Properties

Label 850.4.a.m
Level $850$
Weight $4$
Character orbit 850.a
Self dual yes
Analytic conductor $50.152$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [850,4,Mod(1,850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(850, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("850.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 850.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,6,-7,12,0,-14,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.1516235049\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.3732.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 13x + 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + ( - \beta_{2} - 2) q^{3} + 4 q^{4} + ( - 2 \beta_{2} - 4) q^{6} + ( - 7 \beta_1 + 4) q^{7} + 8 q^{8} + (3 \beta_{2} + 3 \beta_1 - 8) q^{9} + (9 \beta_{2} + 3 \beta_1 - 6) q^{11} + ( - 4 \beta_{2} - 8) q^{12}+ \cdots + ( - 36 \beta_{2} + 102 \beta_1 + 498) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{2} - 7 q^{3} + 12 q^{4} - 14 q^{6} + 5 q^{7} + 24 q^{8} - 18 q^{9} - 6 q^{11} - 28 q^{12} - 39 q^{13} + 10 q^{14} + 48 q^{16} + 51 q^{17} - 36 q^{18} - 110 q^{19} - 7 q^{21} - 12 q^{22} - 206 q^{23}+ \cdots + 1560 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 13x + 19 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - \beta _1 + 9 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.20633
−3.77576
1.56943
2.00000 −6.48688 4.00000 0 −12.9738 −18.4443 8.00000 15.0796 0
1.2 2.00000 −3.48059 4.00000 0 −6.96118 30.4303 8.00000 −14.8855 0
1.3 2.00000 2.96747 4.00000 0 5.93494 −6.98599 8.00000 −18.1941 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 850.4.a.m yes 3
5.b even 2 1 850.4.a.l 3
5.c odd 4 2 850.4.c.k 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
850.4.a.l 3 5.b even 2 1
850.4.a.m yes 3 1.a even 1 1 trivial
850.4.c.k 6 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(850))\):

\( T_{3}^{3} + 7T_{3}^{2} - 7T_{3} - 67 \) Copy content Toggle raw display
\( T_{7}^{3} - 5T_{7}^{2} - 645T_{7} - 3921 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 7 T^{2} + \cdots - 67 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 5 T^{2} + \cdots - 3921 \) Copy content Toggle raw display
$11$ \( T^{3} + 6 T^{2} + \cdots - 8100 \) Copy content Toggle raw display
$13$ \( T^{3} + 39 T^{2} + \cdots - 14135 \) Copy content Toggle raw display
$17$ \( (T - 17)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} + 110 T^{2} + \cdots - 378296 \) Copy content Toggle raw display
$23$ \( T^{3} + 206 T^{2} + \cdots + 279204 \) Copy content Toggle raw display
$29$ \( T^{3} - 12 T^{2} + \cdots + 441936 \) Copy content Toggle raw display
$31$ \( T^{3} + 125 T^{2} + \cdots - 69053 \) Copy content Toggle raw display
$37$ \( T^{3} + 52 T^{2} + \cdots + 1247184 \) Copy content Toggle raw display
$41$ \( T^{3} + 242 T^{2} + \cdots - 36269208 \) Copy content Toggle raw display
$43$ \( T^{3} + 656 T^{2} + \cdots - 7992272 \) Copy content Toggle raw display
$47$ \( T^{3} + 138 T^{2} + \cdots - 1034856 \) Copy content Toggle raw display
$53$ \( T^{3} + 1175 T^{2} + \cdots + 16379397 \) Copy content Toggle raw display
$59$ \( T^{3} - 468 T^{2} + \cdots + 56883312 \) Copy content Toggle raw display
$61$ \( T^{3} + 1158 T^{2} + \cdots - 2065016 \) Copy content Toggle raw display
$67$ \( T^{3} + 372 T^{2} + \cdots + 46770016 \) Copy content Toggle raw display
$71$ \( T^{3} + 485 T^{2} + \cdots - 689439 \) Copy content Toggle raw display
$73$ \( T^{3} + 412 T^{2} + \cdots + 5708208 \) Copy content Toggle raw display
$79$ \( T^{3} - 613 T^{2} + \cdots + 405833083 \) Copy content Toggle raw display
$83$ \( T^{3} + 652 T^{2} + \cdots - 50888640 \) Copy content Toggle raw display
$89$ \( T^{3} - 1018 T^{2} + \cdots + 9591384 \) Copy content Toggle raw display
$97$ \( T^{3} + 1956 T^{2} + \cdots - 92513600 \) Copy content Toggle raw display
show more
show less