Properties

Label 850.4.a.q.1.3
Level $850$
Weight $4$
Character 850.1
Self dual yes
Analytic conductor $50.152$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [850,4,Mod(1,850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("850.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(850, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 850.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-10,1,20,0,-2,-53] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.1516235049\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 126x^{3} + 88x^{2} + 2675x + 213 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.0798599\) of defining polynomial
Character \(\chi\) \(=\) 850.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -0.0798599 q^{3} +4.00000 q^{4} +0.159720 q^{6} -2.42339 q^{7} -8.00000 q^{8} -26.9936 q^{9} +26.6650 q^{11} -0.319440 q^{12} +16.1070 q^{13} +4.84677 q^{14} +16.0000 q^{16} +17.0000 q^{17} +53.9872 q^{18} +3.43476 q^{19} +0.193531 q^{21} -53.3301 q^{22} -164.232 q^{23} +0.638880 q^{24} -32.2140 q^{26} +4.31193 q^{27} -9.69354 q^{28} +220.009 q^{29} +251.143 q^{31} -32.0000 q^{32} -2.12947 q^{33} -34.0000 q^{34} -107.974 q^{36} +58.4324 q^{37} -6.86952 q^{38} -1.28631 q^{39} -250.581 q^{41} -0.387063 q^{42} -394.934 q^{43} +106.660 q^{44} +328.464 q^{46} -59.4596 q^{47} -1.27776 q^{48} -337.127 q^{49} -1.35762 q^{51} +64.4281 q^{52} -238.378 q^{53} -8.62386 q^{54} +19.3871 q^{56} -0.274300 q^{57} -440.017 q^{58} -397.099 q^{59} +418.044 q^{61} -502.285 q^{62} +65.4160 q^{63} +64.0000 q^{64} +4.25894 q^{66} -556.567 q^{67} +68.0000 q^{68} +13.1155 q^{69} +959.142 q^{71} +215.949 q^{72} +22.1159 q^{73} -116.865 q^{74} +13.7390 q^{76} -64.6197 q^{77} +2.57261 q^{78} +711.293 q^{79} +728.483 q^{81} +501.163 q^{82} +962.217 q^{83} +0.774126 q^{84} +789.867 q^{86} -17.5699 q^{87} -213.320 q^{88} -1326.07 q^{89} -39.0335 q^{91} -656.927 q^{92} -20.0562 q^{93} +118.919 q^{94} +2.55552 q^{96} -202.787 q^{97} +674.254 q^{98} -719.786 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 10 q^{2} + q^{3} + 20 q^{4} - 2 q^{6} - 53 q^{7} - 40 q^{8} + 118 q^{9} - 30 q^{11} + 4 q^{12} - 123 q^{13} + 106 q^{14} + 80 q^{16} + 85 q^{17} - 236 q^{18} + 18 q^{19} + 119 q^{21} + 60 q^{22}+ \cdots - 4118 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −0.0798599 −0.0153691 −0.00768453 0.999970i \(-0.502446\pi\)
−0.00768453 + 0.999970i \(0.502446\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 0.159720 0.0108676
\(7\) −2.42339 −0.130851 −0.0654253 0.997857i \(-0.520840\pi\)
−0.0654253 + 0.997857i \(0.520840\pi\)
\(8\) −8.00000 −0.353553
\(9\) −26.9936 −0.999764
\(10\) 0 0
\(11\) 26.6650 0.730892 0.365446 0.930833i \(-0.380916\pi\)
0.365446 + 0.930833i \(0.380916\pi\)
\(12\) −0.319440 −0.00768453
\(13\) 16.1070 0.343637 0.171819 0.985129i \(-0.445036\pi\)
0.171819 + 0.985129i \(0.445036\pi\)
\(14\) 4.84677 0.0925253
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 17.0000 0.242536
\(18\) 53.9872 0.706940
\(19\) 3.43476 0.0414730 0.0207365 0.999785i \(-0.493399\pi\)
0.0207365 + 0.999785i \(0.493399\pi\)
\(20\) 0 0
\(21\) 0.193531 0.00201105
\(22\) −53.3301 −0.516819
\(23\) −164.232 −1.48890 −0.744450 0.667678i \(-0.767288\pi\)
−0.744450 + 0.667678i \(0.767288\pi\)
\(24\) 0.638880 0.00543378
\(25\) 0 0
\(26\) −32.2140 −0.242988
\(27\) 4.31193 0.0307345
\(28\) −9.69354 −0.0654253
\(29\) 220.009 1.40878 0.704389 0.709814i \(-0.251221\pi\)
0.704389 + 0.709814i \(0.251221\pi\)
\(30\) 0 0
\(31\) 251.143 1.45505 0.727525 0.686081i \(-0.240671\pi\)
0.727525 + 0.686081i \(0.240671\pi\)
\(32\) −32.0000 −0.176777
\(33\) −2.12947 −0.0112331
\(34\) −34.0000 −0.171499
\(35\) 0 0
\(36\) −107.974 −0.499882
\(37\) 58.4324 0.259628 0.129814 0.991538i \(-0.458562\pi\)
0.129814 + 0.991538i \(0.458562\pi\)
\(38\) −6.86952 −0.0293259
\(39\) −1.28631 −0.00528138
\(40\) 0 0
\(41\) −250.581 −0.954494 −0.477247 0.878769i \(-0.658365\pi\)
−0.477247 + 0.878769i \(0.658365\pi\)
\(42\) −0.387063 −0.00142203
\(43\) −394.934 −1.40062 −0.700312 0.713837i \(-0.746956\pi\)
−0.700312 + 0.713837i \(0.746956\pi\)
\(44\) 106.660 0.365446
\(45\) 0 0
\(46\) 328.464 1.05281
\(47\) −59.4596 −0.184533 −0.0922667 0.995734i \(-0.529411\pi\)
−0.0922667 + 0.995734i \(0.529411\pi\)
\(48\) −1.27776 −0.00384226
\(49\) −337.127 −0.982878
\(50\) 0 0
\(51\) −1.35762 −0.00372754
\(52\) 64.4281 0.171819
\(53\) −238.378 −0.617806 −0.308903 0.951094i \(-0.599962\pi\)
−0.308903 + 0.951094i \(0.599962\pi\)
\(54\) −8.62386 −0.0217326
\(55\) 0 0
\(56\) 19.3871 0.0462627
\(57\) −0.274300 −0.000637401 0
\(58\) −440.017 −0.996157
\(59\) −397.099 −0.876235 −0.438118 0.898918i \(-0.644355\pi\)
−0.438118 + 0.898918i \(0.644355\pi\)
\(60\) 0 0
\(61\) 418.044 0.877460 0.438730 0.898619i \(-0.355428\pi\)
0.438730 + 0.898619i \(0.355428\pi\)
\(62\) −502.285 −1.02888
\(63\) 65.4160 0.130820
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 4.25894 0.00794302
\(67\) −556.567 −1.01486 −0.507429 0.861694i \(-0.669404\pi\)
−0.507429 + 0.861694i \(0.669404\pi\)
\(68\) 68.0000 0.121268
\(69\) 13.1155 0.0228830
\(70\) 0 0
\(71\) 959.142 1.60323 0.801615 0.597841i \(-0.203975\pi\)
0.801615 + 0.597841i \(0.203975\pi\)
\(72\) 215.949 0.353470
\(73\) 22.1159 0.0354586 0.0177293 0.999843i \(-0.494356\pi\)
0.0177293 + 0.999843i \(0.494356\pi\)
\(74\) −116.865 −0.183585
\(75\) 0 0
\(76\) 13.7390 0.0207365
\(77\) −64.6197 −0.0956376
\(78\) 2.57261 0.00373450
\(79\) 711.293 1.01300 0.506498 0.862241i \(-0.330940\pi\)
0.506498 + 0.862241i \(0.330940\pi\)
\(80\) 0 0
\(81\) 728.483 0.999291
\(82\) 501.163 0.674929
\(83\) 962.217 1.27249 0.636247 0.771485i \(-0.280486\pi\)
0.636247 + 0.771485i \(0.280486\pi\)
\(84\) 0.774126 0.00100552
\(85\) 0 0
\(86\) 789.867 0.990391
\(87\) −17.5699 −0.0216516
\(88\) −213.320 −0.258409
\(89\) −1326.07 −1.57936 −0.789678 0.613522i \(-0.789752\pi\)
−0.789678 + 0.613522i \(0.789752\pi\)
\(90\) 0 0
\(91\) −39.0335 −0.0449651
\(92\) −656.927 −0.744450
\(93\) −20.0562 −0.0223627
\(94\) 118.919 0.130485
\(95\) 0 0
\(96\) 2.55552 0.00271689
\(97\) −202.787 −0.212268 −0.106134 0.994352i \(-0.533847\pi\)
−0.106134 + 0.994352i \(0.533847\pi\)
\(98\) 674.254 0.695000
\(99\) −719.786 −0.730720
\(100\) 0 0
\(101\) 189.230 0.186427 0.0932133 0.995646i \(-0.470286\pi\)
0.0932133 + 0.995646i \(0.470286\pi\)
\(102\) 2.71524 0.00263577
\(103\) −1349.77 −1.29123 −0.645615 0.763663i \(-0.723399\pi\)
−0.645615 + 0.763663i \(0.723399\pi\)
\(104\) −128.856 −0.121494
\(105\) 0 0
\(106\) 476.755 0.436855
\(107\) −907.578 −0.819989 −0.409995 0.912088i \(-0.634469\pi\)
−0.409995 + 0.912088i \(0.634469\pi\)
\(108\) 17.2477 0.0153672
\(109\) −1211.59 −1.06468 −0.532338 0.846532i \(-0.678686\pi\)
−0.532338 + 0.846532i \(0.678686\pi\)
\(110\) 0 0
\(111\) −4.66641 −0.00399024
\(112\) −38.7742 −0.0327126
\(113\) −1843.42 −1.53464 −0.767319 0.641266i \(-0.778409\pi\)
−0.767319 + 0.641266i \(0.778409\pi\)
\(114\) 0.548599 0.000450711 0
\(115\) 0 0
\(116\) 880.034 0.704389
\(117\) −434.787 −0.343556
\(118\) 794.198 0.619592
\(119\) −41.1976 −0.0317359
\(120\) 0 0
\(121\) −619.975 −0.465797
\(122\) −836.088 −0.620458
\(123\) 20.0114 0.0146697
\(124\) 1004.57 0.727525
\(125\) 0 0
\(126\) −130.832 −0.0925034
\(127\) −556.175 −0.388603 −0.194301 0.980942i \(-0.562244\pi\)
−0.194301 + 0.980942i \(0.562244\pi\)
\(128\) −128.000 −0.0883883
\(129\) 31.5394 0.0215263
\(130\) 0 0
\(131\) −842.465 −0.561882 −0.280941 0.959725i \(-0.590646\pi\)
−0.280941 + 0.959725i \(0.590646\pi\)
\(132\) −8.51788 −0.00561656
\(133\) −8.32375 −0.00542677
\(134\) 1113.13 0.717612
\(135\) 0 0
\(136\) −136.000 −0.0857493
\(137\) 477.926 0.298043 0.149022 0.988834i \(-0.452388\pi\)
0.149022 + 0.988834i \(0.452388\pi\)
\(138\) −26.2311 −0.0161807
\(139\) −521.247 −0.318069 −0.159035 0.987273i \(-0.550838\pi\)
−0.159035 + 0.987273i \(0.550838\pi\)
\(140\) 0 0
\(141\) 4.74844 0.00283610
\(142\) −1918.28 −1.13365
\(143\) 429.495 0.251162
\(144\) −431.898 −0.249941
\(145\) 0 0
\(146\) −44.2319 −0.0250730
\(147\) 26.9230 0.0151059
\(148\) 233.730 0.129814
\(149\) −2629.16 −1.44557 −0.722783 0.691075i \(-0.757138\pi\)
−0.722783 + 0.691075i \(0.757138\pi\)
\(150\) 0 0
\(151\) 2775.41 1.49576 0.747880 0.663834i \(-0.231072\pi\)
0.747880 + 0.663834i \(0.231072\pi\)
\(152\) −27.4781 −0.0146629
\(153\) −458.892 −0.242478
\(154\) 129.239 0.0676260
\(155\) 0 0
\(156\) −5.14522 −0.00264069
\(157\) −1753.90 −0.891572 −0.445786 0.895140i \(-0.647076\pi\)
−0.445786 + 0.895140i \(0.647076\pi\)
\(158\) −1422.59 −0.716297
\(159\) 19.0368 0.00949509
\(160\) 0 0
\(161\) 397.997 0.194823
\(162\) −1456.97 −0.706606
\(163\) −1640.51 −0.788309 −0.394155 0.919044i \(-0.628963\pi\)
−0.394155 + 0.919044i \(0.628963\pi\)
\(164\) −1002.33 −0.477247
\(165\) 0 0
\(166\) −1924.43 −0.899789
\(167\) −1834.34 −0.849972 −0.424986 0.905200i \(-0.639721\pi\)
−0.424986 + 0.905200i \(0.639721\pi\)
\(168\) −1.54825 −0.000711013 0
\(169\) −1937.56 −0.881913
\(170\) 0 0
\(171\) −92.7166 −0.0414632
\(172\) −1579.73 −0.700312
\(173\) −2509.39 −1.10280 −0.551402 0.834240i \(-0.685907\pi\)
−0.551402 + 0.834240i \(0.685907\pi\)
\(174\) 35.1397 0.0153100
\(175\) 0 0
\(176\) 426.641 0.182723
\(177\) 31.7123 0.0134669
\(178\) 2652.13 1.11677
\(179\) −675.459 −0.282046 −0.141023 0.990006i \(-0.545039\pi\)
−0.141023 + 0.990006i \(0.545039\pi\)
\(180\) 0 0
\(181\) −1645.36 −0.675683 −0.337842 0.941203i \(-0.609697\pi\)
−0.337842 + 0.941203i \(0.609697\pi\)
\(182\) 78.0671 0.0317951
\(183\) −33.3850 −0.0134857
\(184\) 1313.85 0.526406
\(185\) 0 0
\(186\) 40.1125 0.0158128
\(187\) 453.306 0.177267
\(188\) −237.838 −0.0922667
\(189\) −10.4495 −0.00402162
\(190\) 0 0
\(191\) −2413.96 −0.914493 −0.457246 0.889340i \(-0.651164\pi\)
−0.457246 + 0.889340i \(0.651164\pi\)
\(192\) −5.11104 −0.00192113
\(193\) 2718.50 1.01390 0.506948 0.861976i \(-0.330773\pi\)
0.506948 + 0.861976i \(0.330773\pi\)
\(194\) 405.575 0.150096
\(195\) 0 0
\(196\) −1348.51 −0.491439
\(197\) −1830.72 −0.662097 −0.331049 0.943614i \(-0.607402\pi\)
−0.331049 + 0.943614i \(0.607402\pi\)
\(198\) 1439.57 0.516697
\(199\) −4012.92 −1.42949 −0.714745 0.699385i \(-0.753457\pi\)
−0.714745 + 0.699385i \(0.753457\pi\)
\(200\) 0 0
\(201\) 44.4474 0.0155974
\(202\) −378.460 −0.131823
\(203\) −533.166 −0.184339
\(204\) −5.43048 −0.00186377
\(205\) 0 0
\(206\) 2699.54 0.913037
\(207\) 4433.21 1.48855
\(208\) 257.712 0.0859093
\(209\) 91.5880 0.0303123
\(210\) 0 0
\(211\) −1889.94 −0.616628 −0.308314 0.951285i \(-0.599765\pi\)
−0.308314 + 0.951285i \(0.599765\pi\)
\(212\) −953.511 −0.308903
\(213\) −76.5971 −0.0246401
\(214\) 1815.16 0.579820
\(215\) 0 0
\(216\) −34.4954 −0.0108663
\(217\) −608.615 −0.190394
\(218\) 2423.19 0.752839
\(219\) −1.76618 −0.000544965 0
\(220\) 0 0
\(221\) 273.819 0.0833443
\(222\) 9.33282 0.00282152
\(223\) 330.737 0.0993173 0.0496587 0.998766i \(-0.484187\pi\)
0.0496587 + 0.998766i \(0.484187\pi\)
\(224\) 77.5483 0.0231313
\(225\) 0 0
\(226\) 3686.83 1.08515
\(227\) −3997.78 −1.16891 −0.584453 0.811427i \(-0.698691\pi\)
−0.584453 + 0.811427i \(0.698691\pi\)
\(228\) −1.09720 −0.000318701 0
\(229\) 3900.22 1.12547 0.562737 0.826636i \(-0.309748\pi\)
0.562737 + 0.826636i \(0.309748\pi\)
\(230\) 0 0
\(231\) 5.16053 0.00146986
\(232\) −1760.07 −0.498078
\(233\) 2859.91 0.804117 0.402058 0.915614i \(-0.368295\pi\)
0.402058 + 0.915614i \(0.368295\pi\)
\(234\) 869.574 0.242931
\(235\) 0 0
\(236\) −1588.40 −0.438118
\(237\) −56.8038 −0.0155688
\(238\) 82.3951 0.0224407
\(239\) −1072.36 −0.290230 −0.145115 0.989415i \(-0.546355\pi\)
−0.145115 + 0.989415i \(0.546355\pi\)
\(240\) 0 0
\(241\) 4242.27 1.13389 0.566947 0.823754i \(-0.308124\pi\)
0.566947 + 0.823754i \(0.308124\pi\)
\(242\) 1239.95 0.329368
\(243\) −174.599 −0.0460926
\(244\) 1672.18 0.438730
\(245\) 0 0
\(246\) −40.0228 −0.0103730
\(247\) 55.3237 0.0142517
\(248\) −2009.14 −0.514438
\(249\) −76.8426 −0.0195570
\(250\) 0 0
\(251\) −7042.64 −1.77103 −0.885513 0.464614i \(-0.846193\pi\)
−0.885513 + 0.464614i \(0.846193\pi\)
\(252\) 261.664 0.0654098
\(253\) −4379.25 −1.08823
\(254\) 1112.35 0.274784
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 2914.12 0.707307 0.353653 0.935377i \(-0.384939\pi\)
0.353653 + 0.935377i \(0.384939\pi\)
\(258\) −63.0788 −0.0152214
\(259\) −141.604 −0.0339725
\(260\) 0 0
\(261\) −5938.83 −1.40845
\(262\) 1684.93 0.397310
\(263\) −2030.12 −0.475979 −0.237990 0.971268i \(-0.576488\pi\)
−0.237990 + 0.971268i \(0.576488\pi\)
\(264\) 17.0358 0.00397151
\(265\) 0 0
\(266\) 16.6475 0.00383731
\(267\) 105.900 0.0242732
\(268\) −2226.27 −0.507429
\(269\) −485.865 −0.110125 −0.0550627 0.998483i \(-0.517536\pi\)
−0.0550627 + 0.998483i \(0.517536\pi\)
\(270\) 0 0
\(271\) −401.360 −0.0899663 −0.0449831 0.998988i \(-0.514323\pi\)
−0.0449831 + 0.998988i \(0.514323\pi\)
\(272\) 272.000 0.0606339
\(273\) 3.11722 0.000691071 0
\(274\) −955.851 −0.210749
\(275\) 0 0
\(276\) 52.4622 0.0114415
\(277\) 7397.62 1.60462 0.802311 0.596907i \(-0.203604\pi\)
0.802311 + 0.596907i \(0.203604\pi\)
\(278\) 1042.49 0.224909
\(279\) −6779.25 −1.45471
\(280\) 0 0
\(281\) 3319.96 0.704812 0.352406 0.935847i \(-0.385364\pi\)
0.352406 + 0.935847i \(0.385364\pi\)
\(282\) −9.49688 −0.00200543
\(283\) 6075.80 1.27621 0.638107 0.769947i \(-0.279718\pi\)
0.638107 + 0.769947i \(0.279718\pi\)
\(284\) 3836.57 0.801615
\(285\) 0 0
\(286\) −858.989 −0.177598
\(287\) 607.255 0.124896
\(288\) 863.796 0.176735
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) 16.1946 0.00326235
\(292\) 88.4638 0.0177293
\(293\) −6006.45 −1.19761 −0.598806 0.800894i \(-0.704358\pi\)
−0.598806 + 0.800894i \(0.704358\pi\)
\(294\) −53.8459 −0.0106815
\(295\) 0 0
\(296\) −467.459 −0.0917923
\(297\) 114.978 0.0224636
\(298\) 5258.33 1.02217
\(299\) −2645.29 −0.511642
\(300\) 0 0
\(301\) 957.077 0.183272
\(302\) −5550.82 −1.05766
\(303\) −15.1119 −0.00286520
\(304\) 54.9562 0.0103683
\(305\) 0 0
\(306\) 917.783 0.171458
\(307\) 1572.83 0.292398 0.146199 0.989255i \(-0.453296\pi\)
0.146199 + 0.989255i \(0.453296\pi\)
\(308\) −258.479 −0.0478188
\(309\) 107.792 0.0198450
\(310\) 0 0
\(311\) −2348.12 −0.428134 −0.214067 0.976819i \(-0.568671\pi\)
−0.214067 + 0.976819i \(0.568671\pi\)
\(312\) 10.2904 0.00186725
\(313\) 1688.80 0.304974 0.152487 0.988305i \(-0.451272\pi\)
0.152487 + 0.988305i \(0.451272\pi\)
\(314\) 3507.81 0.630437
\(315\) 0 0
\(316\) 2845.17 0.506498
\(317\) 6944.29 1.23038 0.615189 0.788379i \(-0.289080\pi\)
0.615189 + 0.788379i \(0.289080\pi\)
\(318\) −38.0737 −0.00671404
\(319\) 5866.54 1.02966
\(320\) 0 0
\(321\) 72.4791 0.0126025
\(322\) −795.994 −0.137761
\(323\) 58.3909 0.0100587
\(324\) 2913.93 0.499646
\(325\) 0 0
\(326\) 3281.01 0.557419
\(327\) 96.7578 0.0163631
\(328\) 2004.65 0.337464
\(329\) 144.094 0.0241463
\(330\) 0 0
\(331\) −1944.41 −0.322884 −0.161442 0.986882i \(-0.551615\pi\)
−0.161442 + 0.986882i \(0.551615\pi\)
\(332\) 3848.87 0.636247
\(333\) −1577.30 −0.259567
\(334\) 3668.68 0.601021
\(335\) 0 0
\(336\) 3.09650 0.000502762 0
\(337\) 6607.88 1.06811 0.534057 0.845449i \(-0.320667\pi\)
0.534057 + 0.845449i \(0.320667\pi\)
\(338\) 3875.13 0.623607
\(339\) 147.215 0.0235859
\(340\) 0 0
\(341\) 6696.73 1.06348
\(342\) 185.433 0.0293189
\(343\) 1648.21 0.259461
\(344\) 3159.47 0.495195
\(345\) 0 0
\(346\) 5018.77 0.779801
\(347\) 20.6665 0.00319723 0.00159861 0.999999i \(-0.499491\pi\)
0.00159861 + 0.999999i \(0.499491\pi\)
\(348\) −70.2795 −0.0108258
\(349\) −5935.84 −0.910425 −0.455213 0.890383i \(-0.650437\pi\)
−0.455213 + 0.890383i \(0.650437\pi\)
\(350\) 0 0
\(351\) 69.4523 0.0105615
\(352\) −853.282 −0.129205
\(353\) 235.646 0.0355303 0.0177651 0.999842i \(-0.494345\pi\)
0.0177651 + 0.999842i \(0.494345\pi\)
\(354\) −63.4246 −0.00952254
\(355\) 0 0
\(356\) −5304.26 −0.789678
\(357\) 3.29003 0.000487751 0
\(358\) 1350.92 0.199436
\(359\) −3683.68 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(360\) 0 0
\(361\) −6847.20 −0.998280
\(362\) 3290.72 0.477780
\(363\) 49.5112 0.00715885
\(364\) −156.134 −0.0224826
\(365\) 0 0
\(366\) 66.7699 0.00953585
\(367\) 9215.27 1.31072 0.655358 0.755318i \(-0.272518\pi\)
0.655358 + 0.755318i \(0.272518\pi\)
\(368\) −2627.71 −0.372225
\(369\) 6764.10 0.954268
\(370\) 0 0
\(371\) 577.681 0.0808402
\(372\) −80.2249 −0.0111814
\(373\) 5587.98 0.775696 0.387848 0.921723i \(-0.373219\pi\)
0.387848 + 0.921723i \(0.373219\pi\)
\(374\) −906.612 −0.125347
\(375\) 0 0
\(376\) 475.677 0.0652424
\(377\) 3543.68 0.484109
\(378\) 20.8989 0.00284372
\(379\) 6978.28 0.945779 0.472890 0.881122i \(-0.343211\pi\)
0.472890 + 0.881122i \(0.343211\pi\)
\(380\) 0 0
\(381\) 44.4161 0.00597246
\(382\) 4827.92 0.646644
\(383\) −9035.04 −1.20540 −0.602701 0.797967i \(-0.705909\pi\)
−0.602701 + 0.797967i \(0.705909\pi\)
\(384\) 10.2221 0.00135845
\(385\) 0 0
\(386\) −5437.00 −0.716933
\(387\) 10660.7 1.40029
\(388\) −811.150 −0.106134
\(389\) 6080.85 0.792573 0.396287 0.918127i \(-0.370299\pi\)
0.396287 + 0.918127i \(0.370299\pi\)
\(390\) 0 0
\(391\) −2791.94 −0.361111
\(392\) 2697.02 0.347500
\(393\) 67.2792 0.00863559
\(394\) 3661.43 0.468174
\(395\) 0 0
\(396\) −2879.14 −0.365360
\(397\) 7221.63 0.912955 0.456478 0.889735i \(-0.349111\pi\)
0.456478 + 0.889735i \(0.349111\pi\)
\(398\) 8025.85 1.01080
\(399\) 0.664734 8.34043e−5 0
\(400\) 0 0
\(401\) 1537.31 0.191445 0.0957226 0.995408i \(-0.469484\pi\)
0.0957226 + 0.995408i \(0.469484\pi\)
\(402\) −88.8948 −0.0110290
\(403\) 4045.16 0.500009
\(404\) 756.920 0.0932133
\(405\) 0 0
\(406\) 1066.33 0.130348
\(407\) 1558.10 0.189760
\(408\) 10.8610 0.00131789
\(409\) 5999.41 0.725310 0.362655 0.931924i \(-0.381870\pi\)
0.362655 + 0.931924i \(0.381870\pi\)
\(410\) 0 0
\(411\) −38.1671 −0.00458065
\(412\) −5399.07 −0.645615
\(413\) 962.324 0.114656
\(414\) −8866.42 −1.05256
\(415\) 0 0
\(416\) −515.425 −0.0607471
\(417\) 41.6268 0.00488842
\(418\) −183.176 −0.0214341
\(419\) −4075.16 −0.475142 −0.237571 0.971370i \(-0.576351\pi\)
−0.237571 + 0.971370i \(0.576351\pi\)
\(420\) 0 0
\(421\) 3993.72 0.462332 0.231166 0.972914i \(-0.425746\pi\)
0.231166 + 0.972914i \(0.425746\pi\)
\(422\) 3779.87 0.436022
\(423\) 1605.03 0.184490
\(424\) 1907.02 0.218427
\(425\) 0 0
\(426\) 153.194 0.0174232
\(427\) −1013.08 −0.114816
\(428\) −3630.31 −0.409995
\(429\) −34.2994 −0.00386012
\(430\) 0 0
\(431\) −3004.07 −0.335733 −0.167867 0.985810i \(-0.553688\pi\)
−0.167867 + 0.985810i \(0.553688\pi\)
\(432\) 68.9908 0.00768362
\(433\) −5153.01 −0.571912 −0.285956 0.958243i \(-0.592311\pi\)
−0.285956 + 0.958243i \(0.592311\pi\)
\(434\) 1217.23 0.134629
\(435\) 0 0
\(436\) −4846.38 −0.532338
\(437\) −564.097 −0.0617492
\(438\) 3.53236 0.000385348 0
\(439\) −795.820 −0.0865203 −0.0432602 0.999064i \(-0.513774\pi\)
−0.0432602 + 0.999064i \(0.513774\pi\)
\(440\) 0 0
\(441\) 9100.28 0.982646
\(442\) −547.639 −0.0589333
\(443\) −13950.6 −1.49619 −0.748097 0.663590i \(-0.769032\pi\)
−0.748097 + 0.663590i \(0.769032\pi\)
\(444\) −18.6656 −0.00199512
\(445\) 0 0
\(446\) −661.473 −0.0702280
\(447\) 209.965 0.0222170
\(448\) −155.097 −0.0163563
\(449\) 13542.7 1.42343 0.711717 0.702467i \(-0.247918\pi\)
0.711717 + 0.702467i \(0.247918\pi\)
\(450\) 0 0
\(451\) −6681.76 −0.697632
\(452\) −7373.66 −0.767319
\(453\) −221.644 −0.0229884
\(454\) 7995.55 0.826542
\(455\) 0 0
\(456\) 2.19440 0.000225355 0
\(457\) −14617.8 −1.49626 −0.748131 0.663551i \(-0.769049\pi\)
−0.748131 + 0.663551i \(0.769049\pi\)
\(458\) −7800.44 −0.795831
\(459\) 73.3028 0.00745421
\(460\) 0 0
\(461\) 2094.62 0.211619 0.105809 0.994386i \(-0.466257\pi\)
0.105809 + 0.994386i \(0.466257\pi\)
\(462\) −10.3211 −0.00103935
\(463\) 12885.2 1.29336 0.646680 0.762761i \(-0.276157\pi\)
0.646680 + 0.762761i \(0.276157\pi\)
\(464\) 3520.14 0.352195
\(465\) 0 0
\(466\) −5719.83 −0.568596
\(467\) 11038.8 1.09382 0.546912 0.837190i \(-0.315803\pi\)
0.546912 + 0.837190i \(0.315803\pi\)
\(468\) −1739.15 −0.171778
\(469\) 1348.78 0.132795
\(470\) 0 0
\(471\) 140.067 0.0137026
\(472\) 3176.79 0.309796
\(473\) −10530.9 −1.02371
\(474\) 113.608 0.0110088
\(475\) 0 0
\(476\) −164.790 −0.0158680
\(477\) 6434.68 0.617660
\(478\) 2144.71 0.205223
\(479\) 13071.1 1.24684 0.623418 0.781888i \(-0.285743\pi\)
0.623418 + 0.781888i \(0.285743\pi\)
\(480\) 0 0
\(481\) 941.173 0.0892178
\(482\) −8484.54 −0.801784
\(483\) −31.7840 −0.00299425
\(484\) −2479.90 −0.232898
\(485\) 0 0
\(486\) 349.197 0.0325924
\(487\) −5104.65 −0.474977 −0.237488 0.971390i \(-0.576324\pi\)
−0.237488 + 0.971390i \(0.576324\pi\)
\(488\) −3344.35 −0.310229
\(489\) 131.011 0.0121156
\(490\) 0 0
\(491\) −19047.4 −1.75071 −0.875353 0.483484i \(-0.839371\pi\)
−0.875353 + 0.483484i \(0.839371\pi\)
\(492\) 80.0457 0.00733483
\(493\) 3740.15 0.341679
\(494\) −110.647 −0.0100775
\(495\) 0 0
\(496\) 4018.28 0.363762
\(497\) −2324.37 −0.209783
\(498\) 153.685 0.0138289
\(499\) −559.986 −0.0502373 −0.0251186 0.999684i \(-0.507996\pi\)
−0.0251186 + 0.999684i \(0.507996\pi\)
\(500\) 0 0
\(501\) 146.490 0.0130633
\(502\) 14085.3 1.25230
\(503\) 4974.15 0.440927 0.220464 0.975395i \(-0.429243\pi\)
0.220464 + 0.975395i \(0.429243\pi\)
\(504\) −523.328 −0.0462517
\(505\) 0 0
\(506\) 8758.50 0.769492
\(507\) 154.734 0.0135542
\(508\) −2224.70 −0.194301
\(509\) −19902.6 −1.73314 −0.866571 0.499054i \(-0.833681\pi\)
−0.866571 + 0.499054i \(0.833681\pi\)
\(510\) 0 0
\(511\) −53.5955 −0.00463977
\(512\) −512.000 −0.0441942
\(513\) 14.8104 0.00127465
\(514\) −5828.24 −0.500141
\(515\) 0 0
\(516\) 126.158 0.0107631
\(517\) −1585.49 −0.134874
\(518\) 283.209 0.0240222
\(519\) 200.400 0.0169491
\(520\) 0 0
\(521\) −17650.7 −1.48424 −0.742122 0.670265i \(-0.766181\pi\)
−0.742122 + 0.670265i \(0.766181\pi\)
\(522\) 11877.7 0.995921
\(523\) 18495.1 1.54634 0.773168 0.634201i \(-0.218671\pi\)
0.773168 + 0.634201i \(0.218671\pi\)
\(524\) −3369.86 −0.280941
\(525\) 0 0
\(526\) 4060.24 0.336568
\(527\) 4269.42 0.352901
\(528\) −34.0715 −0.00280828
\(529\) 14805.1 1.21682
\(530\) 0 0
\(531\) 10719.1 0.876028
\(532\) −33.2950 −0.00271339
\(533\) −4036.12 −0.328000
\(534\) −211.799 −0.0171637
\(535\) 0 0
\(536\) 4452.53 0.358806
\(537\) 53.9421 0.00433478
\(538\) 971.730 0.0778704
\(539\) −8989.51 −0.718378
\(540\) 0 0
\(541\) −6646.18 −0.528173 −0.264087 0.964499i \(-0.585070\pi\)
−0.264087 + 0.964499i \(0.585070\pi\)
\(542\) 802.719 0.0636158
\(543\) 131.398 0.0103846
\(544\) −544.000 −0.0428746
\(545\) 0 0
\(546\) −6.23443 −0.000488661 0
\(547\) −20607.6 −1.61082 −0.805408 0.592721i \(-0.798054\pi\)
−0.805408 + 0.592721i \(0.798054\pi\)
\(548\) 1911.70 0.149022
\(549\) −11284.5 −0.877253
\(550\) 0 0
\(551\) 755.676 0.0584263
\(552\) −104.924 −0.00809036
\(553\) −1723.74 −0.132551
\(554\) −14795.2 −1.13464
\(555\) 0 0
\(556\) −2084.99 −0.159035
\(557\) 11619.5 0.883901 0.441951 0.897039i \(-0.354287\pi\)
0.441951 + 0.897039i \(0.354287\pi\)
\(558\) 13558.5 1.02863
\(559\) −6361.21 −0.481307
\(560\) 0 0
\(561\) −36.2010 −0.00272443
\(562\) −6639.91 −0.498377
\(563\) −5942.49 −0.444842 −0.222421 0.974951i \(-0.571396\pi\)
−0.222421 + 0.974951i \(0.571396\pi\)
\(564\) 18.9938 0.00141805
\(565\) 0 0
\(566\) −12151.6 −0.902420
\(567\) −1765.40 −0.130758
\(568\) −7673.14 −0.566827
\(569\) 7106.52 0.523587 0.261793 0.965124i \(-0.415686\pi\)
0.261793 + 0.965124i \(0.415686\pi\)
\(570\) 0 0
\(571\) −1730.50 −0.126829 −0.0634144 0.997987i \(-0.520199\pi\)
−0.0634144 + 0.997987i \(0.520199\pi\)
\(572\) 1717.98 0.125581
\(573\) 192.779 0.0140549
\(574\) −1214.51 −0.0883148
\(575\) 0 0
\(576\) −1727.59 −0.124970
\(577\) −6281.16 −0.453186 −0.226593 0.973990i \(-0.572759\pi\)
−0.226593 + 0.973990i \(0.572759\pi\)
\(578\) −578.000 −0.0415945
\(579\) −217.099 −0.0155826
\(580\) 0 0
\(581\) −2331.82 −0.166507
\(582\) −32.3892 −0.00230683
\(583\) −6356.35 −0.451549
\(584\) −176.928 −0.0125365
\(585\) 0 0
\(586\) 12012.9 0.846840
\(587\) −24877.1 −1.74921 −0.874607 0.484833i \(-0.838880\pi\)
−0.874607 + 0.484833i \(0.838880\pi\)
\(588\) 107.692 0.00755295
\(589\) 862.614 0.0603453
\(590\) 0 0
\(591\) 146.201 0.0101758
\(592\) 934.919 0.0649070
\(593\) 21543.7 1.49189 0.745947 0.666005i \(-0.231997\pi\)
0.745947 + 0.666005i \(0.231997\pi\)
\(594\) −229.956 −0.0158842
\(595\) 0 0
\(596\) −10516.7 −0.722783
\(597\) 320.472 0.0219699
\(598\) 5290.57 0.361785
\(599\) 10994.9 0.749984 0.374992 0.927028i \(-0.377645\pi\)
0.374992 + 0.927028i \(0.377645\pi\)
\(600\) 0 0
\(601\) 13218.0 0.897124 0.448562 0.893752i \(-0.351936\pi\)
0.448562 + 0.893752i \(0.351936\pi\)
\(602\) −1914.15 −0.129593
\(603\) 15023.8 1.01462
\(604\) 11101.6 0.747880
\(605\) 0 0
\(606\) 30.2238 0.00202600
\(607\) −1986.24 −0.132816 −0.0664078 0.997793i \(-0.521154\pi\)
−0.0664078 + 0.997793i \(0.521154\pi\)
\(608\) −109.912 −0.00733147
\(609\) 42.5786 0.00283312
\(610\) 0 0
\(611\) −957.717 −0.0634126
\(612\) −1835.57 −0.121239
\(613\) 19585.4 1.29045 0.645227 0.763991i \(-0.276763\pi\)
0.645227 + 0.763991i \(0.276763\pi\)
\(614\) −3145.66 −0.206757
\(615\) 0 0
\(616\) 516.958 0.0338130
\(617\) 27941.0 1.82311 0.911557 0.411175i \(-0.134881\pi\)
0.911557 + 0.411175i \(0.134881\pi\)
\(618\) −215.585 −0.0140325
\(619\) −10134.4 −0.658052 −0.329026 0.944321i \(-0.606720\pi\)
−0.329026 + 0.944321i \(0.606720\pi\)
\(620\) 0 0
\(621\) −708.156 −0.0457606
\(622\) 4696.24 0.302737
\(623\) 3213.57 0.206660
\(624\) −20.5809 −0.00132034
\(625\) 0 0
\(626\) −3377.61 −0.215649
\(627\) −7.31421 −0.000465872 0
\(628\) −7015.62 −0.445786
\(629\) 993.351 0.0629690
\(630\) 0 0
\(631\) 10019.3 0.632113 0.316057 0.948740i \(-0.397641\pi\)
0.316057 + 0.948740i \(0.397641\pi\)
\(632\) −5690.35 −0.358148
\(633\) 150.930 0.00947699
\(634\) −13888.6 −0.870009
\(635\) 0 0
\(636\) 76.1473 0.00474754
\(637\) −5430.12 −0.337754
\(638\) −11733.1 −0.728083
\(639\) −25890.7 −1.60285
\(640\) 0 0
\(641\) −5966.58 −0.367653 −0.183827 0.982959i \(-0.558849\pi\)
−0.183827 + 0.982959i \(0.558849\pi\)
\(642\) −144.958 −0.00891128
\(643\) 11345.8 0.695856 0.347928 0.937521i \(-0.386885\pi\)
0.347928 + 0.937521i \(0.386885\pi\)
\(644\) 1591.99 0.0974117
\(645\) 0 0
\(646\) −116.782 −0.00711257
\(647\) −28300.9 −1.71967 −0.859833 0.510575i \(-0.829433\pi\)
−0.859833 + 0.510575i \(0.829433\pi\)
\(648\) −5827.87 −0.353303
\(649\) −10588.7 −0.640433
\(650\) 0 0
\(651\) 48.6040 0.00292618
\(652\) −6562.03 −0.394155
\(653\) −16197.0 −0.970657 −0.485329 0.874332i \(-0.661300\pi\)
−0.485329 + 0.874332i \(0.661300\pi\)
\(654\) −193.516 −0.0115704
\(655\) 0 0
\(656\) −4009.30 −0.238623
\(657\) −596.989 −0.0354502
\(658\) −288.187 −0.0170740
\(659\) 8088.41 0.478118 0.239059 0.971005i \(-0.423161\pi\)
0.239059 + 0.971005i \(0.423161\pi\)
\(660\) 0 0
\(661\) 27454.6 1.61552 0.807760 0.589511i \(-0.200680\pi\)
0.807760 + 0.589511i \(0.200680\pi\)
\(662\) 3888.83 0.228314
\(663\) −21.8672 −0.00128092
\(664\) −7697.73 −0.449895
\(665\) 0 0
\(666\) 3154.61 0.183541
\(667\) −36132.4 −2.09753
\(668\) −7337.35 −0.424986
\(669\) −26.4126 −0.00152641
\(670\) 0 0
\(671\) 11147.2 0.641329
\(672\) −6.19301 −0.000355507 0
\(673\) −23867.0 −1.36702 −0.683512 0.729939i \(-0.739548\pi\)
−0.683512 + 0.729939i \(0.739548\pi\)
\(674\) −13215.8 −0.755270
\(675\) 0 0
\(676\) −7750.26 −0.440957
\(677\) −26115.3 −1.48256 −0.741278 0.671198i \(-0.765780\pi\)
−0.741278 + 0.671198i \(0.765780\pi\)
\(678\) −294.430 −0.0166778
\(679\) 491.432 0.0277753
\(680\) 0 0
\(681\) 319.262 0.0179650
\(682\) −13393.5 −0.751997
\(683\) 18950.9 1.06169 0.530845 0.847469i \(-0.321875\pi\)
0.530845 + 0.847469i \(0.321875\pi\)
\(684\) −370.866 −0.0207316
\(685\) 0 0
\(686\) −3296.42 −0.183466
\(687\) −311.471 −0.0172975
\(688\) −6318.94 −0.350156
\(689\) −3839.56 −0.212301
\(690\) 0 0
\(691\) −11976.4 −0.659340 −0.329670 0.944096i \(-0.606938\pi\)
−0.329670 + 0.944096i \(0.606938\pi\)
\(692\) −10037.5 −0.551402
\(693\) 1744.32 0.0956150
\(694\) −41.3331 −0.00226078
\(695\) 0 0
\(696\) 140.559 0.00765499
\(697\) −4259.88 −0.231499
\(698\) 11871.7 0.643768
\(699\) −228.393 −0.0123585
\(700\) 0 0
\(701\) 30759.6 1.65731 0.828656 0.559758i \(-0.189106\pi\)
0.828656 + 0.559758i \(0.189106\pi\)
\(702\) −138.905 −0.00746812
\(703\) 200.701 0.0107676
\(704\) 1706.56 0.0913615
\(705\) 0 0
\(706\) −471.293 −0.0251237
\(707\) −458.577 −0.0243940
\(708\) 126.849 0.00673345
\(709\) 24780.5 1.31263 0.656313 0.754489i \(-0.272115\pi\)
0.656313 + 0.754489i \(0.272115\pi\)
\(710\) 0 0
\(711\) −19200.4 −1.01276
\(712\) 10608.5 0.558387
\(713\) −41245.6 −2.16642
\(714\) −6.58007 −0.000344892 0
\(715\) 0 0
\(716\) −2701.84 −0.141023
\(717\) 85.6382 0.00446056
\(718\) 7367.36 0.382935
\(719\) 25967.9 1.34693 0.673463 0.739221i \(-0.264806\pi\)
0.673463 + 0.739221i \(0.264806\pi\)
\(720\) 0 0
\(721\) 3271.01 0.168958
\(722\) 13694.4 0.705891
\(723\) −338.787 −0.0174269
\(724\) −6581.44 −0.337842
\(725\) 0 0
\(726\) −99.0224 −0.00506207
\(727\) 3589.05 0.183095 0.0915477 0.995801i \(-0.470819\pi\)
0.0915477 + 0.995801i \(0.470819\pi\)
\(728\) 312.268 0.0158976
\(729\) −19655.1 −0.998583
\(730\) 0 0
\(731\) −6713.87 −0.339701
\(732\) −133.540 −0.00674286
\(733\) 4672.05 0.235425 0.117712 0.993048i \(-0.462444\pi\)
0.117712 + 0.993048i \(0.462444\pi\)
\(734\) −18430.5 −0.926817
\(735\) 0 0
\(736\) 5255.42 0.263203
\(737\) −14840.9 −0.741751
\(738\) −13528.2 −0.674770
\(739\) 22452.2 1.11762 0.558808 0.829297i \(-0.311259\pi\)
0.558808 + 0.829297i \(0.311259\pi\)
\(740\) 0 0
\(741\) −4.41815 −0.000219035 0
\(742\) −1155.36 −0.0571627
\(743\) −83.9369 −0.00414448 −0.00207224 0.999998i \(-0.500660\pi\)
−0.00207224 + 0.999998i \(0.500660\pi\)
\(744\) 160.450 0.00790642
\(745\) 0 0
\(746\) −11176.0 −0.548500
\(747\) −25973.7 −1.27219
\(748\) 1813.22 0.0886337
\(749\) 2199.41 0.107296
\(750\) 0 0
\(751\) −3202.70 −0.155617 −0.0778084 0.996968i \(-0.524792\pi\)
−0.0778084 + 0.996968i \(0.524792\pi\)
\(752\) −951.353 −0.0461334
\(753\) 562.425 0.0272190
\(754\) −7087.37 −0.342317
\(755\) 0 0
\(756\) −41.7979 −0.00201081
\(757\) 14268.7 0.685081 0.342541 0.939503i \(-0.388713\pi\)
0.342541 + 0.939503i \(0.388713\pi\)
\(758\) −13956.6 −0.668767
\(759\) 349.727 0.0167250
\(760\) 0 0
\(761\) 11451.7 0.545498 0.272749 0.962085i \(-0.412067\pi\)
0.272749 + 0.962085i \(0.412067\pi\)
\(762\) −88.8322 −0.00422316
\(763\) 2936.16 0.139313
\(764\) −9655.85 −0.457246
\(765\) 0 0
\(766\) 18070.1 0.852348
\(767\) −6396.08 −0.301107
\(768\) −20.4441 −0.000960566 0
\(769\) −2550.07 −0.119581 −0.0597907 0.998211i \(-0.519043\pi\)
−0.0597907 + 0.998211i \(0.519043\pi\)
\(770\) 0 0
\(771\) −232.721 −0.0108706
\(772\) 10874.0 0.506948
\(773\) −19549.6 −0.909637 −0.454818 0.890584i \(-0.650296\pi\)
−0.454818 + 0.890584i \(0.650296\pi\)
\(774\) −21321.4 −0.990157
\(775\) 0 0
\(776\) 1622.30 0.0750479
\(777\) 11.3085 0.000522124 0
\(778\) −12161.7 −0.560434
\(779\) −860.687 −0.0395858
\(780\) 0 0
\(781\) 25575.6 1.17179
\(782\) 5583.88 0.255344
\(783\) 948.661 0.0432981
\(784\) −5394.04 −0.245720
\(785\) 0 0
\(786\) −134.558 −0.00610628
\(787\) 10714.3 0.485292 0.242646 0.970115i \(-0.421985\pi\)
0.242646 + 0.970115i \(0.421985\pi\)
\(788\) −7322.87 −0.331049
\(789\) 162.125 0.00731535
\(790\) 0 0
\(791\) 4467.31 0.200808
\(792\) 5758.29 0.258348
\(793\) 6733.44 0.301528
\(794\) −14443.3 −0.645557
\(795\) 0 0
\(796\) −16051.7 −0.714745
\(797\) −25134.8 −1.11709 −0.558544 0.829475i \(-0.688640\pi\)
−0.558544 + 0.829475i \(0.688640\pi\)
\(798\) −1.32947 −5.89758e−5 0
\(799\) −1010.81 −0.0447559
\(800\) 0 0
\(801\) 35795.3 1.57898
\(802\) −3074.62 −0.135372
\(803\) 589.723 0.0259164
\(804\) 177.790 0.00779870
\(805\) 0 0
\(806\) −8090.32 −0.353560
\(807\) 38.8012 0.00169252
\(808\) −1513.84 −0.0659117
\(809\) −15870.0 −0.689689 −0.344844 0.938660i \(-0.612068\pi\)
−0.344844 + 0.938660i \(0.612068\pi\)
\(810\) 0 0
\(811\) 8629.24 0.373630 0.186815 0.982395i \(-0.440184\pi\)
0.186815 + 0.982395i \(0.440184\pi\)
\(812\) −2132.66 −0.0921697
\(813\) 32.0526 0.00138270
\(814\) −3116.21 −0.134181
\(815\) 0 0
\(816\) −21.7219 −0.000931886 0
\(817\) −1356.50 −0.0580881
\(818\) −11998.8 −0.512871
\(819\) 1053.66 0.0449545
\(820\) 0 0
\(821\) −8572.87 −0.364428 −0.182214 0.983259i \(-0.558326\pi\)
−0.182214 + 0.983259i \(0.558326\pi\)
\(822\) 76.3342 0.00323901
\(823\) 19418.4 0.822457 0.411228 0.911532i \(-0.365100\pi\)
0.411228 + 0.911532i \(0.365100\pi\)
\(824\) 10798.1 0.456518
\(825\) 0 0
\(826\) −1924.65 −0.0810739
\(827\) −6320.73 −0.265772 −0.132886 0.991131i \(-0.542424\pi\)
−0.132886 + 0.991131i \(0.542424\pi\)
\(828\) 17732.8 0.744274
\(829\) 27394.8 1.14772 0.573860 0.818953i \(-0.305445\pi\)
0.573860 + 0.818953i \(0.305445\pi\)
\(830\) 0 0
\(831\) −590.774 −0.0246615
\(832\) 1030.85 0.0429547
\(833\) −5731.16 −0.238383
\(834\) −83.2535 −0.00345664
\(835\) 0 0
\(836\) 366.352 0.0151562
\(837\) 1082.91 0.0447202
\(838\) 8150.32 0.335976
\(839\) −8708.72 −0.358353 −0.179177 0.983817i \(-0.557343\pi\)
−0.179177 + 0.983817i \(0.557343\pi\)
\(840\) 0 0
\(841\) 24014.8 0.984656
\(842\) −7987.43 −0.326918
\(843\) −265.132 −0.0108323
\(844\) −7559.74 −0.308314
\(845\) 0 0
\(846\) −3210.06 −0.130454
\(847\) 1502.44 0.0609497
\(848\) −3814.04 −0.154451
\(849\) −485.213 −0.0196142
\(850\) 0 0
\(851\) −9596.46 −0.386560
\(852\) −306.388 −0.0123201
\(853\) −6876.02 −0.276003 −0.138002 0.990432i \(-0.544068\pi\)
−0.138002 + 0.990432i \(0.544068\pi\)
\(854\) 2026.16 0.0811872
\(855\) 0 0
\(856\) 7260.62 0.289910
\(857\) 29987.0 1.19526 0.597630 0.801772i \(-0.296109\pi\)
0.597630 + 0.801772i \(0.296109\pi\)
\(858\) 68.5988 0.00272952
\(859\) −36647.4 −1.45564 −0.727818 0.685770i \(-0.759466\pi\)
−0.727818 + 0.685770i \(0.759466\pi\)
\(860\) 0 0
\(861\) −48.4954 −0.00191953
\(862\) 6008.14 0.237399
\(863\) −28823.6 −1.13693 −0.568463 0.822709i \(-0.692462\pi\)
−0.568463 + 0.822709i \(0.692462\pi\)
\(864\) −137.982 −0.00543314
\(865\) 0 0
\(866\) 10306.0 0.404403
\(867\) −23.0795 −0.000904062 0
\(868\) −2434.46 −0.0951970
\(869\) 18966.7 0.740391
\(870\) 0 0
\(871\) −8964.63 −0.348743
\(872\) 9692.75 0.376420
\(873\) 5473.97 0.212217
\(874\) 1128.19 0.0436633
\(875\) 0 0
\(876\) −7.06471 −0.000272482 0
\(877\) −30956.1 −1.19192 −0.595961 0.803014i \(-0.703229\pi\)
−0.595961 + 0.803014i \(0.703229\pi\)
\(878\) 1591.64 0.0611791
\(879\) 479.675 0.0184062
\(880\) 0 0
\(881\) 5460.90 0.208833 0.104417 0.994534i \(-0.466702\pi\)
0.104417 + 0.994534i \(0.466702\pi\)
\(882\) −18200.6 −0.694836
\(883\) −13503.3 −0.514636 −0.257318 0.966327i \(-0.582839\pi\)
−0.257318 + 0.966327i \(0.582839\pi\)
\(884\) 1095.28 0.0416721
\(885\) 0 0
\(886\) 27901.2 1.05797
\(887\) −26835.4 −1.01583 −0.507917 0.861406i \(-0.669584\pi\)
−0.507917 + 0.861406i \(0.669584\pi\)
\(888\) 37.3313 0.00141076
\(889\) 1347.83 0.0508489
\(890\) 0 0
\(891\) 19425.0 0.730374
\(892\) 1322.95 0.0496587
\(893\) −204.229 −0.00765316
\(894\) −419.930 −0.0157098
\(895\) 0 0
\(896\) 310.193 0.0115657
\(897\) 211.252 0.00786345
\(898\) −27085.5 −1.00652
\(899\) 55253.5 2.04984
\(900\) 0 0
\(901\) −4052.42 −0.149840
\(902\) 13363.5 0.493300
\(903\) −76.4321 −0.00281672
\(904\) 14747.3 0.542576
\(905\) 0 0
\(906\) 443.288 0.0162553
\(907\) −8310.85 −0.304253 −0.152126 0.988361i \(-0.548612\pi\)
−0.152126 + 0.988361i \(0.548612\pi\)
\(908\) −15991.1 −0.584453
\(909\) −5108.00 −0.186383
\(910\) 0 0
\(911\) −10942.6 −0.397964 −0.198982 0.980003i \(-0.563764\pi\)
−0.198982 + 0.980003i \(0.563764\pi\)
\(912\) −4.38880 −0.000159350 0
\(913\) 25657.6 0.930056
\(914\) 29235.6 1.05802
\(915\) 0 0
\(916\) 15600.9 0.562737
\(917\) 2041.62 0.0735225
\(918\) −146.606 −0.00527092
\(919\) −19691.4 −0.706810 −0.353405 0.935470i \(-0.614976\pi\)
−0.353405 + 0.935470i \(0.614976\pi\)
\(920\) 0 0
\(921\) −125.606 −0.00449388
\(922\) −4189.24 −0.149637
\(923\) 15448.9 0.550929
\(924\) 20.6421 0.000734930 0
\(925\) 0 0
\(926\) −25770.4 −0.914544
\(927\) 36435.1 1.29092
\(928\) −7040.27 −0.249039
\(929\) −2746.09 −0.0969821 −0.0484910 0.998824i \(-0.515441\pi\)
−0.0484910 + 0.998824i \(0.515441\pi\)
\(930\) 0 0
\(931\) −1157.95 −0.0407629
\(932\) 11439.7 0.402058
\(933\) 187.521 0.00658002
\(934\) −22077.7 −0.773451
\(935\) 0 0
\(936\) 3478.30 0.121465
\(937\) −27740.8 −0.967185 −0.483592 0.875293i \(-0.660668\pi\)
−0.483592 + 0.875293i \(0.660668\pi\)
\(938\) −2697.55 −0.0939000
\(939\) −134.868 −0.00468716
\(940\) 0 0
\(941\) 29396.7 1.01839 0.509195 0.860651i \(-0.329943\pi\)
0.509195 + 0.860651i \(0.329943\pi\)
\(942\) −280.133 −0.00968921
\(943\) 41153.4 1.42115
\(944\) −6353.58 −0.219059
\(945\) 0 0
\(946\) 21061.9 0.723869
\(947\) −3229.30 −0.110811 −0.0554056 0.998464i \(-0.517645\pi\)
−0.0554056 + 0.998464i \(0.517645\pi\)
\(948\) −227.215 −0.00778440
\(949\) 356.222 0.0121849
\(950\) 0 0
\(951\) −554.570 −0.0189098
\(952\) 329.580 0.0112203
\(953\) −34669.0 −1.17842 −0.589212 0.807978i \(-0.700562\pi\)
−0.589212 + 0.807978i \(0.700562\pi\)
\(954\) −12869.4 −0.436751
\(955\) 0 0
\(956\) −4289.42 −0.145115
\(957\) −468.501 −0.0158250
\(958\) −26142.2 −0.881647
\(959\) −1158.20 −0.0389991
\(960\) 0 0
\(961\) 33281.6 1.11717
\(962\) −1882.35 −0.0630865
\(963\) 24498.8 0.819796
\(964\) 16969.1 0.566947
\(965\) 0 0
\(966\) 63.5680 0.00211725
\(967\) −39902.4 −1.32697 −0.663483 0.748192i \(-0.730922\pi\)
−0.663483 + 0.748192i \(0.730922\pi\)
\(968\) 4959.80 0.164684
\(969\) −4.66309 −0.000154593 0
\(970\) 0 0
\(971\) −44625.9 −1.47489 −0.737443 0.675409i \(-0.763967\pi\)
−0.737443 + 0.675409i \(0.763967\pi\)
\(972\) −698.395 −0.0230463
\(973\) 1263.18 0.0416195
\(974\) 10209.3 0.335859
\(975\) 0 0
\(976\) 6688.70 0.219365
\(977\) 12483.6 0.408788 0.204394 0.978889i \(-0.434478\pi\)
0.204394 + 0.978889i \(0.434478\pi\)
\(978\) −262.021 −0.00856700
\(979\) −35359.6 −1.15434
\(980\) 0 0
\(981\) 32705.3 1.06442
\(982\) 38094.8 1.23794
\(983\) −31684.5 −1.02805 −0.514027 0.857774i \(-0.671847\pi\)
−0.514027 + 0.857774i \(0.671847\pi\)
\(984\) −160.091 −0.00518651
\(985\) 0 0
\(986\) −7480.29 −0.241603
\(987\) −11.5073 −0.000371106 0
\(988\) 221.295 0.00712584
\(989\) 64860.7 2.08539
\(990\) 0 0
\(991\) −51910.5 −1.66397 −0.831984 0.554800i \(-0.812795\pi\)
−0.831984 + 0.554800i \(0.812795\pi\)
\(992\) −8036.56 −0.257219
\(993\) 155.281 0.00496243
\(994\) 4648.74 0.148339
\(995\) 0 0
\(996\) −307.370 −0.00977851
\(997\) 54606.9 1.73462 0.867311 0.497767i \(-0.165847\pi\)
0.867311 + 0.497767i \(0.165847\pi\)
\(998\) 1119.97 0.0355231
\(999\) 251.956 0.00797953
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.4.a.q.1.3 5
5.2 odd 4 850.4.c.n.749.3 10
5.3 odd 4 850.4.c.n.749.8 10
5.4 even 2 850.4.a.t.1.3 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
850.4.a.q.1.3 5 1.1 even 1 trivial
850.4.a.t.1.3 yes 5 5.4 even 2
850.4.c.n.749.3 10 5.2 odd 4
850.4.c.n.749.8 10 5.3 odd 4