0.878738 + 0.477304i \(0.158386\pi\)
\(60\) 0 0
\(61\) 6.64096 0.850287 0.425144 0.905126i \(-0.360224\pi\)
0.425144 + 0.905126i \(0.360224\pi\)
\(62\) 2.54411i 0.323102i
\(63\) 0 0
\(64\) 2.64557 0.330696
\(65\) 5.32744 0.460238i 0.660788 0.0570855i
\(66\) 0 0
\(67\) 7.28441i 0.889933i −0.895547 0.444966i \(-0.853216\pi\)
0.895547 0.444966i \(-0.146784\pi\)
\(68\) 12.8653i 1.56015i
\(69\) 0 0
\(70\) −0.443622 5.13511i −0.0530230 0.613763i
\(71\) 7.28441 0.864501 0.432250 0.901754i \(-0.357720\pi\)
0.432250 + 0.901754i \(0.357720\pi\)
\(72\) 0 0
\(73\) 3.82343i 0.447499i −0.974647 0.223749i \(-0.928170\pi\)
0.974647 0.223749i \(-0.0718297\pi\)
\(74\) 4.90786 0.570527
\(75\) 0 0
\(76\) −1.75188 −0.200955
\(77\) 19.1557i 2.18300i
\(78\) 0 0
\(79\) 16.1586 1.81799 0.908995 0.416807i \(-0.136851\pi\)
0.908995 + 0.416807i \(0.136851\pi\)
\(80\) −0.495167 5.73176i −0.0553614 0.640830i
\(81\) 0 0
\(82\) 2.25366i 0.248875i
\(83\) 3.92122i 0.430410i −0.976569 0.215205i \(-0.930958\pi\)
0.976569 0.215205i \(-0.0690419\pi\)
\(84\) 0 0
\(85\) −16.3601 + 1.41335i −1.77450 + 0.153299i
\(86\) −1.71331 −0.184751
\(87\) 0 0
\(88\) 7.73611i 0.824672i
\(89\) 2.34446 0.248513 0.124256 0.992250i \(-0.460345\pi\)
0.124256 + 0.992250i \(0.460345\pi\)
\(90\) 0 0
\(91\) 11.0662 1.16006
\(92\) 4.72382i 0.492492i
\(93\) 0 0
\(94\) −2.53656 −0.261626
\(95\) 0.192457 + 2.22777i 0.0197457 + 0.228564i
\(96\) 0 0
\(97\) 2.34256i 0.237851i 0.992903 + 0.118926i \(0.0379450\pi\)
−0.992903 + 0.118926i \(0.962055\pi\)
\(98\) 7.17994i 0.725284i
\(99\) 0 0
\(100\) −8.62964 + 1.50224i −0.862964 + 0.150224i
\(101\) 7.44953 0.741256 0.370628 0.928781i \(-0.379143\pi\)
0.370628 + 0.928781i \(0.379143\pi\)
\(102\) 0 0
\(103\) 8.17714i 0.805718i 0.915262 + 0.402859i \(0.131983\pi\)
−0.915262 + 0.402859i \(0.868017\pi\)
\(104\) −4.46915 −0.438236
\(105\) 0 0
\(106\) 1.67525 0.162714
\(107\) 5.25512i 0.508032i −0.967200 0.254016i \(-0.918248\pi\)
0.967200 0.254016i \(-0.0817516\pi\)
\(108\) 0 0
\(109\) −7.50377 −0.718731 −0.359365 0.933197i \(-0.617007\pi\)
−0.359365 + 0.933197i \(0.617007\pi\)
\(110\) −4.59350 + 0.396833i −0.437973 + 0.0378365i
\(111\) 0 0
\(112\) 11.9061i 1.12502i
\(113\) 3.70723i 0.348747i −0.984680 0.174374i \(-0.944210\pi\)
0.984680 0.174374i \(-0.0557901\pi\)
\(114\) 0 0
\(115\) 6.00701 0.518946i 0.560156 0.0483919i
\(116\) 1.71574 0.159303
\(117\) 0 0
\(118\) 6.72423i 0.619015i
\(119\) −33.9834 −3.11525
\(120\) 0 0
\(121\) 6.13535 0.557759
\(122\) 3.30794i 0.299487i
\(123\) 0 0
\(124\) −8.94777 −0.803533
\(125\) 2.85834 + 10.8088i 0.255658 + 0.966767i
\(126\) 0 0
\(127\) 18.4105i 1.63367i 0.576872 + 0.816834i \(0.304273\pi\)
−0.576872 + 0.816834i \(0.695727\pi\)
\(128\) 11.3564i 1.00377i
\(129\) 0 0
\(130\) 0.229250 + 2.65366i 0.0201066 + 0.232741i
\(131\) 10.6541 0.930850 0.465425 0.885087i \(-0.345901\pi\)
0.465425 + 0.885087i \(0.345901\pi\)
\(132\) 0 0
\(133\) 4.62756i 0.401260i
\(134\) 3.62845 0.313451
\(135\) 0 0
\(136\) 13.7243 1.17685
\(137\) 2.31966i 0.198182i −0.995078 0.0990911i \(-0.968406\pi\)
0.995078 0.0990911i \(-0.0315935\pi\)
\(138\) 0 0
\(139\) 15.8160 1.34149 0.670746 0.741687i \(-0.265974\pi\)
0.670746 + 0.741687i \(0.265974\pi\)
\(140\) −18.0604 + 1.56024i −1.52638 + 0.131864i
\(141\) 0 0
\(142\) 3.62845i 0.304493i
\(143\) 9.89908i 0.827802i
\(144\) 0 0
\(145\) −0.188487 2.18181i −0.0156530 0.181189i
\(146\) 1.90450 0.157617
\(147\) 0 0
\(148\) 17.2612i 1.41886i
\(149\) −7.70875 −0.631525 −0.315763 0.948838i \(-0.602260\pi\)
−0.315763 + 0.948838i \(0.602260\pi\)
\(150\) 0 0
\(151\) −19.2214 −1.56421 −0.782106 0.623145i \(-0.785855\pi\)
−0.782106 + 0.623145i \(0.785855\pi\)
\(152\) 1.86886i 0.151584i
\(153\) 0 0
\(154\) −9.54169 −0.768892
\(155\) 0.982977 + 11.3784i 0.0789546 + 0.913932i
\(156\) 0 0
\(157\) 13.6082i 1.08605i −0.839716 0.543025i \(-0.817279\pi\)
0.839716 0.543025i \(-0.182721\pi\)
\(158\) 8.04882i 0.640329i
\(159\) 0 0
\(160\) 11.1818 0.965999i 0.884001 0.0763689i
\(161\) 12.4779 0.983392
\(162\) 0 0
\(163\) 3.12532i 0.244794i −0.992481 0.122397i \(-0.960942\pi\)
0.992481 0.122397i \(-0.0390581\pi\)
\(164\) 7.92623 0.618934
\(165\) 0 0
\(166\) 1.95321 0.151598
\(167\) 2.86858i 0.221977i 0.993822 + 0.110989i \(0.0354017\pi\)
−0.993822 + 0.110989i \(0.964598\pi\)
\(168\) 0 0
\(169\) 7.28131 0.560101
\(170\) −0.704005 8.14914i −0.0539947 0.625010i
\(171\) 0 0
\(172\) 6.02579i 0.459462i
\(173\) 4.85404i 0.369046i 0.982828 + 0.184523i \(0.0590739\pi\)
−0.982828 + 0.184523i \(0.940926\pi\)
\(174\) 0 0
\(175\) 3.96814 + 22.7950i 0.299963 + 1.72314i
\(176\) −10.6504 −0.802801
\(177\) 0 0
\(178\) 1.16781i 0.0875307i
\(179\) −16.7731 −1.25368 −0.626839 0.779149i \(-0.715652\pi\)
−0.626839 + 0.779149i \(0.715652\pi\)
\(180\) 0 0
\(181\) 17.0075 1.26416 0.632080 0.774903i \(-0.282201\pi\)
0.632080 + 0.774903i \(0.282201\pi\)
\(182\) 5.51223i 0.408594i
\(183\) 0 0
\(184\) −5.03923 −0.371497
\(185\) −21.9501 + 1.89627i −1.61380 + 0.139416i
\(186\) 0 0
\(187\) 30.3991i 2.22300i
\(188\) 8.92120i 0.650646i
\(189\) 0 0
\(190\) −1.10968 + 0.0958652i −0.0805046 + 0.00695479i
\(191\) −2.57283 −0.186163 −0.0930816 0.995658i \(-0.529672\pi\)
−0.0930816 + 0.995658i \(0.529672\pi\)
\(192\) 0 0
\(193\) 17.2612i 1.24249i 0.783617 + 0.621244i \(0.213372\pi\)
−0.783617 + 0.621244i \(0.786628\pi\)
\(194\) −1.16686 −0.0837755
\(195\) 0 0
\(196\) −25.2522 −1.80373
\(197\) 18.5625i 1.32252i −0.750156 0.661260i \(-0.770022\pi\)
0.750156 0.661260i \(-0.229978\pi\)
\(198\) 0 0
\(199\) 4.24470 0.300899 0.150449 0.988618i \(-0.451928\pi\)
0.150449 + 0.988618i \(0.451928\pi\)
\(200\) −1.60255 9.20585i −0.113317 0.650952i
\(201\) 0 0
\(202\) 3.71070i 0.261084i
\(203\) 4.53209i 0.318090i
\(204\) 0 0
\(205\) −0.870754 10.0793i −0.0608161 0.703971i
\(206\) −4.07313 −0.283788
\(207\) 0 0
\(208\) 6.15270i 0.426613i
\(209\) 4.13949 0.286334
\(210\) 0 0
\(211\) −1.20969 −0.0832786 −0.0416393 0.999133i \(-0.513258\pi\)
−0.0416393 + 0.999133i \(0.513258\pi\)
\(212\) 5.89193i 0.404659i
\(213\) 0 0
\(214\) 2.61764 0.178938
\(215\) 7.66265 0.661977i 0.522589 0.0451465i
\(216\) 0 0
\(217\) 23.6353i 1.60447i
\(218\) 3.73772i 0.253150i
\(219\) 0 0
\(220\) 1.39568 + 16.1556i 0.0940968 + 1.08921i
\(221\) 17.5615 1.18132
\(222\) 0 0
\(223\) 6.22370i 0.416770i 0.978047 + 0.208385i \(0.0668206\pi\)
−0.978047 + 0.208385i \(0.933179\pi\)
\(224\) 23.2271 1.55192
\(225\) 0 0
\(226\) 1.84662 0.122835
\(227\) 24.8143i 1.64698i 0.567328 + 0.823492i \(0.307977\pi\)
−0.567328 + 0.823492i \(0.692023\pi\)
\(228\) 0 0
\(229\) −0.919180 −0.0607411 −0.0303706 0.999539i \(-0.509669\pi\)
−0.0303706 + 0.999539i \(0.509669\pi\)
\(230\) 0.258493 + 2.99216i 0.0170445 + 0.197297i
\(231\) 0 0
\(232\) 1.83030i 0.120165i
\(233\) 13.9328i 0.912769i 0.889783 + 0.456385i \(0.150856\pi\)
−0.889783 + 0.456385i \(0.849144\pi\)
\(234\) 0 0
\(235\) 11.3446 0.980059i 0.740039 0.0639320i
\(236\) 23.6494 1.53945
\(237\) 0 0
\(238\) 16.9275i 1.09725i
\(239\) −17.7987 −1.15130 −0.575650 0.817696i \(-0.695251\pi\)
−0.575650 + 0.817696i \(0.695251\pi\)
\(240\) 0 0
\(241\) −10.5443 −0.679217 −0.339609 0.940567i \(-0.610295\pi\)
−0.339609 + 0.940567i \(0.610295\pi\)
\(242\) 3.05609i 0.196453i
\(243\) 0 0
\(244\) 11.6342 0.744803
\(245\) 2.77414 + 32.1118i 0.177233 + 2.05155i
\(246\) 0 0
\(247\) 2.39138i 0.152160i
\(248\) 9.54521i 0.606121i
\(249\) 0 0
\(250\) −5.38399 + 1.42378i −0.340513 + 0.0900474i
\(251\) 14.9840 0.945784 0.472892 0.881120i \(-0.343210\pi\)
0.472892 + 0.881120i \(0.343210\pi\)
\(252\) 0 0
\(253\) 11.1618i 0.701736i
\(254\) −9.17049 −0.575408
\(255\) 0 0
\(256\) −0.365609 −0.0228506
\(257\) 4.89838i 0.305553i −0.988261 0.152776i \(-0.951179\pi\)
0.988261 0.152776i \(-0.0488214\pi\)
\(258\) 0 0
\(259\) −45.5950 −2.83314
\(260\) 9.33306 0.806284i 0.578812 0.0500036i
\(261\) 0 0
\(262\) 5.30692i 0.327863i
\(263\) 13.6398i 0.841063i 0.907278 + 0.420532i \(0.138156\pi\)
−0.907278 + 0.420532i \(0.861844\pi\)
\(264\) 0 0
\(265\) −7.49242 + 0.647271i −0.460256 + 0.0397615i
\(266\) −2.30504 −0.141331
\(267\) 0 0
\(268\) 12.7614i 0.779530i
\(269\) −15.7729 −0.961692 −0.480846 0.876805i \(-0.659670\pi\)
−0.480846 + 0.876805i \(0.659670\pi\)
\(270\) 0 0
\(271\) −5.12680 −0.311431 −0.155715 0.987802i \(-0.549768\pi\)
−0.155715 + 0.987802i \(0.549768\pi\)
\(272\) 18.8944i 1.14564i
\(273\) 0 0
\(274\) 1.15545 0.0698034
\(275\) 20.3908 3.54961i 1.22961 0.214050i
\(276\) 0 0
\(277\) 8.63811i 0.519013i −0.965741 0.259507i \(-0.916440\pi\)
0.965741 0.259507i \(-0.0835600\pi\)
\(278\) 7.87811i 0.472498i
\(279\) 0 0
\(280\) −1.66442 19.2663i −0.0994681 1.15138i
\(281\) −18.5875 −1.10884 −0.554420 0.832237i \(-0.687060\pi\)
−0.554420 + 0.832237i \(0.687060\pi\)
\(282\) 0 0
\(283\) 20.0035i 1.18908i 0.804065 + 0.594541i \(0.202666\pi\)
−0.804065 + 0.594541i \(0.797334\pi\)
\(284\) 12.7614 0.757253
\(285\) 0 0
\(286\) 4.93085 0.291567
\(287\) 20.9369i 1.23587i
\(288\) 0 0
\(289\) −36.9298 −2.17234
\(290\) 1.08678 0.0938874i 0.0638182 0.00551326i
\(291\) 0 0
\(292\) 6.69821i 0.391983i
\(293\) 11.0837i 0.647519i −0.946139 0.323760i \(-0.895053\pi\)
0.946139 0.323760i \(-0.104947\pi\)
\(294\) 0 0
\(295\) −2.59806 30.0736i −0.151265 1.75095i
\(296\) 18.4137 1.07028
\(297\) 0 0
\(298\) 3.83982i 0.222435i
\(299\) −6.44816 −0.372907
\(300\) 0 0
\(301\) 15.9170 0.917440
\(302\) 9.57439i 0.550944i
\(303\) 0 0
\(304\) −2.57287 −0.147564
\(305\) −1.27810 14.7945i −0.0731838 0.847132i
\(306\) 0 0
\(307\) 26.2854i 1.50019i −0.661331 0.750094i \(-0.730008\pi\)
0.661331 0.750094i \(-0.269992\pi\)
\(308\) 33.5586i 1.91218i
\(309\) 0 0
\(310\) −5.66769 + 0.489632i −0.321903 + 0.0278093i
\(311\) −26.1287 −1.48162 −0.740811 0.671714i \(-0.765558\pi\)
−0.740811 + 0.671714i \(0.765558\pi\)
\(312\) 0 0
\(313\) 3.78602i 0.213998i 0.994259 + 0.106999i \(0.0341242\pi\)
−0.994259 + 0.106999i \(0.965876\pi\)
\(314\) 6.77840 0.382527
\(315\) 0 0
\(316\) 28.3081 1.59245
\(317\) 11.8420i 0.665113i −0.943083 0.332556i \(-0.892089\pi\)
0.943083 0.332556i \(-0.107911\pi\)
\(318\) 0 0
\(319\) −4.05408 −0.226985
\(320\) −0.509159 5.89372i −0.0284628 0.329469i
\(321\) 0 0
\(322\) 6.21537i 0.346369i
\(323\) 7.34369i 0.408614i
\(324\) 0 0
\(325\) −2.05061 11.7797i −0.113747 0.653422i
\(326\) 1.55676 0.0862209
\(327\) 0 0
\(328\) 8.45546i 0.466875i
\(329\) 23.5651 1.29919
\(330\) 0 0
\(331\) 34.2726 1.88379 0.941897 0.335902i \(-0.109041\pi\)
0.941897 + 0.335902i \(0.109041\pi\)
\(332\) 6.86952i 0.377014i
\(333\) 0 0
\(334\) −1.42887 −0.0781844
\(335\) −16.2280 + 1.40194i −0.886630 + 0.0765960i
\(336\) 0 0
\(337\) 10.4980i 0.571861i 0.958250 + 0.285930i \(0.0923026\pi\)
−0.958250 + 0.285930i \(0.907697\pi\)
\(338\) 3.62691i 0.197278i
\(339\) 0 0
\(340\) −28.6609 + 2.47602i −1.55436 + 0.134281i
\(341\) 21.1425 1.14493
\(342\) 0 0
\(343\) 34.3102i 1.85258i
\(344\) −6.42814 −0.346582
\(345\) 0 0
\(346\) −2.41785 −0.129985
\(347\) 18.8198i 1.01030i −0.863031 0.505151i \(-0.831437\pi\)
0.863031 0.505151i \(-0.168563\pi\)
\(348\) 0 0
\(349\) 14.4077 0.771227 0.385613 0.922660i \(-0.373990\pi\)
0.385613 + 0.922660i \(0.373990\pi\)
\(350\) −11.3545 + 1.97658i −0.606921 + 0.105652i
\(351\) 0 0
\(352\) 20.7773i 1.10743i
\(353\) 5.41582i 0.288255i −0.989559 0.144127i \(-0.953962\pi\)
0.989559 0.144127i \(-0.0460375\pi\)
\(354\) 0 0
\(355\) −1.40194 16.2280i −0.0744071 0.861293i
\(356\) 4.10723 0.217683
\(357\) 0 0
\(358\) 8.35487i 0.441569i
\(359\) −20.7304 −1.09411 −0.547055 0.837097i \(-0.684251\pi\)
−0.547055 + 0.837097i \(0.684251\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 8.47166i 0.445260i
\(363\) 0 0
\(364\) 19.3868 1.01614
\(365\) −8.51773 + 0.735847i −0.445838 + 0.0385160i
\(366\) 0 0
\(367\) 2.60433i 0.135945i −0.997687 0.0679725i \(-0.978347\pi\)
0.997687 0.0679725i \(-0.0216530\pi\)
\(368\) 6.93754i 0.361644i
\(369\) 0 0
\(370\) −0.944553 10.9336i −0.0491050 0.568410i
\(371\) −15.5634 −0.808011
\(372\) 0 0
\(373\) 5.98299i 0.309787i 0.987931 + 0.154894i \(0.0495035\pi\)
−0.987931 + 0.154894i \(0.950497\pi\)
\(374\) −15.1422 −0.782982
\(375\) 0 0
\(376\) −9.51687 −0.490795
\(377\) 2.34204i 0.120621i
\(378\) 0 0
\(379\) 7.44400 0.382372 0.191186 0.981554i \(-0.438767\pi\)
0.191186 + 0.981554i \(0.438767\pi\)
\(380\) 0.337163 + 3.90280i 0.0172961 + 0.200209i
\(381\) 0 0
\(382\) 1.28156i 0.0655701i
\(383\) 15.5789i 0.796044i 0.917376 + 0.398022i \(0.130303\pi\)
−0.917376 + 0.398022i \(0.869697\pi\)
\(384\) 0 0
\(385\) 42.6745 3.68666i 2.17490 0.187889i
\(386\) −8.59801 −0.437627
\(387\) 0 0
\(388\) 4.10390i 0.208344i
\(389\) 16.7532 0.849421 0.424711 0.905329i \(-0.360376\pi\)
0.424711 + 0.905329i \(0.360376\pi\)
\(390\) 0 0
\(391\) 19.8017 1.00141
\(392\) 26.9383i 1.36059i
\(393\) 0 0
\(394\) 9.24618 0.465816
\(395\) −3.10985 35.9978i −0.156473 1.81124i
\(396\) 0 0
\(397\) 6.65505i 0.334008i 0.985956 + 0.167004i \(0.0534092\pi\)
−0.985956 + 0.167004i \(0.946591\pi\)
\(398\) 2.11433i 0.105982i
\(399\) 0 0
\(400\) −12.6737 + 2.20624i −0.633687 + 0.110312i
\(401\) 30.8633 1.54124 0.770619 0.637296i \(-0.219947\pi\)
0.770619 + 0.637296i \(0.219947\pi\)
\(402\) 0 0
\(403\) 12.2140i 0.608422i
\(404\) 13.0507 0.649297
\(405\) 0 0
\(406\) 2.25749 0.112037
\(407\) 40.7861i 2.02169i
\(408\) 0 0
\(409\) 26.4257 1.30667 0.653334 0.757070i \(-0.273370\pi\)
0.653334 + 0.757070i \(0.273370\pi\)
\(410\) 5.02063 0.433733i 0.247951 0.0214205i
\(411\) 0 0
\(412\) 14.3254i 0.705762i
\(413\) 62.4694i 3.07392i
\(414\) 0 0
\(415\) −8.73557 + 0.754667i −0.428812 + 0.0370451i
\(416\) −12.0030 −0.588497
\(417\) 0 0
\(418\) 2.06193i 0.100852i
\(419\) −4.25514 −0.207877 −0.103939 0.994584i \(-0.533145\pi\)
−0.103939 + 0.994584i \(0.533145\pi\)
\(420\) 0 0
\(421\) −13.3331 −0.649818 −0.324909 0.945745i \(-0.605334\pi\)
−0.324909 + 0.945745i \(0.605334\pi\)
\(422\) 0.602562i 0.0293323i
\(423\) 0 0
\(424\) 6.28533 0.305243
\(425\) 6.29722 + 36.1744i 0.305460 + 1.75472i
\(426\) 0 0
\(427\) 30.7314i 1.48720i
\(428\) 9.20637i 0.445006i
\(429\) 0 0
\(430\) 0.329739 + 3.81686i 0.0159014 + 0.184065i
\(431\) 17.7752 0.856199 0.428100 0.903732i \(-0.359183\pi\)
0.428100 + 0.903732i \(0.359183\pi\)
\(432\) 0 0
\(433\) 31.2503i 1.50179i −0.660421 0.750896i \(-0.729622\pi\)
0.660421 0.750896i \(-0.270378\pi\)
\(434\) −11.7730 −0.565123
\(435\) 0 0
\(436\) −13.1457 −0.629567
\(437\) 2.69642i 0.128987i
\(438\) 0 0
\(439\) 11.8467 0.565412 0.282706 0.959207i \(-0.408768\pi\)
0.282706 + 0.959207i \(0.408768\pi\)
\(440\) −17.2343 + 1.48887i −0.821612 + 0.0709791i
\(441\) 0 0
\(442\) 8.74761i 0.416081i
\(443\) 31.3323i 1.48864i 0.667820 + 0.744322i \(0.267227\pi\)
−0.667820 + 0.744322i \(0.732773\pi\)
\(444\) 0 0
\(445\) −0.451209 5.22293i −0.0213894 0.247590i
\(446\) −3.10010 −0.146794
\(447\) 0 0
\(448\) 12.2425i 0.578405i
\(449\) −8.67661 −0.409475 −0.204737 0.978817i \(-0.565634\pi\)
−0.204737 + 0.978817i \(0.565634\pi\)
\(450\) 0 0
\(451\) −18.7287 −0.881900
\(452\) 6.49465i 0.305482i
\(453\) 0 0
\(454\) −12.3603 −0.580098
\(455\) −2.12978 24.6531i −0.0998456 1.15575i
\(456\) 0 0
\(457\) 25.3250i 1.18465i 0.805697 + 0.592327i \(0.201791\pi\)
−0.805697 + 0.592327i \(0.798209\pi\)
\(458\) 0.457854i 0.0213941i
\(459\) 0 0
\(460\) 10.5236 0.909133i 0.490664 0.0423885i
\(461\) 24.3053 1.13201 0.566005 0.824402i \(-0.308488\pi\)
0.566005 + 0.824402i \(0.308488\pi\)
\(462\) 0 0
\(463\) 15.8208i 0.735256i −0.929973 0.367628i \(-0.880170\pi\)
0.929973 0.367628i \(-0.119830\pi\)
\(464\) 2.51979 0.116978
\(465\) 0 0
\(466\) −6.94010 −0.321494
\(467\) 1.84478i 0.0853661i 0.999089 + 0.0426831i \(0.0135906\pi\)
−0.999089 + 0.0426831i \(0.986409\pi\)
\(468\) 0 0
\(469\) −33.7091 −1.55654
\(470\) 0.488179 + 5.65087i 0.0225180 + 0.260655i
\(471\) 0 0
\(472\) 25.2285i 1.16124i
\(473\) 14.2382i 0.654673i
\(474\) 0 0
\(475\) 4.92592 0.857501i 0.226017 0.0393448i
\(476\) −59.5350 −2.72878
\(477\) 0 0
\(478\) 8.86572i 0.405509i
\(479\) −10.9945 −0.502350 −0.251175 0.967942i \(-0.580817\pi\)
−0.251175 + 0.967942i \(0.580817\pi\)
\(480\) 0 0
\(481\) 23.5621 1.07434
\(482\) 5.25224i 0.239233i
\(483\) 0 0
\(484\) 10.7484 0.488564
\(485\) 5.21869 0.450843i 0.236969 0.0204717i
\(486\) 0 0
\(487\) 32.2455i 1.46118i −0.682816 0.730590i \(-0.739245\pi\)
0.682816 0.730590i \(-0.260755\pi\)
\(488\) 12.4110i 0.561820i
\(489\) 0 0
\(490\) −15.9953 + 1.38183i −0.722592 + 0.0624248i
\(491\) 5.50201 0.248302 0.124151 0.992263i \(-0.460379\pi\)
0.124151 + 0.992263i \(0.460379\pi\)
\(492\) 0 0
\(493\) 7.19218i 0.323920i
\(494\) 1.19117 0.0535934
\(495\) 0 0
\(496\) −13.1409 −0.590046
\(497\) 33.7091i 1.51206i
\(498\) 0 0
\(499\) 16.5316 0.740054 0.370027 0.929021i \(-0.379348\pi\)
0.370027 + 0.929021i \(0.379348\pi\)
\(500\) 5.00749 + 18.9357i 0.223942 + 0.846832i
\(501\) 0 0
\(502\) 7.46373i 0.333122i
\(503\) 19.6030i 0.874056i −0.899448 0.437028i \(-0.856031\pi\)
0.899448 0.437028i \(-0.143969\pi\)
\(504\) 0 0
\(505\) −1.43372 16.5958i −0.0637995 0.738505i
\(506\) 5.55982 0.247164
\(507\) 0 0
\(508\) 32.2531i 1.43100i
\(509\) −21.3635 −0.946922 −0.473461 0.880815i \(-0.656996\pi\)
−0.473461 + 0.880815i \(0.656996\pi\)
\(510\) 0 0
\(511\) −17.6932 −0.782699
\(512\) 22.5306i 0.995723i
\(513\) 0 0
\(514\) 2.43994 0.107621
\(515\) 18.2168 1.57375i 0.802728 0.0693477i
\(516\) 0 0
\(517\) 21.0797i 0.927084i
\(518\) 22.7114i 0.997883i
\(519\) 0 0
\(520\) 0.860119 + 9.95623i 0.0377187 + 0.436610i
\(521\) −25.7832 −1.12958 −0.564791 0.825234i \(-0.691043\pi\)
−0.564791 + 0.825234i \(0.691043\pi\)
\(522\) 0 0
\(523\) 24.4480i 1.06904i 0.845157 + 0.534518i \(0.179507\pi\)
−0.845157 + 0.534518i \(0.820493\pi\)
\(524\) 18.6647 0.815371
\(525\) 0 0
\(526\) −6.79412 −0.296238
\(527\) 37.5080i 1.63387i
\(528\) 0 0
\(529\) 15.7293 0.683883
\(530\) −0.322413 3.73207i −0.0140047 0.162111i
\(531\) 0 0
\(532\) 8.10695i 0.351481i
\(533\) 10.8196i 0.468647i
\(534\) 0 0
\(535\) −11.7072 + 1.01139i −0.506147 + 0.0437260i
\(536\) 13.6135 0.588015
\(537\) 0 0
\(538\) 7.85668i 0.338726i
\(539\) 59.6679 2.57008
\(540\) 0 0
\(541\) 7.46518 0.320953 0.160477 0.987040i \(-0.448697\pi\)
0.160477 + 0.987040i \(0.448697\pi\)
\(542\) 2.55372i 0.109692i
\(543\) 0 0
\(544\) 36.8601 1.58037
\(545\) 1.44415 + 16.7167i 0.0618608 + 0.716064i
\(546\) 0 0
\(547\) 6.04764i 0.258578i 0.991607 + 0.129289i \(0.0412696\pi\)
−0.991607 + 0.129289i \(0.958730\pi\)
\(548\) 4.06378i 0.173596i
\(549\) 0 0
\(550\) 1.76810 + 10.1569i 0.0753922 + 0.433091i
\(551\) −0.979369 −0.0417225
\(552\) 0 0
\(553\) 74.7751i 3.17976i
\(554\) 4.30274 0.182806
\(555\) 0 0
\(556\) 27.7077 1.17507
\(557\) 28.3330i 1.20051i −0.799809 0.600255i \(-0.795066\pi\)
0.799809 0.600255i \(-0.204934\pi\)
\(558\) 0 0
\(559\) −8.22540 −0.347897
\(560\) −26.5241 + 2.29142i −1.12085 + 0.0968300i
\(561\) 0 0
\(562\) 9.25868i 0.390554i
\(563\) 39.5993i 1.66891i 0.551074 + 0.834457i \(0.314218\pi\)
−0.551074 + 0.834457i \(0.685782\pi\)
\(564\) 0 0
\(565\) −8.25887 + 0.713484i −0.347453 + 0.0300165i
\(566\) −9.96396 −0.418816
\(567\) 0 0
\(568\) 13.6135i 0.571211i
\(569\) 30.6989 1.28697 0.643483 0.765461i \(-0.277489\pi\)
0.643483 + 0.765461i \(0.277489\pi\)
\(570\) 0 0
\(571\) −39.4360 −1.65035 −0.825173 0.564880i \(-0.808923\pi\)
−0.825173 + 0.564880i \(0.808923\pi\)
\(572\) 17.3420i 0.725107i
\(573\) 0 0
\(574\) 10.4289 0.435295
\(575\) −2.31218 13.2824i −0.0964247 0.553912i
\(576\) 0 0
\(577\) 8.15383i 0.339448i −0.985492 0.169724i \(-0.945712\pi\)
0.985492 0.169724i \(-0.0542877\pi\)
\(578\) 18.3952i 0.765138i
\(579\) 0 0
\(580\) −0.330207 3.82228i −0.0137111 0.158711i
\(581\) −18.1457 −0.752809
\(582\) 0 0
\(583\) 13.9219i 0.576586i
\(584\) 7.14545 0.295681
\(585\) 0 0
\(586\) 5.52094 0.228068
\(587\) 10.8871i 0.449360i 0.974433 + 0.224680i \(0.0721337\pi\)
−0.974433 + 0.224680i \(0.927866\pi\)
\(588\) 0 0
\(589\) 5.10751 0.210451
\(590\) 14.9800 1.29413i 0.616718 0.0532783i
\(591\) 0 0
\(592\) 25.3503i 1.04189i
\(593\) 3.13220i 0.128624i 0.997930 + 0.0643120i \(0.0204853\pi\)
−0.997930 + 0.0643120i \(0.979515\pi\)
\(594\) 0 0
\(595\) 6.54035 + 75.7072i 0.268128 + 3.10369i
\(596\) −13.5048 −0.553180
\(597\) 0 0
\(598\) 3.21191i 0.131345i
\(599\) 24.2488 0.990778 0.495389 0.868671i \(-0.335025\pi\)
0.495389 + 0.868671i \(0.335025\pi\)
\(600\) 0 0
\(601\) −9.24528 −0.377123 −0.188561 0.982061i \(-0.560382\pi\)
−0.188561 + 0.982061i \(0.560382\pi\)
\(602\) 7.92844i 0.323139i
\(603\) 0 0
\(604\) −33.6736 −1.37016
\(605\) −1.18079 13.6681i −0.0480060 0.555689i
\(606\) 0 0
\(607\) 42.6285i 1.73024i 0.501569 + 0.865118i \(0.332756\pi\)
−0.501569 + 0.865118i \(0.667244\pi\)
\(608\) 5.01929i 0.203559i
\(609\) 0 0
\(610\) 7.36933 0.636637i 0.298375 0.0257767i
\(611\) −12.1777 −0.492658
\(612\) 0 0
\(613\) 45.2670i 1.82832i −0.405356 0.914159i \(-0.632852\pi\)
0.405356 0.914159i \(-0.367148\pi\)
\(614\) 13.0931 0.528394
\(615\) 0 0
\(616\) −35.7993 −1.44240
\(617\) 8.02773i 0.323184i 0.986858 + 0.161592i \(0.0516629\pi\)
−0.986858 + 0.161592i \(0.948337\pi\)
\(618\) 0 0
\(619\) −15.1856 −0.610361 −0.305181 0.952294i \(-0.598717\pi\)
−0.305181 + 0.952294i \(0.598717\pi\)
\(620\) 1.72206 + 19.9336i 0.0691597 + 0.800551i
\(621\) 0 0
\(622\) 13.0150i 0.521854i
\(623\) 10.8491i 0.434662i
\(624\) 0 0
\(625\) 23.5294 8.44796i 0.941175 0.337918i
\(626\) −1.88586 −0.0753741
\(627\) 0 0
\(628\) 23.8400i 0.951318i
\(629\) −72.3569 −2.88506
\(630\) 0 0
\(631\) 4.77803 0.190210 0.0951052 0.995467i \(-0.469681\pi\)
0.0951052 + 0.995467i \(0.469681\pi\)
\(632\) 30.1982i 1.20122i
\(633\) 0 0
\(634\) 5.89864 0.234265
\(635\) 41.0144 3.54324i 1.62761 0.140609i
\(636\) 0 0
\(637\) 34.4701i 1.36575i
\(638\) 2.01939i 0.0799483i
\(639\) 0 0
\(640\) 25.2994 2.18562i 1.00005 0.0863941i
\(641\) 28.6332 1.13094 0.565472 0.824767i \(-0.308694\pi\)
0.565472 + 0.824767i \(0.308694\pi\)
\(642\) 0 0
\(643\) 33.5682i 1.32380i 0.749593 + 0.661899i \(0.230249\pi\)
−0.749593 + 0.661899i \(0.769751\pi\)
\(644\) 21.8598 0.861395
\(645\) 0 0
\(646\) −3.65798 −0.143921
\(647\) 29.3005i 1.15192i 0.817478 + 0.575960i \(0.195372\pi\)
−0.817478 + 0.575960i \(0.804628\pi\)
\(648\) 0 0
\(649\) −55.8807 −2.19351
\(650\) 5.86763 1.02143i 0.230147 0.0400639i
\(651\) 0 0
\(652\) 5.47520i 0.214425i
\(653\) 47.8047i 1.87074i −0.353666 0.935372i \(-0.615065\pi\)
0.353666 0.935372i \(-0.384935\pi\)
\(654\) 0 0
\(655\) −2.05045 23.7348i −0.0801178 0.927396i
\(656\) 11.6407 0.454493
\(657\) 0 0
\(658\) 11.7381i 0.457598i
\(659\) 17.6309 0.686801 0.343401 0.939189i \(-0.388421\pi\)
0.343401 + 0.939189i \(0.388421\pi\)
\(660\) 0 0
\(661\) −14.5024 −0.564079 −0.282039 0.959403i \(-0.591011\pi\)
−0.282039 + 0.959403i \(0.591011\pi\)
\(662\) 17.0716i 0.663507i
\(663\) 0 0
\(664\) 7.32820 0.284389
\(665\) 10.3091 0.890607i 0.399771 0.0345363i
\(666\) 0 0
\(667\) 2.64079i 0.102252i
\(668\) 5.02541i 0.194439i
\(669\) 0 0
\(670\) −0.698322 8.08336i −0.0269785 0.312287i
\(671\) −27.4901 −1.06125
\(672\) 0 0
\(673\) 34.8772i 1.34442i 0.740361 + 0.672209i \(0.234654\pi\)
−0.740361 + 0.672209i \(0.765346\pi\)
\(674\) −5.22916 −0.201420
\(675\) 0 0
\(676\) 12.7560 0.490616
\(677\) 15.0784i 0.579512i 0.957101 + 0.289756i \(0.0935741\pi\)
−0.957101 + 0.289756i \(0.906426\pi\)
\(678\) 0 0
\(679\) 10.8403 0.416014
\(680\) −2.64134 30.5746i −0.101291 1.17248i
\(681\) 0 0
\(682\) 10.5313i 0.403265i
\(683\) 28.5584i 1.09276i −0.837539 0.546378i \(-0.816006\pi\)
0.837539 0.546378i \(-0.183994\pi\)
\(684\) 0 0
\(685\) −5.16768 + 0.446436i −0.197447 + 0.0170574i
\(686\) −17.0903 −0.652511
\(687\) 0 0
\(688\) 8.84966i 0.337390i
\(689\) 8.04267 0.306401
\(690\) 0 0
\(691\) −45.5752 −1.73376 −0.866882 0.498514i \(-0.833879\pi\)
−0.866882 + 0.498514i \(0.833879\pi\)
\(692\) 8.50371i 0.323263i
\(693\) 0 0
\(694\) 9.37438 0.355847
\(695\) −3.04389 35.2343i −0.115461 1.33651i
\(696\) 0 0
\(697\) 33.2258i 1.25852i
\(698\) 7.17665i 0.271640i
\(699\) 0 0
\(700\) 6.95172 + 39.9342i 0.262750 + 1.50937i
\(701\) −47.2207 −1.78350 −0.891750 0.452528i \(-0.850522\pi\)
−0.891750 + 0.452528i \(0.850522\pi\)
\(702\) 0 0
\(703\) 9.85293i 0.371610i
\(704\) −10.9513 −0.412742
\(705\) 0 0
\(706\) 2.69768 0.101529
\(707\) 34.4731i 1.29650i
\(708\) 0 0
\(709\) −21.4475 −0.805479 −0.402739 0.915315i \(-0.631942\pi\)
−0.402739 + 0.915315i \(0.631942\pi\)
\(710\) 8.08336 0.698322i 0.303363 0.0262075i
\(711\) 0 0
\(712\) 4.38147i 0.164203i
\(713\) 13.7720i 0.515765i
\(714\) 0 0
\(715\) −22.0529 + 1.90515i −0.824730 + 0.0712485i
\(716\) −29.3845 −1.09815
\(717\) 0 0
\(718\) 10.3261i 0.385365i
\(719\) 30.7936 1.14841 0.574203 0.818713i \(-0.305312\pi\)
0.574203 + 0.818713i \(0.305312\pi\)
\(720\) 0 0
\(721\) 37.8402 1.40924
\(722\) 0.498112i 0.0185378i
\(723\) 0 0
\(724\) 29.7952 1.10733
\(725\) −4.82429 + 0.839809i −0.179170 + 0.0311897i
\(726\) 0 0
\(727\) 35.1442i 1.30343i −0.758465 0.651714i \(-0.774050\pi\)
0.758465 0.651714i \(-0.225950\pi\)
\(728\) 20.6812i 0.766498i
\(729\) 0 0
\(730\) −0.366534 4.24278i −0.0135660 0.157032i
\(731\) 25.2594 0.934253
\(732\) 0 0
\(733\) 13.1160i 0.484449i 0.970220 + 0.242225i \(0.0778771\pi\)
−0.970220 + 0.242225i \(0.922123\pi\)
\(734\) 1.29725 0.0478823
\(735\) 0 0
\(736\) −13.5341 −0.498874
\(737\) 30.1537i 1.11073i
\(738\) 0 0
\(739\) −15.7315 −0.578691 −0.289346 0.957225i \(-0.593438\pi\)
−0.289346 + 0.957225i \(0.593438\pi\)
\(740\) −38.4540 + 3.32204i −1.41360 + 0.122121i
\(741\) 0 0
\(742\) 7.75231i 0.284596i
\(743\) 5.59959i 0.205429i −0.994711 0.102715i \(-0.967247\pi\)
0.994711 0.102715i \(-0.0327528\pi\)
\(744\) 0 0
\(745\) 1.48360 + 17.1733i 0.0543550 + 0.629182i
\(746\) −2.98020 −0.109113
\(747\) 0 0
\(748\) 53.2557i 1.94722i
\(749\) −24.3184 −0.888575
\(750\) 0 0
\(751\) −1.87281 −0.0683397 −0.0341698 0.999416i \(-0.510879\pi\)
−0.0341698 + 0.999416i \(0.510879\pi\)
\(752\) 13.1019i 0.477779i
\(753\) 0 0
\(754\) −1.16660 −0.0424850
\(755\) 3.69929 + 42.8208i 0.134631 + 1.55841i
\(756\) 0 0
\(757\) 30.2362i 1.09895i 0.835509 + 0.549476i \(0.185173\pi\)
−0.835509 + 0.549476i \(0.814827\pi\)
\(758\) 3.70794i 0.134679i
\(759\) 0 0
\(760\) −4.16339 + 0.359675i −0.151022 + 0.0130468i
\(761\) 17.5630 0.636659 0.318330 0.947980i \(-0.396878\pi\)
0.318330 + 0.947980i \(0.396878\pi\)
\(762\) 0 0
\(763\) 34.7241i 1.25710i
\(764\) −4.50730 −0.163068
\(765\) 0 0
\(766\) −7.76003 −0.280381
\(767\) 32.2822i 1.16564i
\(768\) 0 0
\(769\) −18.2587 −0.658426 −0.329213 0.944256i \(-0.606783\pi\)
−0.329213 + 0.944256i \(0.606783\pi\)
\(770\) 1.83637 + 21.2567i 0.0661781 + 0.766038i
\(771\) 0 0
\(772\) 30.2396i 1.08835i
\(773\) 7.79018i 0.280193i 0.990138 + 0.140097i \(0.0447413\pi\)
−0.990138 + 0.140097i \(0.955259\pi\)
\(774\) 0 0
\(775\) 25.1592 4.37969i 0.903745 0.157323i
\(776\) −4.37792 −0.157158
\(777\) 0 0
\(778\) 8.34497i 0.299182i
\(779\) −4.52440 −0.162103
\(780\) 0 0
\(781\) −30.1537 −1.07898
\(782\) 9.86345i 0.352716i
\(783\) 0 0
\(784\) −37.0861 −1.32451
\(785\) −30.3159 + 2.61899i −1.08202 + 0.0934758i
\(786\) 0 0
\(787\) 1.66566i 0.0593744i 0.999559 + 0.0296872i \(0.00945111\pi\)
−0.999559 + 0.0296872i \(0.990549\pi\)
\(788\) 32.5193i 1.15845i
\(789\) 0 0
\(790\) 17.9309 1.54905i 0.637953 0.0551128i
\(791\) −17.1555 −0.609978
\(792\) 0 0
\(793\) 15.8810i 0.563952i
\(794\) −3.31496 −0.117644
\(795\) 0 0
\(796\) 7.43622 0.263570
\(797\) 26.1199i 0.925215i 0.886563 + 0.462607i \(0.153086\pi\)
−0.886563 + 0.462607i \(0.846914\pi\)
\(798\) 0 0
\(799\) 37.3966 1.32300
\(800\) −4.30405 24.7246i −0.152171 0.874148i
\(801\) 0 0
\(802\) 15.3734i 0.542852i
\(803\) 15.8270i 0.558524i
\(804\) 0 0
\(805\) −2.40145 27.7978i −0.0846401 0.979743i
\(806\) 6.08393 0.214297
\(807\) 0 0
\(808\) 13.9221i 0.489778i
\(809\) 10.7020 0.376261 0.188130 0.982144i \(-0.439757\pi\)
0.188130 + 0.982144i \(0.439757\pi\)
\(810\) 0 0
\(811\) 41.3040 1.45038 0.725190 0.688549i \(-0.241752\pi\)
0.725190 + 0.688549i \(0.241752\pi\)
\(812\) 7.93969i 0.278629i
\(813\) 0 0
\(814\) −20.3160 −0.712076
\(815\) −6.96249 + 0.601490i −0.243885 + 0.0210693i
\(816\) 0 0
\(817\) 3.43961i 0.120337i
\(818\) 13.1630i 0.460232i
\(819\) 0 0
\(820\) −1.52546 17.6578i −0.0532714 0.616638i
\(821\) −31.6822 −1.10572 −0.552858 0.833276i \(-0.686463\pi\)
−0.552858 + 0.833276i \(0.686463\pi\)
\(822\) 0 0
\(823\) 20.7292i 0.722575i 0.932454 + 0.361288i \(0.117663\pi\)
−0.932454 + 0.361288i \(0.882337\pi\)
\(824\) −15.2819 −0.532371
\(825\) 0 0
\(826\) 31.1168 1.08269
\(827\) 24.6668i 0.857750i −0.903364 0.428875i \(-0.858910\pi\)
0.903364 0.428875i \(-0.141090\pi\)
\(828\) 0 0
\(829\) 52.3442 1.81799 0.908995 0.416808i \(-0.136851\pi\)
0.908995 + 0.416808i \(0.136851\pi\)
\(830\) −0.375908 4.35129i −0.0130480 0.151036i
\(831\) 0 0
\(832\) 6.32655i 0.219334i
\(833\) 105.854i 3.66763i
\(834\) 0 0
\(835\) 6.39053 0.552078i 0.221153 0.0191054i
\(836\) 7.25190 0.250812
\(837\) 0 0
\(838\) 2.11954i 0.0732182i
\(839\) −1.72696 −0.0596214 −0.0298107 0.999556i \(-0.509490\pi\)
−0.0298107 + 0.999556i \(0.509490\pi\)
\(840\) 0 0
\(841\) −28.0408 −0.966925
\(842\) 6.64140i 0.228878i
\(843\) 0 0
\(844\) −2.11924 −0.0729473
\(845\) −1.40134 16.2211i −0.0482076 0.558022i
\(846\) 0 0
\(847\) 28.3917i 0.975550i
\(848\) 8.65306i 0.297147i
\(849\) 0 0
\(850\) −18.0189 + 3.13672i −0.618044 + 0.107589i
\(851\) 26.5676 0.910727
\(852\) 0 0
\(853\) 5.71206i 0.195577i 0.995207 + 0.0977886i \(0.0311769\pi\)
−0.995207 + 0.0977886i \(0.968823\pi\)
\(854\) 15.3077 0.523818
\(855\) 0 0
\(856\) 9.82108 0.335677
\(857\) 8.45967i 0.288977i −0.989507 0.144488i \(-0.953846\pi\)
0.989507 0.144488i \(-0.0461536\pi\)
\(858\) 0 0
\(859\) 9.60383 0.327678 0.163839 0.986487i \(-0.447612\pi\)
0.163839 + 0.986487i \(0.447612\pi\)
\(860\) 13.4241 1.15971i 0.457757 0.0395457i
\(861\) 0 0
\(862\) 8.85402i 0.301569i
\(863\) 7.21724i 0.245678i −0.992427 0.122839i \(-0.960800\pi\)
0.992427 0.122839i \(-0.0391999\pi\)
\(864\) 0 0
\(865\) 10.8137 0.934194i 0.367676 0.0317636i
\(866\) 15.5661 0.528958
\(867\) 0 0
\(868\) 41.4063i 1.40542i
\(869\) −66.8885 −2.26904
\(870\) 0 0
\(871\) 17.4198 0.590247
\(872\) 14.0235i 0.474895i
\(873\) 0 0
\(874\) 1.34312 0.0454317
\(875\) 50.0183 13.2272i 1.69093 0.447160i
\(876\) 0 0
\(877\) 12.7856i 0.431740i 0.976422 + 0.215870i \(0.0692588\pi\)
−0.976422 + 0.215870i \(0.930741\pi\)
\(878\) 5.90098i 0.199148i
\(879\) 0 0
\(880\) 2.04974 + 23.7265i 0.0690966 + 0.799822i
\(881\) 52.4525 1.76717 0.883586 0.468270i \(-0.155122\pi\)
0.883586 + 0.468270i \(0.155122\pi\)
\(882\) 0 0
\(883\) 13.2387i 0.445517i −0.974874 0.222758i \(-0.928494\pi\)
0.974874 0.222758i \(-0.0715061\pi\)
\(884\) 30.7658 1.03477
\(885\) 0 0
\(886\) −15.6070 −0.524328
\(887\) 33.9046i 1.13840i 0.822198 + 0.569202i \(0.192748\pi\)
−0.822198 + 0.569202i \(0.807252\pi\)
\(888\) 0 0
\(889\) 85.1958 2.85737
\(890\) 2.60160 0.224753i 0.0872059 0.00753372i
\(891\) 0 0
\(892\) 10.9032i 0.365066i
\(893\) 5.09235i 0.170409i
\(894\) 0 0
\(895\) 3.22810 + 37.3666i 0.107903 + 1.24903i
\(896\) 52.5523 1.75565
\(897\) 0 0
\(898\) 4.32192i 0.144224i
\(899\) −5.00213 −0.166830
\(900\) 0 0
\(901\) −24.6983 −0.822818
\(902\) 9.32898i 0.310621i
\(903\) 0 0
\(904\) 6.92830 0.230432
\(905\) −3.27322 37.8889i −0.108806 1.25947i
\(906\) 0 0
\(907\) 26.0357i 0.864502i −0.901753 0.432251i \(-0.857719\pi\)
0.901753 0.432251i \(-0.142281\pi\)
\(908\) 43.4718i 1.44266i
\(909\) 0 0
\(910\) 12.2800 1.06087i 0.407077 0.0351674i
\(911\) −53.0788 −1.75858 −0.879289 0.476289i \(-0.841982\pi\)
−0.879289 + 0.476289i \(0.841982\pi\)
\(912\) 0 0
\(913\) 16.2318i 0.537195i
\(914\) −12.6147 −0.417257
\(915\) 0 0
\(916\) −1.61030 −0.0532057
\(917\) 49.3023i 1.62811i
\(918\) 0 0
\(919\) −28.1784 −0.929521 −0.464760 0.885436i \(-0.653860\pi\)
−0.464760 + 0.885436i \(0.653860\pi\)
\(920\) 0.969836 + 11.2262i 0.0319745 + 0.370118i
\(921\) 0 0
\(922\) 12.1067i 0.398714i
\(923\) 17.4198i 0.573379i
\(924\) 0 0
\(925\) 8.44890 + 48.5347i 0.277798 + 1.59581i
\(926\) 7.88054 0.258971
\(927\) 0 0
\(928\) 4.91574i 0.161367i
\(929\) 2.33284 0.0765381 0.0382690 0.999267i \(-0.487816\pi\)
0.0382690 + 0.999267i \(0.487816\pi\)
\(930\) 0 0
\(931\) 14.4143 0.472410
\(932\) 24.4087i 0.799533i
\(933\) 0 0
\(934\) −0.918906 −0.0300675
\(935\) 67.7222 5.85053i 2.21475 0.191333i
\(936\) 0 0
\(937\) 1.92340i 0.0628349i −0.999506 0.0314174i \(-0.989998\pi\)
0.999506 0.0314174i \(-0.0100021\pi\)
\(938\) 16.7909i 0.548242i
\(939\) 0 0
\(940\) 19.8744 1.71695i 0.648231 0.0560007i
\(941\) −55.5001 −1.80925 −0.904626 0.426205i \(-0.859850\pi\)
−0.904626 + 0.426205i \(0.859850\pi\)
\(942\) 0 0
\(943\) 12.1997i 0.397276i
\(944\) 34.7323 1.13044
\(945\) 0 0
\(946\) 7.09222 0.230588
\(947\) 37.1931i 1.20861i −0.796752 0.604307i \(-0.793450\pi\)
0.796752 0.604307i \(-0.206550\pi\)
\(948\) 0 0
\(949\) 9.14327 0.296803
\(950\) 0.427131 + 2.45366i 0.0138580 + 0.0796072i
\(951\) 0 0
\(952\) 63.5101i 2.05837i
\(953\) 54.4958i 1.76529i −0.470039 0.882646i \(-0.655760\pi\)
0.470039 0.882646i \(-0.344240\pi\)
\(954\) 0 0
\(955\) 0.495159 + 5.73167i 0.0160230 + 0.185472i
\(956\) −31.1812 −1.00847
\(957\) 0 0
\(958\) 5.47648i 0.176937i
\(959\) −10.7344 −0.346631
\(960\) 0 0
\(961\) −4.91335 −0.158495
\(962\) 11.7366i 0.378402i
\(963\) 0 0
\(964\) −18.4724 −0.594955
\(965\) 38.4540 3.32204i 1.23788 0.106940i
\(966\) 0 0
\(967\) 28.6863i 0.922490i 0.887273 + 0.461245i \(0.152597\pi\)
−0.887273 + 0.461245i \(0.847403\pi\)
\(968\) 11.4661i 0.368534i
\(969\) 0 0
\(970\) 0.224570 + 2.59949i 0.00721052 + 0.0834647i
\(971\) −35.0585 −1.12508 −0.562540 0.826770i \(-0.690176\pi\)
−0.562540 + 0.826770i \(0.690176\pi\)
\(972\) 0 0
\(973\) 73.1893i 2.34634i
\(974\) 16.0618 0.514655
\(975\) 0 0
\(976\) 17.0863 0.546919
\(977\) 49.1831i 1.57351i 0.617267 + 0.786754i \(0.288240\pi\)
−0.617267 + 0.786754i \(0.711760\pi\)
\(978\) 0 0
\(979\) −9.70487 −0.310169
\(980\) 4.85997 + 56.2561i 0.155246 + 1.79704i
\(981\) 0 0
\(982\) 2.74062i 0.0874567i
\(983\) 7.88117i 0.251370i −0.992070 0.125685i \(-0.959887\pi\)
0.992070 0.125685i \(-0.0401129\pi\)
\(984\) 0 0
\(985\) −41.3529 + 3.57248i −1.31761 + 0.113829i
\(986\) 3.58251 0.114090
\(987\) 0 0
\(988\) 4.18942i 0.133283i
\(989\) −9.27463 −0.294916
\(990\) 0 0
\(991\) 24.6229 0.782174 0.391087 0.920354i \(-0.372099\pi\)
0.391087 + 0.920354i \(0.372099\pi\)
\(992\) 25.6361i 0.813946i
\(993\) 0 0
\(994\) 16.7909 0.532574
\(995\) −0.816922 9.45621i −0.0258982 0.299782i
\(996\) 0 0
\(997\) 47.6543i 1.50923i −0.656169 0.754614i \(-0.727824\pi\)
0.656169 0.754614i \(-0.272176\pi\)
\(998\) 8.23456i 0.260661i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.c.g.514.9 14
3.2 odd 2 285.2.c.b.229.6 14
5.2 odd 4 4275.2.a.bv.1.4 7
5.3 odd 4 4275.2.a.bw.1.4 7
5.4 even 2 inner 855.2.c.g.514.6 14
15.2 even 4 1425.2.a.z.1.4 7
15.8 even 4 1425.2.a.y.1.4 7
15.14 odd 2 285.2.c.b.229.9 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.c.b.229.6 14 3.2 odd 2
285.2.c.b.229.9 yes 14 15.14 odd 2
855.2.c.g.514.6 14 5.4 even 2 inner
855.2.c.g.514.9 14 1.1 even 1 trivial
1425.2.a.y.1.4 7 15.8 even 4
1425.2.a.z.1.4 7 15.2 even 4
4275.2.a.bv.1.4 7 5.2 odd 4
4275.2.a.bw.1.4 7 5.3 odd 4