Properties

Label 850.2.k.a
Level $850$
Weight $2$
Character orbit 850.k
Analytic conductor $6.787$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [850,2,Mod(171,850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(850, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([6, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("850.171"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.k (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{10}^{3} - \zeta_{10}^{2} + \cdots - 1) q^{2} + \zeta_{10}^{3} q^{3} - \zeta_{10}^{3} q^{4} + ( - 2 \zeta_{10}^{2} + \zeta_{10} - 2) q^{5} - \zeta_{10}^{2} q^{6} + ( - 2 \zeta_{10}^{3} + 2 \zeta_{10}^{2} - 1) q^{7} + \cdots + (4 \zeta_{10}^{3} - 4 \zeta_{10}^{2} - 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + q^{3} - q^{4} - 5 q^{5} + q^{6} - 8 q^{7} - q^{8} + 2 q^{9} - 5 q^{11} + q^{12} - 3 q^{14} + 5 q^{15} - q^{16} - q^{17} - 8 q^{18} - 9 q^{19} - 5 q^{20} - 7 q^{21} + 5 q^{22} - 4 q^{23}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(-\zeta_{10}^{3}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
171.1
−0.309017 0.951057i
0.809017 0.587785i
0.809017 + 0.587785i
−0.309017 + 0.951057i
0.309017 0.951057i 0.809017 + 0.587785i −0.809017 0.587785i −0.690983 2.12663i 0.809017 0.587785i −4.23607 −0.809017 + 0.587785i −0.618034 1.90211i −2.23607
341.1 −0.809017 0.587785i −0.309017 0.951057i 0.309017 + 0.951057i −1.80902 + 1.31433i −0.309017 + 0.951057i 0.236068 0.309017 0.951057i 1.61803 1.17557i 2.23607
511.1 −0.809017 + 0.587785i −0.309017 + 0.951057i 0.309017 0.951057i −1.80902 1.31433i −0.309017 0.951057i 0.236068 0.309017 + 0.951057i 1.61803 + 1.17557i 2.23607
681.1 0.309017 + 0.951057i 0.809017 0.587785i −0.809017 + 0.587785i −0.690983 + 2.12663i 0.809017 + 0.587785i −4.23607 −0.809017 0.587785i −0.618034 + 1.90211i −2.23607
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
25.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 850.2.k.a 4
25.d even 5 1 inner 850.2.k.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
850.2.k.a 4 1.a even 1 1 trivial
850.2.k.a 4 25.d even 5 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - T_{3}^{3} + T_{3}^{2} - T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(850, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} + 4 T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$13$ \( T^{4} + 10 T^{2} + \cdots + 25 \) Copy content Toggle raw display
$17$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} + 9 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$23$ \( T^{4} + 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$29$ \( T^{4} - 14 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$31$ \( T^{4} + 9 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$37$ \( T^{4} + 24 T^{3} + \cdots + 9801 \) Copy content Toggle raw display
$41$ \( T^{4} + 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( (T^{2} + 14 T + 44)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 24 T^{3} + \cdots + 15376 \) Copy content Toggle raw display
$53$ \( T^{4} + 19 T^{3} + \cdots + 6241 \) Copy content Toggle raw display
$59$ \( T^{4} + 28 T^{3} + \cdots + 13456 \) Copy content Toggle raw display
$61$ \( T^{4} - 32 T^{3} + \cdots + 30976 \) Copy content Toggle raw display
$67$ \( T^{4} + 21 T^{3} + \cdots + 9801 \) Copy content Toggle raw display
$71$ \( T^{4} + 3 T^{3} + \cdots + 3481 \) Copy content Toggle raw display
$73$ \( T^{4} - 21 T^{3} + \cdots + 2401 \) Copy content Toggle raw display
$79$ \( T^{4} + 13 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$83$ \( T^{4} + 10 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$89$ \( T^{4} + 21 T^{3} + \cdots + 11881 \) Copy content Toggle raw display
$97$ \( T^{4} + 7 T^{3} + \cdots + 1 \) Copy content Toggle raw display
show more
show less