Properties

Label 2-855-5.4-c1-0-39
Degree $2$
Conductor $855$
Sign $0.0860 + 0.996i$
Analytic cond. $6.82720$
Root an. cond. $2.61289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.498i·2-s + 1.75·4-s + (−0.192 − 2.22i)5-s − 4.62i·7-s + 1.86i·8-s + (1.10 − 0.0958i)10-s − 4.13·11-s + 2.39i·13-s + 2.30·14-s + 2.57·16-s − 7.34i·17-s − 19-s + (−0.337 − 3.90i)20-s − 2.06i·22-s + 2.69i·23-s + ⋯
L(s)  = 1  + 0.352i·2-s + 0.875·4-s + (−0.0860 − 0.996i)5-s − 1.74i·7-s + 0.660i·8-s + (0.350 − 0.0303i)10-s − 1.24·11-s + 0.663i·13-s + 0.616·14-s + 0.643·16-s − 1.78i·17-s − 0.229·19-s + (−0.0753 − 0.872i)20-s − 0.439i·22-s + 0.562i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0860 + 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0860 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(855\)    =    \(3^{2} \cdot 5 \cdot 19\)
Sign: $0.0860 + 0.996i$
Analytic conductor: \(6.82720\)
Root analytic conductor: \(2.61289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{855} (514, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 855,\ (\ :1/2),\ 0.0860 + 0.996i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.14950 - 1.05448i\)
\(L(\frac12)\) \(\approx\) \(1.14950 - 1.05448i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (0.192 + 2.22i)T \)
19 \( 1 + T \)
good2 \( 1 - 0.498iT - 2T^{2} \)
7 \( 1 + 4.62iT - 7T^{2} \)
11 \( 1 + 4.13T + 11T^{2} \)
13 \( 1 - 2.39iT - 13T^{2} \)
17 \( 1 + 7.34iT - 17T^{2} \)
23 \( 1 - 2.69iT - 23T^{2} \)
29 \( 1 - 0.979T + 29T^{2} \)
31 \( 1 + 5.10T + 31T^{2} \)
37 \( 1 + 9.85iT - 37T^{2} \)
41 \( 1 - 4.52T + 41T^{2} \)
43 \( 1 - 3.43iT - 43T^{2} \)
47 \( 1 - 5.09iT - 47T^{2} \)
53 \( 1 + 3.36iT - 53T^{2} \)
59 \( 1 - 13.4T + 59T^{2} \)
61 \( 1 - 6.64T + 61T^{2} \)
67 \( 1 + 7.28iT - 67T^{2} \)
71 \( 1 - 7.28T + 71T^{2} \)
73 \( 1 + 3.82iT - 73T^{2} \)
79 \( 1 - 16.1T + 79T^{2} \)
83 \( 1 + 3.92iT - 83T^{2} \)
89 \( 1 - 2.34T + 89T^{2} \)
97 \( 1 - 2.34iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.989255617762879206850980671284, −9.173281730524369323337162446701, −7.87377141337556799725667357909, −7.51104880839391072895061013956, −6.77047209199081039152831202589, −5.48137048601800048649521916939, −4.74554905687107645550523816081, −3.63714203499263485669972501938, −2.19663119321528483743556905012, −0.70624675174005692316613364532, 2.10613620588282786341810743423, 2.65172072503438398001605964730, 3.61347982216494750984795664305, 5.39596470772121012478815492006, 6.01051356277780458820915828986, 6.81575654225561320193945010548, 7.980391211038154774212227160712, 8.479006292016367664569322468113, 9.881023777837909217723896131561, 10.49829923747880902903601360282

Graph of the $Z$-function along the critical line