Properties

Label 475.2.b.e.324.1
Level $475$
Weight $2$
Character 475.324
Analytic conductor $3.793$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(324,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.324"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2058981376.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 18x^{4} - 34x^{3} + 32x^{2} - 8x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.1
Root \(1.52153 - 1.52153i\) of defining polynomial
Character \(\chi\) \(=\) 475.324
Dual form 475.2.b.e.324.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.63010i q^{2} -3.04306i q^{3} -4.91744 q^{4} -8.00355 q^{6} -0.574672i q^{7} +7.67316i q^{8} -6.26020 q^{9} +2.57467 q^{11} +14.9641i q^{12} +0.468387i q^{13} -1.51145 q^{14} +10.3463 q^{16} -4.08612i q^{17} +16.4650i q^{18} -1.00000 q^{19} -1.74876 q^{21} -6.77165i q^{22} -1.51145i q^{23} +23.3499 q^{24} +1.23191 q^{26} +9.92099i q^{27} +2.82591i q^{28} +4.08612 q^{29} -9.92099 q^{31} -11.8656i q^{32} -7.83488i q^{33} -10.7469 q^{34} +30.7842 q^{36} -8.30326i q^{37} +2.63010i q^{38} +1.42533 q^{39} -1.83488 q^{41} +4.59942i q^{42} +0.574672i q^{43} -12.6608 q^{44} -3.97526 q^{46} +7.09508i q^{47} -31.4845i q^{48} +6.66975 q^{49} -12.4343 q^{51} -2.30326i q^{52} -4.30326i q^{53} +26.0932 q^{54} +4.40955 q^{56} +3.04306i q^{57} -10.7469i q^{58} +2.68553 q^{59} +12.4095 q^{61} +26.0932i q^{62} +3.59756i q^{63} -10.5150 q^{64} -20.6065 q^{66} -2.70570i q^{67} +20.0932i q^{68} -4.59942 q^{69} -7.40058 q^{71} -48.0356i q^{72} -12.0861i q^{73} -21.8384 q^{74} +4.91744 q^{76} -1.47959i q^{77} -3.74876i q^{78} +6.68553 q^{79} +11.4095 q^{81} +4.82591i q^{82} +6.66079i q^{83} +8.59942 q^{84} +1.51145 q^{86} -12.4343i q^{87} +19.7559i q^{88} -14.6065 q^{89} +0.269169 q^{91} +7.43244i q^{92} +30.1902i q^{93} +18.6608 q^{94} -36.1076 q^{96} +17.4526i q^{97} -17.5421i q^{98} -16.1180 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{4} - 16 q^{9} + 8 q^{11} + 16 q^{14} + 8 q^{16} - 8 q^{19} - 8 q^{21} + 48 q^{24} + 8 q^{26} - 8 q^{29} + 8 q^{31} + 8 q^{34} + 80 q^{36} + 24 q^{39} + 32 q^{41} - 48 q^{44} - 40 q^{49} - 72 q^{51}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.63010i − 1.85976i −0.367859 0.929882i \(-0.619909\pi\)
0.367859 0.929882i \(-0.380091\pi\)
\(3\) − 3.04306i − 1.75691i −0.477825 0.878455i \(-0.658575\pi\)
0.477825 0.878455i \(-0.341425\pi\)
\(4\) −4.91744 −2.45872
\(5\) 0 0
\(6\) −8.00355 −3.26744
\(7\) − 0.574672i − 0.217205i −0.994085 0.108603i \(-0.965362\pi\)
0.994085 0.108603i \(-0.0346376\pi\)
\(8\) 7.67316i 2.71287i
\(9\) −6.26020 −2.08673
\(10\) 0 0
\(11\) 2.57467 0.776293 0.388146 0.921598i \(-0.373116\pi\)
0.388146 + 0.921598i \(0.373116\pi\)
\(12\) 14.9641i 4.31975i
\(13\) 0.468387i 0.129907i 0.997888 + 0.0649536i \(0.0206899\pi\)
−0.997888 + 0.0649536i \(0.979310\pi\)
\(14\) −1.51145 −0.403951
\(15\) 0 0
\(16\) 10.3463 2.58658
\(17\) − 4.08612i − 0.991029i −0.868600 0.495514i \(-0.834980\pi\)
0.868600 0.495514i \(-0.165020\pi\)
\(18\) 16.4650i 3.88083i
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −1.74876 −0.381611
\(22\) − 6.77165i − 1.44372i
\(23\) − 1.51145i − 0.315158i −0.987506 0.157579i \(-0.949631\pi\)
0.987506 0.157579i \(-0.0503689\pi\)
\(24\) 23.3499 4.76627
\(25\) 0 0
\(26\) 1.23191 0.241596
\(27\) 9.92099i 1.90930i
\(28\) 2.82591i 0.534047i
\(29\) 4.08612 0.758773 0.379386 0.925238i \(-0.376135\pi\)
0.379386 + 0.925238i \(0.376135\pi\)
\(30\) 0 0
\(31\) −9.92099 −1.78186 −0.890931 0.454138i \(-0.849947\pi\)
−0.890931 + 0.454138i \(0.849947\pi\)
\(32\) − 11.8656i − 2.09755i
\(33\) − 7.83488i − 1.36388i
\(34\) −10.7469 −1.84308
\(35\) 0 0
\(36\) 30.7842 5.13069
\(37\) − 8.30326i − 1.36505i −0.730863 0.682524i \(-0.760882\pi\)
0.730863 0.682524i \(-0.239118\pi\)
\(38\) 2.63010i 0.426659i
\(39\) 1.42533 0.228235
\(40\) 0 0
\(41\) −1.83488 −0.286560 −0.143280 0.989682i \(-0.545765\pi\)
−0.143280 + 0.989682i \(0.545765\pi\)
\(42\) 4.59942i 0.709705i
\(43\) 0.574672i 0.0876366i 0.999040 + 0.0438183i \(0.0139523\pi\)
−0.999040 + 0.0438183i \(0.986048\pi\)
\(44\) −12.6608 −1.90869
\(45\) 0 0
\(46\) −3.97526 −0.586119
\(47\) 7.09508i 1.03492i 0.855706 + 0.517462i \(0.173123\pi\)
−0.855706 + 0.517462i \(0.826877\pi\)
\(48\) − 31.4845i − 4.54439i
\(49\) 6.66975 0.952822
\(50\) 0 0
\(51\) −12.4343 −1.74115
\(52\) − 2.30326i − 0.319405i
\(53\) − 4.30326i − 0.591099i −0.955327 0.295549i \(-0.904497\pi\)
0.955327 0.295549i \(-0.0955027\pi\)
\(54\) 26.0932 3.55084
\(55\) 0 0
\(56\) 4.40955 0.589251
\(57\) 3.04306i 0.403063i
\(58\) − 10.7469i − 1.41114i
\(59\) 2.68553 0.349627 0.174813 0.984602i \(-0.444068\pi\)
0.174813 + 0.984602i \(0.444068\pi\)
\(60\) 0 0
\(61\) 12.4095 1.58888 0.794440 0.607343i \(-0.207765\pi\)
0.794440 + 0.607343i \(0.207765\pi\)
\(62\) 26.0932i 3.31384i
\(63\) 3.59756i 0.453250i
\(64\) −10.5150 −1.31438
\(65\) 0 0
\(66\) −20.6065 −2.53649
\(67\) − 2.70570i − 0.330554i −0.986247 0.165277i \(-0.947148\pi\)
0.986247 0.165277i \(-0.0528518\pi\)
\(68\) 20.0932i 2.43666i
\(69\) −4.59942 −0.553705
\(70\) 0 0
\(71\) −7.40058 −0.878288 −0.439144 0.898417i \(-0.644718\pi\)
−0.439144 + 0.898417i \(0.644718\pi\)
\(72\) − 48.0356i − 5.66104i
\(73\) − 12.0861i − 1.41457i −0.706927 0.707286i \(-0.749919\pi\)
0.706927 0.707286i \(-0.250081\pi\)
\(74\) −21.8384 −2.53867
\(75\) 0 0
\(76\) 4.91744 0.564069
\(77\) − 1.47959i − 0.168615i
\(78\) − 3.74876i − 0.424463i
\(79\) 6.68553 0.752181 0.376091 0.926583i \(-0.377268\pi\)
0.376091 + 0.926583i \(0.377268\pi\)
\(80\) 0 0
\(81\) 11.4095 1.26773
\(82\) 4.82591i 0.532933i
\(83\) 6.66079i 0.731117i 0.930788 + 0.365558i \(0.119122\pi\)
−0.930788 + 0.365558i \(0.880878\pi\)
\(84\) 8.59942 0.938273
\(85\) 0 0
\(86\) 1.51145 0.162983
\(87\) − 12.4343i − 1.33310i
\(88\) 19.7559i 2.10598i
\(89\) −14.6065 −1.54829 −0.774144 0.633009i \(-0.781820\pi\)
−0.774144 + 0.633009i \(0.781820\pi\)
\(90\) 0 0
\(91\) 0.269169 0.0282165
\(92\) 7.43244i 0.774885i
\(93\) 30.1902i 3.13057i
\(94\) 18.6608 1.92471
\(95\) 0 0
\(96\) −36.1076 −3.68522
\(97\) 17.4526i 1.77204i 0.463643 + 0.886022i \(0.346542\pi\)
−0.463643 + 0.886022i \(0.653458\pi\)
\(98\) − 17.5421i − 1.77202i
\(99\) −16.1180 −1.61992
\(100\) 0 0
\(101\) 14.2831 1.42122 0.710611 0.703586i \(-0.248419\pi\)
0.710611 + 0.703586i \(0.248419\pi\)
\(102\) 32.7035i 3.23813i
\(103\) − 4.79182i − 0.472152i −0.971735 0.236076i \(-0.924139\pi\)
0.971735 0.236076i \(-0.0758614\pi\)
\(104\) −3.59401 −0.352421
\(105\) 0 0
\(106\) −11.3180 −1.09930
\(107\) 9.22611i 0.891922i 0.895052 + 0.445961i \(0.147138\pi\)
−0.895052 + 0.445961i \(0.852862\pi\)
\(108\) − 48.7859i − 4.69442i
\(109\) −4.89810 −0.469153 −0.234577 0.972098i \(-0.575370\pi\)
−0.234577 + 0.972098i \(0.575370\pi\)
\(110\) 0 0
\(111\) −25.2673 −2.39827
\(112\) − 5.94574i − 0.561819i
\(113\) − 1.61773i − 0.152183i −0.997101 0.0760916i \(-0.975756\pi\)
0.997101 0.0760916i \(-0.0242441\pi\)
\(114\) 8.00355 0.749602
\(115\) 0 0
\(116\) −20.0932 −1.86561
\(117\) − 2.93220i − 0.271082i
\(118\) − 7.06323i − 0.650223i
\(119\) −2.34818 −0.215257
\(120\) 0 0
\(121\) −4.37107 −0.397370
\(122\) − 32.6384i − 2.95494i
\(123\) 5.58364i 0.503459i
\(124\) 48.7859 4.38110
\(125\) 0 0
\(126\) 9.46196 0.842938
\(127\) − 13.1292i − 1.16503i −0.812821 0.582513i \(-0.802070\pi\)
0.812821 0.582513i \(-0.197930\pi\)
\(128\) 3.92440i 0.346871i
\(129\) 1.74876 0.153970
\(130\) 0 0
\(131\) −8.17223 −0.714011 −0.357006 0.934102i \(-0.616202\pi\)
−0.357006 + 0.934102i \(0.616202\pi\)
\(132\) 38.5275i 3.35339i
\(133\) 0.574672i 0.0498304i
\(134\) −7.11627 −0.614752
\(135\) 0 0
\(136\) 31.3534 2.68853
\(137\) − 14.6065i − 1.24792i −0.781456 0.623960i \(-0.785523\pi\)
0.781456 0.623960i \(-0.214477\pi\)
\(138\) 12.0969i 1.02976i
\(139\) 2.07219 0.175761 0.0878804 0.996131i \(-0.471991\pi\)
0.0878804 + 0.996131i \(0.471991\pi\)
\(140\) 0 0
\(141\) 21.5907 1.81827
\(142\) 19.4643i 1.63341i
\(143\) 1.20594i 0.100846i
\(144\) −64.7701 −5.39751
\(145\) 0 0
\(146\) −31.7877 −2.63077
\(147\) − 20.2964i − 1.67402i
\(148\) 40.8308i 3.35627i
\(149\) −8.91203 −0.730102 −0.365051 0.930988i \(-0.618948\pi\)
−0.365051 + 0.930988i \(0.618948\pi\)
\(150\) 0 0
\(151\) 11.4572 0.932372 0.466186 0.884687i \(-0.345628\pi\)
0.466186 + 0.884687i \(0.345628\pi\)
\(152\) − 7.67316i − 0.622376i
\(153\) 25.5799i 2.06801i
\(154\) −3.89148 −0.313584
\(155\) 0 0
\(156\) −7.00896 −0.561166
\(157\) − 6.60653i − 0.527258i −0.964624 0.263629i \(-0.915081\pi\)
0.964624 0.263629i \(-0.0849195\pi\)
\(158\) − 17.5836i − 1.39888i
\(159\) −13.0951 −1.03851
\(160\) 0 0
\(161\) −0.868585 −0.0684541
\(162\) − 30.0083i − 2.35767i
\(163\) − 20.2444i − 1.58567i −0.609439 0.792833i \(-0.708605\pi\)
0.609439 0.792833i \(-0.291395\pi\)
\(164\) 9.02289 0.704569
\(165\) 0 0
\(166\) 17.5186 1.35970
\(167\) − 5.89372i − 0.456069i −0.973653 0.228035i \(-0.926770\pi\)
0.973653 0.228035i \(-0.0732300\pi\)
\(168\) − 13.4185i − 1.03526i
\(169\) 12.7806 0.983124
\(170\) 0 0
\(171\) 6.26020 0.478730
\(172\) − 2.82591i − 0.215474i
\(173\) 3.53161i 0.268504i 0.990947 + 0.134252i \(0.0428631\pi\)
−0.990947 + 0.134252i \(0.957137\pi\)
\(174\) −32.7035 −2.47924
\(175\) 0 0
\(176\) 26.6384 2.00794
\(177\) − 8.17223i − 0.614263i
\(178\) 38.4167i 2.87945i
\(179\) −7.18801 −0.537257 −0.268629 0.963244i \(-0.586570\pi\)
−0.268629 + 0.963244i \(0.586570\pi\)
\(180\) 0 0
\(181\) 15.5433 1.15532 0.577662 0.816276i \(-0.303965\pi\)
0.577662 + 0.816276i \(0.303965\pi\)
\(182\) − 0.707941i − 0.0524761i
\(183\) − 37.7630i − 2.79152i
\(184\) 11.5976 0.854984
\(185\) 0 0
\(186\) 79.4032 5.82213
\(187\) − 10.5204i − 0.769329i
\(188\) − 34.8896i − 2.54459i
\(189\) 5.70131 0.414710
\(190\) 0 0
\(191\) 13.3216 0.963915 0.481958 0.876194i \(-0.339926\pi\)
0.481958 + 0.876194i \(0.339926\pi\)
\(192\) 31.9978i 2.30924i
\(193\) − 18.9959i − 1.36736i −0.729784 0.683678i \(-0.760379\pi\)
0.729784 0.683678i \(-0.239621\pi\)
\(194\) 45.9021 3.29558
\(195\) 0 0
\(196\) −32.7981 −2.34272
\(197\) 2.17223i 0.154765i 0.997001 + 0.0773826i \(0.0246563\pi\)
−0.997001 + 0.0773826i \(0.975344\pi\)
\(198\) 42.3919i 3.01266i
\(199\) 1.87355 0.132812 0.0664061 0.997793i \(-0.478847\pi\)
0.0664061 + 0.997793i \(0.478847\pi\)
\(200\) 0 0
\(201\) −8.23361 −0.580754
\(202\) − 37.5660i − 2.64313i
\(203\) − 2.34818i − 0.164810i
\(204\) 61.1449 4.28100
\(205\) 0 0
\(206\) −12.6030 −0.878091
\(207\) 9.46196i 0.657651i
\(208\) 4.84608i 0.336015i
\(209\) −2.57467 −0.178094
\(210\) 0 0
\(211\) −17.1090 −1.17783 −0.588916 0.808194i \(-0.700445\pi\)
−0.588916 + 0.808194i \(0.700445\pi\)
\(212\) 21.1610i 1.45335i
\(213\) 22.5204i 1.54307i
\(214\) 24.2656 1.65876
\(215\) 0 0
\(216\) −76.1254 −5.17968
\(217\) 5.70131i 0.387030i
\(218\) 12.8825i 0.872514i
\(219\) −36.7788 −2.48528
\(220\) 0 0
\(221\) 1.91388 0.128742
\(222\) 66.4556i 4.46021i
\(223\) − 5.12918i − 0.343475i −0.985143 0.171737i \(-0.945062\pi\)
0.985143 0.171737i \(-0.0549381\pi\)
\(224\) −6.81880 −0.455600
\(225\) 0 0
\(226\) −4.25480 −0.283025
\(227\) − 7.31223i − 0.485330i −0.970110 0.242665i \(-0.921978\pi\)
0.970110 0.242665i \(-0.0780215\pi\)
\(228\) − 14.9641i − 0.991019i
\(229\) 8.40955 0.555719 0.277859 0.960622i \(-0.410375\pi\)
0.277859 + 0.960622i \(0.410375\pi\)
\(230\) 0 0
\(231\) −4.50248 −0.296242
\(232\) 31.3534i 2.05845i
\(233\) 14.1722i 0.928454i 0.885716 + 0.464227i \(0.153668\pi\)
−0.885716 + 0.464227i \(0.846332\pi\)
\(234\) −7.71198 −0.504148
\(235\) 0 0
\(236\) −13.2059 −0.859634
\(237\) − 20.3445i − 1.32152i
\(238\) 6.17594i 0.400327i
\(239\) 14.1902 0.917885 0.458943 0.888466i \(-0.348228\pi\)
0.458943 + 0.888466i \(0.348228\pi\)
\(240\) 0 0
\(241\) 27.8807 1.79595 0.897976 0.440045i \(-0.145038\pi\)
0.897976 + 0.440045i \(0.145038\pi\)
\(242\) 11.4964i 0.739013i
\(243\) − 4.95694i − 0.317988i
\(244\) −61.0232 −3.90661
\(245\) 0 0
\(246\) 14.6855 0.936315
\(247\) − 0.468387i − 0.0298027i
\(248\) − 76.1254i − 4.83397i
\(249\) 20.2692 1.28451
\(250\) 0 0
\(251\) −26.1902 −1.65311 −0.826554 0.562857i \(-0.809702\pi\)
−0.826554 + 0.562857i \(0.809702\pi\)
\(252\) − 17.6908i − 1.11441i
\(253\) − 3.89148i − 0.244655i
\(254\) −34.5311 −2.16667
\(255\) 0 0
\(256\) −10.7084 −0.669276
\(257\) 9.01831i 0.562547i 0.959628 + 0.281273i \(0.0907568\pi\)
−0.959628 + 0.281273i \(0.909243\pi\)
\(258\) − 4.59942i − 0.286347i
\(259\) −4.77165 −0.296496
\(260\) 0 0
\(261\) −25.5799 −1.58336
\(262\) 21.4938i 1.32789i
\(263\) 9.00896i 0.555517i 0.960651 + 0.277758i \(0.0895914\pi\)
−0.960651 + 0.277758i \(0.910409\pi\)
\(264\) 60.1183 3.70002
\(265\) 0 0
\(266\) 1.51145 0.0926727
\(267\) 44.4485i 2.72020i
\(268\) 13.3051i 0.812739i
\(269\) 30.6136 1.86655 0.933273 0.359167i \(-0.116939\pi\)
0.933273 + 0.359167i \(0.116939\pi\)
\(270\) 0 0
\(271\) 24.1180 1.46506 0.732531 0.680733i \(-0.238339\pi\)
0.732531 + 0.680733i \(0.238339\pi\)
\(272\) − 42.2763i − 2.56338i
\(273\) − 0.819096i − 0.0495739i
\(274\) −38.4167 −2.32084
\(275\) 0 0
\(276\) 22.6173 1.36140
\(277\) 4.56075i 0.274029i 0.990569 + 0.137014i \(0.0437506\pi\)
−0.990569 + 0.137014i \(0.956249\pi\)
\(278\) − 5.45007i − 0.326874i
\(279\) 62.1074 3.71828
\(280\) 0 0
\(281\) −6.11563 −0.364828 −0.182414 0.983222i \(-0.558391\pi\)
−0.182414 + 0.983222i \(0.558391\pi\)
\(282\) − 56.7859i − 3.38155i
\(283\) 19.0547i 1.13269i 0.824169 + 0.566344i \(0.191642\pi\)
−0.824169 + 0.566344i \(0.808358\pi\)
\(284\) 36.3919 2.15946
\(285\) 0 0
\(286\) 3.17175 0.187550
\(287\) 1.05445i 0.0622423i
\(288\) 74.2808i 4.37704i
\(289\) 0.303649 0.0178617
\(290\) 0 0
\(291\) 53.1093 3.11332
\(292\) 59.4327i 3.47804i
\(293\) 6.43887i 0.376163i 0.982153 + 0.188081i \(0.0602269\pi\)
−0.982153 + 0.188081i \(0.939773\pi\)
\(294\) −53.3817 −3.11329
\(295\) 0 0
\(296\) 63.7123 3.70320
\(297\) 25.5433i 1.48217i
\(298\) 23.4395i 1.35782i
\(299\) 0.707941 0.0409413
\(300\) 0 0
\(301\) 0.330247 0.0190351
\(302\) − 30.1336i − 1.73399i
\(303\) − 43.4643i − 2.49696i
\(304\) −10.3463 −0.593402
\(305\) 0 0
\(306\) 67.2778 3.84602
\(307\) − 6.77389i − 0.386606i −0.981139 0.193303i \(-0.938080\pi\)
0.981139 0.193303i \(-0.0619201\pi\)
\(308\) 7.27580i 0.414577i
\(309\) −14.5818 −0.829529
\(310\) 0 0
\(311\) 20.6205 1.16928 0.584639 0.811293i \(-0.301236\pi\)
0.584639 + 0.811293i \(0.301236\pi\)
\(312\) 10.9368i 0.619173i
\(313\) − 19.3711i − 1.09492i −0.836833 0.547459i \(-0.815595\pi\)
0.836833 0.547459i \(-0.184405\pi\)
\(314\) −17.3758 −0.980575
\(315\) 0 0
\(316\) −32.8757 −1.84940
\(317\) 3.37360i 0.189480i 0.995502 + 0.0947401i \(0.0302020\pi\)
−0.995502 + 0.0947401i \(0.969798\pi\)
\(318\) 34.4414i 1.93138i
\(319\) 10.5204 0.589030
\(320\) 0 0
\(321\) 28.0756 1.56703
\(322\) 2.28447i 0.127308i
\(323\) 4.08612i 0.227358i
\(324\) −56.1057 −3.11699
\(325\) 0 0
\(326\) −53.2449 −2.94896
\(327\) 14.9052i 0.824260i
\(328\) − 14.0793i − 0.777399i
\(329\) 4.07734 0.224791
\(330\) 0 0
\(331\) −32.7788 −1.80168 −0.900842 0.434148i \(-0.857050\pi\)
−0.900842 + 0.434148i \(0.857050\pi\)
\(332\) − 32.7540i − 1.79761i
\(333\) 51.9801i 2.84849i
\(334\) −15.5011 −0.848181
\(335\) 0 0
\(336\) −18.0932 −0.987066
\(337\) 8.74915i 0.476596i 0.971192 + 0.238298i \(0.0765895\pi\)
−0.971192 + 0.238298i \(0.923410\pi\)
\(338\) − 33.6143i − 1.82838i
\(339\) −4.92285 −0.267372
\(340\) 0 0
\(341\) −25.5433 −1.38325
\(342\) − 16.4650i − 0.890324i
\(343\) − 7.85562i − 0.424164i
\(344\) −4.40955 −0.237747
\(345\) 0 0
\(346\) 9.28850 0.499353
\(347\) − 18.5028i − 0.993281i −0.867956 0.496640i \(-0.834567\pi\)
0.867956 0.496640i \(-0.165433\pi\)
\(348\) 61.1449i 3.27771i
\(349\) −3.54330 −0.189668 −0.0948342 0.995493i \(-0.530232\pi\)
−0.0948342 + 0.995493i \(0.530232\pi\)
\(350\) 0 0
\(351\) −4.64686 −0.248031
\(352\) − 30.5499i − 1.62832i
\(353\) 3.41140i 0.181571i 0.995870 + 0.0907853i \(0.0289377\pi\)
−0.995870 + 0.0907853i \(0.971062\pi\)
\(354\) −21.4938 −1.14238
\(355\) 0 0
\(356\) 71.8267 3.80681
\(357\) 7.14564i 0.378187i
\(358\) 18.9052i 0.999172i
\(359\) 1.70609 0.0900438 0.0450219 0.998986i \(-0.485664\pi\)
0.0450219 + 0.998986i \(0.485664\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) − 40.8805i − 2.14863i
\(363\) 13.3014i 0.698143i
\(364\) −1.32362 −0.0693765
\(365\) 0 0
\(366\) −99.3205 −5.19157
\(367\) 37.6155i 1.96351i 0.190144 + 0.981756i \(0.439105\pi\)
−0.190144 + 0.981756i \(0.560895\pi\)
\(368\) − 15.6379i − 0.815182i
\(369\) 11.4867 0.597974
\(370\) 0 0
\(371\) −2.47296 −0.128390
\(372\) − 148.458i − 7.69720i
\(373\) − 13.4031i − 0.693987i −0.937868 0.346994i \(-0.887203\pi\)
0.937868 0.346994i \(-0.112797\pi\)
\(374\) −27.6698 −1.43077
\(375\) 0 0
\(376\) −54.4417 −2.80762
\(377\) 1.91388i 0.0985700i
\(378\) − 14.9950i − 0.771262i
\(379\) 9.37107 0.481359 0.240680 0.970605i \(-0.422630\pi\)
0.240680 + 0.970605i \(0.422630\pi\)
\(380\) 0 0
\(381\) −39.9528 −2.04685
\(382\) − 35.0371i − 1.79265i
\(383\) 2.09917i 0.107263i 0.998561 + 0.0536314i \(0.0170796\pi\)
−0.998561 + 0.0536314i \(0.982920\pi\)
\(384\) 11.9422 0.609422
\(385\) 0 0
\(386\) −49.9612 −2.54296
\(387\) − 3.59756i − 0.182874i
\(388\) − 85.8221i − 4.35696i
\(389\) −1.07238 −0.0543718 −0.0271859 0.999630i \(-0.508655\pi\)
−0.0271859 + 0.999630i \(0.508655\pi\)
\(390\) 0 0
\(391\) −6.17594 −0.312331
\(392\) 51.1781i 2.58488i
\(393\) 24.8686i 1.25445i
\(394\) 5.71320 0.287827
\(395\) 0 0
\(396\) 79.2591 3.98292
\(397\) − 23.5341i − 1.18114i −0.806985 0.590572i \(-0.798902\pi\)
0.806985 0.590572i \(-0.201098\pi\)
\(398\) − 4.92762i − 0.246999i
\(399\) 1.74876 0.0875475
\(400\) 0 0
\(401\) 18.6469 0.931180 0.465590 0.885001i \(-0.345842\pi\)
0.465590 + 0.885001i \(0.345842\pi\)
\(402\) 21.6552i 1.08006i
\(403\) − 4.64686i − 0.231477i
\(404\) −70.2362 −3.49438
\(405\) 0 0
\(406\) −6.17594 −0.306507
\(407\) − 21.3782i − 1.05968i
\(408\) − 95.4103i − 4.72351i
\(409\) 6.88017 0.340203 0.170101 0.985427i \(-0.445590\pi\)
0.170101 + 0.985427i \(0.445590\pi\)
\(410\) 0 0
\(411\) −44.4485 −2.19248
\(412\) 23.5635i 1.16089i
\(413\) − 1.54330i − 0.0759408i
\(414\) 24.8859 1.22308
\(415\) 0 0
\(416\) 5.55767 0.272487
\(417\) − 6.30580i − 0.308796i
\(418\) 6.77165i 0.331212i
\(419\) −13.4796 −0.658521 −0.329261 0.944239i \(-0.606799\pi\)
−0.329261 + 0.944239i \(0.606799\pi\)
\(420\) 0 0
\(421\) −5.83488 −0.284374 −0.142187 0.989840i \(-0.545414\pi\)
−0.142187 + 0.989840i \(0.545414\pi\)
\(422\) 44.9984i 2.19049i
\(423\) − 44.4167i − 2.15961i
\(424\) 33.0196 1.60357
\(425\) 0 0
\(426\) 59.2310 2.86975
\(427\) − 7.13142i − 0.345113i
\(428\) − 45.3688i − 2.19298i
\(429\) 3.66975 0.177177
\(430\) 0 0
\(431\) 29.2039 1.40670 0.703351 0.710843i \(-0.251686\pi\)
0.703351 + 0.710843i \(0.251686\pi\)
\(432\) 102.646i 4.93855i
\(433\) 12.5229i 0.601814i 0.953653 + 0.300907i \(0.0972894\pi\)
−0.953653 + 0.300907i \(0.902711\pi\)
\(434\) 14.9950 0.719785
\(435\) 0 0
\(436\) 24.0861 1.15352
\(437\) 1.51145i 0.0723022i
\(438\) 96.7319i 4.62203i
\(439\) −15.6769 −0.748216 −0.374108 0.927385i \(-0.622051\pi\)
−0.374108 + 0.927385i \(0.622051\pi\)
\(440\) 0 0
\(441\) −41.7540 −1.98829
\(442\) − 5.03371i − 0.239429i
\(443\) 29.8281i 1.41717i 0.705624 + 0.708587i \(0.250667\pi\)
−0.705624 + 0.708587i \(0.749333\pi\)
\(444\) 124.250 5.89667
\(445\) 0 0
\(446\) −13.4903 −0.638782
\(447\) 27.1198i 1.28272i
\(448\) 6.04267i 0.285489i
\(449\) −29.9668 −1.41422 −0.707110 0.707104i \(-0.750001\pi\)
−0.707110 + 0.707104i \(0.750001\pi\)
\(450\) 0 0
\(451\) −4.72420 −0.222454
\(452\) 7.95509i 0.374176i
\(453\) − 34.8649i − 1.63809i
\(454\) −19.2319 −0.902598
\(455\) 0 0
\(456\) −23.3499 −1.09346
\(457\) 17.6698i 0.826556i 0.910605 + 0.413278i \(0.135616\pi\)
−0.910605 + 0.413278i \(0.864384\pi\)
\(458\) − 22.1180i − 1.03350i
\(459\) 40.5383 1.89217
\(460\) 0 0
\(461\) 22.3445 1.04069 0.520343 0.853957i \(-0.325804\pi\)
0.520343 + 0.853957i \(0.325804\pi\)
\(462\) 11.8420i 0.550939i
\(463\) 6.83302i 0.317557i 0.987314 + 0.158779i \(0.0507556\pi\)
−0.987314 + 0.158779i \(0.949244\pi\)
\(464\) 42.2763 1.96263
\(465\) 0 0
\(466\) 37.2744 1.72670
\(467\) 9.00896i 0.416885i 0.978035 + 0.208443i \(0.0668394\pi\)
−0.978035 + 0.208443i \(0.933161\pi\)
\(468\) 14.4189i 0.666514i
\(469\) −1.55489 −0.0717981
\(470\) 0 0
\(471\) −20.1040 −0.926345
\(472\) 20.6065i 0.948492i
\(473\) 1.47959i 0.0680317i
\(474\) −53.5080 −2.45771
\(475\) 0 0
\(476\) 11.5470 0.529256
\(477\) 26.9393i 1.23347i
\(478\) − 37.3216i − 1.70705i
\(479\) −9.26731 −0.423434 −0.211717 0.977331i \(-0.567906\pi\)
−0.211717 + 0.977331i \(0.567906\pi\)
\(480\) 0 0
\(481\) 3.88914 0.177329
\(482\) − 73.3290i − 3.34004i
\(483\) 2.64315i 0.120268i
\(484\) 21.4944 0.977020
\(485\) 0 0
\(486\) −13.0373 −0.591382
\(487\) − 38.7694i − 1.75681i −0.477917 0.878405i \(-0.658608\pi\)
0.477917 0.878405i \(-0.341392\pi\)
\(488\) 95.2205i 4.31043i
\(489\) −61.6050 −2.78587
\(490\) 0 0
\(491\) 21.6877 0.978751 0.489376 0.872073i \(-0.337225\pi\)
0.489376 + 0.872073i \(0.337225\pi\)
\(492\) − 27.4572i − 1.23787i
\(493\) − 16.6964i − 0.751966i
\(494\) −1.23191 −0.0554260
\(495\) 0 0
\(496\) −102.646 −4.60893
\(497\) 4.25291i 0.190769i
\(498\) − 53.3100i − 2.38888i
\(499\) 27.8372 1.24616 0.623082 0.782156i \(-0.285880\pi\)
0.623082 + 0.782156i \(0.285880\pi\)
\(500\) 0 0
\(501\) −17.9349 −0.801273
\(502\) 68.8828i 3.07439i
\(503\) 41.2449i 1.83902i 0.393067 + 0.919510i \(0.371414\pi\)
−0.393067 + 0.919510i \(0.628586\pi\)
\(504\) −27.6047 −1.22961
\(505\) 0 0
\(506\) −10.2350 −0.455000
\(507\) − 38.8922i − 1.72726i
\(508\) 64.5619i 2.86447i
\(509\) −0.416364 −0.0184550 −0.00922751 0.999957i \(-0.502937\pi\)
−0.00922751 + 0.999957i \(0.502937\pi\)
\(510\) 0 0
\(511\) −6.94555 −0.307253
\(512\) 36.0131i 1.59157i
\(513\) − 9.92099i − 0.438023i
\(514\) 23.7191 1.04620
\(515\) 0 0
\(516\) −8.59942 −0.378568
\(517\) 18.2675i 0.803404i
\(518\) 12.5499i 0.551412i
\(519\) 10.7469 0.471737
\(520\) 0 0
\(521\) 24.0458 1.05346 0.526732 0.850031i \(-0.323417\pi\)
0.526732 + 0.850031i \(0.323417\pi\)
\(522\) 67.2778i 2.94467i
\(523\) 5.19736i 0.227265i 0.993523 + 0.113632i \(0.0362486\pi\)
−0.993523 + 0.113632i \(0.963751\pi\)
\(524\) 40.1865 1.75555
\(525\) 0 0
\(526\) 23.6945 1.03313
\(527\) 40.5383i 1.76588i
\(528\) − 81.0621i − 3.52778i
\(529\) 20.7155 0.900675
\(530\) 0 0
\(531\) −16.8120 −0.729578
\(532\) − 2.82591i − 0.122519i
\(533\) − 0.859432i − 0.0372261i
\(534\) 116.904 5.05894
\(535\) 0 0
\(536\) 20.7613 0.896751
\(537\) 21.8735i 0.943913i
\(538\) − 80.5170i − 3.47133i
\(539\) 17.1724 0.739669
\(540\) 0 0
\(541\) −1.93863 −0.0833481 −0.0416741 0.999131i \(-0.513269\pi\)
−0.0416741 + 0.999131i \(0.513269\pi\)
\(542\) − 63.4327i − 2.72467i
\(543\) − 47.2992i − 2.02980i
\(544\) −48.4841 −2.07874
\(545\) 0 0
\(546\) −2.15431 −0.0921958
\(547\) − 12.9075i − 0.551883i −0.961174 0.275941i \(-0.911010\pi\)
0.961174 0.275941i \(-0.0889896\pi\)
\(548\) 71.8267i 3.06828i
\(549\) −77.6863 −3.31557
\(550\) 0 0
\(551\) −4.08612 −0.174074
\(552\) − 35.2921i − 1.50213i
\(553\) − 3.84199i − 0.163378i
\(554\) 11.9952 0.509628
\(555\) 0 0
\(556\) −10.1899 −0.432147
\(557\) − 34.1040i − 1.44503i −0.691353 0.722517i \(-0.742985\pi\)
0.691353 0.722517i \(-0.257015\pi\)
\(558\) − 163.349i − 6.91511i
\(559\) −0.269169 −0.0113846
\(560\) 0 0
\(561\) −32.0142 −1.35164
\(562\) 16.0847i 0.678494i
\(563\) 14.4911i 0.610727i 0.952236 + 0.305363i \(0.0987779\pi\)
−0.952236 + 0.305363i \(0.901222\pi\)
\(564\) −106.171 −4.47061
\(565\) 0 0
\(566\) 50.1159 2.10653
\(567\) − 6.55674i − 0.275357i
\(568\) − 56.7859i − 2.38268i
\(569\) 39.2110 1.64381 0.821906 0.569624i \(-0.192911\pi\)
0.821906 + 0.569624i \(0.192911\pi\)
\(570\) 0 0
\(571\) 21.9915 0.920316 0.460158 0.887837i \(-0.347793\pi\)
0.460158 + 0.887837i \(0.347793\pi\)
\(572\) − 5.93015i − 0.247952i
\(573\) − 40.5383i − 1.69351i
\(574\) 2.77331 0.115756
\(575\) 0 0
\(576\) 65.8261 2.74275
\(577\) 23.8735i 0.993869i 0.867788 + 0.496934i \(0.165541\pi\)
−0.867788 + 0.496934i \(0.834459\pi\)
\(578\) − 0.798628i − 0.0332185i
\(579\) −57.8057 −2.40232
\(580\) 0 0
\(581\) 3.82777 0.158803
\(582\) − 139.683i − 5.79004i
\(583\) − 11.0795i − 0.458866i
\(584\) 92.7387 3.83756
\(585\) 0 0
\(586\) 16.9349 0.699574
\(587\) 17.8281i 0.735843i 0.929857 + 0.367921i \(0.119930\pi\)
−0.929857 + 0.367921i \(0.880070\pi\)
\(588\) 99.8065i 4.11595i
\(589\) 9.92099 0.408787
\(590\) 0 0
\(591\) 6.61023 0.271909
\(592\) − 85.9082i − 3.53081i
\(593\) 21.2446i 0.872412i 0.899847 + 0.436206i \(0.143678\pi\)
−0.899847 + 0.436206i \(0.856322\pi\)
\(594\) 67.1815 2.75649
\(595\) 0 0
\(596\) 43.8244 1.79512
\(597\) − 5.70131i − 0.233339i
\(598\) − 1.86196i − 0.0761411i
\(599\) −24.3374 −0.994397 −0.497199 0.867637i \(-0.665638\pi\)
−0.497199 + 0.867637i \(0.665638\pi\)
\(600\) 0 0
\(601\) 15.7891 0.644051 0.322025 0.946731i \(-0.395636\pi\)
0.322025 + 0.946731i \(0.395636\pi\)
\(602\) − 0.868585i − 0.0354009i
\(603\) 16.9382i 0.689779i
\(604\) −56.3400 −2.29244
\(605\) 0 0
\(606\) −114.316 −4.64375
\(607\) 7.81471i 0.317189i 0.987344 + 0.158595i \(0.0506963\pi\)
−0.987344 + 0.158595i \(0.949304\pi\)
\(608\) 11.8656i 0.481212i
\(609\) −7.14564 −0.289556
\(610\) 0 0
\(611\) −3.32324 −0.134444
\(612\) − 125.788i − 5.08467i
\(613\) − 12.9547i − 0.523235i −0.965172 0.261618i \(-0.915744\pi\)
0.965172 0.261618i \(-0.0842560\pi\)
\(614\) −17.8160 −0.718996
\(615\) 0 0
\(616\) 11.3531 0.457431
\(617\) 18.8873i 0.760373i 0.924910 + 0.380187i \(0.124140\pi\)
−0.924910 + 0.380187i \(0.875860\pi\)
\(618\) 38.3516i 1.54273i
\(619\) −29.2673 −1.17635 −0.588176 0.808733i \(-0.700154\pi\)
−0.588176 + 0.808733i \(0.700154\pi\)
\(620\) 0 0
\(621\) 14.9950 0.601730
\(622\) − 54.2339i − 2.17458i
\(623\) 8.39396i 0.336297i
\(624\) 14.7469 0.590349
\(625\) 0 0
\(626\) −50.9479 −2.03629
\(627\) 7.83488i 0.312895i
\(628\) 32.4872i 1.29638i
\(629\) −33.9281 −1.35280
\(630\) 0 0
\(631\) −5.25309 −0.209122 −0.104561 0.994518i \(-0.533344\pi\)
−0.104561 + 0.994518i \(0.533344\pi\)
\(632\) 51.2992i 2.04057i
\(633\) 52.0637i 2.06935i
\(634\) 8.87291 0.352388
\(635\) 0 0
\(636\) 64.3942 2.55340
\(637\) 3.12402i 0.123778i
\(638\) − 27.6698i − 1.09546i
\(639\) 46.3292 1.83275
\(640\) 0 0
\(641\) −13.0021 −0.513554 −0.256777 0.966471i \(-0.582661\pi\)
−0.256777 + 0.966471i \(0.582661\pi\)
\(642\) − 73.8417i − 2.91430i
\(643\) 17.3534i 0.684353i 0.939636 + 0.342176i \(0.111164\pi\)
−0.939636 + 0.342176i \(0.888836\pi\)
\(644\) 4.27121 0.168309
\(645\) 0 0
\(646\) 10.7469 0.422831
\(647\) 12.4848i 0.490830i 0.969418 + 0.245415i \(0.0789242\pi\)
−0.969418 + 0.245415i \(0.921076\pi\)
\(648\) 87.5473i 3.43918i
\(649\) 6.91437 0.271413
\(650\) 0 0
\(651\) 17.3494 0.679978
\(652\) 99.5507i 3.89871i
\(653\) 28.3532i 1.10955i 0.832001 + 0.554774i \(0.187195\pi\)
−0.832001 + 0.554774i \(0.812805\pi\)
\(654\) 39.2022 1.53293
\(655\) 0 0
\(656\) −18.9842 −0.741209
\(657\) 75.6616i 2.95184i
\(658\) − 10.7238i − 0.418058i
\(659\) −45.2202 −1.76153 −0.880764 0.473556i \(-0.842970\pi\)
−0.880764 + 0.473556i \(0.842970\pi\)
\(660\) 0 0
\(661\) −14.6086 −0.568207 −0.284104 0.958794i \(-0.591696\pi\)
−0.284104 + 0.958794i \(0.591696\pi\)
\(662\) 86.2115i 3.35070i
\(663\) − 5.82406i − 0.226188i
\(664\) −51.1093 −1.98343
\(665\) 0 0
\(666\) 136.713 5.29752
\(667\) − 6.17594i − 0.239133i
\(668\) 28.9820i 1.12135i
\(669\) −15.6084 −0.603455
\(670\) 0 0
\(671\) 31.9505 1.23344
\(672\) 20.7500i 0.800449i
\(673\) 0.440534i 0.0169813i 0.999964 + 0.00849067i \(0.00270270\pi\)
−0.999964 + 0.00849067i \(0.997297\pi\)
\(674\) 23.0111 0.886356
\(675\) 0 0
\(676\) −62.8479 −2.41723
\(677\) 32.8057i 1.26083i 0.776259 + 0.630414i \(0.217115\pi\)
−0.776259 + 0.630414i \(0.782885\pi\)
\(678\) 12.9476i 0.497249i
\(679\) 10.0295 0.384898
\(680\) 0 0
\(681\) −22.2515 −0.852681
\(682\) 67.1815i 2.57251i
\(683\) 39.6092i 1.51561i 0.652484 + 0.757803i \(0.273727\pi\)
−0.652484 + 0.757803i \(0.726273\pi\)
\(684\) −30.7842 −1.17706
\(685\) 0 0
\(686\) −20.6611 −0.788844
\(687\) − 25.5907i − 0.976348i
\(688\) 5.94574i 0.226679i
\(689\) 2.01559 0.0767879
\(690\) 0 0
\(691\) −19.8962 −0.756889 −0.378444 0.925624i \(-0.623541\pi\)
−0.378444 + 0.925624i \(0.623541\pi\)
\(692\) − 17.3665i − 0.660175i
\(693\) 9.26254i 0.351855i
\(694\) −48.6642 −1.84727
\(695\) 0 0
\(696\) 95.4103 3.61652
\(697\) 7.49752i 0.283989i
\(698\) 9.31924i 0.352738i
\(699\) 43.1269 1.63121
\(700\) 0 0
\(701\) −14.1251 −0.533497 −0.266748 0.963766i \(-0.585949\pi\)
−0.266748 + 0.963766i \(0.585949\pi\)
\(702\) 12.2217i 0.461279i
\(703\) 8.30326i 0.313163i
\(704\) −27.0727 −1.02034
\(705\) 0 0
\(706\) 8.97234 0.337678
\(707\) − 8.20809i − 0.308697i
\(708\) 40.1865i 1.51030i
\(709\) 41.1815 1.54660 0.773302 0.634038i \(-0.218604\pi\)
0.773302 + 0.634038i \(0.218604\pi\)
\(710\) 0 0
\(711\) −41.8528 −1.56960
\(712\) − 112.078i − 4.20031i
\(713\) 14.9950i 0.561569i
\(714\) 18.7938 0.703338
\(715\) 0 0
\(716\) 35.3466 1.32097
\(717\) − 43.1815i − 1.61264i
\(718\) − 4.48718i − 0.167460i
\(719\) 18.0227 0.672133 0.336067 0.941838i \(-0.390903\pi\)
0.336067 + 0.941838i \(0.390903\pi\)
\(720\) 0 0
\(721\) −2.75372 −0.102554
\(722\) − 2.63010i − 0.0978823i
\(723\) − 84.8425i − 3.15533i
\(724\) −76.4332 −2.84062
\(725\) 0 0
\(726\) 34.9841 1.29838
\(727\) − 21.1266i − 0.783544i −0.920062 0.391772i \(-0.871862\pi\)
0.920062 0.391772i \(-0.128138\pi\)
\(728\) 2.06537i 0.0765479i
\(729\) 19.1444 0.709051
\(730\) 0 0
\(731\) 2.34818 0.0868504
\(732\) 185.697i 6.86356i
\(733\) 27.6660i 1.02187i 0.859620 + 0.510934i \(0.170700\pi\)
−0.859620 + 0.510934i \(0.829300\pi\)
\(734\) 98.9326 3.65167
\(735\) 0 0
\(736\) −17.9341 −0.661061
\(737\) − 6.96629i − 0.256607i
\(738\) − 30.2112i − 1.11209i
\(739\) 14.2987 0.525986 0.262993 0.964798i \(-0.415290\pi\)
0.262993 + 0.964798i \(0.415290\pi\)
\(740\) 0 0
\(741\) −1.42533 −0.0523607
\(742\) 6.50415i 0.238775i
\(743\) − 49.9438i − 1.83226i −0.400881 0.916130i \(-0.631296\pi\)
0.400881 0.916130i \(-0.368704\pi\)
\(744\) −231.654 −8.49285
\(745\) 0 0
\(746\) −35.2516 −1.29065
\(747\) − 41.6979i − 1.52565i
\(748\) 51.7335i 1.89156i
\(749\) 5.30198 0.193730
\(750\) 0 0
\(751\) 9.69216 0.353672 0.176836 0.984240i \(-0.443414\pi\)
0.176836 + 0.984240i \(0.443414\pi\)
\(752\) 73.4080i 2.67691i
\(753\) 79.6982i 2.90436i
\(754\) 5.03371 0.183317
\(755\) 0 0
\(756\) −28.0359 −1.01965
\(757\) 46.6889i 1.69694i 0.529245 + 0.848469i \(0.322475\pi\)
−0.529245 + 0.848469i \(0.677525\pi\)
\(758\) − 24.6469i − 0.895214i
\(759\) −11.8420 −0.429837
\(760\) 0 0
\(761\) −38.7361 −1.40418 −0.702091 0.712087i \(-0.747750\pi\)
−0.702091 + 0.712087i \(0.747750\pi\)
\(762\) 105.080i 3.80665i
\(763\) 2.81480i 0.101903i
\(764\) −65.5080 −2.37000
\(765\) 0 0
\(766\) 5.52104 0.199483
\(767\) 1.25787i 0.0454190i
\(768\) 32.5864i 1.17586i
\(769\) 5.38666 0.194248 0.0971239 0.995272i \(-0.469036\pi\)
0.0971239 + 0.995272i \(0.469036\pi\)
\(770\) 0 0
\(771\) 27.4433 0.988345
\(772\) 93.4112i 3.36194i
\(773\) − 7.20137i − 0.259015i −0.991578 0.129508i \(-0.958660\pi\)
0.991578 0.129508i \(-0.0413397\pi\)
\(774\) −9.46196 −0.340103
\(775\) 0 0
\(776\) −133.917 −4.80733
\(777\) 14.5204i 0.520917i
\(778\) 2.82047i 0.101119i
\(779\) 1.83488 0.0657413
\(780\) 0 0
\(781\) −19.0541 −0.681808
\(782\) 16.2434i 0.580861i
\(783\) 40.5383i 1.44872i
\(784\) 69.0074 2.46455
\(785\) 0 0
\(786\) 65.4069 2.33299
\(787\) − 33.5231i − 1.19497i −0.801880 0.597485i \(-0.796167\pi\)
0.801880 0.597485i \(-0.203833\pi\)
\(788\) − 10.6818i − 0.380524i
\(789\) 27.4148 0.975993
\(790\) 0 0
\(791\) −0.929664 −0.0330550
\(792\) − 123.676i − 4.39463i
\(793\) 5.81247i 0.206407i
\(794\) −61.8972 −2.19665
\(795\) 0 0
\(796\) −9.21305 −0.326548
\(797\) − 10.4979i − 0.371855i −0.982563 0.185927i \(-0.940471\pi\)
0.982563 0.185927i \(-0.0595289\pi\)
\(798\) − 4.59942i − 0.162818i
\(799\) 28.9913 1.02564
\(800\) 0 0
\(801\) 91.4398 3.23087
\(802\) − 49.0432i − 1.73177i
\(803\) − 31.1178i − 1.09812i
\(804\) 40.4882 1.42791
\(805\) 0 0
\(806\) −12.2217 −0.430492
\(807\) − 93.1591i − 3.27936i
\(808\) 109.596i 3.85559i
\(809\) 13.0724 0.459600 0.229800 0.973238i \(-0.426193\pi\)
0.229800 + 0.973238i \(0.426193\pi\)
\(810\) 0 0
\(811\) −10.0790 −0.353922 −0.176961 0.984218i \(-0.556627\pi\)
−0.176961 + 0.984218i \(0.556627\pi\)
\(812\) 11.5470i 0.405221i
\(813\) − 73.3924i − 2.57398i
\(814\) −56.2268 −1.97075
\(815\) 0 0
\(816\) −128.649 −4.50362
\(817\) − 0.574672i − 0.0201052i
\(818\) − 18.0956i − 0.632697i
\(819\) −1.68505 −0.0588804
\(820\) 0 0
\(821\) 40.2987 1.40643 0.703217 0.710975i \(-0.251746\pi\)
0.703217 + 0.710975i \(0.251746\pi\)
\(822\) 116.904i 4.07750i
\(823\) 5.07715i 0.176978i 0.996077 + 0.0884892i \(0.0282039\pi\)
−0.996077 + 0.0884892i \(0.971796\pi\)
\(824\) 36.7684 1.28089
\(825\) 0 0
\(826\) −4.05904 −0.141232
\(827\) − 42.8077i − 1.48857i −0.667862 0.744285i \(-0.732791\pi\)
0.667862 0.744285i \(-0.267209\pi\)
\(828\) − 46.5286i − 1.61698i
\(829\) −24.2018 −0.840562 −0.420281 0.907394i \(-0.638068\pi\)
−0.420281 + 0.907394i \(0.638068\pi\)
\(830\) 0 0
\(831\) 13.8786 0.481444
\(832\) − 4.92509i − 0.170747i
\(833\) − 27.2534i − 0.944274i
\(834\) −16.5849 −0.574288
\(835\) 0 0
\(836\) 12.6608 0.437883
\(837\) − 98.4261i − 3.40210i
\(838\) 35.4527i 1.22469i
\(839\) 8.63975 0.298277 0.149139 0.988816i \(-0.452350\pi\)
0.149139 + 0.988816i \(0.452350\pi\)
\(840\) 0 0
\(841\) −12.3036 −0.424264
\(842\) 15.3463i 0.528869i
\(843\) 18.6102i 0.640971i
\(844\) 84.1325 2.89596
\(845\) 0 0
\(846\) −116.820 −4.01637
\(847\) 2.51193i 0.0863109i
\(848\) − 44.5229i − 1.52892i
\(849\) 57.9847 1.99003
\(850\) 0 0
\(851\) −12.5499 −0.430206
\(852\) − 110.743i − 3.79398i
\(853\) 13.0229i 0.445895i 0.974830 + 0.222948i \(0.0715679\pi\)
−0.974830 + 0.222948i \(0.928432\pi\)
\(854\) −18.7564 −0.641829
\(855\) 0 0
\(856\) −70.7934 −2.41967
\(857\) − 2.82367i − 0.0964548i −0.998836 0.0482274i \(-0.984643\pi\)
0.998836 0.0482274i \(-0.0153572\pi\)
\(858\) − 9.65182i − 0.329508i
\(859\) −24.1227 −0.823057 −0.411529 0.911397i \(-0.635005\pi\)
−0.411529 + 0.911397i \(0.635005\pi\)
\(860\) 0 0
\(861\) 3.20876 0.109354
\(862\) − 76.8092i − 2.61613i
\(863\) − 32.7307i − 1.11417i −0.830456 0.557084i \(-0.811920\pi\)
0.830456 0.557084i \(-0.188080\pi\)
\(864\) 117.718 4.00485
\(865\) 0 0
\(866\) 32.9366 1.11923
\(867\) − 0.924022i − 0.0313814i
\(868\) − 28.0359i − 0.951599i
\(869\) 17.2131 0.583913
\(870\) 0 0
\(871\) 1.26731 0.0429413
\(872\) − 37.5839i − 1.27275i
\(873\) − 109.257i − 3.69779i
\(874\) 3.97526 0.134465
\(875\) 0 0
\(876\) 180.857 6.11060
\(877\) − 49.5072i − 1.67174i −0.548929 0.835869i \(-0.684964\pi\)
0.548929 0.835869i \(-0.315036\pi\)
\(878\) 41.2318i 1.39150i
\(879\) 19.5939 0.660884
\(880\) 0 0
\(881\) 40.3152 1.35826 0.679128 0.734020i \(-0.262358\pi\)
0.679128 + 0.734020i \(0.262358\pi\)
\(882\) 109.817i 3.69774i
\(883\) 29.3347i 0.987192i 0.869691 + 0.493596i \(0.164318\pi\)
−0.869691 + 0.493596i \(0.835682\pi\)
\(884\) −9.41140 −0.316540
\(885\) 0 0
\(886\) 78.4508 2.63561
\(887\) 43.3214i 1.45459i 0.686325 + 0.727295i \(0.259223\pi\)
−0.686325 + 0.727295i \(0.740777\pi\)
\(888\) − 193.880i − 6.50619i
\(889\) −7.54496 −0.253050
\(890\) 0 0
\(891\) 29.3758 0.984128
\(892\) 25.2224i 0.844508i
\(893\) − 7.09508i − 0.237428i
\(894\) 71.3279 2.38556
\(895\) 0 0
\(896\) 2.25524 0.0753424
\(897\) − 2.15431i − 0.0719302i
\(898\) 78.8157i 2.63011i
\(899\) −40.5383 −1.35203
\(900\) 0 0
\(901\) −17.5836 −0.585796
\(902\) 12.4251i 0.413712i
\(903\) − 1.00496i − 0.0334431i
\(904\) 12.4131 0.412854
\(905\) 0 0
\(906\) −91.6982 −3.04647
\(907\) 14.0731i 0.467288i 0.972322 + 0.233644i \(0.0750651\pi\)
−0.972322 + 0.233644i \(0.924935\pi\)
\(908\) 35.9574i 1.19329i
\(909\) −89.4151 −2.96571
\(910\) 0 0
\(911\) 30.0725 0.996346 0.498173 0.867078i \(-0.334004\pi\)
0.498173 + 0.867078i \(0.334004\pi\)
\(912\) 31.4845i 1.04255i
\(913\) 17.1493i 0.567560i
\(914\) 46.4733 1.53720
\(915\) 0 0
\(916\) −41.3534 −1.36636
\(917\) 4.69635i 0.155087i
\(918\) − 106.620i − 3.51898i
\(919\) −29.6518 −0.978123 −0.489062 0.872249i \(-0.662661\pi\)
−0.489062 + 0.872249i \(0.662661\pi\)
\(920\) 0 0
\(921\) −20.6133 −0.679233
\(922\) − 58.7682i − 1.93543i
\(923\) − 3.46634i − 0.114096i
\(924\) 22.1407 0.728375
\(925\) 0 0
\(926\) 17.9715 0.590582
\(927\) 29.9978i 0.985256i
\(928\) − 48.4841i − 1.59157i
\(929\) −58.3803 −1.91540 −0.957698 0.287775i \(-0.907085\pi\)
−0.957698 + 0.287775i \(0.907085\pi\)
\(930\) 0 0
\(931\) −6.66975 −0.218592
\(932\) − 69.6911i − 2.28281i
\(933\) − 62.7492i − 2.05432i
\(934\) 23.6945 0.775308
\(935\) 0 0
\(936\) 22.4992 0.735410
\(937\) − 3.15850i − 0.103184i −0.998668 0.0515918i \(-0.983571\pi\)
0.998668 0.0515918i \(-0.0164295\pi\)
\(938\) 4.08952i 0.133528i
\(939\) −58.9473 −1.92367
\(940\) 0 0
\(941\) −9.66975 −0.315225 −0.157612 0.987501i \(-0.550380\pi\)
−0.157612 + 0.987501i \(0.550380\pi\)
\(942\) 52.8757i 1.72278i
\(943\) 2.77331i 0.0903116i
\(944\) 27.7854 0.904337
\(945\) 0 0
\(946\) 3.89148 0.126523
\(947\) 31.3714i 1.01943i 0.860343 + 0.509716i \(0.170250\pi\)
−0.860343 + 0.509716i \(0.829750\pi\)
\(948\) 100.043i 3.24923i
\(949\) 5.66098 0.183763
\(950\) 0 0
\(951\) 10.2661 0.332900
\(952\) − 18.0179i − 0.583964i
\(953\) 13.1224i 0.425075i 0.977153 + 0.212537i \(0.0681727\pi\)
−0.977153 + 0.212537i \(0.931827\pi\)
\(954\) 70.8531 2.29395
\(955\) 0 0
\(956\) −69.7792 −2.25682
\(957\) − 32.0142i − 1.03487i
\(958\) 24.3740i 0.787488i
\(959\) −8.39396 −0.271055
\(960\) 0 0
\(961\) 67.4261 2.17504
\(962\) − 10.2288i − 0.329791i
\(963\) − 57.7573i − 1.86120i
\(964\) −137.101 −4.41574
\(965\) 0 0
\(966\) 6.95177 0.223669
\(967\) − 44.4400i − 1.42910i −0.699587 0.714548i \(-0.746633\pi\)
0.699587 0.714548i \(-0.253367\pi\)
\(968\) − 33.5399i − 1.07801i
\(969\) 12.4343 0.399447
\(970\) 0 0
\(971\) −5.69927 −0.182898 −0.0914491 0.995810i \(-0.529150\pi\)
−0.0914491 + 0.995810i \(0.529150\pi\)
\(972\) 24.3755i 0.781843i
\(973\) − 1.19083i − 0.0381762i
\(974\) −101.968 −3.26725
\(975\) 0 0
\(976\) 128.393 4.10977
\(977\) − 23.9164i − 0.765154i −0.923924 0.382577i \(-0.875037\pi\)
0.923924 0.382577i \(-0.124963\pi\)
\(978\) 162.027i 5.18106i
\(979\) −37.6070 −1.20193
\(980\) 0 0
\(981\) 30.6631 0.978998
\(982\) − 57.0408i − 1.82025i
\(983\) 45.5302i 1.45219i 0.687595 + 0.726095i \(0.258667\pi\)
−0.687595 + 0.726095i \(0.741333\pi\)
\(984\) −42.8441 −1.36582
\(985\) 0 0
\(986\) −43.9131 −1.39848
\(987\) − 12.4076i − 0.394938i
\(988\) 2.30326i 0.0732766i
\(989\) 0.868585 0.0276194
\(990\) 0 0
\(991\) 27.5521 0.875220 0.437610 0.899165i \(-0.355825\pi\)
0.437610 + 0.899165i \(0.355825\pi\)
\(992\) 117.718i 3.73756i
\(993\) 99.7477i 3.16540i
\(994\) 11.1856 0.354785
\(995\) 0 0
\(996\) −99.6724 −3.15824
\(997\) 16.8557i 0.533826i 0.963721 + 0.266913i \(0.0860037\pi\)
−0.963721 + 0.266913i \(0.913996\pi\)
\(998\) − 73.2147i − 2.31757i
\(999\) 82.3766 2.60628
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.b.e.324.1 8
5.2 odd 4 475.2.a.i.1.4 4
5.3 odd 4 95.2.a.b.1.1 4
5.4 even 2 inner 475.2.b.e.324.8 8
15.2 even 4 4275.2.a.bo.1.1 4
15.8 even 4 855.2.a.m.1.4 4
20.3 even 4 1520.2.a.t.1.1 4
20.7 even 4 7600.2.a.cf.1.4 4
35.13 even 4 4655.2.a.y.1.1 4
40.3 even 4 6080.2.a.ch.1.4 4
40.13 odd 4 6080.2.a.cc.1.1 4
95.18 even 4 1805.2.a.p.1.4 4
95.37 even 4 9025.2.a.bf.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.a.b.1.1 4 5.3 odd 4
475.2.a.i.1.4 4 5.2 odd 4
475.2.b.e.324.1 8 1.1 even 1 trivial
475.2.b.e.324.8 8 5.4 even 2 inner
855.2.a.m.1.4 4 15.8 even 4
1520.2.a.t.1.1 4 20.3 even 4
1805.2.a.p.1.4 4 95.18 even 4
4275.2.a.bo.1.1 4 15.2 even 4
4655.2.a.y.1.1 4 35.13 even 4
6080.2.a.cc.1.1 4 40.13 odd 4
6080.2.a.ch.1.4 4 40.3 even 4
7600.2.a.cf.1.4 4 20.7 even 4
9025.2.a.bf.1.1 4 95.37 even 4