Properties

Label 850.4.a.u.1.5
Level $850$
Weight $4$
Character 850.1
Self dual yes
Analytic conductor $50.152$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [850,4,Mod(1,850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("850.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(850, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 850.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,10,5,20,0,10,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.1516235049\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 92x^{3} - 26x^{2} + 2010x + 702 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(7.79664\) of defining polynomial
Character \(\chi\) \(=\) 850.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +8.79664 q^{3} +4.00000 q^{4} +17.5933 q^{6} -24.8284 q^{7} +8.00000 q^{8} +50.3809 q^{9} +1.58122 q^{11} +35.1866 q^{12} +68.9939 q^{13} -49.6568 q^{14} +16.0000 q^{16} +17.0000 q^{17} +100.762 q^{18} +52.5163 q^{19} -218.407 q^{21} +3.16244 q^{22} +154.124 q^{23} +70.3731 q^{24} +137.988 q^{26} +205.674 q^{27} -99.3137 q^{28} -9.87891 q^{29} +133.948 q^{31} +32.0000 q^{32} +13.9094 q^{33} +34.0000 q^{34} +201.524 q^{36} -337.139 q^{37} +105.033 q^{38} +606.915 q^{39} -220.387 q^{41} -436.813 q^{42} -16.7940 q^{43} +6.32489 q^{44} +308.247 q^{46} +224.816 q^{47} +140.746 q^{48} +273.450 q^{49} +149.543 q^{51} +275.976 q^{52} -302.962 q^{53} +411.347 q^{54} -198.627 q^{56} +461.967 q^{57} -19.7578 q^{58} +469.158 q^{59} +776.705 q^{61} +267.895 q^{62} -1250.88 q^{63} +64.0000 q^{64} +27.8189 q^{66} +74.5265 q^{67} +68.0000 q^{68} +1355.77 q^{69} +418.017 q^{71} +403.047 q^{72} +1016.75 q^{73} -674.277 q^{74} +210.065 q^{76} -39.2592 q^{77} +1213.83 q^{78} -1360.36 q^{79} +448.952 q^{81} -440.774 q^{82} -625.149 q^{83} -873.627 q^{84} -33.5879 q^{86} -86.9012 q^{87} +12.6498 q^{88} -79.3572 q^{89} -1713.01 q^{91} +616.494 q^{92} +1178.29 q^{93} +449.632 q^{94} +281.493 q^{96} +537.519 q^{97} +546.901 q^{98} +79.6634 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 10 q^{2} + 5 q^{3} + 20 q^{4} + 10 q^{6} - q^{7} + 40 q^{8} + 54 q^{9} + 38 q^{11} + 20 q^{12} + 93 q^{13} - 2 q^{14} + 80 q^{16} + 85 q^{17} + 108 q^{18} - 50 q^{19} + 55 q^{21} + 76 q^{22} + 98 q^{23}+ \cdots + 1006 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 8.79664 1.69291 0.846457 0.532457i \(-0.178731\pi\)
0.846457 + 0.532457i \(0.178731\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 17.5933 1.19707
\(7\) −24.8284 −1.34061 −0.670304 0.742086i \(-0.733836\pi\)
−0.670304 + 0.742086i \(0.733836\pi\)
\(8\) 8.00000 0.353553
\(9\) 50.3809 1.86596
\(10\) 0 0
\(11\) 1.58122 0.0433415 0.0216707 0.999765i \(-0.493101\pi\)
0.0216707 + 0.999765i \(0.493101\pi\)
\(12\) 35.1866 0.846457
\(13\) 68.9939 1.47196 0.735980 0.677004i \(-0.236722\pi\)
0.735980 + 0.677004i \(0.236722\pi\)
\(14\) −49.6568 −0.947953
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 17.0000 0.242536
\(18\) 100.762 1.31943
\(19\) 52.5163 0.634109 0.317055 0.948407i \(-0.397306\pi\)
0.317055 + 0.948407i \(0.397306\pi\)
\(20\) 0 0
\(21\) −218.407 −2.26954
\(22\) 3.16244 0.0306471
\(23\) 154.124 1.39726 0.698630 0.715483i \(-0.253793\pi\)
0.698630 + 0.715483i \(0.253793\pi\)
\(24\) 70.3731 0.598536
\(25\) 0 0
\(26\) 137.988 1.04083
\(27\) 205.674 1.46600
\(28\) −99.3137 −0.670304
\(29\) −9.87891 −0.0632575 −0.0316287 0.999500i \(-0.510069\pi\)
−0.0316287 + 0.999500i \(0.510069\pi\)
\(30\) 0 0
\(31\) 133.948 0.776055 0.388027 0.921648i \(-0.373157\pi\)
0.388027 + 0.921648i \(0.373157\pi\)
\(32\) 32.0000 0.176777
\(33\) 13.9094 0.0733734
\(34\) 34.0000 0.171499
\(35\) 0 0
\(36\) 201.524 0.932980
\(37\) −337.139 −1.49798 −0.748990 0.662581i \(-0.769461\pi\)
−0.748990 + 0.662581i \(0.769461\pi\)
\(38\) 105.033 0.448383
\(39\) 606.915 2.49190
\(40\) 0 0
\(41\) −220.387 −0.839479 −0.419739 0.907645i \(-0.637879\pi\)
−0.419739 + 0.907645i \(0.637879\pi\)
\(42\) −436.813 −1.60480
\(43\) −16.7940 −0.0595594 −0.0297797 0.999556i \(-0.509481\pi\)
−0.0297797 + 0.999556i \(0.509481\pi\)
\(44\) 6.32489 0.0216707
\(45\) 0 0
\(46\) 308.247 0.988013
\(47\) 224.816 0.697719 0.348859 0.937175i \(-0.386569\pi\)
0.348859 + 0.937175i \(0.386569\pi\)
\(48\) 140.746 0.423229
\(49\) 273.450 0.797232
\(50\) 0 0
\(51\) 149.543 0.410592
\(52\) 275.976 0.735980
\(53\) −302.962 −0.785190 −0.392595 0.919712i \(-0.628423\pi\)
−0.392595 + 0.919712i \(0.628423\pi\)
\(54\) 411.347 1.03662
\(55\) 0 0
\(56\) −198.627 −0.473977
\(57\) 461.967 1.07349
\(58\) −19.7578 −0.0447298
\(59\) 469.158 1.03524 0.517620 0.855611i \(-0.326818\pi\)
0.517620 + 0.855611i \(0.326818\pi\)
\(60\) 0 0
\(61\) 776.705 1.63028 0.815139 0.579266i \(-0.196661\pi\)
0.815139 + 0.579266i \(0.196661\pi\)
\(62\) 267.895 0.548754
\(63\) −1250.88 −2.50152
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 27.8189 0.0518829
\(67\) 74.5265 0.135894 0.0679468 0.997689i \(-0.478355\pi\)
0.0679468 + 0.997689i \(0.478355\pi\)
\(68\) 68.0000 0.121268
\(69\) 1355.77 2.36544
\(70\) 0 0
\(71\) 418.017 0.698726 0.349363 0.936987i \(-0.386398\pi\)
0.349363 + 0.936987i \(0.386398\pi\)
\(72\) 403.047 0.659716
\(73\) 1016.75 1.63015 0.815077 0.579353i \(-0.196695\pi\)
0.815077 + 0.579353i \(0.196695\pi\)
\(74\) −674.277 −1.05923
\(75\) 0 0
\(76\) 210.065 0.317055
\(77\) −39.2592 −0.0581040
\(78\) 1213.83 1.76204
\(79\) −1360.36 −1.93738 −0.968690 0.248275i \(-0.920136\pi\)
−0.968690 + 0.248275i \(0.920136\pi\)
\(80\) 0 0
\(81\) 448.952 0.615846
\(82\) −440.774 −0.593601
\(83\) −625.149 −0.826735 −0.413367 0.910564i \(-0.635647\pi\)
−0.413367 + 0.910564i \(0.635647\pi\)
\(84\) −873.627 −1.13477
\(85\) 0 0
\(86\) −33.5879 −0.0421149
\(87\) −86.9012 −0.107090
\(88\) 12.6498 0.0153235
\(89\) −79.3572 −0.0945151 −0.0472576 0.998883i \(-0.515048\pi\)
−0.0472576 + 0.998883i \(0.515048\pi\)
\(90\) 0 0
\(91\) −1713.01 −1.97332
\(92\) 616.494 0.698630
\(93\) 1178.29 1.31379
\(94\) 449.632 0.493362
\(95\) 0 0
\(96\) 281.493 0.299268
\(97\) 537.519 0.562647 0.281323 0.959613i \(-0.409227\pi\)
0.281323 + 0.959613i \(0.409227\pi\)
\(98\) 546.901 0.563728
\(99\) 79.6634 0.0808735
\(100\) 0 0
\(101\) −545.388 −0.537308 −0.268654 0.963237i \(-0.586579\pi\)
−0.268654 + 0.963237i \(0.586579\pi\)
\(102\) 299.086 0.290332
\(103\) −1640.16 −1.56902 −0.784512 0.620114i \(-0.787086\pi\)
−0.784512 + 0.620114i \(0.787086\pi\)
\(104\) 551.951 0.520416
\(105\) 0 0
\(106\) −605.924 −0.555213
\(107\) 2023.85 1.82853 0.914267 0.405113i \(-0.132768\pi\)
0.914267 + 0.405113i \(0.132768\pi\)
\(108\) 822.694 0.732998
\(109\) −388.582 −0.341462 −0.170731 0.985318i \(-0.554613\pi\)
−0.170731 + 0.985318i \(0.554613\pi\)
\(110\) 0 0
\(111\) −2965.69 −2.53595
\(112\) −397.255 −0.335152
\(113\) −1844.72 −1.53572 −0.767862 0.640615i \(-0.778679\pi\)
−0.767862 + 0.640615i \(0.778679\pi\)
\(114\) 923.935 0.759074
\(115\) 0 0
\(116\) −39.5156 −0.0316287
\(117\) 3475.98 2.74662
\(118\) 938.315 0.732025
\(119\) −422.083 −0.325145
\(120\) 0 0
\(121\) −1328.50 −0.998122
\(122\) 1553.41 1.15278
\(123\) −1938.66 −1.42117
\(124\) 535.790 0.388027
\(125\) 0 0
\(126\) −2501.76 −1.76884
\(127\) −1094.46 −0.764703 −0.382352 0.924017i \(-0.624886\pi\)
−0.382352 + 0.924017i \(0.624886\pi\)
\(128\) 128.000 0.0883883
\(129\) −147.730 −0.100829
\(130\) 0 0
\(131\) −2045.28 −1.36410 −0.682051 0.731305i \(-0.738912\pi\)
−0.682051 + 0.731305i \(0.738912\pi\)
\(132\) 55.6378 0.0366867
\(133\) −1303.90 −0.850092
\(134\) 149.053 0.0960912
\(135\) 0 0
\(136\) 136.000 0.0857493
\(137\) −901.223 −0.562020 −0.281010 0.959705i \(-0.590669\pi\)
−0.281010 + 0.959705i \(0.590669\pi\)
\(138\) 2711.54 1.67262
\(139\) 2117.29 1.29199 0.645993 0.763343i \(-0.276443\pi\)
0.645993 + 0.763343i \(0.276443\pi\)
\(140\) 0 0
\(141\) 1977.63 1.18118
\(142\) 836.035 0.494074
\(143\) 109.095 0.0637969
\(144\) 806.095 0.466490
\(145\) 0 0
\(146\) 2033.49 1.15269
\(147\) 2405.45 1.34964
\(148\) −1348.55 −0.748990
\(149\) −1667.38 −0.916759 −0.458379 0.888757i \(-0.651570\pi\)
−0.458379 + 0.888757i \(0.651570\pi\)
\(150\) 0 0
\(151\) −3000.39 −1.61701 −0.808505 0.588489i \(-0.799723\pi\)
−0.808505 + 0.588489i \(0.799723\pi\)
\(152\) 420.131 0.224191
\(153\) 856.476 0.452562
\(154\) −78.5185 −0.0410857
\(155\) 0 0
\(156\) 2427.66 1.24595
\(157\) −2746.77 −1.39628 −0.698140 0.715961i \(-0.745989\pi\)
−0.698140 + 0.715961i \(0.745989\pi\)
\(158\) −2720.73 −1.36993
\(159\) −2665.05 −1.32926
\(160\) 0 0
\(161\) −3826.65 −1.87318
\(162\) 897.903 0.435469
\(163\) 716.666 0.344378 0.172189 0.985064i \(-0.444916\pi\)
0.172189 + 0.985064i \(0.444916\pi\)
\(164\) −881.547 −0.419739
\(165\) 0 0
\(166\) −1250.30 −0.584590
\(167\) 2612.11 1.21037 0.605183 0.796086i \(-0.293100\pi\)
0.605183 + 0.796086i \(0.293100\pi\)
\(168\) −1747.25 −0.802402
\(169\) 2563.16 1.16666
\(170\) 0 0
\(171\) 2645.82 1.18322
\(172\) −67.1758 −0.0297797
\(173\) 210.723 0.0926066 0.0463033 0.998927i \(-0.485256\pi\)
0.0463033 + 0.998927i \(0.485256\pi\)
\(174\) −173.802 −0.0757237
\(175\) 0 0
\(176\) 25.2996 0.0108354
\(177\) 4127.01 1.75257
\(178\) −158.714 −0.0668323
\(179\) −2078.07 −0.867721 −0.433861 0.900980i \(-0.642849\pi\)
−0.433861 + 0.900980i \(0.642849\pi\)
\(180\) 0 0
\(181\) 4233.95 1.73871 0.869357 0.494185i \(-0.164533\pi\)
0.869357 + 0.494185i \(0.164533\pi\)
\(182\) −3426.02 −1.39535
\(183\) 6832.40 2.75992
\(184\) 1232.99 0.494006
\(185\) 0 0
\(186\) 2356.58 0.928993
\(187\) 26.8808 0.0105119
\(188\) 899.264 0.348859
\(189\) −5106.55 −1.96533
\(190\) 0 0
\(191\) −2824.24 −1.06992 −0.534960 0.844877i \(-0.679673\pi\)
−0.534960 + 0.844877i \(0.679673\pi\)
\(192\) 562.985 0.211614
\(193\) 3005.32 1.12087 0.560435 0.828199i \(-0.310634\pi\)
0.560435 + 0.828199i \(0.310634\pi\)
\(194\) 1075.04 0.397851
\(195\) 0 0
\(196\) 1093.80 0.398616
\(197\) 506.506 0.183183 0.0915915 0.995797i \(-0.470805\pi\)
0.0915915 + 0.995797i \(0.470805\pi\)
\(198\) 159.327 0.0571862
\(199\) −3408.26 −1.21410 −0.607048 0.794665i \(-0.707646\pi\)
−0.607048 + 0.794665i \(0.707646\pi\)
\(200\) 0 0
\(201\) 655.583 0.230056
\(202\) −1090.78 −0.379934
\(203\) 245.278 0.0848035
\(204\) 598.172 0.205296
\(205\) 0 0
\(206\) −3280.31 −1.10947
\(207\) 7764.89 2.60723
\(208\) 1103.90 0.367990
\(209\) 83.0400 0.0274832
\(210\) 0 0
\(211\) −3024.27 −0.986728 −0.493364 0.869823i \(-0.664233\pi\)
−0.493364 + 0.869823i \(0.664233\pi\)
\(212\) −1211.85 −0.392595
\(213\) 3677.15 1.18288
\(214\) 4047.70 1.29297
\(215\) 0 0
\(216\) 1645.39 0.518308
\(217\) −3325.71 −1.04039
\(218\) −777.163 −0.241450
\(219\) 8943.96 2.75971
\(220\) 0 0
\(221\) 1172.90 0.357003
\(222\) −5931.38 −1.79319
\(223\) 431.326 0.129523 0.0647617 0.997901i \(-0.479371\pi\)
0.0647617 + 0.997901i \(0.479371\pi\)
\(224\) −794.509 −0.236988
\(225\) 0 0
\(226\) −3689.44 −1.08592
\(227\) −4991.95 −1.45959 −0.729796 0.683665i \(-0.760385\pi\)
−0.729796 + 0.683665i \(0.760385\pi\)
\(228\) 1847.87 0.536746
\(229\) −3411.44 −0.984429 −0.492215 0.870474i \(-0.663812\pi\)
−0.492215 + 0.870474i \(0.663812\pi\)
\(230\) 0 0
\(231\) −345.350 −0.0983651
\(232\) −79.0313 −0.0223649
\(233\) 27.8076 0.00781861 0.00390931 0.999992i \(-0.498756\pi\)
0.00390931 + 0.999992i \(0.498756\pi\)
\(234\) 6951.95 1.94215
\(235\) 0 0
\(236\) 1876.63 0.517620
\(237\) −11966.6 −3.27982
\(238\) −844.166 −0.229912
\(239\) −5944.89 −1.60897 −0.804483 0.593976i \(-0.797557\pi\)
−0.804483 + 0.593976i \(0.797557\pi\)
\(240\) 0 0
\(241\) 7105.16 1.89910 0.949551 0.313611i \(-0.101539\pi\)
0.949551 + 0.313611i \(0.101539\pi\)
\(242\) −2657.00 −0.705778
\(243\) −1603.92 −0.423421
\(244\) 3106.82 0.815139
\(245\) 0 0
\(246\) −3877.33 −1.00492
\(247\) 3623.31 0.933383
\(248\) 1071.58 0.274377
\(249\) −5499.21 −1.39959
\(250\) 0 0
\(251\) −1665.30 −0.418776 −0.209388 0.977833i \(-0.567147\pi\)
−0.209388 + 0.977833i \(0.567147\pi\)
\(252\) −5003.51 −1.25076
\(253\) 243.704 0.0605594
\(254\) −2188.91 −0.540727
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 2331.39 0.565868 0.282934 0.959139i \(-0.408692\pi\)
0.282934 + 0.959139i \(0.408692\pi\)
\(258\) −295.461 −0.0712969
\(259\) 8370.62 2.00820
\(260\) 0 0
\(261\) −497.708 −0.118036
\(262\) −4090.57 −0.964566
\(263\) 5967.72 1.39918 0.699592 0.714543i \(-0.253365\pi\)
0.699592 + 0.714543i \(0.253365\pi\)
\(264\) 111.276 0.0259414
\(265\) 0 0
\(266\) −2607.80 −0.601106
\(267\) −698.077 −0.160006
\(268\) 298.106 0.0679468
\(269\) 4857.57 1.10101 0.550504 0.834833i \(-0.314436\pi\)
0.550504 + 0.834833i \(0.314436\pi\)
\(270\) 0 0
\(271\) −1029.78 −0.230828 −0.115414 0.993317i \(-0.536820\pi\)
−0.115414 + 0.993317i \(0.536820\pi\)
\(272\) 272.000 0.0606339
\(273\) −15068.7 −3.34066
\(274\) −1802.45 −0.397408
\(275\) 0 0
\(276\) 5423.08 1.18272
\(277\) −1411.71 −0.306214 −0.153107 0.988210i \(-0.548928\pi\)
−0.153107 + 0.988210i \(0.548928\pi\)
\(278\) 4234.58 0.913572
\(279\) 6748.40 1.44809
\(280\) 0 0
\(281\) −4204.24 −0.892542 −0.446271 0.894898i \(-0.647248\pi\)
−0.446271 + 0.894898i \(0.647248\pi\)
\(282\) 3955.25 0.835219
\(283\) 4178.89 0.877771 0.438886 0.898543i \(-0.355373\pi\)
0.438886 + 0.898543i \(0.355373\pi\)
\(284\) 1672.07 0.349363
\(285\) 0 0
\(286\) 218.189 0.0451112
\(287\) 5471.86 1.12541
\(288\) 1612.19 0.329858
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) 4728.36 0.952513
\(292\) 4066.99 0.815077
\(293\) 1114.73 0.222263 0.111132 0.993806i \(-0.464552\pi\)
0.111132 + 0.993806i \(0.464552\pi\)
\(294\) 4810.89 0.954343
\(295\) 0 0
\(296\) −2697.11 −0.529616
\(297\) 325.215 0.0635384
\(298\) −3334.76 −0.648246
\(299\) 10633.6 2.05671
\(300\) 0 0
\(301\) 416.968 0.0798459
\(302\) −6000.79 −1.14340
\(303\) −4797.58 −0.909617
\(304\) 840.262 0.158527
\(305\) 0 0
\(306\) 1712.95 0.320009
\(307\) 7999.20 1.48710 0.743548 0.668683i \(-0.233142\pi\)
0.743548 + 0.668683i \(0.233142\pi\)
\(308\) −157.037 −0.0290520
\(309\) −14427.9 −2.65622
\(310\) 0 0
\(311\) −10096.7 −1.84093 −0.920466 0.390822i \(-0.872191\pi\)
−0.920466 + 0.390822i \(0.872191\pi\)
\(312\) 4855.32 0.881020
\(313\) 5552.78 1.00275 0.501376 0.865229i \(-0.332827\pi\)
0.501376 + 0.865229i \(0.332827\pi\)
\(314\) −5493.54 −0.987319
\(315\) 0 0
\(316\) −5441.46 −0.968690
\(317\) −4534.80 −0.803470 −0.401735 0.915756i \(-0.631593\pi\)
−0.401735 + 0.915756i \(0.631593\pi\)
\(318\) −5330.10 −0.939928
\(319\) −15.6207 −0.00274167
\(320\) 0 0
\(321\) 17803.1 3.09555
\(322\) −7653.29 −1.32454
\(323\) 892.778 0.153794
\(324\) 1795.81 0.307923
\(325\) 0 0
\(326\) 1433.33 0.243512
\(327\) −3418.21 −0.578066
\(328\) −1763.09 −0.296801
\(329\) −5581.83 −0.935368
\(330\) 0 0
\(331\) 3365.40 0.558850 0.279425 0.960168i \(-0.409856\pi\)
0.279425 + 0.960168i \(0.409856\pi\)
\(332\) −2500.59 −0.413367
\(333\) −16985.4 −2.79517
\(334\) 5224.22 0.855858
\(335\) 0 0
\(336\) −3494.51 −0.567384
\(337\) 724.433 0.117099 0.0585495 0.998285i \(-0.481352\pi\)
0.0585495 + 0.998285i \(0.481352\pi\)
\(338\) 5126.32 0.824956
\(339\) −16227.4 −2.59985
\(340\) 0 0
\(341\) 211.801 0.0336354
\(342\) 5291.64 0.836665
\(343\) 1726.81 0.271833
\(344\) −134.352 −0.0210574
\(345\) 0 0
\(346\) 421.445 0.0654827
\(347\) 5740.27 0.888051 0.444025 0.896014i \(-0.353550\pi\)
0.444025 + 0.896014i \(0.353550\pi\)
\(348\) −347.605 −0.0535448
\(349\) −9374.12 −1.43778 −0.718890 0.695124i \(-0.755350\pi\)
−0.718890 + 0.695124i \(0.755350\pi\)
\(350\) 0 0
\(351\) 14190.2 2.15789
\(352\) 50.5991 0.00766177
\(353\) 3770.40 0.568493 0.284247 0.958751i \(-0.408257\pi\)
0.284247 + 0.958751i \(0.408257\pi\)
\(354\) 8254.02 1.23926
\(355\) 0 0
\(356\) −317.429 −0.0472576
\(357\) −3712.91 −0.550443
\(358\) −4156.14 −0.613572
\(359\) −3950.97 −0.580848 −0.290424 0.956898i \(-0.593796\pi\)
−0.290424 + 0.956898i \(0.593796\pi\)
\(360\) 0 0
\(361\) −4101.03 −0.597905
\(362\) 8467.90 1.22946
\(363\) −11686.3 −1.68973
\(364\) −6852.04 −0.986661
\(365\) 0 0
\(366\) 13664.8 1.95156
\(367\) −13582.6 −1.93190 −0.965949 0.258732i \(-0.916695\pi\)
−0.965949 + 0.258732i \(0.916695\pi\)
\(368\) 2465.98 0.349315
\(369\) −11103.3 −1.56643
\(370\) 0 0
\(371\) 7522.07 1.05263
\(372\) 4713.16 0.656897
\(373\) −2845.26 −0.394965 −0.197483 0.980306i \(-0.563277\pi\)
−0.197483 + 0.980306i \(0.563277\pi\)
\(374\) 53.7615 0.00743300
\(375\) 0 0
\(376\) 1798.53 0.246681
\(377\) −681.584 −0.0931124
\(378\) −10213.1 −1.38970
\(379\) 571.063 0.0773972 0.0386986 0.999251i \(-0.487679\pi\)
0.0386986 + 0.999251i \(0.487679\pi\)
\(380\) 0 0
\(381\) −9627.54 −1.29458
\(382\) −5648.48 −0.756548
\(383\) 9009.11 1.20194 0.600972 0.799270i \(-0.294780\pi\)
0.600972 + 0.799270i \(0.294780\pi\)
\(384\) 1125.97 0.149634
\(385\) 0 0
\(386\) 6010.64 0.792574
\(387\) −846.095 −0.111135
\(388\) 2150.07 0.281323
\(389\) 1139.57 0.148530 0.0742651 0.997239i \(-0.476339\pi\)
0.0742651 + 0.997239i \(0.476339\pi\)
\(390\) 0 0
\(391\) 2620.10 0.338886
\(392\) 2187.60 0.281864
\(393\) −17991.6 −2.30931
\(394\) 1013.01 0.129530
\(395\) 0 0
\(396\) 318.654 0.0404367
\(397\) −1822.08 −0.230347 −0.115173 0.993345i \(-0.536742\pi\)
−0.115173 + 0.993345i \(0.536742\pi\)
\(398\) −6816.52 −0.858495
\(399\) −11469.9 −1.43913
\(400\) 0 0
\(401\) 13638.6 1.69845 0.849225 0.528031i \(-0.177069\pi\)
0.849225 + 0.528031i \(0.177069\pi\)
\(402\) 1311.17 0.162674
\(403\) 9241.57 1.14232
\(404\) −2181.55 −0.268654
\(405\) 0 0
\(406\) 490.555 0.0599651
\(407\) −533.091 −0.0649247
\(408\) 1196.34 0.145166
\(409\) −3398.80 −0.410905 −0.205452 0.978667i \(-0.565867\pi\)
−0.205452 + 0.978667i \(0.565867\pi\)
\(410\) 0 0
\(411\) −7927.74 −0.951451
\(412\) −6560.63 −0.784512
\(413\) −11648.4 −1.38785
\(414\) 15529.8 1.84359
\(415\) 0 0
\(416\) 2207.81 0.260208
\(417\) 18625.0 2.18722
\(418\) 166.080 0.0194336
\(419\) −12623.8 −1.47186 −0.735932 0.677056i \(-0.763256\pi\)
−0.735932 + 0.677056i \(0.763256\pi\)
\(420\) 0 0
\(421\) −677.408 −0.0784201 −0.0392100 0.999231i \(-0.512484\pi\)
−0.0392100 + 0.999231i \(0.512484\pi\)
\(422\) −6048.55 −0.697722
\(423\) 11326.4 1.30192
\(424\) −2423.70 −0.277606
\(425\) 0 0
\(426\) 7354.30 0.836425
\(427\) −19284.4 −2.18556
\(428\) 8095.40 0.914267
\(429\) 959.667 0.108003
\(430\) 0 0
\(431\) −3486.97 −0.389702 −0.194851 0.980833i \(-0.562422\pi\)
−0.194851 + 0.980833i \(0.562422\pi\)
\(432\) 3290.78 0.366499
\(433\) 3295.21 0.365722 0.182861 0.983139i \(-0.441464\pi\)
0.182861 + 0.983139i \(0.441464\pi\)
\(434\) −6651.42 −0.735664
\(435\) 0 0
\(436\) −1554.33 −0.170731
\(437\) 8094.01 0.886016
\(438\) 17887.9 1.95141
\(439\) 15136.6 1.64563 0.822816 0.568308i \(-0.192402\pi\)
0.822816 + 0.568308i \(0.192402\pi\)
\(440\) 0 0
\(441\) 13776.7 1.48760
\(442\) 2345.79 0.252439
\(443\) 57.2712 0.00614229 0.00307115 0.999995i \(-0.499022\pi\)
0.00307115 + 0.999995i \(0.499022\pi\)
\(444\) −11862.8 −1.26798
\(445\) 0 0
\(446\) 862.651 0.0915868
\(447\) −14667.3 −1.55199
\(448\) −1589.02 −0.167576
\(449\) 4022.35 0.422776 0.211388 0.977402i \(-0.432202\pi\)
0.211388 + 0.977402i \(0.432202\pi\)
\(450\) 0 0
\(451\) −348.480 −0.0363843
\(452\) −7378.89 −0.767862
\(453\) −26393.4 −2.73746
\(454\) −9983.90 −1.03209
\(455\) 0 0
\(456\) 3695.74 0.379537
\(457\) −3310.52 −0.338861 −0.169431 0.985542i \(-0.554193\pi\)
−0.169431 + 0.985542i \(0.554193\pi\)
\(458\) −6822.88 −0.696097
\(459\) 3496.45 0.355556
\(460\) 0 0
\(461\) −5277.19 −0.533152 −0.266576 0.963814i \(-0.585892\pi\)
−0.266576 + 0.963814i \(0.585892\pi\)
\(462\) −690.699 −0.0695546
\(463\) −12572.6 −1.26198 −0.630992 0.775789i \(-0.717352\pi\)
−0.630992 + 0.775789i \(0.717352\pi\)
\(464\) −158.063 −0.0158144
\(465\) 0 0
\(466\) 55.6152 0.00552859
\(467\) 3141.77 0.311314 0.155657 0.987811i \(-0.450251\pi\)
0.155657 + 0.987811i \(0.450251\pi\)
\(468\) 13903.9 1.37331
\(469\) −1850.38 −0.182180
\(470\) 0 0
\(471\) −24162.3 −2.36378
\(472\) 3753.26 0.366012
\(473\) −26.5550 −0.00258139
\(474\) −23933.3 −2.31918
\(475\) 0 0
\(476\) −1688.33 −0.162573
\(477\) −15263.5 −1.46513
\(478\) −11889.8 −1.13771
\(479\) −10023.2 −0.956101 −0.478051 0.878332i \(-0.658656\pi\)
−0.478051 + 0.878332i \(0.658656\pi\)
\(480\) 0 0
\(481\) −23260.5 −2.20496
\(482\) 14210.3 1.34287
\(483\) −33661.6 −3.17113
\(484\) −5314.00 −0.499061
\(485\) 0 0
\(486\) −3207.84 −0.299404
\(487\) 4236.72 0.394218 0.197109 0.980382i \(-0.436845\pi\)
0.197109 + 0.980382i \(0.436845\pi\)
\(488\) 6213.64 0.576390
\(489\) 6304.26 0.583003
\(490\) 0 0
\(491\) −8275.32 −0.760611 −0.380305 0.924861i \(-0.624181\pi\)
−0.380305 + 0.924861i \(0.624181\pi\)
\(492\) −7754.65 −0.710583
\(493\) −167.941 −0.0153422
\(494\) 7246.62 0.660001
\(495\) 0 0
\(496\) 2143.16 0.194014
\(497\) −10378.7 −0.936718
\(498\) −10998.4 −0.989660
\(499\) −10653.5 −0.955742 −0.477871 0.878430i \(-0.658591\pi\)
−0.477871 + 0.878430i \(0.658591\pi\)
\(500\) 0 0
\(501\) 22977.8 2.04905
\(502\) −3330.60 −0.296119
\(503\) 21166.5 1.87627 0.938137 0.346264i \(-0.112550\pi\)
0.938137 + 0.346264i \(0.112550\pi\)
\(504\) −10007.0 −0.884421
\(505\) 0 0
\(506\) 487.407 0.0428219
\(507\) 22547.2 1.97506
\(508\) −4377.83 −0.382352
\(509\) 14591.0 1.27060 0.635298 0.772267i \(-0.280877\pi\)
0.635298 + 0.772267i \(0.280877\pi\)
\(510\) 0 0
\(511\) −25244.2 −2.18540
\(512\) 512.000 0.0441942
\(513\) 10801.2 0.929601
\(514\) 4662.78 0.400129
\(515\) 0 0
\(516\) −590.922 −0.0504145
\(517\) 355.484 0.0302402
\(518\) 16741.2 1.42002
\(519\) 1853.65 0.156775
\(520\) 0 0
\(521\) 9004.04 0.757148 0.378574 0.925571i \(-0.376414\pi\)
0.378574 + 0.925571i \(0.376414\pi\)
\(522\) −995.417 −0.0834640
\(523\) 3937.43 0.329200 0.164600 0.986360i \(-0.447367\pi\)
0.164600 + 0.986360i \(0.447367\pi\)
\(524\) −8181.14 −0.682051
\(525\) 0 0
\(526\) 11935.4 0.989372
\(527\) 2277.11 0.188221
\(528\) 222.551 0.0183434
\(529\) 11587.1 0.952338
\(530\) 0 0
\(531\) 23636.6 1.93171
\(532\) −5215.59 −0.425046
\(533\) −15205.3 −1.23568
\(534\) −1396.15 −0.113141
\(535\) 0 0
\(536\) 596.212 0.0480456
\(537\) −18280.0 −1.46898
\(538\) 9715.14 0.778530
\(539\) 432.386 0.0345532
\(540\) 0 0
\(541\) −12395.2 −0.985045 −0.492522 0.870300i \(-0.663925\pi\)
−0.492522 + 0.870300i \(0.663925\pi\)
\(542\) −2059.55 −0.163220
\(543\) 37244.6 2.94349
\(544\) 544.000 0.0428746
\(545\) 0 0
\(546\) −30137.5 −2.36221
\(547\) 7862.53 0.614584 0.307292 0.951615i \(-0.400577\pi\)
0.307292 + 0.951615i \(0.400577\pi\)
\(548\) −3604.89 −0.281010
\(549\) 39131.1 3.04203
\(550\) 0 0
\(551\) −518.804 −0.0401122
\(552\) 10846.2 0.836310
\(553\) 33775.7 2.59727
\(554\) −2823.41 −0.216526
\(555\) 0 0
\(556\) 8469.16 0.645993
\(557\) 18015.6 1.37046 0.685230 0.728327i \(-0.259702\pi\)
0.685230 + 0.728327i \(0.259702\pi\)
\(558\) 13496.8 1.02395
\(559\) −1158.68 −0.0876690
\(560\) 0 0
\(561\) 236.461 0.0177957
\(562\) −8408.49 −0.631122
\(563\) 1038.98 0.0777759 0.0388879 0.999244i \(-0.487618\pi\)
0.0388879 + 0.999244i \(0.487618\pi\)
\(564\) 7910.50 0.590589
\(565\) 0 0
\(566\) 8357.78 0.620678
\(567\) −11146.8 −0.825608
\(568\) 3344.14 0.247037
\(569\) 17635.2 1.29931 0.649653 0.760231i \(-0.274914\pi\)
0.649653 + 0.760231i \(0.274914\pi\)
\(570\) 0 0
\(571\) −17239.2 −1.26347 −0.631733 0.775186i \(-0.717656\pi\)
−0.631733 + 0.775186i \(0.717656\pi\)
\(572\) 436.379 0.0318984
\(573\) −24843.8 −1.81128
\(574\) 10943.7 0.795787
\(575\) 0 0
\(576\) 3224.38 0.233245
\(577\) 4212.23 0.303912 0.151956 0.988387i \(-0.451443\pi\)
0.151956 + 0.988387i \(0.451443\pi\)
\(578\) 578.000 0.0415945
\(579\) 26436.7 1.89754
\(580\) 0 0
\(581\) 15521.4 1.10833
\(582\) 9456.72 0.673529
\(583\) −479.050 −0.0340313
\(584\) 8133.98 0.576346
\(585\) 0 0
\(586\) 2229.46 0.157164
\(587\) 15777.1 1.10936 0.554678 0.832065i \(-0.312841\pi\)
0.554678 + 0.832065i \(0.312841\pi\)
\(588\) 9621.78 0.674822
\(589\) 7034.44 0.492104
\(590\) 0 0
\(591\) 4455.55 0.310113
\(592\) −5394.22 −0.374495
\(593\) 20030.2 1.38709 0.693543 0.720416i \(-0.256049\pi\)
0.693543 + 0.720416i \(0.256049\pi\)
\(594\) 650.431 0.0449285
\(595\) 0 0
\(596\) −6669.52 −0.458379
\(597\) −29981.2 −2.05536
\(598\) 21267.2 1.45431
\(599\) −13934.8 −0.950517 −0.475259 0.879846i \(-0.657646\pi\)
−0.475259 + 0.879846i \(0.657646\pi\)
\(600\) 0 0
\(601\) −3831.29 −0.260036 −0.130018 0.991512i \(-0.541503\pi\)
−0.130018 + 0.991512i \(0.541503\pi\)
\(602\) 833.935 0.0564596
\(603\) 3754.71 0.253572
\(604\) −12001.6 −0.808505
\(605\) 0 0
\(606\) −9595.16 −0.643196
\(607\) 4838.13 0.323515 0.161758 0.986831i \(-0.448284\pi\)
0.161758 + 0.986831i \(0.448284\pi\)
\(608\) 1680.52 0.112096
\(609\) 2157.62 0.143565
\(610\) 0 0
\(611\) 15510.9 1.02701
\(612\) 3425.90 0.226281
\(613\) 7554.80 0.497774 0.248887 0.968532i \(-0.419935\pi\)
0.248887 + 0.968532i \(0.419935\pi\)
\(614\) 15998.4 1.05154
\(615\) 0 0
\(616\) −314.074 −0.0205429
\(617\) −25836.5 −1.68580 −0.842899 0.538072i \(-0.819153\pi\)
−0.842899 + 0.538072i \(0.819153\pi\)
\(618\) −28855.7 −1.87823
\(619\) 9216.86 0.598476 0.299238 0.954178i \(-0.403267\pi\)
0.299238 + 0.954178i \(0.403267\pi\)
\(620\) 0 0
\(621\) 31699.1 2.04838
\(622\) −20193.3 −1.30174
\(623\) 1970.31 0.126708
\(624\) 9710.64 0.622975
\(625\) 0 0
\(626\) 11105.6 0.709053
\(627\) 730.473 0.0465268
\(628\) −10987.1 −0.698140
\(629\) −5731.36 −0.363313
\(630\) 0 0
\(631\) 26639.5 1.68067 0.840335 0.542068i \(-0.182358\pi\)
0.840335 + 0.542068i \(0.182358\pi\)
\(632\) −10882.9 −0.684967
\(633\) −26603.4 −1.67045
\(634\) −9069.60 −0.568139
\(635\) 0 0
\(636\) −10660.2 −0.664629
\(637\) 18866.4 1.17349
\(638\) −31.2415 −0.00193866
\(639\) 21060.1 1.30379
\(640\) 0 0
\(641\) −4546.25 −0.280135 −0.140067 0.990142i \(-0.544732\pi\)
−0.140067 + 0.990142i \(0.544732\pi\)
\(642\) 35606.2 2.18888
\(643\) −27213.1 −1.66902 −0.834510 0.550993i \(-0.814249\pi\)
−0.834510 + 0.550993i \(0.814249\pi\)
\(644\) −15306.6 −0.936590
\(645\) 0 0
\(646\) 1785.56 0.108749
\(647\) −24147.2 −1.46727 −0.733634 0.679544i \(-0.762177\pi\)
−0.733634 + 0.679544i \(0.762177\pi\)
\(648\) 3591.61 0.217734
\(649\) 741.842 0.0448688
\(650\) 0 0
\(651\) −29255.1 −1.76128
\(652\) 2866.66 0.172189
\(653\) 18096.1 1.08446 0.542232 0.840229i \(-0.317579\pi\)
0.542232 + 0.840229i \(0.317579\pi\)
\(654\) −6836.43 −0.408754
\(655\) 0 0
\(656\) −3526.19 −0.209870
\(657\) 51224.6 3.04180
\(658\) −11163.7 −0.661405
\(659\) −6305.57 −0.372732 −0.186366 0.982480i \(-0.559671\pi\)
−0.186366 + 0.982480i \(0.559671\pi\)
\(660\) 0 0
\(661\) 8546.53 0.502907 0.251454 0.967869i \(-0.419091\pi\)
0.251454 + 0.967869i \(0.419091\pi\)
\(662\) 6730.81 0.395166
\(663\) 10317.6 0.604375
\(664\) −5001.19 −0.292295
\(665\) 0 0
\(666\) −33970.7 −1.97648
\(667\) −1522.57 −0.0883872
\(668\) 10448.4 0.605183
\(669\) 3794.22 0.219272
\(670\) 0 0
\(671\) 1228.14 0.0706586
\(672\) −6989.01 −0.401201
\(673\) 23683.1 1.35649 0.678244 0.734836i \(-0.262741\pi\)
0.678244 + 0.734836i \(0.262741\pi\)
\(674\) 1448.87 0.0828015
\(675\) 0 0
\(676\) 10252.6 0.583332
\(677\) −11419.3 −0.648271 −0.324136 0.946011i \(-0.605073\pi\)
−0.324136 + 0.946011i \(0.605073\pi\)
\(678\) −32454.7 −1.83837
\(679\) −13345.7 −0.754289
\(680\) 0 0
\(681\) −43912.4 −2.47096
\(682\) 423.602 0.0237838
\(683\) 21781.9 1.22030 0.610148 0.792287i \(-0.291110\pi\)
0.610148 + 0.792287i \(0.291110\pi\)
\(684\) 10583.3 0.591611
\(685\) 0 0
\(686\) 3453.61 0.192215
\(687\) −30009.2 −1.66655
\(688\) −268.703 −0.0148899
\(689\) −20902.5 −1.15577
\(690\) 0 0
\(691\) −17943.9 −0.987871 −0.493935 0.869499i \(-0.664442\pi\)
−0.493935 + 0.869499i \(0.664442\pi\)
\(692\) 842.890 0.0463033
\(693\) −1977.92 −0.108420
\(694\) 11480.5 0.627947
\(695\) 0 0
\(696\) −695.210 −0.0378619
\(697\) −3746.58 −0.203604
\(698\) −18748.2 −1.01666
\(699\) 244.614 0.0132362
\(700\) 0 0
\(701\) −32805.5 −1.76754 −0.883771 0.467920i \(-0.845004\pi\)
−0.883771 + 0.467920i \(0.845004\pi\)
\(702\) 28380.4 1.52586
\(703\) −17705.3 −0.949883
\(704\) 101.198 0.00541769
\(705\) 0 0
\(706\) 7540.80 0.401986
\(707\) 13541.1 0.720320
\(708\) 16508.0 0.876286
\(709\) 37713.1 1.99767 0.998834 0.0482789i \(-0.0153736\pi\)
0.998834 + 0.0482789i \(0.0153736\pi\)
\(710\) 0 0
\(711\) −68536.4 −3.61507
\(712\) −634.858 −0.0334161
\(713\) 20644.5 1.08435
\(714\) −7425.83 −0.389222
\(715\) 0 0
\(716\) −8312.27 −0.433861
\(717\) −52295.0 −2.72384
\(718\) −7901.94 −0.410721
\(719\) 31029.2 1.60945 0.804725 0.593648i \(-0.202313\pi\)
0.804725 + 0.593648i \(0.202313\pi\)
\(720\) 0 0
\(721\) 40722.5 2.10345
\(722\) −8202.07 −0.422783
\(723\) 62501.6 3.21502
\(724\) 16935.8 0.869357
\(725\) 0 0
\(726\) −23372.7 −1.19482
\(727\) −14941.8 −0.762256 −0.381128 0.924522i \(-0.624464\pi\)
−0.381128 + 0.924522i \(0.624464\pi\)
\(728\) −13704.1 −0.697674
\(729\) −26230.8 −1.33266
\(730\) 0 0
\(731\) −285.497 −0.0144453
\(732\) 27329.6 1.37996
\(733\) −14850.0 −0.748291 −0.374145 0.927370i \(-0.622064\pi\)
−0.374145 + 0.927370i \(0.622064\pi\)
\(734\) −27165.2 −1.36606
\(735\) 0 0
\(736\) 4931.96 0.247003
\(737\) 117.843 0.00588983
\(738\) −22206.6 −1.10764
\(739\) 18068.2 0.899391 0.449695 0.893182i \(-0.351533\pi\)
0.449695 + 0.893182i \(0.351533\pi\)
\(740\) 0 0
\(741\) 31872.9 1.58014
\(742\) 15044.1 0.744323
\(743\) −24988.6 −1.23384 −0.616919 0.787027i \(-0.711619\pi\)
−0.616919 + 0.787027i \(0.711619\pi\)
\(744\) 9426.31 0.464497
\(745\) 0 0
\(746\) −5690.52 −0.279283
\(747\) −31495.6 −1.54265
\(748\) 107.523 0.00525593
\(749\) −50249.0 −2.45135
\(750\) 0 0
\(751\) −37959.1 −1.84440 −0.922202 0.386708i \(-0.873612\pi\)
−0.922202 + 0.386708i \(0.873612\pi\)
\(752\) 3597.06 0.174430
\(753\) −14649.0 −0.708952
\(754\) −1363.17 −0.0658404
\(755\) 0 0
\(756\) −20426.2 −0.982663
\(757\) 7937.90 0.381120 0.190560 0.981676i \(-0.438970\pi\)
0.190560 + 0.981676i \(0.438970\pi\)
\(758\) 1142.13 0.0547281
\(759\) 2143.77 0.102522
\(760\) 0 0
\(761\) 28231.7 1.34481 0.672404 0.740184i \(-0.265262\pi\)
0.672404 + 0.740184i \(0.265262\pi\)
\(762\) −19255.1 −0.915404
\(763\) 9647.87 0.457767
\(764\) −11297.0 −0.534960
\(765\) 0 0
\(766\) 18018.2 0.849902
\(767\) 32369.0 1.52383
\(768\) 2251.94 0.105807
\(769\) 12843.5 0.602275 0.301137 0.953581i \(-0.402634\pi\)
0.301137 + 0.953581i \(0.402634\pi\)
\(770\) 0 0
\(771\) 20508.4 0.957967
\(772\) 12021.3 0.560435
\(773\) 30603.0 1.42395 0.711976 0.702204i \(-0.247800\pi\)
0.711976 + 0.702204i \(0.247800\pi\)
\(774\) −1692.19 −0.0785846
\(775\) 0 0
\(776\) 4300.15 0.198926
\(777\) 73633.3 3.39972
\(778\) 2279.13 0.105027
\(779\) −11573.9 −0.532321
\(780\) 0 0
\(781\) 660.978 0.0302838
\(782\) 5240.20 0.239628
\(783\) −2031.83 −0.0927352
\(784\) 4375.21 0.199308
\(785\) 0 0
\(786\) −35983.3 −1.63293
\(787\) 4230.46 0.191613 0.0958067 0.995400i \(-0.469457\pi\)
0.0958067 + 0.995400i \(0.469457\pi\)
\(788\) 2026.02 0.0915915
\(789\) 52495.9 2.36870
\(790\) 0 0
\(791\) 45801.5 2.05881
\(792\) 637.307 0.0285931
\(793\) 53587.9 2.39970
\(794\) −3644.16 −0.162880
\(795\) 0 0
\(796\) −13633.0 −0.607048
\(797\) −3029.04 −0.134623 −0.0673113 0.997732i \(-0.521442\pi\)
−0.0673113 + 0.997732i \(0.521442\pi\)
\(798\) −22939.8 −1.01762
\(799\) 3821.87 0.169222
\(800\) 0 0
\(801\) −3998.09 −0.176361
\(802\) 27277.2 1.20099
\(803\) 1607.70 0.0706533
\(804\) 2622.33 0.115028
\(805\) 0 0
\(806\) 18483.1 0.807743
\(807\) 42730.3 1.86391
\(808\) −4363.10 −0.189967
\(809\) −17646.9 −0.766912 −0.383456 0.923559i \(-0.625266\pi\)
−0.383456 + 0.923559i \(0.625266\pi\)
\(810\) 0 0
\(811\) 24493.7 1.06053 0.530265 0.847832i \(-0.322092\pi\)
0.530265 + 0.847832i \(0.322092\pi\)
\(812\) 981.111 0.0424018
\(813\) −9058.58 −0.390773
\(814\) −1066.18 −0.0459087
\(815\) 0 0
\(816\) 2392.69 0.102648
\(817\) −881.957 −0.0377672
\(818\) −6797.60 −0.290553
\(819\) −86303.0 −3.68214
\(820\) 0 0
\(821\) −26560.5 −1.12907 −0.564535 0.825409i \(-0.690945\pi\)
−0.564535 + 0.825409i \(0.690945\pi\)
\(822\) −15855.5 −0.672777
\(823\) −16626.8 −0.704222 −0.352111 0.935958i \(-0.614536\pi\)
−0.352111 + 0.935958i \(0.614536\pi\)
\(824\) −13121.3 −0.554734
\(825\) 0 0
\(826\) −23296.9 −0.981359
\(827\) 7744.68 0.325645 0.162823 0.986655i \(-0.447940\pi\)
0.162823 + 0.986655i \(0.447940\pi\)
\(828\) 31059.6 1.30362
\(829\) −7134.43 −0.298901 −0.149451 0.988769i \(-0.547750\pi\)
−0.149451 + 0.988769i \(0.547750\pi\)
\(830\) 0 0
\(831\) −12418.3 −0.518393
\(832\) 4415.61 0.183995
\(833\) 4648.66 0.193357
\(834\) 37250.1 1.54660
\(835\) 0 0
\(836\) 332.160 0.0137416
\(837\) 27549.5 1.13769
\(838\) −25247.5 −1.04076
\(839\) −31789.3 −1.30809 −0.654046 0.756455i \(-0.726930\pi\)
−0.654046 + 0.756455i \(0.726930\pi\)
\(840\) 0 0
\(841\) −24291.4 −0.995998
\(842\) −1354.82 −0.0554514
\(843\) −36983.2 −1.51100
\(844\) −12097.1 −0.493364
\(845\) 0 0
\(846\) 22652.9 0.920593
\(847\) 32984.5 1.33809
\(848\) −4847.39 −0.196297
\(849\) 36760.2 1.48599
\(850\) 0 0
\(851\) −51961.0 −2.09307
\(852\) 14708.6 0.591442
\(853\) 17390.3 0.698044 0.349022 0.937115i \(-0.386514\pi\)
0.349022 + 0.937115i \(0.386514\pi\)
\(854\) −38568.7 −1.54543
\(855\) 0 0
\(856\) 16190.8 0.646484
\(857\) 45015.1 1.79426 0.897132 0.441762i \(-0.145646\pi\)
0.897132 + 0.441762i \(0.145646\pi\)
\(858\) 1919.33 0.0763694
\(859\) −12119.6 −0.481393 −0.240697 0.970600i \(-0.577376\pi\)
−0.240697 + 0.970600i \(0.577376\pi\)
\(860\) 0 0
\(861\) 48134.0 1.90523
\(862\) −6973.94 −0.275561
\(863\) 10385.6 0.409652 0.204826 0.978798i \(-0.434337\pi\)
0.204826 + 0.978798i \(0.434337\pi\)
\(864\) 6581.55 0.259154
\(865\) 0 0
\(866\) 6590.42 0.258604
\(867\) 2542.23 0.0995832
\(868\) −13302.8 −0.520193
\(869\) −2151.04 −0.0839689
\(870\) 0 0
\(871\) 5141.88 0.200030
\(872\) −3108.65 −0.120725
\(873\) 27080.7 1.04988
\(874\) 16188.0 0.626508
\(875\) 0 0
\(876\) 35775.8 1.37986
\(877\) 25002.9 0.962700 0.481350 0.876528i \(-0.340147\pi\)
0.481350 + 0.876528i \(0.340147\pi\)
\(878\) 30273.3 1.16364
\(879\) 9805.87 0.376273
\(880\) 0 0
\(881\) 25741.1 0.984381 0.492190 0.870488i \(-0.336196\pi\)
0.492190 + 0.870488i \(0.336196\pi\)
\(882\) 27553.4 1.05189
\(883\) −25937.4 −0.988522 −0.494261 0.869314i \(-0.664561\pi\)
−0.494261 + 0.869314i \(0.664561\pi\)
\(884\) 4691.59 0.178501
\(885\) 0 0
\(886\) 114.542 0.00434326
\(887\) 21892.0 0.828707 0.414353 0.910116i \(-0.364008\pi\)
0.414353 + 0.910116i \(0.364008\pi\)
\(888\) −23725.5 −0.896594
\(889\) 27173.6 1.02517
\(890\) 0 0
\(891\) 709.892 0.0266917
\(892\) 1725.30 0.0647617
\(893\) 11806.5 0.442430
\(894\) −29334.7 −1.09743
\(895\) 0 0
\(896\) −3178.04 −0.118494
\(897\) 93539.9 3.48184
\(898\) 8044.71 0.298948
\(899\) −1323.26 −0.0490913
\(900\) 0 0
\(901\) −5150.36 −0.190436
\(902\) −696.961 −0.0257276
\(903\) 3667.91 0.135172
\(904\) −14757.8 −0.542961
\(905\) 0 0
\(906\) −52786.8 −1.93568
\(907\) −40733.6 −1.49122 −0.745611 0.666382i \(-0.767842\pi\)
−0.745611 + 0.666382i \(0.767842\pi\)
\(908\) −19967.8 −0.729796
\(909\) −27477.1 −1.00260
\(910\) 0 0
\(911\) 24661.0 0.896876 0.448438 0.893814i \(-0.351981\pi\)
0.448438 + 0.893814i \(0.351981\pi\)
\(912\) 7391.48 0.268373
\(913\) −988.499 −0.0358319
\(914\) −6621.04 −0.239611
\(915\) 0 0
\(916\) −13645.8 −0.492215
\(917\) 50781.2 1.82873
\(918\) 6992.90 0.251416
\(919\) 36860.4 1.32308 0.661541 0.749909i \(-0.269903\pi\)
0.661541 + 0.749909i \(0.269903\pi\)
\(920\) 0 0
\(921\) 70366.1 2.51753
\(922\) −10554.4 −0.376995
\(923\) 28840.7 1.02850
\(924\) −1381.40 −0.0491825
\(925\) 0 0
\(926\) −25145.2 −0.892358
\(927\) −82632.6 −2.92773
\(928\) −316.125 −0.0111824
\(929\) 36545.1 1.29064 0.645320 0.763912i \(-0.276724\pi\)
0.645320 + 0.763912i \(0.276724\pi\)
\(930\) 0 0
\(931\) 14360.6 0.505532
\(932\) 111.230 0.00390931
\(933\) −88816.8 −3.11654
\(934\) 6283.53 0.220132
\(935\) 0 0
\(936\) 27807.8 0.971076
\(937\) 21635.5 0.754324 0.377162 0.926147i \(-0.376900\pi\)
0.377162 + 0.926147i \(0.376900\pi\)
\(938\) −3700.75 −0.128821
\(939\) 48845.8 1.69757
\(940\) 0 0
\(941\) 45144.9 1.56395 0.781977 0.623307i \(-0.214211\pi\)
0.781977 + 0.623307i \(0.214211\pi\)
\(942\) −48324.7 −1.67145
\(943\) −33966.8 −1.17297
\(944\) 7506.52 0.258810
\(945\) 0 0
\(946\) −53.1100 −0.00182532
\(947\) −11904.0 −0.408478 −0.204239 0.978921i \(-0.565472\pi\)
−0.204239 + 0.978921i \(0.565472\pi\)
\(948\) −47866.6 −1.63991
\(949\) 70149.4 2.39952
\(950\) 0 0
\(951\) −39891.0 −1.36021
\(952\) −3376.67 −0.114956
\(953\) 290.324 0.00986832 0.00493416 0.999988i \(-0.498429\pi\)
0.00493416 + 0.999988i \(0.498429\pi\)
\(954\) −30527.0 −1.03600
\(955\) 0 0
\(956\) −23779.5 −0.804483
\(957\) −137.410 −0.00464142
\(958\) −20046.4 −0.676066
\(959\) 22375.9 0.753448
\(960\) 0 0
\(961\) −11849.0 −0.397739
\(962\) −46521.0 −1.55915
\(963\) 101963. 3.41197
\(964\) 28420.7 0.949551
\(965\) 0 0
\(966\) −67323.3 −2.24233
\(967\) −30479.4 −1.01360 −0.506801 0.862063i \(-0.669172\pi\)
−0.506801 + 0.862063i \(0.669172\pi\)
\(968\) −10628.0 −0.352889
\(969\) 7853.45 0.260360
\(970\) 0 0
\(971\) 9696.60 0.320473 0.160236 0.987079i \(-0.448774\pi\)
0.160236 + 0.987079i \(0.448774\pi\)
\(972\) −6415.67 −0.211711
\(973\) −52568.9 −1.73205
\(974\) 8473.45 0.278754
\(975\) 0 0
\(976\) 12427.3 0.407569
\(977\) 47627.8 1.55962 0.779810 0.626016i \(-0.215315\pi\)
0.779810 + 0.626016i \(0.215315\pi\)
\(978\) 12608.5 0.412245
\(979\) −125.481 −0.00409643
\(980\) 0 0
\(981\) −19577.1 −0.637154
\(982\) −16550.6 −0.537833
\(983\) −40710.5 −1.32092 −0.660460 0.750862i \(-0.729639\pi\)
−0.660460 + 0.750862i \(0.729639\pi\)
\(984\) −15509.3 −0.502458
\(985\) 0 0
\(986\) −335.883 −0.0108486
\(987\) −49101.3 −1.58350
\(988\) 14493.2 0.466691
\(989\) −2588.35 −0.0832200
\(990\) 0 0
\(991\) −4547.97 −0.145783 −0.0728916 0.997340i \(-0.523223\pi\)
−0.0728916 + 0.997340i \(0.523223\pi\)
\(992\) 4286.32 0.137188
\(993\) 29604.2 0.946085
\(994\) −20757.4 −0.662360
\(995\) 0 0
\(996\) −21996.8 −0.699795
\(997\) −44017.5 −1.39824 −0.699121 0.715003i \(-0.746425\pi\)
−0.699121 + 0.715003i \(0.746425\pi\)
\(998\) −21307.0 −0.675812
\(999\) −69340.5 −2.19603
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.4.a.u.1.5 yes 5
5.2 odd 4 850.4.c.o.749.6 10
5.3 odd 4 850.4.c.o.749.5 10
5.4 even 2 850.4.a.p.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
850.4.a.p.1.1 5 5.4 even 2
850.4.a.u.1.5 yes 5 1.1 even 1 trivial
850.4.c.o.749.5 10 5.3 odd 4
850.4.c.o.749.6 10 5.2 odd 4