Properties

Label 855.2.c.e.514.5
Level $855$
Weight $2$
Character 855.514
Analytic conductor $6.827$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(514,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.514"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 285)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 514.5
Root \(0.403032 + 0.403032i\) of defining polynomial
Character \(\chi\) \(=\) 855.514
Dual form 855.2.c.e.514.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.48119i q^{2} -0.193937 q^{4} +(-1.67513 + 1.48119i) q^{5} +4.48119i q^{7} +2.67513i q^{8} +(-2.19394 - 2.48119i) q^{10} -3.67513 q^{11} -2.86907i q^{13} -6.63752 q^{14} -4.35026 q^{16} -6.15633i q^{17} +1.00000 q^{19} +(0.324869 - 0.287258i) q^{20} -5.44358i q^{22} +8.15633i q^{23} +(0.612127 - 4.96239i) q^{25} +4.24965 q^{26} -0.869067i q^{28} +4.63752 q^{29} -2.80606 q^{31} -1.09332i q^{32} +9.11871 q^{34} +(-6.63752 - 7.50659i) q^{35} -3.44358i q^{37} +1.48119i q^{38} +(-3.96239 - 4.48119i) q^{40} +5.59991 q^{41} +10.1441i q^{43} +0.712742 q^{44} -12.0811 q^{46} -3.84367i q^{47} -13.0811 q^{49} +(7.35026 + 0.906679i) q^{50} +0.556417i q^{52} -3.89446i q^{53} +(6.15633 - 5.44358i) q^{55} -11.9878 q^{56} +6.86907i q^{58} -9.53690 q^{59} -9.89446 q^{61} -4.15633i q^{62} -7.08110 q^{64} +(4.24965 + 4.80606i) q^{65} +8.70052i q^{67} +1.19394i q^{68} +(11.1187 - 9.83146i) q^{70} +2.00000 q^{71} +3.08840i q^{73} +5.10062 q^{74} -0.193937 q^{76} -16.4690i q^{77} -4.96239 q^{79} +(7.28726 - 6.44358i) q^{80} +8.29455i q^{82} +6.73084i q^{83} +(9.11871 + 10.3127i) q^{85} -15.0254 q^{86} -9.83146i q^{88} +11.4739 q^{89} +12.8568 q^{91} -1.58181i q^{92} +5.69323 q^{94} +(-1.67513 + 1.48119i) q^{95} +9.63023i q^{97} -19.3757i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{4} - 14 q^{10} - 12 q^{11} - 8 q^{14} - 6 q^{16} + 6 q^{19} + 12 q^{20} + 2 q^{25} - 8 q^{26} - 4 q^{29} - 16 q^{31} + 12 q^{34} - 8 q^{35} - 2 q^{40} - 20 q^{41} + 16 q^{44} - 8 q^{46} - 14 q^{49}+ \cdots - 32 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48119i 1.04736i 0.851914 + 0.523681i \(0.175442\pi\)
−0.851914 + 0.523681i \(0.824558\pi\)
\(3\) 0 0
\(4\) −0.193937 −0.0969683
\(5\) −1.67513 + 1.48119i −0.749141 + 0.662410i
\(6\) 0 0
\(7\) 4.48119i 1.69373i 0.531806 + 0.846866i \(0.321514\pi\)
−0.531806 + 0.846866i \(0.678486\pi\)
\(8\) 2.67513i 0.945802i
\(9\) 0 0
\(10\) −2.19394 2.48119i −0.693784 0.784623i
\(11\) −3.67513 −1.10809 −0.554047 0.832486i \(-0.686917\pi\)
−0.554047 + 0.832486i \(0.686917\pi\)
\(12\) 0 0
\(13\) 2.86907i 0.795736i −0.917443 0.397868i \(-0.869750\pi\)
0.917443 0.397868i \(-0.130250\pi\)
\(14\) −6.63752 −1.77395
\(15\) 0 0
\(16\) −4.35026 −1.08757
\(17\) 6.15633i 1.49313i −0.665314 0.746564i \(-0.731702\pi\)
0.665314 0.746564i \(-0.268298\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0.324869 0.287258i 0.0726429 0.0642328i
\(21\) 0 0
\(22\) 5.44358i 1.16058i
\(23\) 8.15633i 1.70071i 0.526208 + 0.850356i \(0.323613\pi\)
−0.526208 + 0.850356i \(0.676387\pi\)
\(24\) 0 0
\(25\) 0.612127 4.96239i 0.122425 0.992478i
\(26\) 4.24965 0.833424
\(27\) 0 0
\(28\) 0.869067i 0.164238i
\(29\) 4.63752 0.861166 0.430583 0.902551i \(-0.358308\pi\)
0.430583 + 0.902551i \(0.358308\pi\)
\(30\) 0 0
\(31\) −2.80606 −0.503984 −0.251992 0.967729i \(-0.581086\pi\)
−0.251992 + 0.967729i \(0.581086\pi\)
\(32\) 1.09332i 0.193274i
\(33\) 0 0
\(34\) 9.11871 1.56385
\(35\) −6.63752 7.50659i −1.12195 1.26884i
\(36\) 0 0
\(37\) 3.44358i 0.566122i −0.959102 0.283061i \(-0.908650\pi\)
0.959102 0.283061i \(-0.0913498\pi\)
\(38\) 1.48119i 0.240281i
\(39\) 0 0
\(40\) −3.96239 4.48119i −0.626509 0.708539i
\(41\) 5.59991 0.874559 0.437279 0.899326i \(-0.355942\pi\)
0.437279 + 0.899326i \(0.355942\pi\)
\(42\) 0 0
\(43\) 10.1441i 1.54696i 0.633820 + 0.773481i \(0.281486\pi\)
−0.633820 + 0.773481i \(0.718514\pi\)
\(44\) 0.712742 0.107450
\(45\) 0 0
\(46\) −12.0811 −1.78126
\(47\) 3.84367i 0.560658i −0.959904 0.280329i \(-0.909557\pi\)
0.959904 0.280329i \(-0.0904435\pi\)
\(48\) 0 0
\(49\) −13.0811 −1.86873
\(50\) 7.35026 + 0.906679i 1.03948 + 0.128224i
\(51\) 0 0
\(52\) 0.556417i 0.0771612i
\(53\) 3.89446i 0.534945i −0.963565 0.267473i \(-0.913812\pi\)
0.963565 0.267473i \(-0.0861885\pi\)
\(54\) 0 0
\(55\) 6.15633 5.44358i 0.830119 0.734013i
\(56\) −11.9878 −1.60193
\(57\) 0 0
\(58\) 6.86907i 0.901953i
\(59\) −9.53690 −1.24160 −0.620800 0.783969i \(-0.713192\pi\)
−0.620800 + 0.783969i \(0.713192\pi\)
\(60\) 0 0
\(61\) −9.89446 −1.26686 −0.633428 0.773802i \(-0.718353\pi\)
−0.633428 + 0.773802i \(0.718353\pi\)
\(62\) 4.15633i 0.527854i
\(63\) 0 0
\(64\) −7.08110 −0.885138
\(65\) 4.24965 + 4.80606i 0.527104 + 0.596119i
\(66\) 0 0
\(67\) 8.70052i 1.06294i 0.847078 + 0.531469i \(0.178360\pi\)
−0.847078 + 0.531469i \(0.821640\pi\)
\(68\) 1.19394i 0.144786i
\(69\) 0 0
\(70\) 11.1187 9.83146i 1.32894 1.17508i
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) 3.08840i 0.361469i 0.983532 + 0.180735i \(0.0578476\pi\)
−0.983532 + 0.180735i \(0.942152\pi\)
\(74\) 5.10062 0.592934
\(75\) 0 0
\(76\) −0.193937 −0.0222460
\(77\) 16.4690i 1.87681i
\(78\) 0 0
\(79\) −4.96239 −0.558312 −0.279156 0.960246i \(-0.590055\pi\)
−0.279156 + 0.960246i \(0.590055\pi\)
\(80\) 7.28726 6.44358i 0.814740 0.720414i
\(81\) 0 0
\(82\) 8.29455i 0.915980i
\(83\) 6.73084i 0.738806i 0.929269 + 0.369403i \(0.120438\pi\)
−0.929269 + 0.369403i \(0.879562\pi\)
\(84\) 0 0
\(85\) 9.11871 + 10.3127i 0.989063 + 1.11856i
\(86\) −15.0254 −1.62023
\(87\) 0 0
\(88\) 9.83146i 1.04804i
\(89\) 11.4739 1.21623 0.608115 0.793849i \(-0.291926\pi\)
0.608115 + 0.793849i \(0.291926\pi\)
\(90\) 0 0
\(91\) 12.8568 1.34776
\(92\) 1.58181i 0.164915i
\(93\) 0 0
\(94\) 5.69323 0.587212
\(95\) −1.67513 + 1.48119i −0.171865 + 0.151967i
\(96\) 0 0
\(97\) 9.63023i 0.977801i 0.872339 + 0.488901i \(0.162602\pi\)
−0.872339 + 0.488901i \(0.837398\pi\)
\(98\) 19.3757i 1.95724i
\(99\) 0 0
\(100\) −0.118714 + 0.962389i −0.0118714 + 0.0962389i
\(101\) −5.61213 −0.558427 −0.279214 0.960229i \(-0.590074\pi\)
−0.279214 + 0.960229i \(0.590074\pi\)
\(102\) 0 0
\(103\) 3.53690i 0.348502i 0.984701 + 0.174251i \(0.0557503\pi\)
−0.984701 + 0.174251i \(0.944250\pi\)
\(104\) 7.67513 0.752609
\(105\) 0 0
\(106\) 5.76845 0.560282
\(107\) 16.4387i 1.58919i 0.607143 + 0.794593i \(0.292315\pi\)
−0.607143 + 0.794593i \(0.707685\pi\)
\(108\) 0 0
\(109\) 12.3879 1.18654 0.593272 0.805002i \(-0.297836\pi\)
0.593272 + 0.805002i \(0.297836\pi\)
\(110\) 8.06300 + 9.11871i 0.768777 + 0.869435i
\(111\) 0 0
\(112\) 19.4944i 1.84204i
\(113\) 11.2447i 1.05781i 0.848680 + 0.528907i \(0.177398\pi\)
−0.848680 + 0.528907i \(0.822602\pi\)
\(114\) 0 0
\(115\) −12.0811 13.6629i −1.12657 1.27407i
\(116\) −0.899385 −0.0835058
\(117\) 0 0
\(118\) 14.1260i 1.30040i
\(119\) 27.5877 2.52896
\(120\) 0 0
\(121\) 2.50659 0.227872
\(122\) 14.6556i 1.32686i
\(123\) 0 0
\(124\) 0.544198 0.0488705
\(125\) 6.32487 + 9.21933i 0.565713 + 0.824602i
\(126\) 0 0
\(127\) 11.8641i 1.05277i −0.850246 0.526386i \(-0.823547\pi\)
0.850246 0.526386i \(-0.176453\pi\)
\(128\) 12.6751i 1.12033i
\(129\) 0 0
\(130\) −7.11871 + 6.29455i −0.624353 + 0.552069i
\(131\) −1.54912 −0.135347 −0.0676737 0.997708i \(-0.521558\pi\)
−0.0676737 + 0.997708i \(0.521558\pi\)
\(132\) 0 0
\(133\) 4.48119i 0.388569i
\(134\) −12.8872 −1.11328
\(135\) 0 0
\(136\) 16.4690 1.41220
\(137\) 17.0738i 1.45871i 0.684133 + 0.729357i \(0.260181\pi\)
−0.684133 + 0.729357i \(0.739819\pi\)
\(138\) 0 0
\(139\) −5.61213 −0.476014 −0.238007 0.971263i \(-0.576494\pi\)
−0.238007 + 0.971263i \(0.576494\pi\)
\(140\) 1.28726 + 1.45580i 0.108793 + 0.123038i
\(141\) 0 0
\(142\) 2.96239i 0.248598i
\(143\) 10.5442i 0.881750i
\(144\) 0 0
\(145\) −7.76845 + 6.86907i −0.645135 + 0.570445i
\(146\) −4.57452 −0.378590
\(147\) 0 0
\(148\) 0.667837i 0.0548958i
\(149\) 5.53690 0.453601 0.226800 0.973941i \(-0.427173\pi\)
0.226800 + 0.973941i \(0.427173\pi\)
\(150\) 0 0
\(151\) 0.0811024 0.00660002 0.00330001 0.999995i \(-0.498950\pi\)
0.00330001 + 0.999995i \(0.498950\pi\)
\(152\) 2.67513i 0.216982i
\(153\) 0 0
\(154\) 24.3938 1.96570
\(155\) 4.70052 4.15633i 0.377555 0.333844i
\(156\) 0 0
\(157\) 2.64974i 0.211472i −0.994394 0.105736i \(-0.966280\pi\)
0.994394 0.105736i \(-0.0337199\pi\)
\(158\) 7.35026i 0.584755i
\(159\) 0 0
\(160\) 1.61942 + 1.83146i 0.128026 + 0.144789i
\(161\) −36.5501 −2.88055
\(162\) 0 0
\(163\) 0.667837i 0.0523090i 0.999658 + 0.0261545i \(0.00832619\pi\)
−0.999658 + 0.0261545i \(0.991674\pi\)
\(164\) −1.08603 −0.0848045
\(165\) 0 0
\(166\) −9.96968 −0.773797
\(167\) 10.4182i 0.806184i −0.915160 0.403092i \(-0.867936\pi\)
0.915160 0.403092i \(-0.132064\pi\)
\(168\) 0 0
\(169\) 4.76845 0.366804
\(170\) −15.2750 + 13.5066i −1.17154 + 1.03591i
\(171\) 0 0
\(172\) 1.96731i 0.150006i
\(173\) 4.54420i 0.345489i 0.984967 + 0.172744i \(0.0552635\pi\)
−0.984967 + 0.172744i \(0.944737\pi\)
\(174\) 0 0
\(175\) 22.2374 + 2.74306i 1.68099 + 0.207356i
\(176\) 15.9878 1.20512
\(177\) 0 0
\(178\) 16.9951i 1.27383i
\(179\) −15.0884 −1.12776 −0.563880 0.825857i \(-0.690692\pi\)
−0.563880 + 0.825857i \(0.690692\pi\)
\(180\) 0 0
\(181\) −8.44851 −0.627973 −0.313986 0.949428i \(-0.601665\pi\)
−0.313986 + 0.949428i \(0.601665\pi\)
\(182\) 19.0435i 1.41160i
\(183\) 0 0
\(184\) −21.8192 −1.60854
\(185\) 5.10062 + 5.76845i 0.375005 + 0.424105i
\(186\) 0 0
\(187\) 22.6253i 1.65453i
\(188\) 0.745429i 0.0543660i
\(189\) 0 0
\(190\) −2.19394 2.48119i −0.159165 0.180005i
\(191\) 13.5393 0.979667 0.489834 0.871816i \(-0.337057\pi\)
0.489834 + 0.871816i \(0.337057\pi\)
\(192\) 0 0
\(193\) 11.1817i 0.804878i 0.915447 + 0.402439i \(0.131837\pi\)
−0.915447 + 0.402439i \(0.868163\pi\)
\(194\) −14.2642 −1.02411
\(195\) 0 0
\(196\) 2.53690 0.181207
\(197\) 7.24472i 0.516165i −0.966123 0.258083i \(-0.916909\pi\)
0.966123 0.258083i \(-0.0830906\pi\)
\(198\) 0 0
\(199\) 26.8627 1.90425 0.952124 0.305712i \(-0.0988943\pi\)
0.952124 + 0.305712i \(0.0988943\pi\)
\(200\) 13.2750 + 1.63752i 0.938687 + 0.115790i
\(201\) 0 0
\(202\) 8.31265i 0.584876i
\(203\) 20.7816i 1.45858i
\(204\) 0 0
\(205\) −9.38058 + 8.29455i −0.655168 + 0.579317i
\(206\) −5.23884 −0.365007
\(207\) 0 0
\(208\) 12.4812i 0.865415i
\(209\) −3.67513 −0.254214
\(210\) 0 0
\(211\) 4.43866 0.305570 0.152785 0.988259i \(-0.451176\pi\)
0.152785 + 0.988259i \(0.451176\pi\)
\(212\) 0.755278i 0.0518727i
\(213\) 0 0
\(214\) −24.3488 −1.66445
\(215\) −15.0254 16.9927i −1.02472 1.15889i
\(216\) 0 0
\(217\) 12.5745i 0.853614i
\(218\) 18.3488i 1.24274i
\(219\) 0 0
\(220\) −1.19394 + 1.05571i −0.0804952 + 0.0711759i
\(221\) −17.6629 −1.18814
\(222\) 0 0
\(223\) 9.08840i 0.608604i −0.952576 0.304302i \(-0.901577\pi\)
0.952576 0.304302i \(-0.0984232\pi\)
\(224\) 4.89938 0.327354
\(225\) 0 0
\(226\) −16.6556 −1.10792
\(227\) 11.1939i 0.742968i −0.928439 0.371484i \(-0.878849\pi\)
0.928439 0.371484i \(-0.121151\pi\)
\(228\) 0 0
\(229\) 23.6932 1.56569 0.782846 0.622215i \(-0.213767\pi\)
0.782846 + 0.622215i \(0.213767\pi\)
\(230\) 20.2374 17.8945i 1.33442 1.17993i
\(231\) 0 0
\(232\) 12.4060i 0.814492i
\(233\) 12.0508i 0.789473i −0.918794 0.394737i \(-0.870836\pi\)
0.918794 0.394737i \(-0.129164\pi\)
\(234\) 0 0
\(235\) 5.69323 + 6.43866i 0.371385 + 0.420012i
\(236\) 1.84955 0.120396
\(237\) 0 0
\(238\) 40.8627i 2.64874i
\(239\) 13.9878 0.904794 0.452397 0.891817i \(-0.350569\pi\)
0.452397 + 0.891817i \(0.350569\pi\)
\(240\) 0 0
\(241\) 23.7743 1.53144 0.765720 0.643174i \(-0.222383\pi\)
0.765720 + 0.643174i \(0.222383\pi\)
\(242\) 3.71274i 0.238664i
\(243\) 0 0
\(244\) 1.91890 0.122845
\(245\) 21.9126 19.3757i 1.39994 1.23787i
\(246\) 0 0
\(247\) 2.86907i 0.182554i
\(248\) 7.50659i 0.476669i
\(249\) 0 0
\(250\) −13.6556 + 9.36836i −0.863657 + 0.592507i
\(251\) −6.76353 −0.426910 −0.213455 0.976953i \(-0.568472\pi\)
−0.213455 + 0.976953i \(0.568472\pi\)
\(252\) 0 0
\(253\) 29.9756i 1.88455i
\(254\) 17.5731 1.10263
\(255\) 0 0
\(256\) 4.61213 0.288258
\(257\) 19.9551i 1.24476i 0.782713 + 0.622382i \(0.213835\pi\)
−0.782713 + 0.622382i \(0.786165\pi\)
\(258\) 0 0
\(259\) 15.4314 0.958858
\(260\) −0.824162 0.932071i −0.0511123 0.0578046i
\(261\) 0 0
\(262\) 2.29455i 0.141758i
\(263\) 5.14315i 0.317140i 0.987348 + 0.158570i \(0.0506884\pi\)
−0.987348 + 0.158570i \(0.949312\pi\)
\(264\) 0 0
\(265\) 5.76845 + 6.52373i 0.354353 + 0.400750i
\(266\) −6.63752 −0.406972
\(267\) 0 0
\(268\) 1.68735i 0.103071i
\(269\) −11.1368 −0.679023 −0.339512 0.940602i \(-0.610262\pi\)
−0.339512 + 0.940602i \(0.610262\pi\)
\(270\) 0 0
\(271\) 15.4763 0.940116 0.470058 0.882635i \(-0.344233\pi\)
0.470058 + 0.882635i \(0.344233\pi\)
\(272\) 26.7816i 1.62387i
\(273\) 0 0
\(274\) −25.2896 −1.52780
\(275\) −2.24965 + 18.2374i −0.135659 + 1.09976i
\(276\) 0 0
\(277\) 12.6253i 0.758581i 0.925278 + 0.379290i \(0.123832\pi\)
−0.925278 + 0.379290i \(0.876168\pi\)
\(278\) 8.31265i 0.498560i
\(279\) 0 0
\(280\) 20.0811 17.7562i 1.20008 1.06114i
\(281\) −2.66196 −0.158799 −0.0793995 0.996843i \(-0.525300\pi\)
−0.0793995 + 0.996843i \(0.525300\pi\)
\(282\) 0 0
\(283\) 1.63023i 0.0969068i −0.998825 0.0484534i \(-0.984571\pi\)
0.998825 0.0484534i \(-0.0154292\pi\)
\(284\) −0.387873 −0.0230160
\(285\) 0 0
\(286\) −15.6180 −0.923512
\(287\) 25.0943i 1.48127i
\(288\) 0 0
\(289\) −20.9003 −1.22943
\(290\) −10.1744 11.5066i −0.597463 0.675690i
\(291\) 0 0
\(292\) 0.598953i 0.0350511i
\(293\) 15.3707i 0.897968i −0.893540 0.448984i \(-0.851786\pi\)
0.893540 0.448984i \(-0.148214\pi\)
\(294\) 0 0
\(295\) 15.9756 14.1260i 0.930133 0.822448i
\(296\) 9.21203 0.535439
\(297\) 0 0
\(298\) 8.20123i 0.475085i
\(299\) 23.4010 1.35332
\(300\) 0 0
\(301\) −45.4577 −2.62014
\(302\) 0.120128i 0.00691261i
\(303\) 0 0
\(304\) −4.35026 −0.249505
\(305\) 16.5745 14.6556i 0.949054 0.839178i
\(306\) 0 0
\(307\) 18.3634i 1.04806i 0.851701 + 0.524028i \(0.175571\pi\)
−0.851701 + 0.524028i \(0.824429\pi\)
\(308\) 3.19394i 0.181991i
\(309\) 0 0
\(310\) 6.15633 + 6.96239i 0.349656 + 0.395437i
\(311\) −11.4739 −0.650625 −0.325313 0.945607i \(-0.605470\pi\)
−0.325313 + 0.945607i \(0.605470\pi\)
\(312\) 0 0
\(313\) 4.57452i 0.258567i 0.991608 + 0.129283i \(0.0412677\pi\)
−0.991608 + 0.129283i \(0.958732\pi\)
\(314\) 3.92478 0.221488
\(315\) 0 0
\(316\) 0.962389 0.0541386
\(317\) 22.4083i 1.25858i 0.777171 + 0.629289i \(0.216654\pi\)
−0.777171 + 0.629289i \(0.783346\pi\)
\(318\) 0 0
\(319\) −17.0435 −0.954252
\(320\) 11.8618 10.4885i 0.663093 0.586324i
\(321\) 0 0
\(322\) 54.1378i 3.01698i
\(323\) 6.15633i 0.342547i
\(324\) 0 0
\(325\) −14.2374 1.75623i −0.789750 0.0974183i
\(326\) −0.989196 −0.0547865
\(327\) 0 0
\(328\) 14.9805i 0.827159i
\(329\) 17.2243 0.949604
\(330\) 0 0
\(331\) −31.8700 −1.75173 −0.875867 0.482552i \(-0.839710\pi\)
−0.875867 + 0.482552i \(0.839710\pi\)
\(332\) 1.30536i 0.0716407i
\(333\) 0 0
\(334\) 15.4314 0.844367
\(335\) −12.8872 14.5745i −0.704101 0.796291i
\(336\) 0 0
\(337\) 12.3815i 0.674465i 0.941421 + 0.337233i \(0.109491\pi\)
−0.941421 + 0.337233i \(0.890509\pi\)
\(338\) 7.06300i 0.384177i
\(339\) 0 0
\(340\) −1.76845 2.00000i −0.0959078 0.108465i
\(341\) 10.3127 0.558461
\(342\) 0 0
\(343\) 27.2506i 1.47139i
\(344\) −27.1368 −1.46312
\(345\) 0 0
\(346\) −6.73084 −0.361852
\(347\) 29.7440i 1.59674i −0.602166 0.798371i \(-0.705695\pi\)
0.602166 0.798371i \(-0.294305\pi\)
\(348\) 0 0
\(349\) 3.42548 0.183362 0.0916810 0.995788i \(-0.470776\pi\)
0.0916810 + 0.995788i \(0.470776\pi\)
\(350\) −4.06300 + 32.9380i −0.217177 + 1.76061i
\(351\) 0 0
\(352\) 4.01810i 0.214165i
\(353\) 7.48612i 0.398446i −0.979954 0.199223i \(-0.936158\pi\)
0.979954 0.199223i \(-0.0638418\pi\)
\(354\) 0 0
\(355\) −3.35026 + 2.96239i −0.177813 + 0.157227i
\(356\) −2.22521 −0.117936
\(357\) 0 0
\(358\) 22.3488i 1.18117i
\(359\) −35.1632 −1.85584 −0.927920 0.372779i \(-0.878405\pi\)
−0.927920 + 0.372779i \(0.878405\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 12.5139i 0.657715i
\(363\) 0 0
\(364\) −2.49341 −0.130690
\(365\) −4.57452 5.17347i −0.239441 0.270792i
\(366\) 0 0
\(367\) 2.14411i 0.111921i −0.998433 0.0559607i \(-0.982178\pi\)
0.998433 0.0559607i \(-0.0178222\pi\)
\(368\) 35.4821i 1.84963i
\(369\) 0 0
\(370\) −8.54420 + 7.55500i −0.444192 + 0.392766i
\(371\) 17.4518 0.906054
\(372\) 0 0
\(373\) 36.4930i 1.88953i −0.327743 0.944767i \(-0.606288\pi\)
0.327743 0.944767i \(-0.393712\pi\)
\(374\) −33.5125 −1.73289
\(375\) 0 0
\(376\) 10.2823 0.530271
\(377\) 13.3054i 0.685261i
\(378\) 0 0
\(379\) −2.00588 −0.103035 −0.0515176 0.998672i \(-0.516406\pi\)
−0.0515176 + 0.998672i \(0.516406\pi\)
\(380\) 0.324869 0.287258i 0.0166654 0.0147360i
\(381\) 0 0
\(382\) 20.0543i 1.02607i
\(383\) 18.2374i 0.931889i 0.884814 + 0.465945i \(0.154285\pi\)
−0.884814 + 0.465945i \(0.845715\pi\)
\(384\) 0 0
\(385\) 24.3938 + 27.5877i 1.24322 + 1.40600i
\(386\) −16.5623 −0.842999
\(387\) 0 0
\(388\) 1.86765i 0.0948157i
\(389\) 13.2144 0.669997 0.334998 0.942219i \(-0.391264\pi\)
0.334998 + 0.942219i \(0.391264\pi\)
\(390\) 0 0
\(391\) 50.2130 2.53938
\(392\) 34.9937i 1.76745i
\(393\) 0 0
\(394\) 10.7308 0.540612
\(395\) 8.31265 7.35026i 0.418255 0.369832i
\(396\) 0 0
\(397\) 9.46168i 0.474868i −0.971404 0.237434i \(-0.923694\pi\)
0.971404 0.237434i \(-0.0763064\pi\)
\(398\) 39.7889i 1.99444i
\(399\) 0 0
\(400\) −2.66291 + 21.5877i −0.133146 + 1.07938i
\(401\) 28.0240 1.39945 0.699725 0.714412i \(-0.253306\pi\)
0.699725 + 0.714412i \(0.253306\pi\)
\(402\) 0 0
\(403\) 8.05079i 0.401038i
\(404\) 1.08840 0.0541498
\(405\) 0 0
\(406\) −30.7816 −1.52767
\(407\) 12.6556i 0.627316i
\(408\) 0 0
\(409\) 17.9756 0.888834 0.444417 0.895820i \(-0.353411\pi\)
0.444417 + 0.895820i \(0.353411\pi\)
\(410\) −12.2858 13.8945i −0.606755 0.686198i
\(411\) 0 0
\(412\) 0.685935i 0.0337936i
\(413\) 42.7367i 2.10294i
\(414\) 0 0
\(415\) −9.96968 11.2750i −0.489392 0.553470i
\(416\) −3.13681 −0.153795
\(417\) 0 0
\(418\) 5.44358i 0.266254i
\(419\) 13.4377 0.656475 0.328237 0.944595i \(-0.393545\pi\)
0.328237 + 0.944595i \(0.393545\pi\)
\(420\) 0 0
\(421\) −24.3634 −1.18740 −0.593701 0.804686i \(-0.702334\pi\)
−0.593701 + 0.804686i \(0.702334\pi\)
\(422\) 6.57452i 0.320042i
\(423\) 0 0
\(424\) 10.4182 0.505952
\(425\) −30.5501 3.76845i −1.48190 0.182797i
\(426\) 0 0
\(427\) 44.3390i 2.14571i
\(428\) 3.18806i 0.154101i
\(429\) 0 0
\(430\) 25.1695 22.2555i 1.21378 1.07326i
\(431\) 1.42548 0.0686632 0.0343316 0.999410i \(-0.489070\pi\)
0.0343316 + 0.999410i \(0.489070\pi\)
\(432\) 0 0
\(433\) 1.65466i 0.0795180i −0.999209 0.0397590i \(-0.987341\pi\)
0.999209 0.0397590i \(-0.0126590\pi\)
\(434\) 18.6253 0.894043
\(435\) 0 0
\(436\) −2.40246 −0.115057
\(437\) 8.15633i 0.390170i
\(438\) 0 0
\(439\) 26.3996 1.25999 0.629993 0.776601i \(-0.283058\pi\)
0.629993 + 0.776601i \(0.283058\pi\)
\(440\) 14.5623 + 16.4690i 0.694230 + 0.785128i
\(441\) 0 0
\(442\) 26.1622i 1.24441i
\(443\) 3.35614i 0.159455i −0.996817 0.0797275i \(-0.974595\pi\)
0.996817 0.0797275i \(-0.0254050\pi\)
\(444\) 0 0
\(445\) −19.2203 + 16.9951i −0.911129 + 0.805644i
\(446\) 13.4617 0.637429
\(447\) 0 0
\(448\) 31.7318i 1.49919i
\(449\) 12.0122 0.566892 0.283446 0.958988i \(-0.408522\pi\)
0.283446 + 0.958988i \(0.408522\pi\)
\(450\) 0 0
\(451\) −20.5804 −0.969093
\(452\) 2.18076i 0.102574i
\(453\) 0 0
\(454\) 16.5804 0.778156
\(455\) −21.5369 + 19.0435i −1.00967 + 0.892773i
\(456\) 0 0
\(457\) 31.5877i 1.47761i −0.673919 0.738805i \(-0.735391\pi\)
0.673919 0.738805i \(-0.264609\pi\)
\(458\) 35.0943i 1.63985i
\(459\) 0 0
\(460\) 2.34297 + 2.64974i 0.109241 + 0.123545i
\(461\) −5.07381 −0.236311 −0.118155 0.992995i \(-0.537698\pi\)
−0.118155 + 0.992995i \(0.537698\pi\)
\(462\) 0 0
\(463\) 14.2701i 0.663188i −0.943422 0.331594i \(-0.892414\pi\)
0.943422 0.331594i \(-0.107586\pi\)
\(464\) −20.1744 −0.936574
\(465\) 0 0
\(466\) 17.8496 0.826865
\(467\) 32.3839i 1.49855i −0.662260 0.749274i \(-0.730403\pi\)
0.662260 0.749274i \(-0.269597\pi\)
\(468\) 0 0
\(469\) −38.9887 −1.80033
\(470\) −9.53690 + 8.43278i −0.439905 + 0.388975i
\(471\) 0 0
\(472\) 25.5125i 1.17431i
\(473\) 37.2809i 1.71418i
\(474\) 0 0
\(475\) 0.612127 4.96239i 0.0280863 0.227690i
\(476\) −5.35026 −0.245229
\(477\) 0 0
\(478\) 20.7186i 0.947648i
\(479\) −7.28726 −0.332963 −0.166482 0.986045i \(-0.553241\pi\)
−0.166482 + 0.986045i \(0.553241\pi\)
\(480\) 0 0
\(481\) −9.87987 −0.450483
\(482\) 35.2144i 1.60397i
\(483\) 0 0
\(484\) −0.486119 −0.0220963
\(485\) −14.2642 16.1319i −0.647706 0.732511i
\(486\) 0 0
\(487\) 37.5731i 1.70260i 0.524679 + 0.851300i \(0.324185\pi\)
−0.524679 + 0.851300i \(0.675815\pi\)
\(488\) 26.4690i 1.19819i
\(489\) 0 0
\(490\) 28.6991 + 32.4568i 1.29649 + 1.46625i
\(491\) −23.5901 −1.06460 −0.532302 0.846554i \(-0.678673\pi\)
−0.532302 + 0.846554i \(0.678673\pi\)
\(492\) 0 0
\(493\) 28.5501i 1.28583i
\(494\) 4.24965 0.191201
\(495\) 0 0
\(496\) 12.2071 0.548115
\(497\) 8.96239i 0.402018i
\(498\) 0 0
\(499\) 25.7137 1.15110 0.575552 0.817765i \(-0.304787\pi\)
0.575552 + 0.817765i \(0.304787\pi\)
\(500\) −1.22662 1.78797i −0.0548563 0.0799602i
\(501\) 0 0
\(502\) 10.0181i 0.447130i
\(503\) 0.0956908i 0.00426664i 0.999998 + 0.00213332i \(0.000679058\pi\)
−0.999998 + 0.00213332i \(0.999321\pi\)
\(504\) 0 0
\(505\) 9.40105 8.31265i 0.418341 0.369908i
\(506\) 44.3996 1.97380
\(507\) 0 0
\(508\) 2.30089i 0.102086i
\(509\) 23.0010 1.01950 0.509750 0.860323i \(-0.329738\pi\)
0.509750 + 0.860323i \(0.329738\pi\)
\(510\) 0 0
\(511\) −13.8397 −0.612233
\(512\) 18.5188i 0.818423i
\(513\) 0 0
\(514\) −29.5574 −1.30372
\(515\) −5.23884 5.92478i −0.230851 0.261077i
\(516\) 0 0
\(517\) 14.1260i 0.621261i
\(518\) 22.8568i 1.00427i
\(519\) 0 0
\(520\) −12.8568 + 11.3684i −0.563810 + 0.498536i
\(521\) −14.2398 −0.623857 −0.311928 0.950106i \(-0.600975\pi\)
−0.311928 + 0.950106i \(0.600975\pi\)
\(522\) 0 0
\(523\) 17.9756i 0.786016i 0.919535 + 0.393008i \(0.128566\pi\)
−0.919535 + 0.393008i \(0.871434\pi\)
\(524\) 0.300432 0.0131244
\(525\) 0 0
\(526\) −7.61801 −0.332161
\(527\) 17.2750i 0.752513i
\(528\) 0 0
\(529\) −43.5256 −1.89242
\(530\) −9.66291 + 8.54420i −0.419730 + 0.371136i
\(531\) 0 0
\(532\) 0.869067i 0.0376789i
\(533\) 16.0665i 0.695918i
\(534\) 0 0
\(535\) −24.3488 27.5369i −1.05269 1.19052i
\(536\) −23.2750 −1.00533
\(537\) 0 0
\(538\) 16.4958i 0.711184i
\(539\) 48.0748 2.07073
\(540\) 0 0
\(541\) −27.1490 −1.16723 −0.583614 0.812031i \(-0.698362\pi\)
−0.583614 + 0.812031i \(0.698362\pi\)
\(542\) 22.9234i 0.984643i
\(543\) 0 0
\(544\) −6.73084 −0.288582
\(545\) −20.7513 + 18.3488i −0.888888 + 0.785978i
\(546\) 0 0
\(547\) 34.5256i 1.47621i 0.674686 + 0.738105i \(0.264279\pi\)
−0.674686 + 0.738105i \(0.735721\pi\)
\(548\) 3.31124i 0.141449i
\(549\) 0 0
\(550\) −27.0132 3.33216i −1.15185 0.142084i
\(551\) 4.63752 0.197565
\(552\) 0 0
\(553\) 22.2374i 0.945632i
\(554\) −18.7005 −0.794509
\(555\) 0 0
\(556\) 1.08840 0.0461583
\(557\) 21.6873i 0.918922i 0.888198 + 0.459461i \(0.151957\pi\)
−0.888198 + 0.459461i \(0.848043\pi\)
\(558\) 0 0
\(559\) 29.1041 1.23097
\(560\) 28.8749 + 32.6556i 1.22019 + 1.37995i
\(561\) 0 0
\(562\) 3.94288i 0.166320i
\(563\) 8.80606i 0.371131i −0.982632 0.185566i \(-0.940588\pi\)
0.982632 0.185566i \(-0.0594117\pi\)
\(564\) 0 0
\(565\) −16.6556 18.8364i −0.700707 0.792452i
\(566\) 2.41468 0.101497
\(567\) 0 0
\(568\) 5.35026i 0.224492i
\(569\) −26.5379 −1.11252 −0.556262 0.831007i \(-0.687765\pi\)
−0.556262 + 0.831007i \(0.687765\pi\)
\(570\) 0 0
\(571\) 31.0376 1.29888 0.649442 0.760411i \(-0.275003\pi\)
0.649442 + 0.760411i \(0.275003\pi\)
\(572\) 2.04491i 0.0855018i
\(573\) 0 0
\(574\) −37.1695 −1.55142
\(575\) 40.4749 + 4.99271i 1.68792 + 0.208210i
\(576\) 0 0
\(577\) 23.3357i 0.971477i 0.874104 + 0.485738i \(0.161449\pi\)
−0.874104 + 0.485738i \(0.838551\pi\)
\(578\) 30.9575i 1.28766i
\(579\) 0 0
\(580\) 1.50659 1.33216i 0.0625576 0.0553151i
\(581\) −30.1622 −1.25134
\(582\) 0 0
\(583\) 14.3127i 0.592769i
\(584\) −8.26187 −0.341878
\(585\) 0 0
\(586\) 22.7670 0.940498
\(587\) 19.4168i 0.801416i 0.916206 + 0.400708i \(0.131236\pi\)
−0.916206 + 0.400708i \(0.868764\pi\)
\(588\) 0 0
\(589\) −2.80606 −0.115622
\(590\) 20.9234 + 23.6629i 0.861401 + 0.974187i
\(591\) 0 0
\(592\) 14.9805i 0.615694i
\(593\) 6.21108i 0.255058i 0.991835 + 0.127529i \(0.0407047\pi\)
−0.991835 + 0.127529i \(0.959295\pi\)
\(594\) 0 0
\(595\) −46.2130 + 40.8627i −1.89455 + 1.67521i
\(596\) −1.07381 −0.0439849
\(597\) 0 0
\(598\) 34.6615i 1.41741i
\(599\) 30.4993 1.24617 0.623084 0.782155i \(-0.285880\pi\)
0.623084 + 0.782155i \(0.285880\pi\)
\(600\) 0 0
\(601\) 16.8218 0.686175 0.343088 0.939303i \(-0.388527\pi\)
0.343088 + 0.939303i \(0.388527\pi\)
\(602\) 67.3317i 2.74424i
\(603\) 0 0
\(604\) −0.0157287 −0.000639993
\(605\) −4.19886 + 3.71274i −0.170708 + 0.150944i
\(606\) 0 0
\(607\) 37.7645i 1.53281i 0.642356 + 0.766407i \(0.277957\pi\)
−0.642356 + 0.766407i \(0.722043\pi\)
\(608\) 1.09332i 0.0443400i
\(609\) 0 0
\(610\) 21.7078 + 24.5501i 0.878924 + 0.994004i
\(611\) −11.0278 −0.446136
\(612\) 0 0
\(613\) 25.7235i 1.03896i −0.854481 0.519482i \(-0.826125\pi\)
0.854481 0.519482i \(-0.173875\pi\)
\(614\) −27.1998 −1.09770
\(615\) 0 0
\(616\) 44.0567 1.77509
\(617\) 9.31994i 0.375207i 0.982245 + 0.187603i \(0.0600720\pi\)
−0.982245 + 0.187603i \(0.939928\pi\)
\(618\) 0 0
\(619\) −33.9610 −1.36501 −0.682503 0.730882i \(-0.739109\pi\)
−0.682503 + 0.730882i \(0.739109\pi\)
\(620\) −0.911603 + 0.806063i −0.0366109 + 0.0323723i
\(621\) 0 0
\(622\) 16.9951i 0.681440i
\(623\) 51.4168i 2.05997i
\(624\) 0 0
\(625\) −24.2506 6.07522i −0.970024 0.243009i
\(626\) −6.77575 −0.270813
\(627\) 0 0
\(628\) 0.513881i 0.0205061i
\(629\) −21.1998 −0.845292
\(630\) 0 0
\(631\) 31.3620 1.24850 0.624251 0.781224i \(-0.285404\pi\)
0.624251 + 0.781224i \(0.285404\pi\)
\(632\) 13.2750i 0.528053i
\(633\) 0 0
\(634\) −33.1911 −1.31819
\(635\) 17.5731 + 19.8740i 0.697367 + 0.788675i
\(636\) 0 0
\(637\) 37.5306i 1.48702i
\(638\) 25.2447i 0.999448i
\(639\) 0 0
\(640\) 18.7743 + 21.2325i 0.742121 + 0.839288i
\(641\) 13.5853 0.536588 0.268294 0.963337i \(-0.413540\pi\)
0.268294 + 0.963337i \(0.413540\pi\)
\(642\) 0 0
\(643\) 41.0557i 1.61908i −0.587065 0.809540i \(-0.699717\pi\)
0.587065 0.809540i \(-0.300283\pi\)
\(644\) 7.08840 0.279322
\(645\) 0 0
\(646\) 9.11871 0.358771
\(647\) 16.2170i 0.637554i −0.947830 0.318777i \(-0.896728\pi\)
0.947830 0.318777i \(-0.103272\pi\)
\(648\) 0 0
\(649\) 35.0494 1.37581
\(650\) 2.60132 21.0884i 0.102032 0.827155i
\(651\) 0 0
\(652\) 0.129518i 0.00507231i
\(653\) 8.44263i 0.330386i −0.986261 0.165193i \(-0.947175\pi\)
0.986261 0.165193i \(-0.0528246\pi\)
\(654\) 0 0
\(655\) 2.59498 2.29455i 0.101394 0.0896556i
\(656\) −24.3611 −0.951140
\(657\) 0 0
\(658\) 25.5125i 0.994579i
\(659\) −5.71179 −0.222500 −0.111250 0.993792i \(-0.535485\pi\)
−0.111250 + 0.993792i \(0.535485\pi\)
\(660\) 0 0
\(661\) −12.5139 −0.486734 −0.243367 0.969934i \(-0.578252\pi\)
−0.243367 + 0.969934i \(0.578252\pi\)
\(662\) 47.2057i 1.83470i
\(663\) 0 0
\(664\) −18.0059 −0.698764
\(665\) −6.63752 7.50659i −0.257392 0.291093i
\(666\) 0 0
\(667\) 37.8251i 1.46459i
\(668\) 2.02047i 0.0781743i
\(669\) 0 0
\(670\) 21.5877 19.0884i 0.834005 0.737449i
\(671\) 36.3634 1.40379
\(672\) 0 0
\(673\) 27.7807i 1.07087i 0.844578 + 0.535433i \(0.179852\pi\)
−0.844578 + 0.535433i \(0.820148\pi\)
\(674\) −18.3395 −0.706410
\(675\) 0 0
\(676\) −0.924777 −0.0355684
\(677\) 41.3923i 1.59084i 0.606061 + 0.795418i \(0.292749\pi\)
−0.606061 + 0.795418i \(0.707251\pi\)
\(678\) 0 0
\(679\) −43.1549 −1.65613
\(680\) −27.5877 + 24.3938i −1.05794 + 0.935458i
\(681\) 0 0
\(682\) 15.2750i 0.584911i
\(683\) 13.9902i 0.535318i −0.963514 0.267659i \(-0.913750\pi\)
0.963514 0.267659i \(-0.0862501\pi\)
\(684\) 0 0
\(685\) −25.2896 28.6009i −0.966267 1.09278i
\(686\) 40.3634 1.54108
\(687\) 0 0
\(688\) 44.1295i 1.68242i
\(689\) −11.1735 −0.425675
\(690\) 0 0
\(691\) 25.0640 0.953478 0.476739 0.879045i \(-0.341819\pi\)
0.476739 + 0.879045i \(0.341819\pi\)
\(692\) 0.881286i 0.0335015i
\(693\) 0 0
\(694\) 44.0567 1.67237
\(695\) 9.40105 8.31265i 0.356602 0.315317i
\(696\) 0 0
\(697\) 34.4749i 1.30583i
\(698\) 5.07381i 0.192046i
\(699\) 0 0
\(700\) −4.31265 0.531980i −0.163003 0.0201069i
\(701\) −5.62672 −0.212518 −0.106259 0.994338i \(-0.533887\pi\)
−0.106259 + 0.994338i \(0.533887\pi\)
\(702\) 0 0
\(703\) 3.44358i 0.129877i
\(704\) 26.0240 0.980816
\(705\) 0 0
\(706\) 11.0884 0.417317
\(707\) 25.1490i 0.945827i
\(708\) 0 0
\(709\) 37.8653 1.42206 0.711030 0.703161i \(-0.248229\pi\)
0.711030 + 0.703161i \(0.248229\pi\)
\(710\) −4.38787 4.96239i −0.164674 0.186235i
\(711\) 0 0
\(712\) 30.6942i 1.15031i
\(713\) 22.8872i 0.857131i
\(714\) 0 0
\(715\) −15.6180 17.6629i −0.584080 0.660555i
\(716\) 2.92619 0.109357
\(717\) 0 0
\(718\) 52.0835i 1.94374i
\(719\) −20.8749 −0.778504 −0.389252 0.921131i \(-0.627266\pi\)
−0.389252 + 0.921131i \(0.627266\pi\)
\(720\) 0 0
\(721\) −15.8496 −0.590268
\(722\) 1.48119i 0.0551243i
\(723\) 0 0
\(724\) 1.63847 0.0608934
\(725\) 2.83875 23.0132i 0.105429 0.854688i
\(726\) 0 0
\(727\) 3.34392i 0.124019i −0.998076 0.0620096i \(-0.980249\pi\)
0.998076 0.0620096i \(-0.0197509\pi\)
\(728\) 34.3938i 1.27472i
\(729\) 0 0
\(730\) 7.66291 6.77575i 0.283617 0.250782i
\(731\) 62.4504 2.30981
\(732\) 0 0
\(733\) 31.0884i 1.14828i 0.818759 + 0.574138i \(0.194663\pi\)
−0.818759 + 0.574138i \(0.805337\pi\)
\(734\) 3.17584 0.117222
\(735\) 0 0
\(736\) 8.91748 0.328703
\(737\) 31.9756i 1.17783i
\(738\) 0 0
\(739\) −3.13918 −0.115477 −0.0577383 0.998332i \(-0.518389\pi\)
−0.0577383 + 0.998332i \(0.518389\pi\)
\(740\) −0.989196 1.11871i −0.0363636 0.0411247i
\(741\) 0 0
\(742\) 25.8496i 0.948967i
\(743\) 6.48944i 0.238075i −0.992890 0.119037i \(-0.962019\pi\)
0.992890 0.119037i \(-0.0379808\pi\)
\(744\) 0 0
\(745\) −9.27504 + 8.20123i −0.339811 + 0.300470i
\(746\) 54.0532 1.97903
\(747\) 0 0
\(748\) 4.38787i 0.160437i
\(749\) −73.6648 −2.69165
\(750\) 0 0
\(751\) 24.6458 0.899337 0.449668 0.893196i \(-0.351542\pi\)
0.449668 + 0.893196i \(0.351542\pi\)
\(752\) 16.7210i 0.609752i
\(753\) 0 0
\(754\) 19.7078 0.717716
\(755\) −0.135857 + 0.120128i −0.00494435 + 0.00437192i
\(756\) 0 0
\(757\) 37.3766i 1.35848i −0.733918 0.679238i \(-0.762310\pi\)
0.733918 0.679238i \(-0.237690\pi\)
\(758\) 2.97110i 0.107915i
\(759\) 0 0
\(760\) −3.96239 4.48119i −0.143731 0.162550i
\(761\) −5.64832 −0.204752 −0.102376 0.994746i \(-0.532644\pi\)
−0.102376 + 0.994746i \(0.532644\pi\)
\(762\) 0 0
\(763\) 55.5125i 2.00969i
\(764\) −2.62576 −0.0949967
\(765\) 0 0
\(766\) −27.0132 −0.976026
\(767\) 27.3620i 0.987985i
\(768\) 0 0
\(769\) 10.2520 0.369697 0.184849 0.982767i \(-0.440821\pi\)
0.184849 + 0.982767i \(0.440821\pi\)
\(770\) −40.8627 + 36.1319i −1.47259 + 1.30210i
\(771\) 0 0
\(772\) 2.16854i 0.0780476i
\(773\) 13.1939i 0.474553i 0.971442 + 0.237276i \(0.0762547\pi\)
−0.971442 + 0.237276i \(0.923745\pi\)
\(774\) 0 0
\(775\) −1.71767 + 13.9248i −0.0617004 + 0.500193i
\(776\) −25.7621 −0.924806
\(777\) 0 0
\(778\) 19.5731i 0.701730i
\(779\) 5.59991 0.200638
\(780\) 0 0
\(781\) −7.35026 −0.263013
\(782\) 74.3752i 2.65965i
\(783\) 0 0
\(784\) 56.9062 2.03236
\(785\) 3.92478 + 4.43866i 0.140081 + 0.158423i
\(786\) 0 0
\(787\) 14.6497i 0.522207i 0.965311 + 0.261103i \(0.0840864\pi\)
−0.965311 + 0.261103i \(0.915914\pi\)
\(788\) 1.40502i 0.0500516i
\(789\) 0 0
\(790\) 10.8872 + 12.3127i 0.387348 + 0.438064i
\(791\) −50.3898 −1.79165
\(792\) 0 0
\(793\) 28.3879i 1.00808i
\(794\) 14.0146 0.497359
\(795\) 0 0
\(796\) −5.20967 −0.184652
\(797\) 36.7426i 1.30149i −0.759296 0.650745i \(-0.774457\pi\)
0.759296 0.650745i \(-0.225543\pi\)
\(798\) 0 0
\(799\) −23.6629 −0.837134
\(800\) −5.42548 0.669251i −0.191820 0.0236616i
\(801\) 0 0
\(802\) 41.5090i 1.46573i
\(803\) 11.3503i 0.400542i
\(804\) 0 0
\(805\) 61.2262 54.1378i 2.15794 1.90811i
\(806\) −11.9248 −0.420032
\(807\) 0 0
\(808\) 15.0132i 0.528162i
\(809\) 14.3127 0.503206 0.251603 0.967831i \(-0.419042\pi\)
0.251603 + 0.967831i \(0.419042\pi\)
\(810\) 0 0
\(811\) 0.625301 0.0219573 0.0109786 0.999940i \(-0.496505\pi\)
0.0109786 + 0.999940i \(0.496505\pi\)
\(812\) 4.03032i 0.141436i
\(813\) 0 0
\(814\) −18.7454 −0.657027
\(815\) −0.989196 1.11871i −0.0346500 0.0391868i
\(816\) 0 0
\(817\) 10.1441i 0.354897i
\(818\) 26.6253i 0.930932i
\(819\) 0 0
\(820\) 1.81924 1.60862i 0.0635305 0.0561753i
\(821\) 14.8510 0.518302 0.259151 0.965837i \(-0.416557\pi\)
0.259151 + 0.965837i \(0.416557\pi\)
\(822\) 0 0
\(823\) 54.0181i 1.88295i −0.337079 0.941476i \(-0.609439\pi\)
0.337079 0.941476i \(-0.390561\pi\)
\(824\) −9.46168 −0.329613
\(825\) 0 0
\(826\) 63.3014 2.20254
\(827\) 5.32979i 0.185335i −0.995697 0.0926675i \(-0.970461\pi\)
0.995697 0.0926675i \(-0.0295394\pi\)
\(828\) 0 0
\(829\) 26.5599 0.922464 0.461232 0.887279i \(-0.347408\pi\)
0.461232 + 0.887279i \(0.347408\pi\)
\(830\) 16.7005 14.7670i 0.579684 0.512571i
\(831\) 0 0
\(832\) 20.3162i 0.704336i
\(833\) 80.5315i 2.79025i
\(834\) 0 0
\(835\) 15.4314 + 17.4518i 0.534024 + 0.603946i
\(836\) 0.712742 0.0246507
\(837\) 0 0
\(838\) 19.9038i 0.687567i
\(839\) −9.07381 −0.313263 −0.156631 0.987657i \(-0.550063\pi\)
−0.156631 + 0.987657i \(0.550063\pi\)
\(840\) 0 0
\(841\) −7.49341 −0.258394
\(842\) 36.0870i 1.24364i
\(843\) 0 0
\(844\) −0.860818 −0.0296306
\(845\) −7.98778 + 7.06300i −0.274788 + 0.242975i
\(846\) 0 0
\(847\) 11.2325i 0.385953i
\(848\) 16.9419i 0.581788i
\(849\) 0 0
\(850\) 5.58181 45.2506i 0.191454 1.55208i
\(851\) 28.0870 0.962809
\(852\) 0 0
\(853\) 7.19982i 0.246517i −0.992375 0.123259i \(-0.960666\pi\)
0.992375 0.123259i \(-0.0393344\pi\)
\(854\) 65.6747 2.24734
\(855\) 0 0
\(856\) −43.9756 −1.50305
\(857\) 25.5066i 0.871288i 0.900119 + 0.435644i \(0.143479\pi\)
−0.900119 + 0.435644i \(0.856521\pi\)
\(858\) 0 0
\(859\) −2.47295 −0.0843758 −0.0421879 0.999110i \(-0.513433\pi\)
−0.0421879 + 0.999110i \(0.513433\pi\)
\(860\) 2.91397 + 3.29551i 0.0993657 + 0.112376i
\(861\) 0 0
\(862\) 2.11142i 0.0719152i
\(863\) 47.0903i 1.60297i 0.598013 + 0.801486i \(0.295957\pi\)
−0.598013 + 0.801486i \(0.704043\pi\)
\(864\) 0 0
\(865\) −6.73084 7.61213i −0.228855 0.258820i
\(866\) 2.45088 0.0832842
\(867\) 0 0
\(868\) 2.43866i 0.0827735i
\(869\) 18.2374 0.618662
\(870\) 0 0
\(871\) 24.9624 0.845818
\(872\) 33.1392i 1.12223i
\(873\) 0 0
\(874\) −12.0811 −0.408649
\(875\) −41.3136 + 28.3430i −1.39665 + 0.958167i
\(876\) 0 0
\(877\) 52.2067i 1.76289i −0.472284 0.881447i \(-0.656570\pi\)
0.472284 0.881447i \(-0.343430\pi\)
\(878\) 39.1030i 1.31966i
\(879\) 0 0
\(880\) −26.7816 + 23.6810i −0.902808 + 0.798287i
\(881\) 2.06537 0.0695842 0.0347921 0.999395i \(-0.488923\pi\)
0.0347921 + 0.999395i \(0.488923\pi\)
\(882\) 0 0
\(883\) 42.9053i 1.44388i 0.691957 + 0.721939i \(0.256749\pi\)
−0.691957 + 0.721939i \(0.743251\pi\)
\(884\) 3.42548 0.115212
\(885\) 0 0
\(886\) 4.97110 0.167007
\(887\) 22.1768i 0.744624i −0.928108 0.372312i \(-0.878565\pi\)
0.928108 0.372312i \(-0.121435\pi\)
\(888\) 0 0
\(889\) 53.1655 1.78311
\(890\) −25.1730 28.4690i −0.843801 0.954282i
\(891\) 0 0
\(892\) 1.76257i 0.0590153i
\(893\) 3.84367i 0.128624i
\(894\) 0 0
\(895\) 25.2750 22.3488i 0.844851 0.747040i
\(896\) 56.7997 1.89755
\(897\) 0 0
\(898\) 17.7924i 0.593741i
\(899\) −13.0132 −0.434014
\(900\) 0 0
\(901\) −23.9756 −0.798742
\(902\) 30.4836i 1.01499i
\(903\) 0 0
\(904\) −30.0811 −1.00048
\(905\) 14.1524 12.5139i 0.470440 0.415975i
\(906\) 0 0
\(907\) 25.6629i 0.852123i −0.904694 0.426062i \(-0.859901\pi\)
0.904694 0.426062i \(-0.140099\pi\)
\(908\) 2.17091i 0.0720443i
\(909\) 0 0
\(910\) −28.2071 31.9003i −0.935057 1.05749i
\(911\) 2.65959 0.0881161 0.0440580 0.999029i \(-0.485971\pi\)
0.0440580 + 0.999029i \(0.485971\pi\)
\(912\) 0 0
\(913\) 24.7367i 0.818666i
\(914\) 46.7875 1.54759
\(915\) 0 0
\(916\) −4.59498 −0.151823
\(917\) 6.94192i 0.229242i
\(918\) 0 0
\(919\) 6.94780 0.229187 0.114593 0.993412i \(-0.463443\pi\)
0.114593 + 0.993412i \(0.463443\pi\)
\(920\) 36.5501 32.3185i 1.20502 1.06551i
\(921\) 0 0
\(922\) 7.51530i 0.247503i
\(923\) 5.73813i 0.188873i
\(924\) 0 0
\(925\) −17.0884 2.10791i −0.561863 0.0693076i
\(926\) 21.1368 0.694599
\(927\) 0 0
\(928\) 5.07030i 0.166441i
\(929\) 53.3112 1.74908 0.874542 0.484949i \(-0.161162\pi\)
0.874542 + 0.484949i \(0.161162\pi\)
\(930\) 0 0
\(931\) −13.0811 −0.428716
\(932\) 2.33709i 0.0765539i
\(933\) 0 0
\(934\) 47.9669 1.56952
\(935\) −33.5125 37.9003i −1.09597 1.23947i
\(936\) 0 0
\(937\) 40.9135i 1.33659i −0.743898 0.668293i \(-0.767025\pi\)
0.743898 0.668293i \(-0.232975\pi\)
\(938\) 57.7499i 1.88560i
\(939\) 0 0
\(940\) −1.10413 1.24869i −0.0360126 0.0407278i
\(941\) 27.0762 0.882658 0.441329 0.897345i \(-0.354507\pi\)
0.441329 + 0.897345i \(0.354507\pi\)
\(942\) 0 0
\(943\) 45.6747i 1.48737i
\(944\) 41.4880 1.35032
\(945\) 0 0
\(946\) 55.2203 1.79537
\(947\) 13.7929i 0.448209i −0.974565 0.224104i \(-0.928054\pi\)
0.974565 0.224104i \(-0.0719456\pi\)
\(948\) 0 0
\(949\) 8.86082 0.287634
\(950\) 7.35026 + 0.906679i 0.238474 + 0.0294165i
\(951\) 0 0
\(952\) 73.8007i 2.39189i
\(953\) 13.7948i 0.446857i 0.974720 + 0.223429i \(0.0717250\pi\)
−0.974720 + 0.223429i \(0.928275\pi\)
\(954\) 0 0
\(955\) −22.6801 + 20.0543i −0.733909 + 0.648942i
\(956\) −2.71274 −0.0877364
\(957\) 0 0
\(958\) 10.7938i 0.348733i
\(959\) −76.5111 −2.47067
\(960\) 0 0
\(961\) −23.1260 −0.746000
\(962\) 14.6340i 0.471819i
\(963\) 0 0
\(964\) −4.61071 −0.148501
\(965\) −16.5623 18.7308i −0.533159 0.602967i
\(966\) 0 0
\(967\) 20.6072i 0.662683i 0.943511 + 0.331341i \(0.107501\pi\)
−0.943511 + 0.331341i \(0.892499\pi\)
\(968\) 6.70545i 0.215521i
\(969\) 0 0
\(970\) 23.8945 21.1281i 0.767205 0.678383i
\(971\) −1.93463 −0.0620851 −0.0310426 0.999518i \(-0.509883\pi\)
−0.0310426 + 0.999518i \(0.509883\pi\)
\(972\) 0 0
\(973\) 25.1490i 0.806241i
\(974\) −55.6531 −1.78324
\(975\) 0 0
\(976\) 43.0435 1.37779
\(977\) 30.6312i 0.979978i −0.871729 0.489989i \(-0.837001\pi\)
0.871729 0.489989i \(-0.162999\pi\)
\(978\) 0 0
\(979\) −42.1681 −1.34770
\(980\) −4.24965 + 3.75765i −0.135750 + 0.120034i
\(981\) 0 0
\(982\) 34.9415i 1.11503i
\(983\) 51.2663i 1.63514i −0.575828 0.817571i \(-0.695320\pi\)
0.575828 0.817571i \(-0.304680\pi\)
\(984\) 0 0
\(985\) 10.7308 + 12.1359i 0.341913 + 0.386681i
\(986\) 42.2882 1.34673
\(987\) 0 0
\(988\) 0.556417i 0.0177020i
\(989\) −82.7386 −2.63094
\(990\) 0 0
\(991\) −31.5778 −1.00310 −0.501552 0.865128i \(-0.667237\pi\)
−0.501552 + 0.865128i \(0.667237\pi\)
\(992\) 3.06793i 0.0974068i
\(993\) 0 0
\(994\) −13.2750 −0.421059
\(995\) −44.9986 + 39.7889i −1.42655 + 1.26139i
\(996\) 0 0
\(997\) 35.7090i 1.13091i −0.824778 0.565457i \(-0.808700\pi\)
0.824778 0.565457i \(-0.191300\pi\)
\(998\) 38.0870i 1.20562i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.c.e.514.5 6
3.2 odd 2 285.2.c.a.229.2 6
5.2 odd 4 4275.2.a.bi.1.1 3
5.3 odd 4 4275.2.a.bd.1.3 3
5.4 even 2 inner 855.2.c.e.514.2 6
15.2 even 4 1425.2.a.s.1.3 3
15.8 even 4 1425.2.a.x.1.1 3
15.14 odd 2 285.2.c.a.229.5 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.c.a.229.2 6 3.2 odd 2
285.2.c.a.229.5 yes 6 15.14 odd 2
855.2.c.e.514.2 6 5.4 even 2 inner
855.2.c.e.514.5 6 1.1 even 1 trivial
1425.2.a.s.1.3 3 15.2 even 4
1425.2.a.x.1.1 3 15.8 even 4
4275.2.a.bd.1.3 3 5.3 odd 4
4275.2.a.bi.1.1 3 5.2 odd 4