Properties

Label 855.2.a.m.1.4
Level $855$
Weight $2$
Character 855.1
Self dual yes
Analytic conductor $6.827$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(1,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0,8,4,0,4,12,0,2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.11344.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.28734\) of defining polynomial
Character \(\chi\) \(=\) 855.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.63010 q^{2} +4.91744 q^{4} +1.00000 q^{5} -0.574672 q^{7} +7.67316 q^{8} +2.63010 q^{10} -2.57467 q^{11} -0.468387 q^{13} -1.51145 q^{14} +10.3463 q^{16} +4.08612 q^{17} +1.00000 q^{19} +4.91744 q^{20} -6.77165 q^{22} -1.51145 q^{23} +1.00000 q^{25} -1.23191 q^{26} -2.82591 q^{28} +4.08612 q^{29} -9.92099 q^{31} +11.8656 q^{32} +10.7469 q^{34} -0.574672 q^{35} -8.30326 q^{37} +2.63010 q^{38} +7.67316 q^{40} +1.83488 q^{41} -0.574672 q^{43} -12.6608 q^{44} -3.97526 q^{46} -7.09508 q^{47} -6.66975 q^{49} +2.63010 q^{50} -2.30326 q^{52} -4.30326 q^{53} -2.57467 q^{55} -4.40955 q^{56} +10.7469 q^{58} +2.68553 q^{59} +12.4095 q^{61} -26.0932 q^{62} +10.5150 q^{64} -0.468387 q^{65} -2.70570 q^{67} +20.0932 q^{68} -1.51145 q^{70} +7.40058 q^{71} +12.0861 q^{73} -21.8384 q^{74} +4.91744 q^{76} +1.47959 q^{77} -6.68553 q^{79} +10.3463 q^{80} +4.82591 q^{82} +6.66079 q^{83} +4.08612 q^{85} -1.51145 q^{86} -19.7559 q^{88} -14.6065 q^{89} +0.269169 q^{91} -7.43244 q^{92} -18.6608 q^{94} +1.00000 q^{95} +17.4526 q^{97} -17.5421 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 8 q^{4} + 4 q^{5} + 4 q^{7} + 12 q^{8} + 2 q^{10} - 4 q^{11} + 2 q^{13} + 8 q^{14} + 4 q^{16} - 4 q^{17} + 4 q^{19} + 8 q^{20} + 4 q^{22} + 8 q^{23} + 4 q^{25} - 4 q^{26} - 8 q^{28} - 4 q^{29}+ \cdots - 38 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.63010 1.85976 0.929882 0.367859i \(-0.119909\pi\)
0.929882 + 0.367859i \(0.119909\pi\)
\(3\) 0 0
\(4\) 4.91744 2.45872
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −0.574672 −0.217205 −0.108603 0.994085i \(-0.534638\pi\)
−0.108603 + 0.994085i \(0.534638\pi\)
\(8\) 7.67316 2.71287
\(9\) 0 0
\(10\) 2.63010 0.831711
\(11\) −2.57467 −0.776293 −0.388146 0.921598i \(-0.626884\pi\)
−0.388146 + 0.921598i \(0.626884\pi\)
\(12\) 0 0
\(13\) −0.468387 −0.129907 −0.0649536 0.997888i \(-0.520690\pi\)
−0.0649536 + 0.997888i \(0.520690\pi\)
\(14\) −1.51145 −0.403951
\(15\) 0 0
\(16\) 10.3463 2.58658
\(17\) 4.08612 0.991029 0.495514 0.868600i \(-0.334980\pi\)
0.495514 + 0.868600i \(0.334980\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 4.91744 1.09957
\(21\) 0 0
\(22\) −6.77165 −1.44372
\(23\) −1.51145 −0.315158 −0.157579 0.987506i \(-0.550369\pi\)
−0.157579 + 0.987506i \(0.550369\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −1.23191 −0.241596
\(27\) 0 0
\(28\) −2.82591 −0.534047
\(29\) 4.08612 0.758773 0.379386 0.925238i \(-0.376135\pi\)
0.379386 + 0.925238i \(0.376135\pi\)
\(30\) 0 0
\(31\) −9.92099 −1.78186 −0.890931 0.454138i \(-0.849947\pi\)
−0.890931 + 0.454138i \(0.849947\pi\)
\(32\) 11.8656 2.09755
\(33\) 0 0
\(34\) 10.7469 1.84308
\(35\) −0.574672 −0.0971372
\(36\) 0 0
\(37\) −8.30326 −1.36505 −0.682524 0.730863i \(-0.739118\pi\)
−0.682524 + 0.730863i \(0.739118\pi\)
\(38\) 2.63010 0.426659
\(39\) 0 0
\(40\) 7.67316 1.21323
\(41\) 1.83488 0.286560 0.143280 0.989682i \(-0.454235\pi\)
0.143280 + 0.989682i \(0.454235\pi\)
\(42\) 0 0
\(43\) −0.574672 −0.0876366 −0.0438183 0.999040i \(-0.513952\pi\)
−0.0438183 + 0.999040i \(0.513952\pi\)
\(44\) −12.6608 −1.90869
\(45\) 0 0
\(46\) −3.97526 −0.586119
\(47\) −7.09508 −1.03492 −0.517462 0.855706i \(-0.673123\pi\)
−0.517462 + 0.855706i \(0.673123\pi\)
\(48\) 0 0
\(49\) −6.66975 −0.952822
\(50\) 2.63010 0.371953
\(51\) 0 0
\(52\) −2.30326 −0.319405
\(53\) −4.30326 −0.591099 −0.295549 0.955327i \(-0.595503\pi\)
−0.295549 + 0.955327i \(0.595503\pi\)
\(54\) 0 0
\(55\) −2.57467 −0.347169
\(56\) −4.40955 −0.589251
\(57\) 0 0
\(58\) 10.7469 1.41114
\(59\) 2.68553 0.349627 0.174813 0.984602i \(-0.444068\pi\)
0.174813 + 0.984602i \(0.444068\pi\)
\(60\) 0 0
\(61\) 12.4095 1.58888 0.794440 0.607343i \(-0.207765\pi\)
0.794440 + 0.607343i \(0.207765\pi\)
\(62\) −26.0932 −3.31384
\(63\) 0 0
\(64\) 10.5150 1.31438
\(65\) −0.468387 −0.0580962
\(66\) 0 0
\(67\) −2.70570 −0.330554 −0.165277 0.986247i \(-0.552852\pi\)
−0.165277 + 0.986247i \(0.552852\pi\)
\(68\) 20.0932 2.43666
\(69\) 0 0
\(70\) −1.51145 −0.180652
\(71\) 7.40058 0.878288 0.439144 0.898417i \(-0.355282\pi\)
0.439144 + 0.898417i \(0.355282\pi\)
\(72\) 0 0
\(73\) 12.0861 1.41457 0.707286 0.706927i \(-0.249919\pi\)
0.707286 + 0.706927i \(0.249919\pi\)
\(74\) −21.8384 −2.53867
\(75\) 0 0
\(76\) 4.91744 0.564069
\(77\) 1.47959 0.168615
\(78\) 0 0
\(79\) −6.68553 −0.752181 −0.376091 0.926583i \(-0.622732\pi\)
−0.376091 + 0.926583i \(0.622732\pi\)
\(80\) 10.3463 1.15675
\(81\) 0 0
\(82\) 4.82591 0.532933
\(83\) 6.66079 0.731117 0.365558 0.930788i \(-0.380878\pi\)
0.365558 + 0.930788i \(0.380878\pi\)
\(84\) 0 0
\(85\) 4.08612 0.443202
\(86\) −1.51145 −0.162983
\(87\) 0 0
\(88\) −19.7559 −2.10598
\(89\) −14.6065 −1.54829 −0.774144 0.633009i \(-0.781820\pi\)
−0.774144 + 0.633009i \(0.781820\pi\)
\(90\) 0 0
\(91\) 0.269169 0.0282165
\(92\) −7.43244 −0.774885
\(93\) 0 0
\(94\) −18.6608 −1.92471
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) 17.4526 1.77204 0.886022 0.463643i \(-0.153458\pi\)
0.886022 + 0.463643i \(0.153458\pi\)
\(98\) −17.5421 −1.77202
\(99\) 0 0
\(100\) 4.91744 0.491744
\(101\) −14.2831 −1.42122 −0.710611 0.703586i \(-0.751581\pi\)
−0.710611 + 0.703586i \(0.751581\pi\)
\(102\) 0 0
\(103\) 4.79182 0.472152 0.236076 0.971735i \(-0.424139\pi\)
0.236076 + 0.971735i \(0.424139\pi\)
\(104\) −3.59401 −0.352421
\(105\) 0 0
\(106\) −11.3180 −1.09930
\(107\) −9.22611 −0.891922 −0.445961 0.895052i \(-0.647138\pi\)
−0.445961 + 0.895052i \(0.647138\pi\)
\(108\) 0 0
\(109\) 4.89810 0.469153 0.234577 0.972098i \(-0.424630\pi\)
0.234577 + 0.972098i \(0.424630\pi\)
\(110\) −6.77165 −0.645651
\(111\) 0 0
\(112\) −5.94574 −0.561819
\(113\) −1.61773 −0.152183 −0.0760916 0.997101i \(-0.524244\pi\)
−0.0760916 + 0.997101i \(0.524244\pi\)
\(114\) 0 0
\(115\) −1.51145 −0.140943
\(116\) 20.0932 1.86561
\(117\) 0 0
\(118\) 7.06323 0.650223
\(119\) −2.34818 −0.215257
\(120\) 0 0
\(121\) −4.37107 −0.397370
\(122\) 32.6384 2.95494
\(123\) 0 0
\(124\) −48.7859 −4.38110
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −13.1292 −1.16503 −0.582513 0.812821i \(-0.697930\pi\)
−0.582513 + 0.812821i \(0.697930\pi\)
\(128\) 3.92440 0.346871
\(129\) 0 0
\(130\) −1.23191 −0.108045
\(131\) 8.17223 0.714011 0.357006 0.934102i \(-0.383798\pi\)
0.357006 + 0.934102i \(0.383798\pi\)
\(132\) 0 0
\(133\) −0.574672 −0.0498304
\(134\) −7.11627 −0.614752
\(135\) 0 0
\(136\) 31.3534 2.68853
\(137\) 14.6065 1.24792 0.623960 0.781456i \(-0.285523\pi\)
0.623960 + 0.781456i \(0.285523\pi\)
\(138\) 0 0
\(139\) −2.07219 −0.175761 −0.0878804 0.996131i \(-0.528009\pi\)
−0.0878804 + 0.996131i \(0.528009\pi\)
\(140\) −2.82591 −0.238833
\(141\) 0 0
\(142\) 19.4643 1.63341
\(143\) 1.20594 0.100846
\(144\) 0 0
\(145\) 4.08612 0.339334
\(146\) 31.7877 2.63077
\(147\) 0 0
\(148\) −40.8308 −3.35627
\(149\) −8.91203 −0.730102 −0.365051 0.930988i \(-0.618948\pi\)
−0.365051 + 0.930988i \(0.618948\pi\)
\(150\) 0 0
\(151\) 11.4572 0.932372 0.466186 0.884687i \(-0.345628\pi\)
0.466186 + 0.884687i \(0.345628\pi\)
\(152\) 7.67316 0.622376
\(153\) 0 0
\(154\) 3.89148 0.313584
\(155\) −9.92099 −0.796873
\(156\) 0 0
\(157\) −6.60653 −0.527258 −0.263629 0.964624i \(-0.584919\pi\)
−0.263629 + 0.964624i \(0.584919\pi\)
\(158\) −17.5836 −1.39888
\(159\) 0 0
\(160\) 11.8656 0.938055
\(161\) 0.868585 0.0684541
\(162\) 0 0
\(163\) 20.2444 1.58567 0.792833 0.609439i \(-0.208605\pi\)
0.792833 + 0.609439i \(0.208605\pi\)
\(164\) 9.02289 0.704569
\(165\) 0 0
\(166\) 17.5186 1.35970
\(167\) 5.89372 0.456069 0.228035 0.973653i \(-0.426770\pi\)
0.228035 + 0.973653i \(0.426770\pi\)
\(168\) 0 0
\(169\) −12.7806 −0.983124
\(170\) 10.7469 0.824250
\(171\) 0 0
\(172\) −2.82591 −0.215474
\(173\) 3.53161 0.268504 0.134252 0.990947i \(-0.457137\pi\)
0.134252 + 0.990947i \(0.457137\pi\)
\(174\) 0 0
\(175\) −0.574672 −0.0434411
\(176\) −26.6384 −2.00794
\(177\) 0 0
\(178\) −38.4167 −2.87945
\(179\) −7.18801 −0.537257 −0.268629 0.963244i \(-0.586570\pi\)
−0.268629 + 0.963244i \(0.586570\pi\)
\(180\) 0 0
\(181\) 15.5433 1.15532 0.577662 0.816276i \(-0.303965\pi\)
0.577662 + 0.816276i \(0.303965\pi\)
\(182\) 0.707941 0.0524761
\(183\) 0 0
\(184\) −11.5976 −0.854984
\(185\) −8.30326 −0.610468
\(186\) 0 0
\(187\) −10.5204 −0.769329
\(188\) −34.8896 −2.54459
\(189\) 0 0
\(190\) 2.63010 0.190808
\(191\) −13.3216 −0.963915 −0.481958 0.876194i \(-0.660074\pi\)
−0.481958 + 0.876194i \(0.660074\pi\)
\(192\) 0 0
\(193\) 18.9959 1.36736 0.683678 0.729784i \(-0.260379\pi\)
0.683678 + 0.729784i \(0.260379\pi\)
\(194\) 45.9021 3.29558
\(195\) 0 0
\(196\) −32.7981 −2.34272
\(197\) −2.17223 −0.154765 −0.0773826 0.997001i \(-0.524656\pi\)
−0.0773826 + 0.997001i \(0.524656\pi\)
\(198\) 0 0
\(199\) −1.87355 −0.132812 −0.0664061 0.997793i \(-0.521153\pi\)
−0.0664061 + 0.997793i \(0.521153\pi\)
\(200\) 7.67316 0.542574
\(201\) 0 0
\(202\) −37.5660 −2.64313
\(203\) −2.34818 −0.164810
\(204\) 0 0
\(205\) 1.83488 0.128153
\(206\) 12.6030 0.878091
\(207\) 0 0
\(208\) −4.84608 −0.336015
\(209\) −2.57467 −0.178094
\(210\) 0 0
\(211\) −17.1090 −1.17783 −0.588916 0.808194i \(-0.700445\pi\)
−0.588916 + 0.808194i \(0.700445\pi\)
\(212\) −21.1610 −1.45335
\(213\) 0 0
\(214\) −24.2656 −1.65876
\(215\) −0.574672 −0.0391923
\(216\) 0 0
\(217\) 5.70131 0.387030
\(218\) 12.8825 0.872514
\(219\) 0 0
\(220\) −12.6608 −0.853590
\(221\) −1.91388 −0.128742
\(222\) 0 0
\(223\) 5.12918 0.343475 0.171737 0.985143i \(-0.445062\pi\)
0.171737 + 0.985143i \(0.445062\pi\)
\(224\) −6.81880 −0.455600
\(225\) 0 0
\(226\) −4.25480 −0.283025
\(227\) 7.31223 0.485330 0.242665 0.970110i \(-0.421978\pi\)
0.242665 + 0.970110i \(0.421978\pi\)
\(228\) 0 0
\(229\) −8.40955 −0.555719 −0.277859 0.960622i \(-0.589625\pi\)
−0.277859 + 0.960622i \(0.589625\pi\)
\(230\) −3.97526 −0.262121
\(231\) 0 0
\(232\) 31.3534 2.05845
\(233\) 14.1722 0.928454 0.464227 0.885716i \(-0.346332\pi\)
0.464227 + 0.885716i \(0.346332\pi\)
\(234\) 0 0
\(235\) −7.09508 −0.462832
\(236\) 13.2059 0.859634
\(237\) 0 0
\(238\) −6.17594 −0.400327
\(239\) 14.1902 0.917885 0.458943 0.888466i \(-0.348228\pi\)
0.458943 + 0.888466i \(0.348228\pi\)
\(240\) 0 0
\(241\) 27.8807 1.79595 0.897976 0.440045i \(-0.145038\pi\)
0.897976 + 0.440045i \(0.145038\pi\)
\(242\) −11.4964 −0.739013
\(243\) 0 0
\(244\) 61.0232 3.90661
\(245\) −6.66975 −0.426115
\(246\) 0 0
\(247\) −0.468387 −0.0298027
\(248\) −76.1254 −4.83397
\(249\) 0 0
\(250\) 2.63010 0.166342
\(251\) 26.1902 1.65311 0.826554 0.562857i \(-0.190298\pi\)
0.826554 + 0.562857i \(0.190298\pi\)
\(252\) 0 0
\(253\) 3.89148 0.244655
\(254\) −34.5311 −2.16667
\(255\) 0 0
\(256\) −10.7084 −0.669276
\(257\) −9.01831 −0.562547 −0.281273 0.959628i \(-0.590757\pi\)
−0.281273 + 0.959628i \(0.590757\pi\)
\(258\) 0 0
\(259\) 4.77165 0.296496
\(260\) −2.30326 −0.142842
\(261\) 0 0
\(262\) 21.4938 1.32789
\(263\) 9.00896 0.555517 0.277758 0.960651i \(-0.410409\pi\)
0.277758 + 0.960651i \(0.410409\pi\)
\(264\) 0 0
\(265\) −4.30326 −0.264347
\(266\) −1.51145 −0.0926727
\(267\) 0 0
\(268\) −13.3051 −0.812739
\(269\) 30.6136 1.86655 0.933273 0.359167i \(-0.116939\pi\)
0.933273 + 0.359167i \(0.116939\pi\)
\(270\) 0 0
\(271\) 24.1180 1.46506 0.732531 0.680733i \(-0.238339\pi\)
0.732531 + 0.680733i \(0.238339\pi\)
\(272\) 42.2763 2.56338
\(273\) 0 0
\(274\) 38.4167 2.32084
\(275\) −2.57467 −0.155259
\(276\) 0 0
\(277\) 4.56075 0.274029 0.137014 0.990569i \(-0.456249\pi\)
0.137014 + 0.990569i \(0.456249\pi\)
\(278\) −5.45007 −0.326874
\(279\) 0 0
\(280\) −4.40955 −0.263521
\(281\) 6.11563 0.364828 0.182414 0.983222i \(-0.441609\pi\)
0.182414 + 0.983222i \(0.441609\pi\)
\(282\) 0 0
\(283\) −19.0547 −1.13269 −0.566344 0.824169i \(-0.691642\pi\)
−0.566344 + 0.824169i \(0.691642\pi\)
\(284\) 36.3919 2.15946
\(285\) 0 0
\(286\) 3.17175 0.187550
\(287\) −1.05445 −0.0622423
\(288\) 0 0
\(289\) −0.303649 −0.0178617
\(290\) 10.7469 0.631080
\(291\) 0 0
\(292\) 59.4327 3.47804
\(293\) 6.43887 0.376163 0.188081 0.982153i \(-0.439773\pi\)
0.188081 + 0.982153i \(0.439773\pi\)
\(294\) 0 0
\(295\) 2.68553 0.156358
\(296\) −63.7123 −3.70320
\(297\) 0 0
\(298\) −23.4395 −1.35782
\(299\) 0.707941 0.0409413
\(300\) 0 0
\(301\) 0.330247 0.0190351
\(302\) 30.1336 1.73399
\(303\) 0 0
\(304\) 10.3463 0.593402
\(305\) 12.4095 0.710569
\(306\) 0 0
\(307\) −6.77389 −0.386606 −0.193303 0.981139i \(-0.561920\pi\)
−0.193303 + 0.981139i \(0.561920\pi\)
\(308\) 7.27580 0.414577
\(309\) 0 0
\(310\) −26.0932 −1.48200
\(311\) −20.6205 −1.16928 −0.584639 0.811293i \(-0.698764\pi\)
−0.584639 + 0.811293i \(0.698764\pi\)
\(312\) 0 0
\(313\) 19.3711 1.09492 0.547459 0.836833i \(-0.315595\pi\)
0.547459 + 0.836833i \(0.315595\pi\)
\(314\) −17.3758 −0.980575
\(315\) 0 0
\(316\) −32.8757 −1.84940
\(317\) −3.37360 −0.189480 −0.0947401 0.995502i \(-0.530202\pi\)
−0.0947401 + 0.995502i \(0.530202\pi\)
\(318\) 0 0
\(319\) −10.5204 −0.589030
\(320\) 10.5150 0.587806
\(321\) 0 0
\(322\) 2.28447 0.127308
\(323\) 4.08612 0.227358
\(324\) 0 0
\(325\) −0.468387 −0.0259814
\(326\) 53.2449 2.94896
\(327\) 0 0
\(328\) 14.0793 0.777399
\(329\) 4.07734 0.224791
\(330\) 0 0
\(331\) −32.7788 −1.80168 −0.900842 0.434148i \(-0.857050\pi\)
−0.900842 + 0.434148i \(0.857050\pi\)
\(332\) 32.7540 1.79761
\(333\) 0 0
\(334\) 15.5011 0.848181
\(335\) −2.70570 −0.147828
\(336\) 0 0
\(337\) 8.74915 0.476596 0.238298 0.971192i \(-0.423410\pi\)
0.238298 + 0.971192i \(0.423410\pi\)
\(338\) −33.6143 −1.82838
\(339\) 0 0
\(340\) 20.0932 1.08971
\(341\) 25.5433 1.38325
\(342\) 0 0
\(343\) 7.85562 0.424164
\(344\) −4.40955 −0.237747
\(345\) 0 0
\(346\) 9.28850 0.499353
\(347\) 18.5028 0.993281 0.496640 0.867956i \(-0.334567\pi\)
0.496640 + 0.867956i \(0.334567\pi\)
\(348\) 0 0
\(349\) 3.54330 0.189668 0.0948342 0.995493i \(-0.469768\pi\)
0.0948342 + 0.995493i \(0.469768\pi\)
\(350\) −1.51145 −0.0807901
\(351\) 0 0
\(352\) −30.5499 −1.62832
\(353\) 3.41140 0.181571 0.0907853 0.995870i \(-0.471062\pi\)
0.0907853 + 0.995870i \(0.471062\pi\)
\(354\) 0 0
\(355\) 7.40058 0.392782
\(356\) −71.8267 −3.80681
\(357\) 0 0
\(358\) −18.9052 −0.999172
\(359\) 1.70609 0.0900438 0.0450219 0.998986i \(-0.485664\pi\)
0.0450219 + 0.998986i \(0.485664\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 40.8805 2.14863
\(363\) 0 0
\(364\) 1.32362 0.0693765
\(365\) 12.0861 0.632616
\(366\) 0 0
\(367\) 37.6155 1.96351 0.981756 0.190144i \(-0.0608953\pi\)
0.981756 + 0.190144i \(0.0608953\pi\)
\(368\) −15.6379 −0.815182
\(369\) 0 0
\(370\) −21.8384 −1.13533
\(371\) 2.47296 0.128390
\(372\) 0 0
\(373\) 13.4031 0.693987 0.346994 0.937868i \(-0.387203\pi\)
0.346994 + 0.937868i \(0.387203\pi\)
\(374\) −27.6698 −1.43077
\(375\) 0 0
\(376\) −54.4417 −2.80762
\(377\) −1.91388 −0.0985700
\(378\) 0 0
\(379\) −9.37107 −0.481359 −0.240680 0.970605i \(-0.577370\pi\)
−0.240680 + 0.970605i \(0.577370\pi\)
\(380\) 4.91744 0.252259
\(381\) 0 0
\(382\) −35.0371 −1.79265
\(383\) 2.09917 0.107263 0.0536314 0.998561i \(-0.482920\pi\)
0.0536314 + 0.998561i \(0.482920\pi\)
\(384\) 0 0
\(385\) 1.47959 0.0754069
\(386\) 49.9612 2.54296
\(387\) 0 0
\(388\) 85.8221 4.35696
\(389\) −1.07238 −0.0543718 −0.0271859 0.999630i \(-0.508655\pi\)
−0.0271859 + 0.999630i \(0.508655\pi\)
\(390\) 0 0
\(391\) −6.17594 −0.312331
\(392\) −51.1781 −2.58488
\(393\) 0 0
\(394\) −5.71320 −0.287827
\(395\) −6.68553 −0.336386
\(396\) 0 0
\(397\) −23.5341 −1.18114 −0.590572 0.806985i \(-0.701098\pi\)
−0.590572 + 0.806985i \(0.701098\pi\)
\(398\) −4.92762 −0.246999
\(399\) 0 0
\(400\) 10.3463 0.517316
\(401\) −18.6469 −0.931180 −0.465590 0.885001i \(-0.654158\pi\)
−0.465590 + 0.885001i \(0.654158\pi\)
\(402\) 0 0
\(403\) 4.64686 0.231477
\(404\) −70.2362 −3.49438
\(405\) 0 0
\(406\) −6.17594 −0.306507
\(407\) 21.3782 1.05968
\(408\) 0 0
\(409\) −6.88017 −0.340203 −0.170101 0.985427i \(-0.554410\pi\)
−0.170101 + 0.985427i \(0.554410\pi\)
\(410\) 4.82591 0.238335
\(411\) 0 0
\(412\) 23.5635 1.16089
\(413\) −1.54330 −0.0759408
\(414\) 0 0
\(415\) 6.66079 0.326965
\(416\) −5.55767 −0.272487
\(417\) 0 0
\(418\) −6.77165 −0.331212
\(419\) −13.4796 −0.658521 −0.329261 0.944239i \(-0.606799\pi\)
−0.329261 + 0.944239i \(0.606799\pi\)
\(420\) 0 0
\(421\) −5.83488 −0.284374 −0.142187 0.989840i \(-0.545414\pi\)
−0.142187 + 0.989840i \(0.545414\pi\)
\(422\) −44.9984 −2.19049
\(423\) 0 0
\(424\) −33.0196 −1.60357
\(425\) 4.08612 0.198206
\(426\) 0 0
\(427\) −7.13142 −0.345113
\(428\) −45.3688 −2.19298
\(429\) 0 0
\(430\) −1.51145 −0.0728884
\(431\) −29.2039 −1.40670 −0.703351 0.710843i \(-0.748314\pi\)
−0.703351 + 0.710843i \(0.748314\pi\)
\(432\) 0 0
\(433\) −12.5229 −0.601814 −0.300907 0.953653i \(-0.597289\pi\)
−0.300907 + 0.953653i \(0.597289\pi\)
\(434\) 14.9950 0.719785
\(435\) 0 0
\(436\) 24.0861 1.15352
\(437\) −1.51145 −0.0723022
\(438\) 0 0
\(439\) 15.6769 0.748216 0.374108 0.927385i \(-0.377949\pi\)
0.374108 + 0.927385i \(0.377949\pi\)
\(440\) −19.7559 −0.941824
\(441\) 0 0
\(442\) −5.03371 −0.239429
\(443\) 29.8281 1.41717 0.708587 0.705624i \(-0.249333\pi\)
0.708587 + 0.705624i \(0.249333\pi\)
\(444\) 0 0
\(445\) −14.6065 −0.692416
\(446\) 13.4903 0.638782
\(447\) 0 0
\(448\) −6.04267 −0.285489
\(449\) −29.9668 −1.41422 −0.707110 0.707104i \(-0.750001\pi\)
−0.707110 + 0.707104i \(0.750001\pi\)
\(450\) 0 0
\(451\) −4.72420 −0.222454
\(452\) −7.95509 −0.374176
\(453\) 0 0
\(454\) 19.2319 0.902598
\(455\) 0.269169 0.0126188
\(456\) 0 0
\(457\) 17.6698 0.826556 0.413278 0.910605i \(-0.364384\pi\)
0.413278 + 0.910605i \(0.364384\pi\)
\(458\) −22.1180 −1.03350
\(459\) 0 0
\(460\) −7.43244 −0.346539
\(461\) −22.3445 −1.04069 −0.520343 0.853957i \(-0.674196\pi\)
−0.520343 + 0.853957i \(0.674196\pi\)
\(462\) 0 0
\(463\) −6.83302 −0.317557 −0.158779 0.987314i \(-0.550756\pi\)
−0.158779 + 0.987314i \(0.550756\pi\)
\(464\) 42.2763 1.96263
\(465\) 0 0
\(466\) 37.2744 1.72670
\(467\) −9.00896 −0.416885 −0.208443 0.978035i \(-0.566839\pi\)
−0.208443 + 0.978035i \(0.566839\pi\)
\(468\) 0 0
\(469\) 1.55489 0.0717981
\(470\) −18.6608 −0.860758
\(471\) 0 0
\(472\) 20.6065 0.948492
\(473\) 1.47959 0.0680317
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) −11.5470 −0.529256
\(477\) 0 0
\(478\) 37.3216 1.70705
\(479\) −9.26731 −0.423434 −0.211717 0.977331i \(-0.567906\pi\)
−0.211717 + 0.977331i \(0.567906\pi\)
\(480\) 0 0
\(481\) 3.88914 0.177329
\(482\) 73.3290 3.34004
\(483\) 0 0
\(484\) −21.4944 −0.977020
\(485\) 17.4526 0.792482
\(486\) 0 0
\(487\) −38.7694 −1.75681 −0.878405 0.477917i \(-0.841392\pi\)
−0.878405 + 0.477917i \(0.841392\pi\)
\(488\) 95.2205 4.31043
\(489\) 0 0
\(490\) −17.5421 −0.792473
\(491\) −21.6877 −0.978751 −0.489376 0.872073i \(-0.662775\pi\)
−0.489376 + 0.872073i \(0.662775\pi\)
\(492\) 0 0
\(493\) 16.6964 0.751966
\(494\) −1.23191 −0.0554260
\(495\) 0 0
\(496\) −102.646 −4.60893
\(497\) −4.25291 −0.190769
\(498\) 0 0
\(499\) −27.8372 −1.24616 −0.623082 0.782156i \(-0.714120\pi\)
−0.623082 + 0.782156i \(0.714120\pi\)
\(500\) 4.91744 0.219915
\(501\) 0 0
\(502\) 68.8828 3.07439
\(503\) 41.2449 1.83902 0.919510 0.393067i \(-0.128586\pi\)
0.919510 + 0.393067i \(0.128586\pi\)
\(504\) 0 0
\(505\) −14.2831 −0.635589
\(506\) 10.2350 0.455000
\(507\) 0 0
\(508\) −64.5619 −2.86447
\(509\) −0.416364 −0.0184550 −0.00922751 0.999957i \(-0.502937\pi\)
−0.00922751 + 0.999957i \(0.502937\pi\)
\(510\) 0 0
\(511\) −6.94555 −0.307253
\(512\) −36.0131 −1.59157
\(513\) 0 0
\(514\) −23.7191 −1.04620
\(515\) 4.79182 0.211153
\(516\) 0 0
\(517\) 18.2675 0.803404
\(518\) 12.5499 0.551412
\(519\) 0 0
\(520\) −3.59401 −0.157608
\(521\) −24.0458 −1.05346 −0.526732 0.850031i \(-0.676583\pi\)
−0.526732 + 0.850031i \(0.676583\pi\)
\(522\) 0 0
\(523\) −5.19736 −0.227265 −0.113632 0.993523i \(-0.536249\pi\)
−0.113632 + 0.993523i \(0.536249\pi\)
\(524\) 40.1865 1.75555
\(525\) 0 0
\(526\) 23.6945 1.03313
\(527\) −40.5383 −1.76588
\(528\) 0 0
\(529\) −20.7155 −0.900675
\(530\) −11.3180 −0.491623
\(531\) 0 0
\(532\) −2.82591 −0.122519
\(533\) −0.859432 −0.0372261
\(534\) 0 0
\(535\) −9.22611 −0.398880
\(536\) −20.7613 −0.896751
\(537\) 0 0
\(538\) 80.5170 3.47133
\(539\) 17.1724 0.739669
\(540\) 0 0
\(541\) −1.93863 −0.0833481 −0.0416741 0.999131i \(-0.513269\pi\)
−0.0416741 + 0.999131i \(0.513269\pi\)
\(542\) 63.4327 2.72467
\(543\) 0 0
\(544\) 48.4841 2.07874
\(545\) 4.89810 0.209812
\(546\) 0 0
\(547\) −12.9075 −0.551883 −0.275941 0.961174i \(-0.588990\pi\)
−0.275941 + 0.961174i \(0.588990\pi\)
\(548\) 71.8267 3.06828
\(549\) 0 0
\(550\) −6.77165 −0.288744
\(551\) 4.08612 0.174074
\(552\) 0 0
\(553\) 3.84199 0.163378
\(554\) 11.9952 0.509628
\(555\) 0 0
\(556\) −10.1899 −0.432147
\(557\) 34.1040 1.44503 0.722517 0.691353i \(-0.242985\pi\)
0.722517 + 0.691353i \(0.242985\pi\)
\(558\) 0 0
\(559\) 0.269169 0.0113846
\(560\) −5.94574 −0.251253
\(561\) 0 0
\(562\) 16.0847 0.678494
\(563\) 14.4911 0.610727 0.305363 0.952236i \(-0.401222\pi\)
0.305363 + 0.952236i \(0.401222\pi\)
\(564\) 0 0
\(565\) −1.61773 −0.0680584
\(566\) −50.1159 −2.10653
\(567\) 0 0
\(568\) 56.7859 2.38268
\(569\) 39.2110 1.64381 0.821906 0.569624i \(-0.192911\pi\)
0.821906 + 0.569624i \(0.192911\pi\)
\(570\) 0 0
\(571\) 21.9915 0.920316 0.460158 0.887837i \(-0.347793\pi\)
0.460158 + 0.887837i \(0.347793\pi\)
\(572\) 5.93015 0.247952
\(573\) 0 0
\(574\) −2.77331 −0.115756
\(575\) −1.51145 −0.0630316
\(576\) 0 0
\(577\) 23.8735 0.993869 0.496934 0.867788i \(-0.334459\pi\)
0.496934 + 0.867788i \(0.334459\pi\)
\(578\) −0.798628 −0.0332185
\(579\) 0 0
\(580\) 20.0932 0.834326
\(581\) −3.82777 −0.158803
\(582\) 0 0
\(583\) 11.0795 0.458866
\(584\) 92.7387 3.83756
\(585\) 0 0
\(586\) 16.9349 0.699574
\(587\) −17.8281 −0.735843 −0.367921 0.929857i \(-0.619930\pi\)
−0.367921 + 0.929857i \(0.619930\pi\)
\(588\) 0 0
\(589\) −9.92099 −0.408787
\(590\) 7.06323 0.290788
\(591\) 0 0
\(592\) −85.9082 −3.53081
\(593\) 21.2446 0.872412 0.436206 0.899847i \(-0.356322\pi\)
0.436206 + 0.899847i \(0.356322\pi\)
\(594\) 0 0
\(595\) −2.34818 −0.0962658
\(596\) −43.8244 −1.79512
\(597\) 0 0
\(598\) 1.86196 0.0761411
\(599\) −24.3374 −0.994397 −0.497199 0.867637i \(-0.665638\pi\)
−0.497199 + 0.867637i \(0.665638\pi\)
\(600\) 0 0
\(601\) 15.7891 0.644051 0.322025 0.946731i \(-0.395636\pi\)
0.322025 + 0.946731i \(0.395636\pi\)
\(602\) 0.868585 0.0354009
\(603\) 0 0
\(604\) 56.3400 2.29244
\(605\) −4.37107 −0.177709
\(606\) 0 0
\(607\) 7.81471 0.317189 0.158595 0.987344i \(-0.449304\pi\)
0.158595 + 0.987344i \(0.449304\pi\)
\(608\) 11.8656 0.481212
\(609\) 0 0
\(610\) 32.6384 1.32149
\(611\) 3.32324 0.134444
\(612\) 0 0
\(613\) 12.9547 0.523235 0.261618 0.965172i \(-0.415744\pi\)
0.261618 + 0.965172i \(0.415744\pi\)
\(614\) −17.8160 −0.718996
\(615\) 0 0
\(616\) 11.3531 0.457431
\(617\) −18.8873 −0.760373 −0.380187 0.924910i \(-0.624140\pi\)
−0.380187 + 0.924910i \(0.624140\pi\)
\(618\) 0 0
\(619\) 29.2673 1.17635 0.588176 0.808733i \(-0.299846\pi\)
0.588176 + 0.808733i \(0.299846\pi\)
\(620\) −48.7859 −1.95929
\(621\) 0 0
\(622\) −54.2339 −2.17458
\(623\) 8.39396 0.336297
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 50.9479 2.03629
\(627\) 0 0
\(628\) −32.4872 −1.29638
\(629\) −33.9281 −1.35280
\(630\) 0 0
\(631\) −5.25309 −0.209122 −0.104561 0.994518i \(-0.533344\pi\)
−0.104561 + 0.994518i \(0.533344\pi\)
\(632\) −51.2992 −2.04057
\(633\) 0 0
\(634\) −8.87291 −0.352388
\(635\) −13.1292 −0.521015
\(636\) 0 0
\(637\) 3.12402 0.123778
\(638\) −27.6698 −1.09546
\(639\) 0 0
\(640\) 3.92440 0.155126
\(641\) 13.0021 0.513554 0.256777 0.966471i \(-0.417339\pi\)
0.256777 + 0.966471i \(0.417339\pi\)
\(642\) 0 0
\(643\) −17.3534 −0.684353 −0.342176 0.939636i \(-0.611164\pi\)
−0.342176 + 0.939636i \(0.611164\pi\)
\(644\) 4.27121 0.168309
\(645\) 0 0
\(646\) 10.7469 0.422831
\(647\) −12.4848 −0.490830 −0.245415 0.969418i \(-0.578924\pi\)
−0.245415 + 0.969418i \(0.578924\pi\)
\(648\) 0 0
\(649\) −6.91437 −0.271413
\(650\) −1.23191 −0.0483193
\(651\) 0 0
\(652\) 99.5507 3.89871
\(653\) 28.3532 1.10955 0.554774 0.832001i \(-0.312805\pi\)
0.554774 + 0.832001i \(0.312805\pi\)
\(654\) 0 0
\(655\) 8.17223 0.319316
\(656\) 18.9842 0.741209
\(657\) 0 0
\(658\) 10.7238 0.418058
\(659\) −45.2202 −1.76153 −0.880764 0.473556i \(-0.842970\pi\)
−0.880764 + 0.473556i \(0.842970\pi\)
\(660\) 0 0
\(661\) −14.6086 −0.568207 −0.284104 0.958794i \(-0.591696\pi\)
−0.284104 + 0.958794i \(0.591696\pi\)
\(662\) −86.2115 −3.35070
\(663\) 0 0
\(664\) 51.1093 1.98343
\(665\) −0.574672 −0.0222848
\(666\) 0 0
\(667\) −6.17594 −0.239133
\(668\) 28.9820 1.12135
\(669\) 0 0
\(670\) −7.11627 −0.274926
\(671\) −31.9505 −1.23344
\(672\) 0 0
\(673\) −0.440534 −0.0169813 −0.00849067 0.999964i \(-0.502703\pi\)
−0.00849067 + 0.999964i \(0.502703\pi\)
\(674\) 23.0111 0.886356
\(675\) 0 0
\(676\) −62.8479 −2.41723
\(677\) −32.8057 −1.26083 −0.630414 0.776259i \(-0.717115\pi\)
−0.630414 + 0.776259i \(0.717115\pi\)
\(678\) 0 0
\(679\) −10.0295 −0.384898
\(680\) 31.3534 1.20235
\(681\) 0 0
\(682\) 67.1815 2.57251
\(683\) 39.6092 1.51561 0.757803 0.652484i \(-0.226273\pi\)
0.757803 + 0.652484i \(0.226273\pi\)
\(684\) 0 0
\(685\) 14.6065 0.558087
\(686\) 20.6611 0.788844
\(687\) 0 0
\(688\) −5.94574 −0.226679
\(689\) 2.01559 0.0767879
\(690\) 0 0
\(691\) −19.8962 −0.756889 −0.378444 0.925624i \(-0.623541\pi\)
−0.378444 + 0.925624i \(0.623541\pi\)
\(692\) 17.3665 0.660175
\(693\) 0 0
\(694\) 48.6642 1.84727
\(695\) −2.07219 −0.0786027
\(696\) 0 0
\(697\) 7.49752 0.283989
\(698\) 9.31924 0.352738
\(699\) 0 0
\(700\) −2.82591 −0.106809
\(701\) 14.1251 0.533497 0.266748 0.963766i \(-0.414051\pi\)
0.266748 + 0.963766i \(0.414051\pi\)
\(702\) 0 0
\(703\) −8.30326 −0.313163
\(704\) −27.0727 −1.02034
\(705\) 0 0
\(706\) 8.97234 0.337678
\(707\) 8.20809 0.308697
\(708\) 0 0
\(709\) −41.1815 −1.54660 −0.773302 0.634038i \(-0.781396\pi\)
−0.773302 + 0.634038i \(0.781396\pi\)
\(710\) 19.4643 0.730482
\(711\) 0 0
\(712\) −112.078 −4.20031
\(713\) 14.9950 0.561569
\(714\) 0 0
\(715\) 1.20594 0.0450997
\(716\) −35.3466 −1.32097
\(717\) 0 0
\(718\) 4.48718 0.167460
\(719\) 18.0227 0.672133 0.336067 0.941838i \(-0.390903\pi\)
0.336067 + 0.941838i \(0.390903\pi\)
\(720\) 0 0
\(721\) −2.75372 −0.102554
\(722\) 2.63010 0.0978823
\(723\) 0 0
\(724\) 76.4332 2.84062
\(725\) 4.08612 0.151755
\(726\) 0 0
\(727\) −21.1266 −0.783544 −0.391772 0.920062i \(-0.628138\pi\)
−0.391772 + 0.920062i \(0.628138\pi\)
\(728\) 2.06537 0.0765479
\(729\) 0 0
\(730\) 31.7877 1.17652
\(731\) −2.34818 −0.0868504
\(732\) 0 0
\(733\) −27.6660 −1.02187 −0.510934 0.859620i \(-0.670700\pi\)
−0.510934 + 0.859620i \(0.670700\pi\)
\(734\) 98.9326 3.65167
\(735\) 0 0
\(736\) −17.9341 −0.661061
\(737\) 6.96629 0.256607
\(738\) 0 0
\(739\) −14.2987 −0.525986 −0.262993 0.964798i \(-0.584710\pi\)
−0.262993 + 0.964798i \(0.584710\pi\)
\(740\) −40.8308 −1.50097
\(741\) 0 0
\(742\) 6.50415 0.238775
\(743\) −49.9438 −1.83226 −0.916130 0.400881i \(-0.868704\pi\)
−0.916130 + 0.400881i \(0.868704\pi\)
\(744\) 0 0
\(745\) −8.91203 −0.326511
\(746\) 35.2516 1.29065
\(747\) 0 0
\(748\) −51.7335 −1.89156
\(749\) 5.30198 0.193730
\(750\) 0 0
\(751\) 9.69216 0.353672 0.176836 0.984240i \(-0.443414\pi\)
0.176836 + 0.984240i \(0.443414\pi\)
\(752\) −73.4080 −2.67691
\(753\) 0 0
\(754\) −5.03371 −0.183317
\(755\) 11.4572 0.416970
\(756\) 0 0
\(757\) 46.6889 1.69694 0.848469 0.529245i \(-0.177525\pi\)
0.848469 + 0.529245i \(0.177525\pi\)
\(758\) −24.6469 −0.895214
\(759\) 0 0
\(760\) 7.67316 0.278335
\(761\) 38.7361 1.40418 0.702091 0.712087i \(-0.252250\pi\)
0.702091 + 0.712087i \(0.252250\pi\)
\(762\) 0 0
\(763\) −2.81480 −0.101903
\(764\) −65.5080 −2.37000
\(765\) 0 0
\(766\) 5.52104 0.199483
\(767\) −1.25787 −0.0454190
\(768\) 0 0
\(769\) −5.38666 −0.194248 −0.0971239 0.995272i \(-0.530964\pi\)
−0.0971239 + 0.995272i \(0.530964\pi\)
\(770\) 3.89148 0.140239
\(771\) 0 0
\(772\) 93.4112 3.36194
\(773\) −7.20137 −0.259015 −0.129508 0.991578i \(-0.541340\pi\)
−0.129508 + 0.991578i \(0.541340\pi\)
\(774\) 0 0
\(775\) −9.92099 −0.356373
\(776\) 133.917 4.80733
\(777\) 0 0
\(778\) −2.82047 −0.101119
\(779\) 1.83488 0.0657413
\(780\) 0 0
\(781\) −19.0541 −0.681808
\(782\) −16.2434 −0.580861
\(783\) 0 0
\(784\) −69.0074 −2.46455
\(785\) −6.60653 −0.235797
\(786\) 0 0
\(787\) −33.5231 −1.19497 −0.597485 0.801880i \(-0.703833\pi\)
−0.597485 + 0.801880i \(0.703833\pi\)
\(788\) −10.6818 −0.380524
\(789\) 0 0
\(790\) −17.5836 −0.625598
\(791\) 0.929664 0.0330550
\(792\) 0 0
\(793\) −5.81247 −0.206407
\(794\) −61.8972 −2.19665
\(795\) 0 0
\(796\) −9.21305 −0.326548
\(797\) 10.4979 0.371855 0.185927 0.982563i \(-0.440471\pi\)
0.185927 + 0.982563i \(0.440471\pi\)
\(798\) 0 0
\(799\) −28.9913 −1.02564
\(800\) 11.8656 0.419511
\(801\) 0 0
\(802\) −49.0432 −1.73177
\(803\) −31.1178 −1.09812
\(804\) 0 0
\(805\) 0.868585 0.0306136
\(806\) 12.2217 0.430492
\(807\) 0 0
\(808\) −109.596 −3.85559
\(809\) 13.0724 0.459600 0.229800 0.973238i \(-0.426193\pi\)
0.229800 + 0.973238i \(0.426193\pi\)
\(810\) 0 0
\(811\) −10.0790 −0.353922 −0.176961 0.984218i \(-0.556627\pi\)
−0.176961 + 0.984218i \(0.556627\pi\)
\(812\) −11.5470 −0.405221
\(813\) 0 0
\(814\) 56.2268 1.97075
\(815\) 20.2444 0.709131
\(816\) 0 0
\(817\) −0.574672 −0.0201052
\(818\) −18.0956 −0.632697
\(819\) 0 0
\(820\) 9.02289 0.315093
\(821\) −40.2987 −1.40643 −0.703217 0.710975i \(-0.748254\pi\)
−0.703217 + 0.710975i \(0.748254\pi\)
\(822\) 0 0
\(823\) −5.07715 −0.176978 −0.0884892 0.996077i \(-0.528204\pi\)
−0.0884892 + 0.996077i \(0.528204\pi\)
\(824\) 36.7684 1.28089
\(825\) 0 0
\(826\) −4.05904 −0.141232
\(827\) 42.8077 1.48857 0.744285 0.667862i \(-0.232791\pi\)
0.744285 + 0.667862i \(0.232791\pi\)
\(828\) 0 0
\(829\) 24.2018 0.840562 0.420281 0.907394i \(-0.361932\pi\)
0.420281 + 0.907394i \(0.361932\pi\)
\(830\) 17.5186 0.608078
\(831\) 0 0
\(832\) −4.92509 −0.170747
\(833\) −27.2534 −0.944274
\(834\) 0 0
\(835\) 5.89372 0.203960
\(836\) −12.6608 −0.437883
\(837\) 0 0
\(838\) −35.4527 −1.22469
\(839\) 8.63975 0.298277 0.149139 0.988816i \(-0.452350\pi\)
0.149139 + 0.988816i \(0.452350\pi\)
\(840\) 0 0
\(841\) −12.3036 −0.424264
\(842\) −15.3463 −0.528869
\(843\) 0 0
\(844\) −84.1325 −2.89596
\(845\) −12.7806 −0.439666
\(846\) 0 0
\(847\) 2.51193 0.0863109
\(848\) −44.5229 −1.52892
\(849\) 0 0
\(850\) 10.7469 0.368616
\(851\) 12.5499 0.430206
\(852\) 0 0
\(853\) −13.0229 −0.445895 −0.222948 0.974830i \(-0.571568\pi\)
−0.222948 + 0.974830i \(0.571568\pi\)
\(854\) −18.7564 −0.641829
\(855\) 0 0
\(856\) −70.7934 −2.41967
\(857\) 2.82367 0.0964548 0.0482274 0.998836i \(-0.484643\pi\)
0.0482274 + 0.998836i \(0.484643\pi\)
\(858\) 0 0
\(859\) 24.1227 0.823057 0.411529 0.911397i \(-0.364995\pi\)
0.411529 + 0.911397i \(0.364995\pi\)
\(860\) −2.82591 −0.0963628
\(861\) 0 0
\(862\) −76.8092 −2.61613
\(863\) −32.7307 −1.11417 −0.557084 0.830456i \(-0.688080\pi\)
−0.557084 + 0.830456i \(0.688080\pi\)
\(864\) 0 0
\(865\) 3.53161 0.120078
\(866\) −32.9366 −1.11923
\(867\) 0 0
\(868\) 28.0359 0.951599
\(869\) 17.2131 0.583913
\(870\) 0 0
\(871\) 1.26731 0.0429413
\(872\) 37.5839 1.27275
\(873\) 0 0
\(874\) −3.97526 −0.134465
\(875\) −0.574672 −0.0194274
\(876\) 0 0
\(877\) −49.5072 −1.67174 −0.835869 0.548929i \(-0.815036\pi\)
−0.835869 + 0.548929i \(0.815036\pi\)
\(878\) 41.2318 1.39150
\(879\) 0 0
\(880\) −26.6384 −0.897980
\(881\) −40.3152 −1.35826 −0.679128 0.734020i \(-0.737642\pi\)
−0.679128 + 0.734020i \(0.737642\pi\)
\(882\) 0 0
\(883\) −29.3347 −0.987192 −0.493596 0.869691i \(-0.664318\pi\)
−0.493596 + 0.869691i \(0.664318\pi\)
\(884\) −9.41140 −0.316540
\(885\) 0 0
\(886\) 78.4508 2.63561
\(887\) −43.3214 −1.45459 −0.727295 0.686325i \(-0.759223\pi\)
−0.727295 + 0.686325i \(0.759223\pi\)
\(888\) 0 0
\(889\) 7.54496 0.253050
\(890\) −38.4167 −1.28773
\(891\) 0 0
\(892\) 25.2224 0.844508
\(893\) −7.09508 −0.237428
\(894\) 0 0
\(895\) −7.18801 −0.240269
\(896\) −2.25524 −0.0753424
\(897\) 0 0
\(898\) −78.8157 −2.63011
\(899\) −40.5383 −1.35203
\(900\) 0 0
\(901\) −17.5836 −0.585796
\(902\) −12.4251 −0.413712
\(903\) 0 0
\(904\) −12.4131 −0.412854
\(905\) 15.5433 0.516677
\(906\) 0 0
\(907\) 14.0731 0.467288 0.233644 0.972322i \(-0.424935\pi\)
0.233644 + 0.972322i \(0.424935\pi\)
\(908\) 35.9574 1.19329
\(909\) 0 0
\(910\) 0.707941 0.0234680
\(911\) −30.0725 −0.996346 −0.498173 0.867078i \(-0.665996\pi\)
−0.498173 + 0.867078i \(0.665996\pi\)
\(912\) 0 0
\(913\) −17.1493 −0.567560
\(914\) 46.4733 1.53720
\(915\) 0 0
\(916\) −41.3534 −1.36636
\(917\) −4.69635 −0.155087
\(918\) 0 0
\(919\) 29.6518 0.978123 0.489062 0.872249i \(-0.337339\pi\)
0.489062 + 0.872249i \(0.337339\pi\)
\(920\) −11.5976 −0.382360
\(921\) 0 0
\(922\) −58.7682 −1.93543
\(923\) −3.46634 −0.114096
\(924\) 0 0
\(925\) −8.30326 −0.273010
\(926\) −17.9715 −0.590582
\(927\) 0 0
\(928\) 48.4841 1.59157
\(929\) −58.3803 −1.91540 −0.957698 0.287775i \(-0.907085\pi\)
−0.957698 + 0.287775i \(0.907085\pi\)
\(930\) 0 0
\(931\) −6.66975 −0.218592
\(932\) 69.6911 2.28281
\(933\) 0 0
\(934\) −23.6945 −0.775308
\(935\) −10.5204 −0.344054
\(936\) 0 0
\(937\) −3.15850 −0.103184 −0.0515918 0.998668i \(-0.516429\pi\)
−0.0515918 + 0.998668i \(0.516429\pi\)
\(938\) 4.08952 0.133528
\(939\) 0 0
\(940\) −34.8896 −1.13797
\(941\) 9.66975 0.315225 0.157612 0.987501i \(-0.449620\pi\)
0.157612 + 0.987501i \(0.449620\pi\)
\(942\) 0 0
\(943\) −2.77331 −0.0903116
\(944\) 27.7854 0.904337
\(945\) 0 0
\(946\) 3.89148 0.126523
\(947\) −31.3714 −1.01943 −0.509716 0.860343i \(-0.670250\pi\)
−0.509716 + 0.860343i \(0.670250\pi\)
\(948\) 0 0
\(949\) −5.66098 −0.183763
\(950\) 2.63010 0.0853318
\(951\) 0 0
\(952\) −18.0179 −0.583964
\(953\) 13.1224 0.425075 0.212537 0.977153i \(-0.431827\pi\)
0.212537 + 0.977153i \(0.431827\pi\)
\(954\) 0 0
\(955\) −13.3216 −0.431076
\(956\) 69.7792 2.25682
\(957\) 0 0
\(958\) −24.3740 −0.787488
\(959\) −8.39396 −0.271055
\(960\) 0 0
\(961\) 67.4261 2.17504
\(962\) 10.2288 0.329791
\(963\) 0 0
\(964\) 137.101 4.41574
\(965\) 18.9959 0.611500
\(966\) 0 0
\(967\) −44.4400 −1.42910 −0.714548 0.699587i \(-0.753367\pi\)
−0.714548 + 0.699587i \(0.753367\pi\)
\(968\) −33.5399 −1.07801
\(969\) 0 0
\(970\) 45.9021 1.47383
\(971\) 5.69927 0.182898 0.0914491 0.995810i \(-0.470850\pi\)
0.0914491 + 0.995810i \(0.470850\pi\)
\(972\) 0 0
\(973\) 1.19083 0.0381762
\(974\) −101.968 −3.26725
\(975\) 0 0
\(976\) 128.393 4.10977
\(977\) 23.9164 0.765154 0.382577 0.923924i \(-0.375037\pi\)
0.382577 + 0.923924i \(0.375037\pi\)
\(978\) 0 0
\(979\) 37.6070 1.20193
\(980\) −32.7981 −1.04770
\(981\) 0 0
\(982\) −57.0408 −1.82025
\(983\) 45.5302 1.45219 0.726095 0.687595i \(-0.241333\pi\)
0.726095 + 0.687595i \(0.241333\pi\)
\(984\) 0 0
\(985\) −2.17223 −0.0692131
\(986\) 43.9131 1.39848
\(987\) 0 0
\(988\) −2.30326 −0.0732766
\(989\) 0.868585 0.0276194
\(990\) 0 0
\(991\) 27.5521 0.875220 0.437610 0.899165i \(-0.355825\pi\)
0.437610 + 0.899165i \(0.355825\pi\)
\(992\) −117.718 −3.73756
\(993\) 0 0
\(994\) −11.1856 −0.354785
\(995\) −1.87355 −0.0593954
\(996\) 0 0
\(997\) 16.8557 0.533826 0.266913 0.963721i \(-0.413996\pi\)
0.266913 + 0.963721i \(0.413996\pi\)
\(998\) −73.2147 −2.31757
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.a.m.1.4 4
3.2 odd 2 95.2.a.b.1.1 4
5.4 even 2 4275.2.a.bo.1.1 4
12.11 even 2 1520.2.a.t.1.1 4
15.2 even 4 475.2.b.e.324.1 8
15.8 even 4 475.2.b.e.324.8 8
15.14 odd 2 475.2.a.i.1.4 4
21.20 even 2 4655.2.a.y.1.1 4
24.5 odd 2 6080.2.a.cc.1.1 4
24.11 even 2 6080.2.a.ch.1.4 4
57.56 even 2 1805.2.a.p.1.4 4
60.59 even 2 7600.2.a.cf.1.4 4
285.284 even 2 9025.2.a.bf.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.a.b.1.1 4 3.2 odd 2
475.2.a.i.1.4 4 15.14 odd 2
475.2.b.e.324.1 8 15.2 even 4
475.2.b.e.324.8 8 15.8 even 4
855.2.a.m.1.4 4 1.1 even 1 trivial
1520.2.a.t.1.1 4 12.11 even 2
1805.2.a.p.1.4 4 57.56 even 2
4275.2.a.bo.1.1 4 5.4 even 2
4655.2.a.y.1.1 4 21.20 even 2
6080.2.a.cc.1.1 4 24.5 odd 2
6080.2.a.ch.1.4 4 24.11 even 2
7600.2.a.cf.1.4 4 60.59 even 2
9025.2.a.bf.1.1 4 285.284 even 2