L(s) = 1 | + (0.309 + 0.951i)2-s + (0.809 − 0.587i)3-s + (−0.809 + 0.587i)4-s + (−0.690 + 2.12i)5-s + (0.809 + 0.587i)6-s − 4.23·7-s + (−0.809 − 0.587i)8-s + (−0.618 + 1.90i)9-s − 2.23·10-s + (−0.690 − 2.12i)11-s + (−0.309 + 0.951i)12-s + (1.11 − 3.44i)13-s + (−1.30 − 4.02i)14-s + (0.690 + 2.12i)15-s + (0.309 − 0.951i)16-s + (−0.809 − 0.587i)17-s + ⋯ |
L(s) = 1 | + (0.218 + 0.672i)2-s + (0.467 − 0.339i)3-s + (−0.404 + 0.293i)4-s + (−0.309 + 0.951i)5-s + (0.330 + 0.239i)6-s − 1.60·7-s + (−0.286 − 0.207i)8-s + (−0.206 + 0.634i)9-s − 0.707·10-s + (−0.208 − 0.641i)11-s + (−0.0892 + 0.274i)12-s + (0.310 − 0.954i)13-s + (−0.349 − 1.07i)14-s + (0.178 + 0.549i)15-s + (0.0772 − 0.237i)16-s + (−0.196 − 0.142i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.535 + 0.844i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.535 + 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 - 0.951i)T \) |
| 5 | \( 1 + (0.690 - 2.12i)T \) |
| 17 | \( 1 + (0.809 + 0.587i)T \) |
good | 3 | \( 1 + (-0.809 + 0.587i)T + (0.927 - 2.85i)T^{2} \) |
| 7 | \( 1 + 4.23T + 7T^{2} \) |
| 11 | \( 1 + (0.690 + 2.12i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (-1.11 + 3.44i)T + (-10.5 - 7.64i)T^{2} \) |
| 19 | \( 1 + (3.92 + 2.85i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (1 + 3.07i)T + (-18.6 + 13.5i)T^{2} \) |
| 29 | \( 1 + (-6.85 + 4.97i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (2.80 + 2.04i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (2.64 - 8.14i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.118 + 0.363i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 4.76T + 43T^{2} \) |
| 47 | \( 1 + (8.23 - 5.98i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (6.42 - 4.66i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (2.52 - 7.77i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-3.52 - 10.8i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + (6.92 + 5.03i)T + (20.7 + 63.7i)T^{2} \) |
| 71 | \( 1 + (4.66 - 3.38i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-1.33 - 4.11i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (7.16 - 5.20i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (5.85 + 4.25i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + (4.69 + 14.4i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (0.0729 - 0.0530i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.989350998314240136847261681442, −8.729696324066883733537174381384, −8.150167611183961272576543143827, −7.23206089847342829498893566560, −6.44043191033968806180000951387, −5.90324903496849661326969241033, −4.44136706128099674441406538929, −3.10062680023013353181597163516, −2.79770283917507351596229168991, 0,
1.83323765291067446683071704496, 3.32849811484323287906651288853, 3.86125534458329329862216993767, 4.85895144864186151110376487457, 6.11046419091086427462910417422, 6.88641869148115212359990669625, 8.355996566862826321683247837621, 9.010298521244291727529496679585, 9.618487625030307645095967127680