Properties

Label 85.3.q.a.46.6
Level $85$
Weight $3$
Character 85.46
Analytic conductor $2.316$
Analytic rank $0$
Dimension $96$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [85,3,Mod(6,85)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(85, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 15])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("85.6"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 85.q (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.31608224706\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 46.6
Character \(\chi\) \(=\) 85.46
Dual form 85.3.q.a.61.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.369527 - 0.892116i) q^{2} +(2.03052 - 1.35675i) q^{3} +(2.16911 - 2.16911i) q^{4} +(-2.19310 - 0.436235i) q^{5} +(-1.96072 - 1.31011i) q^{6} +(3.61453 - 0.718974i) q^{7} +(-6.30510 - 2.61166i) q^{8} +(-1.16190 + 2.80507i) q^{9} +(0.421237 + 2.11770i) q^{10} +(2.67188 - 3.99876i) q^{11} +(1.46148 - 7.34736i) q^{12} +(1.64069 + 1.64069i) q^{13} +(-1.97707 - 2.95890i) q^{14} +(-5.04501 + 2.08971i) q^{15} -5.68035i q^{16} +(-2.30902 - 16.8425i) q^{17} +2.93181 q^{18} +(13.1725 + 31.8012i) q^{19} +(-5.70331 + 3.81083i) q^{20} +(6.36391 - 6.36391i) q^{21} +(-4.55469 - 0.905984i) q^{22} +(2.03220 + 1.35787i) q^{23} +(-16.3460 + 3.25143i) q^{24} +(4.61940 + 1.91342i) q^{25} +(0.857405 - 2.06996i) q^{26} +(5.73438 + 28.8287i) q^{27} +(6.28076 - 9.39982i) q^{28} +(-10.1660 + 51.1081i) q^{29} +(3.72853 + 3.72853i) q^{30} +(8.78233 + 13.1437i) q^{31} +(-30.2879 + 12.5457i) q^{32} -11.7447i q^{33} +(-14.1722 + 8.28365i) q^{34} -8.24067 q^{35} +(3.56422 + 8.60478i) q^{36} +(6.16017 - 4.11609i) q^{37} +(23.5028 - 23.5028i) q^{38} +(5.55746 + 1.10545i) q^{39} +(12.6884 + 8.47814i) q^{40} +(13.6935 - 2.72380i) q^{41} +(-8.02899 - 3.32572i) q^{42} +(18.3147 - 44.2156i) q^{43} +(-2.87813 - 14.4693i) q^{44} +(3.77184 - 5.64495i) q^{45} +(0.460427 - 2.31472i) q^{46} +(-23.0835 - 23.0835i) q^{47} +(-7.70683 - 11.5341i) q^{48} +(-32.7222 + 13.5540i) q^{49} -4.82810i q^{50} +(-27.5396 - 31.0663i) q^{51} +7.11764 q^{52} +(-4.77734 - 11.5335i) q^{53} +(23.5995 - 15.7687i) q^{54} +(-7.60411 + 7.60411i) q^{55} +(-24.6677 - 4.90671i) q^{56} +(69.8934 + 46.7013i) q^{57} +(49.3510 - 9.81653i) q^{58} +(-25.1448 - 10.4153i) q^{59} +(-6.41036 + 15.4760i) q^{60} +(-13.3880 - 67.3061i) q^{61} +(8.48040 - 12.6918i) q^{62} +(-2.18294 + 10.9744i) q^{63} +(6.31796 + 6.31796i) q^{64} +(-2.88247 - 4.31392i) q^{65} +(-10.4776 + 4.33997i) q^{66} -63.2487i q^{67} +(-41.5416 - 31.5246i) q^{68} +5.96872 q^{69} +(3.04515 + 7.35164i) q^{70} +(-34.6942 + 23.1819i) q^{71} +(14.6518 - 14.6518i) q^{72} +(52.0944 + 10.3622i) q^{73} +(-5.94838 - 3.97458i) q^{74} +(11.9758 - 2.38214i) q^{75} +(97.5527 + 40.4076i) q^{76} +(6.78259 - 16.3746i) q^{77} +(-1.06744 - 5.36639i) q^{78} +(-36.8708 + 55.1810i) q^{79} +(-2.47797 + 12.4576i) q^{80} +(31.4350 + 31.4350i) q^{81} +(-7.49005 - 11.2097i) q^{82} +(-109.522 + 45.3657i) q^{83} -27.6080i q^{84} +(-2.28335 + 37.9445i) q^{85} -46.2132 q^{86} +(48.6987 + 117.569i) q^{87} +(-27.2899 + 18.2345i) q^{88} +(69.2116 - 69.2116i) q^{89} +(-6.42975 - 1.27896i) q^{90} +(7.10991 + 4.75069i) q^{91} +(7.35341 - 1.46268i) q^{92} +(35.6655 + 14.7731i) q^{93} +(-12.0632 + 29.1231i) q^{94} +(-15.0158 - 75.4896i) q^{95} +(-44.4790 + 66.5676i) q^{96} +(-7.05322 + 35.4589i) q^{97} +(24.1835 + 24.1835i) q^{98} +(8.11235 + 12.1410i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 192 q^{12} - 48 q^{13} - 64 q^{14} + 16 q^{17} + 128 q^{18} + 48 q^{19} + 192 q^{22} + 112 q^{23} + 240 q^{24} - 224 q^{26} - 288 q^{27} - 480 q^{28} - 64 q^{31} - 80 q^{32} + 64 q^{34} + 192 q^{36}+ \cdots - 592 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{13}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.369527 0.892116i −0.184763 0.446058i 0.804174 0.594394i \(-0.202608\pi\)
−0.988937 + 0.148336i \(0.952608\pi\)
\(3\) 2.03052 1.35675i 0.676842 0.452251i −0.169049 0.985608i \(-0.554070\pi\)
0.845891 + 0.533357i \(0.179070\pi\)
\(4\) 2.16911 2.16911i 0.542276 0.542276i
\(5\) −2.19310 0.436235i −0.438621 0.0872470i
\(6\) −1.96072 1.31011i −0.326786 0.218351i
\(7\) 3.61453 0.718974i 0.516361 0.102711i 0.0699708 0.997549i \(-0.477709\pi\)
0.446390 + 0.894838i \(0.352709\pi\)
\(8\) −6.30510 2.61166i −0.788138 0.326457i
\(9\) −1.16190 + 2.80507i −0.129100 + 0.311675i
\(10\) 0.421237 + 2.11770i 0.0421237 + 0.211770i
\(11\) 2.67188 3.99876i 0.242898 0.363523i −0.689910 0.723895i \(-0.742350\pi\)
0.932809 + 0.360372i \(0.117350\pi\)
\(12\) 1.46148 7.34736i 0.121790 0.612280i
\(13\) 1.64069 + 1.64069i 0.126207 + 0.126207i 0.767389 0.641182i \(-0.221556\pi\)
−0.641182 + 0.767389i \(0.721556\pi\)
\(14\) −1.97707 2.95890i −0.141219 0.211350i
\(15\) −5.04501 + 2.08971i −0.336334 + 0.139314i
\(16\) 5.68035i 0.355022i
\(17\) −2.30902 16.8425i −0.135825 0.990733i
\(18\) 2.93181 0.162878
\(19\) 13.1725 + 31.8012i 0.693289 + 1.67375i 0.738047 + 0.674749i \(0.235748\pi\)
−0.0447581 + 0.998998i \(0.514252\pi\)
\(20\) −5.70331 + 3.81083i −0.285166 + 0.190542i
\(21\) 6.36391 6.36391i 0.303044 0.303044i
\(22\) −4.55469 0.905984i −0.207031 0.0411811i
\(23\) 2.03220 + 1.35787i 0.0883563 + 0.0590378i 0.598964 0.800776i \(-0.295579\pi\)
−0.510607 + 0.859814i \(0.670579\pi\)
\(24\) −16.3460 + 3.25143i −0.681085 + 0.135476i
\(25\) 4.61940 + 1.91342i 0.184776 + 0.0765367i
\(26\) 0.857405 2.06996i 0.0329771 0.0796138i
\(27\) 5.73438 + 28.8287i 0.212385 + 1.06773i
\(28\) 6.28076 9.39982i 0.224313 0.335708i
\(29\) −10.1660 + 51.1081i −0.350553 + 1.76235i 0.255387 + 0.966839i \(0.417797\pi\)
−0.605940 + 0.795510i \(0.707203\pi\)
\(30\) 3.72853 + 3.72853i 0.124284 + 0.124284i
\(31\) 8.78233 + 13.1437i 0.283301 + 0.423990i 0.945640 0.325214i \(-0.105436\pi\)
−0.662339 + 0.749204i \(0.730436\pi\)
\(32\) −30.2879 + 12.5457i −0.946498 + 0.392052i
\(33\) 11.7447i 0.355899i
\(34\) −14.1722 + 8.28365i −0.416829 + 0.243637i
\(35\) −8.24067 −0.235448
\(36\) 3.56422 + 8.60478i 0.0990061 + 0.239022i
\(37\) 6.16017 4.11609i 0.166491 0.111246i −0.469533 0.882915i \(-0.655578\pi\)
0.636024 + 0.771669i \(0.280578\pi\)
\(38\) 23.5028 23.5028i 0.618494 0.618494i
\(39\) 5.55746 + 1.10545i 0.142499 + 0.0283448i
\(40\) 12.6884 + 8.47814i 0.317211 + 0.211954i
\(41\) 13.6935 2.72380i 0.333987 0.0664342i −0.0252481 0.999681i \(-0.508038\pi\)
0.359235 + 0.933247i \(0.383038\pi\)
\(42\) −8.02899 3.32572i −0.191166 0.0791837i
\(43\) 18.3147 44.2156i 0.425923 1.02827i −0.554645 0.832087i \(-0.687146\pi\)
0.980568 0.196182i \(-0.0628543\pi\)
\(44\) −2.87813 14.4693i −0.0654120 0.328848i
\(45\) 3.77184 5.64495i 0.0838186 0.125443i
\(46\) 0.460427 2.31472i 0.0100093 0.0503201i
\(47\) −23.0835 23.0835i −0.491138 0.491138i 0.417527 0.908665i \(-0.362897\pi\)
−0.908665 + 0.417527i \(0.862897\pi\)
\(48\) −7.70683 11.5341i −0.160559 0.240293i
\(49\) −32.7222 + 13.5540i −0.667800 + 0.276612i
\(50\) 4.82810i 0.0965620i
\(51\) −27.5396 31.0663i −0.539992 0.609142i
\(52\) 7.11764 0.136878
\(53\) −4.77734 11.5335i −0.0901386 0.217614i 0.872381 0.488827i \(-0.162575\pi\)
−0.962519 + 0.271213i \(0.912575\pi\)
\(54\) 23.5995 15.7687i 0.437029 0.292013i
\(55\) −7.60411 + 7.60411i −0.138257 + 0.138257i
\(56\) −24.6677 4.90671i −0.440494 0.0876197i
\(57\) 69.8934 + 46.7013i 1.22620 + 0.819321i
\(58\) 49.3510 9.81653i 0.850880 0.169250i
\(59\) −25.1448 10.4153i −0.426183 0.176531i 0.159274 0.987234i \(-0.449085\pi\)
−0.585457 + 0.810704i \(0.699085\pi\)
\(60\) −6.41036 + 15.4760i −0.106839 + 0.257933i
\(61\) −13.3880 67.3061i −0.219476 1.10338i −0.920650 0.390389i \(-0.872340\pi\)
0.701174 0.712990i \(-0.252660\pi\)
\(62\) 8.48040 12.6918i 0.136781 0.204707i
\(63\) −2.18294 + 10.9744i −0.0346499 + 0.174197i
\(64\) 6.31796 + 6.31796i 0.0987181 + 0.0987181i
\(65\) −2.88247 4.31392i −0.0443456 0.0663679i
\(66\) −10.4776 + 4.33997i −0.158752 + 0.0657571i
\(67\) 63.2487i 0.944011i −0.881596 0.472005i \(-0.843530\pi\)
0.881596 0.472005i \(-0.156470\pi\)
\(68\) −41.5416 31.5246i −0.610906 0.463596i
\(69\) 5.96872 0.0865031
\(70\) 3.04515 + 7.35164i 0.0435021 + 0.105023i
\(71\) −34.6942 + 23.1819i −0.488651 + 0.326506i −0.775369 0.631509i \(-0.782436\pi\)
0.286717 + 0.958015i \(0.407436\pi\)
\(72\) 14.6518 14.6518i 0.203497 0.203497i
\(73\) 52.0944 + 10.3622i 0.713622 + 0.141948i 0.538533 0.842604i \(-0.318979\pi\)
0.175089 + 0.984553i \(0.443979\pi\)
\(74\) −5.94838 3.97458i −0.0803835 0.0537105i
\(75\) 11.9758 2.38214i 0.159678 0.0317619i
\(76\) 97.5527 + 40.4076i 1.28359 + 0.531679i
\(77\) 6.78259 16.3746i 0.0880856 0.212657i
\(78\) −1.06744 5.36639i −0.0136852 0.0687999i
\(79\) −36.8708 + 55.1810i −0.466718 + 0.698494i −0.987924 0.154937i \(-0.950482\pi\)
0.521206 + 0.853431i \(0.325482\pi\)
\(80\) −2.47797 + 12.4576i −0.0309746 + 0.155720i
\(81\) 31.4350 + 31.4350i 0.388087 + 0.388087i
\(82\) −7.49005 11.2097i −0.0913421 0.136703i
\(83\) −109.522 + 45.3657i −1.31955 + 0.546574i −0.927655 0.373437i \(-0.878179\pi\)
−0.391891 + 0.920012i \(0.628179\pi\)
\(84\) 27.6080i 0.328667i
\(85\) −2.28335 + 37.9445i −0.0268630 + 0.446406i
\(86\) −46.2132 −0.537363
\(87\) 48.6987 + 117.569i 0.559755 + 1.35137i
\(88\) −27.2899 + 18.2345i −0.310112 + 0.207210i
\(89\) 69.2116 69.2116i 0.777658 0.777658i −0.201774 0.979432i \(-0.564671\pi\)
0.979432 + 0.201774i \(0.0646707\pi\)
\(90\) −6.42975 1.27896i −0.0714417 0.0142106i
\(91\) 7.10991 + 4.75069i 0.0781309 + 0.0522054i
\(92\) 7.35341 1.46268i 0.0799283 0.0158987i
\(93\) 35.6655 + 14.7731i 0.383500 + 0.158851i
\(94\) −12.0632 + 29.1231i −0.128332 + 0.309820i
\(95\) −15.0158 75.4896i −0.158061 0.794627i
\(96\) −44.4790 + 66.5676i −0.463323 + 0.693412i
\(97\) −7.05322 + 35.4589i −0.0727136 + 0.365556i −0.999960 0.00889462i \(-0.997169\pi\)
0.927247 + 0.374451i \(0.122169\pi\)
\(98\) 24.1835 + 24.1835i 0.246770 + 0.246770i
\(99\) 8.11235 + 12.1410i 0.0819429 + 0.122636i
\(100\) 14.1704 5.86956i 0.141704 0.0586956i
\(101\) 124.397i 1.23166i −0.787880 0.615829i \(-0.788821\pi\)
0.787880 0.615829i \(-0.211179\pi\)
\(102\) −17.5381 + 36.0483i −0.171942 + 0.353415i
\(103\) −163.755 −1.58985 −0.794925 0.606707i \(-0.792490\pi\)
−0.794925 + 0.606707i \(0.792490\pi\)
\(104\) −6.05978 14.6296i −0.0582671 0.140669i
\(105\) −16.7329 + 11.1806i −0.159361 + 0.106481i
\(106\) −8.52390 + 8.52390i −0.0804141 + 0.0804141i
\(107\) −4.64598 0.924143i −0.0434204 0.00863685i 0.173332 0.984863i \(-0.444547\pi\)
−0.216753 + 0.976227i \(0.569547\pi\)
\(108\) 74.9709 + 50.0940i 0.694175 + 0.463833i
\(109\) 39.3336 7.82394i 0.360859 0.0717792i −0.0113314 0.999936i \(-0.503607\pi\)
0.372190 + 0.928157i \(0.378607\pi\)
\(110\) 9.59368 + 3.97383i 0.0872152 + 0.0361257i
\(111\) 6.92385 16.7156i 0.0623770 0.150591i
\(112\) −4.08402 20.5318i −0.0364645 0.183319i
\(113\) −64.0781 + 95.8997i −0.567063 + 0.848670i −0.998571 0.0534391i \(-0.982982\pi\)
0.431508 + 0.902109i \(0.357982\pi\)
\(114\) 15.8355 79.6105i 0.138908 0.698337i
\(115\) −3.86446 3.86446i −0.0336040 0.0336040i
\(116\) 88.8077 + 132.910i 0.765583 + 1.14578i
\(117\) −6.50856 + 2.69593i −0.0556287 + 0.0230422i
\(118\) 26.2808i 0.222719i
\(119\) −20.4553 59.2174i −0.171893 0.497625i
\(120\) 37.2669 0.310558
\(121\) 37.4536 + 90.4210i 0.309534 + 0.747281i
\(122\) −55.0977 + 36.8151i −0.451620 + 0.301763i
\(123\) 24.1094 24.1094i 0.196011 0.196011i
\(124\) 47.5599 + 9.46024i 0.383547 + 0.0762923i
\(125\) −9.29611 6.21146i −0.0743689 0.0496917i
\(126\) 10.5971 2.10789i 0.0841039 0.0167293i
\(127\) −221.668 91.8180i −1.74542 0.722976i −0.998300 0.0582871i \(-0.981436\pi\)
−0.747120 0.664689i \(-0.768564\pi\)
\(128\) −46.8810 + 113.181i −0.366258 + 0.884225i
\(129\) −22.8012 114.629i −0.176753 0.888599i
\(130\) −2.78337 + 4.16560i −0.0214105 + 0.0320431i
\(131\) 42.5779 214.053i 0.325022 1.63400i −0.380126 0.924935i \(-0.624119\pi\)
0.705147 0.709061i \(-0.250881\pi\)
\(132\) −25.4754 25.4754i −0.192995 0.192995i
\(133\) 70.4765 + 105.476i 0.529899 + 0.793049i
\(134\) −56.4252 + 23.3721i −0.421084 + 0.174419i
\(135\) 65.7258i 0.486858i
\(136\) −29.4281 + 112.224i −0.216383 + 0.825175i
\(137\) 153.897 1.12334 0.561668 0.827362i \(-0.310160\pi\)
0.561668 + 0.827362i \(0.310160\pi\)
\(138\) −2.20560 5.32479i −0.0159826 0.0385854i
\(139\) 152.360 101.804i 1.09611 0.732401i 0.130259 0.991480i \(-0.458419\pi\)
0.965856 + 0.259079i \(0.0834191\pi\)
\(140\) −17.8749 + 17.8749i −0.127678 + 0.127678i
\(141\) −78.1901 15.5530i −0.554540 0.110305i
\(142\) 33.5014 + 22.3849i 0.235926 + 0.157640i
\(143\) 10.9444 2.17698i 0.0765344 0.0152236i
\(144\) 15.9338 + 6.60000i 0.110651 + 0.0458333i
\(145\) 44.5903 107.651i 0.307519 0.742418i
\(146\) −10.0060 50.3034i −0.0685341 0.344544i
\(147\) −48.0539 + 71.9177i −0.326897 + 0.489236i
\(148\) 4.43381 22.2903i 0.0299582 0.150610i
\(149\) 40.3951 + 40.3951i 0.271108 + 0.271108i 0.829546 0.558438i \(-0.188599\pi\)
−0.558438 + 0.829546i \(0.688599\pi\)
\(150\) −6.55054 9.80358i −0.0436703 0.0653572i
\(151\) −54.5664 + 22.6021i −0.361367 + 0.149683i −0.555977 0.831198i \(-0.687656\pi\)
0.194610 + 0.980881i \(0.437656\pi\)
\(152\) 234.912i 1.54547i
\(153\) 49.9272 + 13.0923i 0.326322 + 0.0855704i
\(154\) −17.1144 −0.111133
\(155\) −13.5268 32.6566i −0.0872698 0.210688i
\(156\) 14.4525 9.65688i 0.0926445 0.0619031i
\(157\) 3.65977 3.65977i 0.0233107 0.0233107i −0.695355 0.718666i \(-0.744753\pi\)
0.718666 + 0.695355i \(0.244753\pi\)
\(158\) 62.8526 + 12.5022i 0.397801 + 0.0791276i
\(159\) −25.3487 16.9374i −0.159426 0.106525i
\(160\) 71.8974 14.3013i 0.449359 0.0893831i
\(161\) 8.32169 + 3.44696i 0.0516875 + 0.0214097i
\(162\) 16.4276 39.6598i 0.101405 0.244813i
\(163\) −21.4707 107.940i −0.131722 0.662211i −0.989067 0.147469i \(-0.952887\pi\)
0.857345 0.514743i \(-0.172113\pi\)
\(164\) 23.7944 35.6108i 0.145088 0.217139i
\(165\) −5.12343 + 25.7572i −0.0310511 + 0.156104i
\(166\) 80.9429 + 80.9429i 0.487608 + 0.487608i
\(167\) 118.557 + 177.433i 0.709923 + 1.06247i 0.994593 + 0.103849i \(0.0331158\pi\)
−0.284671 + 0.958625i \(0.591884\pi\)
\(168\) −56.7455 + 23.5048i −0.337771 + 0.139909i
\(169\) 163.616i 0.968144i
\(170\) 34.6947 11.9845i 0.204086 0.0704970i
\(171\) −104.510 −0.611169
\(172\) −56.1817 135.635i −0.326638 0.788574i
\(173\) 150.906 100.832i 0.872287 0.582844i −0.0368589 0.999320i \(-0.511735\pi\)
0.909146 + 0.416477i \(0.136735\pi\)
\(174\) 86.8898 86.8898i 0.499367 0.499367i
\(175\) 18.0726 + 3.59487i 0.103272 + 0.0205421i
\(176\) −22.7143 15.1772i −0.129059 0.0862343i
\(177\) −65.1881 + 12.9667i −0.368295 + 0.0732583i
\(178\) −87.3203 36.1693i −0.490564 0.203198i
\(179\) −13.9147 + 33.5930i −0.0777356 + 0.187670i −0.957970 0.286869i \(-0.907385\pi\)
0.880234 + 0.474540i \(0.157385\pi\)
\(180\) −4.06299 20.4260i −0.0225721 0.113478i
\(181\) −115.240 + 172.469i −0.636686 + 0.952868i 0.363091 + 0.931754i \(0.381721\pi\)
−0.999777 + 0.0211143i \(0.993279\pi\)
\(182\) 1.61087 8.09838i 0.00885092 0.0444966i
\(183\) −118.503 118.503i −0.647555 0.647555i
\(184\) −9.26691 13.8689i −0.0503636 0.0753745i
\(185\) −15.3055 + 6.33973i −0.0827322 + 0.0342688i
\(186\) 37.2768i 0.200413i
\(187\) −73.5183 35.7679i −0.393146 0.191272i
\(188\) −100.141 −0.532665
\(189\) 41.4541 + 100.079i 0.219334 + 0.529519i
\(190\) −61.7968 + 41.2913i −0.325246 + 0.217323i
\(191\) −131.649 + 131.649i −0.689260 + 0.689260i −0.962068 0.272808i \(-0.912048\pi\)
0.272808 + 0.962068i \(0.412048\pi\)
\(192\) 21.4007 + 4.25686i 0.111462 + 0.0221712i
\(193\) 224.053 + 149.707i 1.16089 + 0.775685i 0.978237 0.207492i \(-0.0665301\pi\)
0.182657 + 0.983177i \(0.441530\pi\)
\(194\) 34.2399 6.81073i 0.176494 0.0351069i
\(195\) −11.7058 4.84872i −0.0600299 0.0248652i
\(196\) −41.5779 + 100.378i −0.212132 + 0.512133i
\(197\) 42.9951 + 216.151i 0.218249 + 1.09721i 0.922126 + 0.386890i \(0.126451\pi\)
−0.703877 + 0.710322i \(0.748549\pi\)
\(198\) 7.83344 11.7236i 0.0395628 0.0592100i
\(199\) −48.6247 + 244.453i −0.244345 + 1.22841i 0.642480 + 0.766302i \(0.277905\pi\)
−0.886826 + 0.462104i \(0.847095\pi\)
\(200\) −24.1286 24.1286i −0.120643 0.120643i
\(201\) −85.8129 128.428i −0.426930 0.638946i
\(202\) −110.977 + 45.9682i −0.549391 + 0.227565i
\(203\) 192.041i 0.946013i
\(204\) −127.122 7.64973i −0.623148 0.0374987i
\(205\) −31.2194 −0.152290
\(206\) 60.5117 + 146.088i 0.293746 + 0.709166i
\(207\) −6.17013 + 4.12275i −0.0298074 + 0.0199167i
\(208\) 9.31967 9.31967i 0.0448061 0.0448061i
\(209\) 162.361 + 32.2955i 0.776845 + 0.154524i
\(210\) 16.1576 + 10.7962i 0.0769410 + 0.0514103i
\(211\) 9.91358 1.97193i 0.0469838 0.00934565i −0.171542 0.985177i \(-0.554875\pi\)
0.218526 + 0.975831i \(0.429875\pi\)
\(212\) −35.3800 14.6549i −0.166887 0.0691268i
\(213\) −38.9953 + 94.1430i −0.183077 + 0.441986i
\(214\) 0.892371 + 4.48625i 0.00416996 + 0.0209638i
\(215\) −59.4544 + 88.9798i −0.276532 + 0.413859i
\(216\) 39.1348 196.744i 0.181180 0.910852i
\(217\) 41.1939 + 41.1939i 0.189834 + 0.189834i
\(218\) −21.5147 32.1990i −0.0986912 0.147702i
\(219\) 119.838 49.6385i 0.547206 0.226660i
\(220\) 32.9882i 0.149947i
\(221\) 23.8448 31.4216i 0.107895 0.142179i
\(222\) −17.4709 −0.0786975
\(223\) −93.5097 225.752i −0.419326 1.01234i −0.982543 0.186034i \(-0.940437\pi\)
0.563217 0.826309i \(-0.309563\pi\)
\(224\) −100.457 + 67.1229i −0.448467 + 0.299656i
\(225\) −10.7346 + 10.7346i −0.0477091 + 0.0477091i
\(226\) 109.232 + 21.7277i 0.483329 + 0.0961401i
\(227\) 329.953 + 220.468i 1.45354 + 0.971223i 0.996657 + 0.0816943i \(0.0260331\pi\)
0.456880 + 0.889528i \(0.348967\pi\)
\(228\) 252.906 50.3062i 1.10924 0.220641i
\(229\) −387.156 160.365i −1.69064 0.700286i −0.690896 0.722954i \(-0.742784\pi\)
−0.999743 + 0.0226689i \(0.992784\pi\)
\(230\) −2.01953 + 4.87557i −0.00878056 + 0.0211981i
\(231\) −8.44410 42.4514i −0.0365546 0.183772i
\(232\) 197.575 295.692i 0.851616 1.27453i
\(233\) −49.9022 + 250.875i −0.214172 + 1.07672i 0.712737 + 0.701432i \(0.247455\pi\)
−0.926909 + 0.375286i \(0.877545\pi\)
\(234\) 4.81017 + 4.81017i 0.0205563 + 0.0205563i
\(235\) 40.5546 + 60.6942i 0.172573 + 0.258273i
\(236\) −77.1336 + 31.9498i −0.326837 + 0.135380i
\(237\) 162.071i 0.683843i
\(238\) −45.2700 + 40.1309i −0.190210 + 0.168617i
\(239\) 226.338 0.947021 0.473511 0.880788i \(-0.342987\pi\)
0.473511 + 0.880788i \(0.342987\pi\)
\(240\) 11.8703 + 28.6574i 0.0494596 + 0.119406i
\(241\) 380.956 254.547i 1.58073 1.05621i 0.617846 0.786299i \(-0.288006\pi\)
0.962885 0.269911i \(-0.0869943\pi\)
\(242\) 66.8260 66.8260i 0.276140 0.276140i
\(243\) −152.979 30.4294i −0.629543 0.125224i
\(244\) −175.034 116.954i −0.717353 0.479320i
\(245\) 77.6759 15.4507i 0.317045 0.0630641i
\(246\) −30.4175 12.5993i −0.123648 0.0512168i
\(247\) −30.5639 + 73.7877i −0.123740 + 0.298736i
\(248\) −21.0467 105.809i −0.0848656 0.426648i
\(249\) −160.838 + 240.711i −0.645935 + 0.966710i
\(250\) −2.10619 + 10.5885i −0.00842475 + 0.0423541i
\(251\) 74.4069 + 74.4069i 0.296442 + 0.296442i 0.839618 0.543177i \(-0.182779\pi\)
−0.543177 + 0.839618i \(0.682779\pi\)
\(252\) 19.0696 + 28.5396i 0.0756729 + 0.113253i
\(253\) 10.8596 4.49818i 0.0429232 0.0177794i
\(254\) 231.683i 0.912138i
\(255\) 46.8449 + 80.1452i 0.183706 + 0.314295i
\(256\) 154.034 0.601695
\(257\) −31.6976 76.5248i −0.123337 0.297762i 0.850136 0.526563i \(-0.176519\pi\)
−0.973473 + 0.228801i \(0.926519\pi\)
\(258\) −93.8371 + 62.6999i −0.363710 + 0.243023i
\(259\) 19.3067 19.3067i 0.0745433 0.0745433i
\(260\) −15.6097 3.10497i −0.0600374 0.0119422i
\(261\) −131.550 87.8990i −0.504023 0.336778i
\(262\) −206.694 + 41.1140i −0.788909 + 0.156924i
\(263\) −2.23755 0.926824i −0.00850780 0.00352405i 0.378425 0.925632i \(-0.376466\pi\)
−0.386933 + 0.922108i \(0.626466\pi\)
\(264\) −30.6730 + 74.0513i −0.116186 + 0.280497i
\(265\) 5.44588 + 27.3783i 0.0205505 + 0.103314i
\(266\) 68.0535 101.849i 0.255840 0.382892i
\(267\) 46.6328 234.439i 0.174655 0.878048i
\(268\) −137.193 137.193i −0.511915 0.511915i
\(269\) 79.6966 + 119.274i 0.296270 + 0.443399i 0.949503 0.313757i \(-0.101588\pi\)
−0.653233 + 0.757157i \(0.726588\pi\)
\(270\) −58.6351 + 24.2874i −0.217167 + 0.0899535i
\(271\) 51.5741i 0.190310i 0.995462 + 0.0951551i \(0.0303347\pi\)
−0.995462 + 0.0951551i \(0.969665\pi\)
\(272\) −95.6710 + 13.1160i −0.351732 + 0.0482207i
\(273\) 20.8824 0.0764922
\(274\) −56.8691 137.294i −0.207552 0.501074i
\(275\) 19.9938 13.3594i 0.0727047 0.0485797i
\(276\) 12.9468 12.9468i 0.0469086 0.0469086i
\(277\) −350.729 69.7643i −1.26617 0.251857i −0.484080 0.875024i \(-0.660846\pi\)
−0.782089 + 0.623167i \(0.785846\pi\)
\(278\) −147.122 98.3037i −0.529215 0.353610i
\(279\) −47.0732 + 9.36344i −0.168721 + 0.0335607i
\(280\) 51.9583 + 21.5218i 0.185565 + 0.0768636i
\(281\) 182.827 441.383i 0.650630 1.57076i −0.161236 0.986916i \(-0.551548\pi\)
0.811866 0.583844i \(-0.198452\pi\)
\(282\) 15.0183 + 75.5019i 0.0532563 + 0.267737i
\(283\) 122.046 182.654i 0.431257 0.645422i −0.550661 0.834729i \(-0.685624\pi\)
0.981918 + 0.189307i \(0.0606242\pi\)
\(284\) −24.9714 + 125.540i −0.0879273 + 0.442041i
\(285\) −132.911 132.911i −0.466353 0.466353i
\(286\) −5.98638 8.95925i −0.0209314 0.0313260i
\(287\) 47.5371 19.6905i 0.165634 0.0686080i
\(288\) 99.5367i 0.345614i
\(289\) −278.337 + 77.7792i −0.963103 + 0.269132i
\(290\) −112.514 −0.387980
\(291\) 33.7873 + 81.5697i 0.116108 + 0.280308i
\(292\) 135.475 90.5216i 0.463956 0.310005i
\(293\) 352.092 352.092i 1.20168 1.20168i 0.228023 0.973656i \(-0.426774\pi\)
0.973656 0.228023i \(-0.0732262\pi\)
\(294\) 81.9161 + 16.2941i 0.278626 + 0.0554222i
\(295\) 50.6016 + 33.8109i 0.171531 + 0.114613i
\(296\) −49.5903 + 9.86412i −0.167535 + 0.0333247i
\(297\) 130.600 + 54.0965i 0.439732 + 0.182143i
\(298\) 21.1101 50.9642i 0.0708392 0.171021i
\(299\) 1.10636 + 5.56203i 0.00370019 + 0.0186021i
\(300\) 20.8097 31.1440i 0.0693658 0.103813i
\(301\) 34.4091 172.986i 0.114316 0.574705i
\(302\) 40.3275 + 40.3275i 0.133535 + 0.133535i
\(303\) −168.777 252.592i −0.557019 0.833637i
\(304\) 180.642 74.8243i 0.594217 0.246133i
\(305\) 153.450i 0.503113i
\(306\) −6.76960 49.3788i −0.0221229 0.161369i
\(307\) 153.821 0.501046 0.250523 0.968111i \(-0.419397\pi\)
0.250523 + 0.968111i \(0.419397\pi\)
\(308\) −20.8061 50.2304i −0.0675524 0.163086i
\(309\) −332.508 + 222.175i −1.07608 + 0.719012i
\(310\) −24.1350 + 24.1350i −0.0778548 + 0.0778548i
\(311\) −301.680 60.0079i −0.970032 0.192951i −0.315450 0.948942i \(-0.602155\pi\)
−0.654582 + 0.755991i \(0.727155\pi\)
\(312\) −32.1533 21.4841i −0.103055 0.0688594i
\(313\) 234.843 46.7133i 0.750299 0.149244i 0.194894 0.980824i \(-0.437564\pi\)
0.555404 + 0.831581i \(0.312564\pi\)
\(314\) −4.61733 1.91256i −0.0147049 0.00609095i
\(315\) 9.57483 23.1157i 0.0303963 0.0733831i
\(316\) 39.7168 + 199.670i 0.125686 + 0.631867i
\(317\) 163.783 245.119i 0.516666 0.773245i −0.477782 0.878479i \(-0.658559\pi\)
0.994448 + 0.105233i \(0.0335590\pi\)
\(318\) −5.74316 + 28.8728i −0.0180602 + 0.0907950i
\(319\) 177.206 + 177.206i 0.555506 + 0.555506i
\(320\) −11.0998 16.6121i −0.0346869 0.0519127i
\(321\) −10.6876 + 4.42695i −0.0332947 + 0.0137911i
\(322\) 8.69766i 0.0270114i
\(323\) 505.195 295.287i 1.56407 0.914200i
\(324\) 136.372 0.420900
\(325\) 4.43966 + 10.7183i 0.0136605 + 0.0329794i
\(326\) −88.3614 + 59.0412i −0.271047 + 0.181108i
\(327\) 69.2527 69.2527i 0.211782 0.211782i
\(328\) −93.4524 18.5888i −0.284916 0.0566733i
\(329\) −100.032 66.8394i −0.304049 0.203159i
\(330\) 24.8717 4.94729i 0.0753688 0.0149918i
\(331\) 325.328 + 134.755i 0.982865 + 0.407116i 0.815486 0.578777i \(-0.196470\pi\)
0.167379 + 0.985893i \(0.446470\pi\)
\(332\) −139.163 + 335.968i −0.419165 + 1.01195i
\(333\) 4.38845 + 22.0622i 0.0131785 + 0.0662529i
\(334\) 114.481 171.333i 0.342758 0.512973i
\(335\) −27.5913 + 138.711i −0.0823622 + 0.414063i
\(336\) −36.1492 36.1492i −0.107587 0.107587i
\(337\) −104.502 156.398i −0.310095 0.464090i 0.643386 0.765542i \(-0.277529\pi\)
−0.953482 + 0.301451i \(0.902529\pi\)
\(338\) −145.965 + 60.4606i −0.431849 + 0.178878i
\(339\) 281.665i 0.830870i
\(340\) 77.3528 + 87.2585i 0.227508 + 0.256643i
\(341\) 76.0238 0.222944
\(342\) 38.6192 + 93.2349i 0.112922 + 0.272617i
\(343\) −258.678 + 172.843i −0.754165 + 0.503917i
\(344\) −230.952 + 230.952i −0.671372 + 0.671372i
\(345\) −13.0900 2.60376i −0.0379420 0.00754714i
\(346\) −145.718 97.3654i −0.421149 0.281403i
\(347\) −355.397 + 70.6929i −1.02420 + 0.203726i −0.678485 0.734614i \(-0.737363\pi\)
−0.345714 + 0.938340i \(0.612363\pi\)
\(348\) 360.652 + 149.387i 1.03636 + 0.429273i
\(349\) 121.253 292.730i 0.347429 0.838767i −0.649493 0.760367i \(-0.725019\pi\)
0.996922 0.0783995i \(-0.0249810\pi\)
\(350\) −3.47128 17.4513i −0.00991794 0.0498608i
\(351\) −37.8905 + 56.7071i −0.107950 + 0.161559i
\(352\) −30.7588 + 154.635i −0.0873828 + 0.439303i
\(353\) −77.6740 77.6740i −0.220040 0.220040i 0.588475 0.808515i \(-0.299728\pi\)
−0.808515 + 0.588475i \(0.799728\pi\)
\(354\) 35.6566 + 53.3639i 0.100725 + 0.150745i
\(355\) 86.2008 35.7055i 0.242819 0.100579i
\(356\) 300.254i 0.843411i
\(357\) −121.878 92.4896i −0.341396 0.259074i
\(358\) 35.1107 0.0980746
\(359\) 181.912 + 439.175i 0.506719 + 1.22333i 0.945761 + 0.324862i \(0.105318\pi\)
−0.439042 + 0.898467i \(0.644682\pi\)
\(360\) −38.5245 + 25.7413i −0.107013 + 0.0715035i
\(361\) −582.536 + 582.536i −1.61367 + 1.61367i
\(362\) 196.447 + 39.0757i 0.542671 + 0.107944i
\(363\) 198.729 + 132.787i 0.547464 + 0.365804i
\(364\) 25.7269 5.11740i 0.0706783 0.0140588i
\(365\) −109.728 45.4509i −0.300625 0.124523i
\(366\) −61.9282 + 149.508i −0.169203 + 0.408492i
\(367\) −25.3166 127.275i −0.0689824 0.346798i 0.930844 0.365416i \(-0.119073\pi\)
−0.999827 + 0.0186181i \(0.994073\pi\)
\(368\) 7.71317 11.5436i 0.0209597 0.0313684i
\(369\) −8.26998 + 41.5760i −0.0224119 + 0.112672i
\(370\) 11.3116 + 11.3116i 0.0305718 + 0.0305718i
\(371\) −25.5601 38.2535i −0.0688953 0.103109i
\(372\) 109.407 45.3177i 0.294104 0.121822i
\(373\) 602.500i 1.61528i 0.589676 + 0.807640i \(0.299256\pi\)
−0.589676 + 0.807640i \(0.700744\pi\)
\(374\) −4.74213 + 78.8041i −0.0126795 + 0.210706i
\(375\) −27.3034 −0.0728091
\(376\) 85.2575 + 205.830i 0.226749 + 0.547420i
\(377\) −100.532 + 67.1731i −0.266662 + 0.178178i
\(378\) 73.9639 73.9639i 0.195672 0.195672i
\(379\) −345.346 68.6936i −0.911203 0.181250i −0.282838 0.959168i \(-0.591276\pi\)
−0.628365 + 0.777918i \(0.716276\pi\)
\(380\) −196.316 131.174i −0.516620 0.345195i
\(381\) −574.677 + 114.310i −1.50834 + 0.300027i
\(382\) 166.094 + 68.7983i 0.434800 + 0.180100i
\(383\) −94.9085 + 229.129i −0.247803 + 0.598249i −0.998017 0.0629459i \(-0.979950\pi\)
0.750214 + 0.661195i \(0.229950\pi\)
\(384\) 58.3653 + 293.422i 0.151993 + 0.764121i
\(385\) −22.0181 + 32.9524i −0.0571899 + 0.0855907i
\(386\) 50.7628 255.202i 0.131510 0.661144i
\(387\) 102.748 + 102.748i 0.265499 + 0.265499i
\(388\) 61.6150 + 92.2134i 0.158802 + 0.237663i
\(389\) 343.713 142.371i 0.883581 0.365991i 0.105697 0.994398i \(-0.466293\pi\)
0.777885 + 0.628407i \(0.216293\pi\)
\(390\) 12.2347i 0.0313710i
\(391\) 18.1775 37.3625i 0.0464897 0.0955563i
\(392\) 241.715 0.616621
\(393\) −203.962 492.408i −0.518988 1.25295i
\(394\) 176.944 118.230i 0.449096 0.300077i
\(395\) 104.933 104.933i 0.265654 0.265654i
\(396\) 43.9316 + 8.73854i 0.110938 + 0.0220670i
\(397\) −629.967 420.930i −1.58682 1.06028i −0.959575 0.281454i \(-0.909183\pi\)
−0.627243 0.778824i \(-0.715817\pi\)
\(398\) 236.049 46.9530i 0.593087 0.117972i
\(399\) 286.209 + 118.552i 0.717315 + 0.297122i
\(400\) 10.8689 26.2398i 0.0271722 0.0655995i
\(401\) 78.7581 + 395.944i 0.196404 + 0.987391i 0.945672 + 0.325123i \(0.105406\pi\)
−0.749267 + 0.662268i \(0.769594\pi\)
\(402\) −82.8627 + 124.013i −0.206126 + 0.308489i
\(403\) −7.15562 + 35.9737i −0.0177559 + 0.0892648i
\(404\) −269.831 269.831i −0.667899 0.667899i
\(405\) −55.2272 82.6533i −0.136363 0.204082i
\(406\) 171.323 70.9642i 0.421977 0.174789i
\(407\) 35.6307i 0.0875448i
\(408\) 92.5054 + 267.800i 0.226729 + 0.656372i
\(409\) −439.976 −1.07574 −0.537868 0.843029i \(-0.680770\pi\)
−0.537868 + 0.843029i \(0.680770\pi\)
\(410\) 11.5364 + 27.8513i 0.0281376 + 0.0679301i
\(411\) 312.492 208.800i 0.760321 0.508030i
\(412\) −355.201 + 355.201i −0.862138 + 0.862138i
\(413\) −98.3749 19.5680i −0.238196 0.0473801i
\(414\) 5.95800 + 3.98101i 0.0143913 + 0.00961596i
\(415\) 259.984 51.7140i 0.626467 0.124612i
\(416\) −70.2765 29.1095i −0.168934 0.0699747i
\(417\) 171.248 413.430i 0.410667 0.991438i
\(418\) −31.1852 156.779i −0.0746058 0.375068i
\(419\) 353.408 528.913i 0.843457 1.26232i −0.119546 0.992829i \(-0.538144\pi\)
0.963002 0.269493i \(-0.0868562\pi\)
\(420\) −12.0436 + 60.5472i −0.0286752 + 0.144160i
\(421\) 466.115 + 466.115i 1.10716 + 1.10716i 0.993522 + 0.113640i \(0.0362510\pi\)
0.113640 + 0.993522i \(0.463749\pi\)
\(422\) −5.42253 8.11538i −0.0128496 0.0192308i
\(423\) 91.5715 37.9302i 0.216481 0.0896694i
\(424\) 85.1969i 0.200936i
\(425\) 21.5604 82.2201i 0.0507303 0.193459i
\(426\) 98.3964 0.230977
\(427\) −96.7827 233.654i −0.226657 0.547199i
\(428\) −12.0822 + 8.07306i −0.0282294 + 0.0188623i
\(429\) 19.2693 19.2693i 0.0449168 0.0449168i
\(430\) 101.350 + 20.1598i 0.235698 + 0.0468833i
\(431\) −30.0089 20.0513i −0.0696262 0.0465227i 0.520270 0.854002i \(-0.325831\pi\)
−0.589896 + 0.807479i \(0.700831\pi\)
\(432\) 163.757 32.5733i 0.379067 0.0754011i
\(433\) −29.5441 12.2376i −0.0682312 0.0282623i 0.348307 0.937381i \(-0.386757\pi\)
−0.416538 + 0.909118i \(0.636757\pi\)
\(434\) 21.5275 51.9721i 0.0496026 0.119751i
\(435\) −55.5135 279.085i −0.127617 0.641575i
\(436\) 68.3478 102.290i 0.156761 0.234609i
\(437\) −16.4128 + 82.5128i −0.0375579 + 0.188816i
\(438\) −88.5667 88.5667i −0.202207 0.202207i
\(439\) −135.063 202.136i −0.307661 0.460447i 0.645131 0.764072i \(-0.276803\pi\)
−0.952792 + 0.303625i \(0.901803\pi\)
\(440\) 67.8041 28.0854i 0.154100 0.0638304i
\(441\) 107.537i 0.243847i
\(442\) −36.8430 9.66124i −0.0833552 0.0218580i
\(443\) −674.566 −1.52272 −0.761361 0.648328i \(-0.775469\pi\)
−0.761361 + 0.648328i \(0.775469\pi\)
\(444\) −21.2394 51.2766i −0.0478366 0.115488i
\(445\) −181.981 + 121.596i −0.408945 + 0.273248i
\(446\) −166.843 + 166.843i −0.374088 + 0.374088i
\(447\) 136.830 + 27.2171i 0.306106 + 0.0608883i
\(448\) 27.3789 + 18.2940i 0.0611136 + 0.0408348i
\(449\) −514.273 + 102.295i −1.14538 + 0.227829i −0.731066 0.682307i \(-0.760977\pi\)
−0.414309 + 0.910136i \(0.635977\pi\)
\(450\) 13.5432 + 5.60977i 0.0300959 + 0.0124662i
\(451\) 25.6955 62.0345i 0.0569746 0.137549i
\(452\) 69.0243 + 347.009i 0.152709 + 0.767719i
\(453\) −80.1328 + 119.927i −0.176894 + 0.264740i
\(454\) 74.7563 375.825i 0.164661 0.827809i
\(455\) −13.5203 13.5203i −0.0297150 0.0297150i
\(456\) −318.717 476.994i −0.698942 1.04604i
\(457\) 509.027 210.846i 1.11384 0.461369i 0.251584 0.967835i \(-0.419048\pi\)
0.862260 + 0.506466i \(0.169048\pi\)
\(458\) 404.648i 0.883510i
\(459\) 472.305 163.147i 1.02899 0.355440i
\(460\) −16.7648 −0.0364453
\(461\) −93.3130 225.278i −0.202414 0.488672i 0.789777 0.613394i \(-0.210196\pi\)
−0.992192 + 0.124722i \(0.960196\pi\)
\(462\) −34.7512 + 23.2200i −0.0752192 + 0.0502598i
\(463\) −260.222 + 260.222i −0.562035 + 0.562035i −0.929885 0.367850i \(-0.880094\pi\)
0.367850 + 0.929885i \(0.380094\pi\)
\(464\) 290.312 + 57.7466i 0.625672 + 0.124454i
\(465\) −71.7735 47.9575i −0.154352 0.103134i
\(466\) 242.250 48.1865i 0.519850 0.103405i
\(467\) 38.9983 + 16.1536i 0.0835081 + 0.0345902i 0.424046 0.905640i \(-0.360609\pi\)
−0.340538 + 0.940231i \(0.610609\pi\)
\(468\) −8.26998 + 19.9655i −0.0176709 + 0.0426613i
\(469\) −45.4742 228.614i −0.0969599 0.487450i
\(470\) 39.1603 58.6076i 0.0833198 0.124697i
\(471\) 2.46585 12.3967i 0.00523535 0.0263199i
\(472\) 131.339 + 131.339i 0.278261 + 0.278261i
\(473\) −127.873 191.375i −0.270344 0.404598i
\(474\) 144.586 59.8895i 0.305034 0.126349i
\(475\) 172.107i 0.362330i
\(476\) −172.818 84.0790i −0.363064 0.176637i
\(477\) 37.9032 0.0794616
\(478\) −83.6380 201.920i −0.174975 0.422427i
\(479\) 49.4214 33.0224i 0.103176 0.0689402i −0.502912 0.864338i \(-0.667738\pi\)
0.606088 + 0.795398i \(0.292738\pi\)
\(480\) 126.586 126.586i 0.263721 0.263721i
\(481\) 16.8601 + 3.35368i 0.0350522 + 0.00697231i
\(482\) −367.859 245.795i −0.763193 0.509949i
\(483\) 21.5741 4.29135i 0.0446668 0.00888478i
\(484\) 277.373 + 114.892i 0.573086 + 0.237380i
\(485\) 30.9369 74.6882i 0.0637874 0.153996i
\(486\) 29.3833 + 147.720i 0.0604594 + 0.303950i
\(487\) −314.829 + 471.175i −0.646466 + 0.967504i 0.353026 + 0.935614i \(0.385153\pi\)
−0.999491 + 0.0318907i \(0.989847\pi\)
\(488\) −91.3678 + 459.337i −0.187229 + 0.941265i
\(489\) −190.045 190.045i −0.388641 0.388641i
\(490\) −42.4872 63.5865i −0.0867085 0.129768i
\(491\) 457.623 189.554i 0.932022 0.386056i 0.135577 0.990767i \(-0.456711\pi\)
0.796445 + 0.604711i \(0.206711\pi\)
\(492\) 104.592i 0.212585i
\(493\) 884.260 + 53.2114i 1.79363 + 0.107934i
\(494\) 77.1214 0.156116
\(495\) −12.4949 30.1653i −0.0252422 0.0609400i
\(496\) 74.6607 49.8867i 0.150526 0.100578i
\(497\) −108.736 + 108.736i −0.218785 + 0.218785i
\(498\) 274.176 + 54.5370i 0.550554 + 0.109512i
\(499\) 199.361 + 133.209i 0.399522 + 0.266952i 0.739059 0.673641i \(-0.235270\pi\)
−0.339537 + 0.940593i \(0.610270\pi\)
\(500\) −33.6376 + 6.69093i −0.0672751 + 0.0133819i
\(501\) 481.466 + 199.430i 0.961010 + 0.398063i
\(502\) 38.8843 93.8749i 0.0774587 0.187002i
\(503\) 39.5565 + 198.864i 0.0786411 + 0.395355i 0.999978 + 0.00659103i \(0.00209801\pi\)
−0.921337 + 0.388764i \(0.872902\pi\)
\(504\) 42.4250 63.4935i 0.0841767 0.125979i
\(505\) −54.2666 + 272.816i −0.107459 + 0.540230i
\(506\) −8.02581 8.02581i −0.0158613 0.0158613i
\(507\) −221.987 332.227i −0.437844 0.655280i
\(508\) −679.985 + 281.659i −1.33855 + 0.554447i
\(509\) 979.909i 1.92516i −0.270990 0.962582i \(-0.587351\pi\)
0.270990 0.962582i \(-0.412649\pi\)
\(510\) 54.1884 71.4069i 0.106252 0.140014i
\(511\) 195.747 0.383066
\(512\) 130.604 + 315.307i 0.255087 + 0.615834i
\(513\) −841.251 + 562.106i −1.63986 + 1.09572i
\(514\) −56.5559 + 56.5559i −0.110031 + 0.110031i
\(515\) 359.131 + 71.4355i 0.697341 + 0.138710i
\(516\) −298.101 199.185i −0.577716 0.386017i
\(517\) −153.981 + 30.6288i −0.297837 + 0.0592434i
\(518\) −24.3582 10.0895i −0.0470235 0.0194778i
\(519\) 169.614 409.484i 0.326809 0.788986i
\(520\) 6.90777 + 34.7277i 0.0132842 + 0.0667841i
\(521\) 171.777 257.082i 0.329706 0.493439i −0.629169 0.777268i \(-0.716605\pi\)
0.958875 + 0.283829i \(0.0916048\pi\)
\(522\) −29.8048 + 149.839i −0.0570974 + 0.287048i
\(523\) −333.555 333.555i −0.637772 0.637772i 0.312233 0.950005i \(-0.398923\pi\)
−0.950005 + 0.312233i \(0.898923\pi\)
\(524\) −371.949 556.660i −0.709825 1.06233i
\(525\) 41.5743 17.2206i 0.0791891 0.0328012i
\(526\) 2.33864i 0.00444609i
\(527\) 201.093 178.265i 0.381582 0.338264i
\(528\) −66.7138 −0.126352
\(529\) −200.154 483.213i −0.378362 0.913447i
\(530\) 22.4122 14.9754i 0.0422872 0.0282554i
\(531\) 58.4315 58.4315i 0.110040 0.110040i
\(532\) 381.659 + 75.9166i 0.717403 + 0.142700i
\(533\) 26.9356 + 17.9978i 0.0505358 + 0.0337669i
\(534\) −226.379 + 45.0295i −0.423930 + 0.0843250i
\(535\) 9.78597 + 4.05348i 0.0182915 + 0.00757660i
\(536\) −165.184 + 398.790i −0.308179 + 0.744011i
\(537\) 17.3233 + 87.0902i 0.0322594 + 0.162179i
\(538\) 76.9567 115.174i 0.143042 0.214078i
\(539\) −33.2309 + 167.063i −0.0616528 + 0.309950i
\(540\) −142.566 142.566i −0.264011 0.264011i
\(541\) 512.263 + 766.656i 0.946882 + 1.41711i 0.908518 + 0.417846i \(0.137215\pi\)
0.0383645 + 0.999264i \(0.487785\pi\)
\(542\) 46.0101 19.0580i 0.0848895 0.0351624i
\(543\) 506.555i 0.932883i
\(544\) 281.236 + 481.155i 0.516977 + 0.884477i
\(545\) −89.6757 −0.164543
\(546\) −7.71659 18.6295i −0.0141330 0.0341200i
\(547\) 487.252 325.572i 0.890772 0.595195i −0.0237557 0.999718i \(-0.507562\pi\)
0.914528 + 0.404523i \(0.132562\pi\)
\(548\) 333.819 333.819i 0.609159 0.609159i
\(549\) 204.354 + 40.6486i 0.372230 + 0.0740411i
\(550\) −19.3064 12.9001i −0.0351025 0.0234548i
\(551\) −1759.21 + 349.929i −3.19276 + 0.635080i
\(552\) −37.6334 15.5883i −0.0681764 0.0282396i
\(553\) −93.5966 + 225.962i −0.169252 + 0.408612i
\(554\) 67.3658 + 338.671i 0.121599 + 0.611319i
\(555\) −22.4767 + 33.6387i −0.0404985 + 0.0606103i
\(556\) 109.662 551.308i 0.197234 0.991561i
\(557\) 195.753 + 195.753i 0.351442 + 0.351442i 0.860646 0.509204i \(-0.170060\pi\)
−0.509204 + 0.860646i \(0.670060\pi\)
\(558\) 25.7481 + 38.5347i 0.0461435 + 0.0690587i
\(559\) 102.592 42.4952i 0.183529 0.0760200i
\(560\) 46.8099i 0.0835890i
\(561\) −197.809 + 27.1187i −0.352601 + 0.0483399i
\(562\) −461.325 −0.820863
\(563\) −96.5883 233.185i −0.171560 0.414183i 0.814590 0.580037i \(-0.196962\pi\)
−0.986150 + 0.165854i \(0.946962\pi\)
\(564\) −203.339 + 135.867i −0.360530 + 0.240898i
\(565\) 182.365 182.365i 0.322770 0.322770i
\(566\) −208.048 41.3834i −0.367576 0.0731155i
\(567\) 136.224 + 91.0217i 0.240253 + 0.160532i
\(568\) 279.294 55.5550i 0.491715 0.0978082i
\(569\) −434.022 179.778i −0.762781 0.315954i −0.0328365 0.999461i \(-0.510454\pi\)
−0.729944 + 0.683507i \(0.760454\pi\)
\(570\) −69.4578 + 167.686i −0.121856 + 0.294186i
\(571\) 158.498 + 796.824i 0.277580 + 1.39549i 0.828059 + 0.560640i \(0.189445\pi\)
−0.550479 + 0.834849i \(0.685555\pi\)
\(572\) 19.0175 28.4617i 0.0332474 0.0497582i
\(573\) −88.7012 + 445.931i −0.154801 + 0.778239i
\(574\) −35.1324 35.1324i −0.0612063 0.0612063i
\(575\) 6.78935 + 10.1610i 0.0118076 + 0.0176713i
\(576\) −25.0632 + 10.3815i −0.0435125 + 0.0180235i
\(577\) 834.634i 1.44651i 0.690583 + 0.723253i \(0.257354\pi\)
−0.690583 + 0.723253i \(0.742646\pi\)
\(578\) 172.241 + 219.567i 0.297995 + 0.379874i
\(579\) 658.060 1.13655
\(580\) −136.784 330.226i −0.235835 0.569356i
\(581\) −363.255 + 242.719i −0.625223 + 0.417761i
\(582\) 60.2844 60.2844i 0.103581 0.103581i
\(583\) −58.8843 11.7128i −0.101002 0.0200906i
\(584\) −301.398 201.388i −0.516093 0.344842i
\(585\) 15.4500 3.07319i 0.0264102 0.00525332i
\(586\) −444.214 184.000i −0.758045 0.313993i
\(587\) −205.403 + 495.886i −0.349920 + 0.844781i 0.646709 + 0.762737i \(0.276145\pi\)
−0.996629 + 0.0820440i \(0.973855\pi\)
\(588\) 51.7632 + 260.231i 0.0880326 + 0.442570i
\(589\) −302.300 + 452.424i −0.513243 + 0.768122i
\(590\) 11.4646 57.6365i 0.0194316 0.0976891i
\(591\) 380.566 + 380.566i 0.643936 + 0.643936i
\(592\) −23.3808 34.9919i −0.0394946 0.0591079i
\(593\) 484.571 200.716i 0.817152 0.338475i 0.0653481 0.997863i \(-0.479184\pi\)
0.751803 + 0.659387i \(0.229184\pi\)
\(594\) 136.501i 0.229800i
\(595\) 19.0279 + 138.793i 0.0319796 + 0.233266i
\(596\) 175.243 0.294031
\(597\) 232.929 + 562.339i 0.390165 + 0.941942i
\(598\) 4.55315 3.04232i 0.00761396 0.00508749i
\(599\) −164.659 + 164.659i −0.274890 + 0.274890i −0.831065 0.556175i \(-0.812268\pi\)
0.556175 + 0.831065i \(0.312268\pi\)
\(600\) −81.7302 16.2572i −0.136217 0.0270953i
\(601\) 127.119 + 84.9381i 0.211512 + 0.141328i 0.656814 0.754053i \(-0.271904\pi\)
−0.445302 + 0.895380i \(0.646904\pi\)
\(602\) −167.039 + 33.2261i −0.277473 + 0.0551928i
\(603\) 177.417 + 73.4887i 0.294225 + 0.121872i
\(604\) −69.3338 + 167.387i −0.114791 + 0.277130i
\(605\) −42.6948 214.641i −0.0705699 0.354779i
\(606\) −162.974 + 243.908i −0.268934 + 0.402488i
\(607\) 217.351 1092.70i 0.358074 1.80016i −0.210576 0.977578i \(-0.567534\pi\)
0.568649 0.822580i \(-0.307466\pi\)
\(608\) −797.935 797.935i −1.31239 1.31239i
\(609\) 260.552 + 389.943i 0.427836 + 0.640301i
\(610\) 136.895 56.7037i 0.224418 0.0929569i
\(611\) 75.7454i 0.123970i
\(612\) 136.696 79.8988i 0.223359 0.130554i
\(613\) 130.322 0.212597 0.106298 0.994334i \(-0.466100\pi\)
0.106298 + 0.994334i \(0.466100\pi\)
\(614\) −56.8410 137.226i −0.0925750 0.223496i
\(615\) −63.3918 + 42.3570i −0.103076 + 0.0688732i
\(616\) −85.5299 + 85.5299i −0.138847 + 0.138847i
\(617\) −98.2934 19.5518i −0.159309 0.0316885i 0.114792 0.993390i \(-0.463380\pi\)
−0.274100 + 0.961701i \(0.588380\pi\)
\(618\) 321.076 + 214.536i 0.519541 + 0.347146i
\(619\) 426.866 84.9089i 0.689606 0.137171i 0.162166 0.986763i \(-0.448152\pi\)
0.527440 + 0.849592i \(0.323152\pi\)
\(620\) −100.177 41.4946i −0.161575 0.0669267i
\(621\) −27.4922 + 66.3721i −0.0442709 + 0.106879i
\(622\) 57.9448 + 291.308i 0.0931589 + 0.468341i
\(623\) 200.406 299.928i 0.321678 0.481426i
\(624\) 6.27932 31.5683i 0.0100630 0.0505902i
\(625\) 17.6777 + 17.6777i 0.0282843 + 0.0282843i
\(626\) −128.455 192.246i −0.205199 0.307102i
\(627\) 373.494 154.706i 0.595685 0.246741i
\(628\) 15.8769i 0.0252816i
\(629\) −83.5490 94.2482i −0.132828 0.149838i
\(630\) −24.1600 −0.0383493
\(631\) 46.4257 + 112.082i 0.0735748 + 0.177625i 0.956388 0.292099i \(-0.0943535\pi\)
−0.882813 + 0.469724i \(0.844354\pi\)
\(632\) 376.588 251.628i 0.595867 0.398145i
\(633\) 17.4543 17.4543i 0.0275740 0.0275740i
\(634\) −279.197 55.5357i −0.440373 0.0875957i
\(635\) 446.087 + 298.066i 0.702499 + 0.469395i
\(636\) −91.7230 + 18.2448i −0.144219 + 0.0286869i
\(637\) −75.9247 31.4490i −0.119191 0.0493706i
\(638\) 92.6063 223.571i 0.145151 0.350425i
\(639\) −24.7159 124.255i −0.0386790 0.194452i
\(640\) 152.188 227.766i 0.237794 0.355884i
\(641\) −47.9641 + 241.132i −0.0748270 + 0.376181i −0.999994 0.00337889i \(-0.998924\pi\)
0.925167 + 0.379560i \(0.123924\pi\)
\(642\) 7.89872 + 7.89872i 0.0123033 + 0.0123033i
\(643\) −63.5318 95.0820i −0.0988052 0.147872i 0.778773 0.627306i \(-0.215842\pi\)
−0.877578 + 0.479433i \(0.840842\pi\)
\(644\) 25.5274 10.5738i 0.0396389 0.0164190i
\(645\) 261.341i 0.405179i
\(646\) −450.113 341.576i −0.696770 0.528756i
\(647\) −534.514 −0.826143 −0.413071 0.910699i \(-0.635544\pi\)
−0.413071 + 0.910699i \(0.635544\pi\)
\(648\) −116.103 280.299i −0.179172 0.432560i
\(649\) −108.832 + 72.7194i −0.167692 + 0.112048i
\(650\) 7.92139 7.92139i 0.0121868 0.0121868i
\(651\) 139.535 + 27.7553i 0.214340 + 0.0426349i
\(652\) −280.706 187.562i −0.430531 0.287672i
\(653\) 788.185 156.780i 1.20702 0.240092i 0.449728 0.893166i \(-0.351521\pi\)
0.757294 + 0.653074i \(0.226521\pi\)
\(654\) −87.3722 36.1907i −0.133597 0.0553375i
\(655\) −186.755 + 450.867i −0.285123 + 0.688347i
\(656\) −15.4721 77.7837i −0.0235856 0.118573i
\(657\) −89.5953 + 134.089i −0.136370 + 0.204093i
\(658\) −22.6639 + 113.939i −0.0344437 + 0.173160i
\(659\) 382.598 + 382.598i 0.580574 + 0.580574i 0.935061 0.354487i \(-0.115344\pi\)
−0.354487 + 0.935061i \(0.615344\pi\)
\(660\) 44.7569 + 66.9834i 0.0678135 + 0.101490i
\(661\) 555.991 230.299i 0.841136 0.348410i 0.0798346 0.996808i \(-0.474561\pi\)
0.761301 + 0.648398i \(0.224561\pi\)
\(662\) 340.027i 0.513635i
\(663\) 5.78616 96.1538i 0.00872724 0.145028i
\(664\) 809.029 1.21842
\(665\) −108.550 262.063i −0.163233 0.394080i
\(666\) 18.0604 12.0676i 0.0271177 0.0181195i
\(667\) −90.0575 + 90.0575i −0.135019 + 0.135019i
\(668\) 642.034 + 127.709i 0.961129 + 0.191180i
\(669\) −496.164 331.526i −0.741650 0.495555i
\(670\) 133.942 26.6427i 0.199914 0.0397653i
\(671\) −304.912 126.299i −0.454414 0.188225i
\(672\) −112.910 + 272.589i −0.168021 + 0.405639i
\(673\) −212.613 1068.88i −0.315918 1.58823i −0.733566 0.679618i \(-0.762146\pi\)
0.417648 0.908609i \(-0.362854\pi\)
\(674\) −100.909 + 151.021i −0.149717 + 0.224067i
\(675\) −28.6719 + 144.143i −0.0424769 + 0.213546i
\(676\) −354.901 354.901i −0.525001 0.525001i
\(677\) −239.398 358.284i −0.353616 0.529223i 0.611432 0.791297i \(-0.290594\pi\)
−0.965048 + 0.262074i \(0.915594\pi\)
\(678\) 251.278 104.083i 0.370616 0.153514i
\(679\) 133.238i 0.196227i
\(680\) 113.495 233.281i 0.166904 0.343060i
\(681\) 969.098 1.42305
\(682\) −28.0928 67.8221i −0.0411918 0.0994458i
\(683\) −448.957 + 299.984i −0.657331 + 0.439215i −0.838990 0.544147i \(-0.816853\pi\)
0.181659 + 0.983362i \(0.441853\pi\)
\(684\) −226.693 + 226.693i −0.331422 + 0.331422i
\(685\) −337.512 67.1354i −0.492719 0.0980078i
\(686\) 249.785 + 166.901i 0.364118 + 0.243296i
\(687\) −1003.71 + 199.650i −1.46100 + 0.290611i
\(688\) −251.160 104.034i −0.365058 0.151212i
\(689\) 11.0848 26.7610i 0.0160882 0.0388404i
\(690\) 2.51425 + 12.6400i 0.00364384 + 0.0183188i
\(691\) 595.542 891.292i 0.861855 1.28986i −0.0938662 0.995585i \(-0.529923\pi\)
0.955721 0.294273i \(-0.0950774\pi\)
\(692\) 108.615 546.046i 0.156958 0.789083i
\(693\) 38.0513 + 38.0513i 0.0549081 + 0.0549081i
\(694\) 194.395 + 290.933i 0.280108 + 0.419211i
\(695\) −378.551 + 156.801i −0.544678 + 0.225613i
\(696\) 868.470i 1.24780i
\(697\) −77.4940 224.342i −0.111182 0.321869i
\(698\) −305.955 −0.438331
\(699\) 239.048 + 577.113i 0.341986 + 0.825627i
\(700\) 46.9991 31.4038i 0.0671416 0.0448626i
\(701\) 747.664 747.664i 1.06657 1.06657i 0.0689480 0.997620i \(-0.478036\pi\)
0.997620 0.0689480i \(-0.0219642\pi\)
\(702\) 64.5909 + 12.8479i 0.0920099 + 0.0183019i
\(703\) 212.041 + 141.681i 0.301624 + 0.201538i
\(704\) 42.1448 8.38313i 0.0598648 0.0119079i
\(705\) 164.694 + 68.2186i 0.233609 + 0.0967639i
\(706\) −40.5916 + 97.9969i −0.0574952 + 0.138806i
\(707\) −89.4385 449.638i −0.126504 0.635980i
\(708\) −113.274 + 169.526i −0.159991 + 0.239444i
\(709\) −26.7092 + 134.276i −0.0376716 + 0.189388i −0.995039 0.0994848i \(-0.968281\pi\)
0.957367 + 0.288873i \(0.0932805\pi\)
\(710\) −63.7070 63.7070i −0.0897282 0.0897282i
\(711\) −111.947 167.540i −0.157450 0.235640i
\(712\) −617.143 + 255.629i −0.866774 + 0.359030i
\(713\) 38.6358i 0.0541877i
\(714\) −37.4741 + 142.907i −0.0524848 + 0.200150i
\(715\) −24.9519 −0.0348978
\(716\) 42.6843 + 103.049i 0.0596150 + 0.143923i
\(717\) 459.585 307.085i 0.640983 0.428291i
\(718\) 324.574 324.574i 0.452053 0.452053i
\(719\) −178.522 35.5103i −0.248292 0.0493884i 0.0693750 0.997591i \(-0.477900\pi\)
−0.317667 + 0.948202i \(0.602900\pi\)
\(720\) −32.0653 21.4253i −0.0445351 0.0297574i
\(721\) −591.895 + 117.735i −0.820937 + 0.163294i
\(722\) 734.953 + 304.427i 1.01794 + 0.421645i
\(723\) 428.184 1033.73i 0.592232 1.42977i
\(724\) 124.136 + 624.072i 0.171458 + 0.861977i
\(725\) −144.752 + 216.637i −0.199658 + 0.298809i
\(726\) 45.0254 226.358i 0.0620185 0.311788i
\(727\) 235.573 + 235.573i 0.324035 + 0.324035i 0.850313 0.526278i \(-0.176413\pi\)
−0.526278 + 0.850313i \(0.676413\pi\)
\(728\) −32.4215 48.5223i −0.0445351 0.0666514i
\(729\) −721.559 + 298.880i −0.989793 + 0.409986i
\(730\) 114.686i 0.157103i
\(731\) −786.988 206.370i −1.07659 0.282312i
\(732\) −514.089 −0.702307
\(733\) −258.816 624.836i −0.353091 0.852437i −0.996235 0.0866918i \(-0.972370\pi\)
0.643144 0.765745i \(-0.277630\pi\)
\(734\) −104.189 + 69.6168i −0.141947 + 0.0948458i
\(735\) 136.760 136.760i 0.186068 0.186068i
\(736\) −78.5864 15.6318i −0.106775 0.0212389i
\(737\) −252.916 168.993i −0.343170 0.229299i
\(738\) 40.1466 7.98566i 0.0543992 0.0108207i
\(739\) −398.638 165.121i −0.539429 0.223439i 0.0962982 0.995353i \(-0.469300\pi\)
−0.635727 + 0.771914i \(0.719300\pi\)
\(740\) −19.4476 + 46.9507i −0.0262806 + 0.0634469i
\(741\) 38.0510 + 191.295i 0.0513509 + 0.258158i
\(742\) −24.6814 + 36.9383i −0.0332633 + 0.0497821i
\(743\) −181.893 + 914.439i −0.244809 + 1.23074i 0.641310 + 0.767282i \(0.278391\pi\)
−0.886119 + 0.463457i \(0.846609\pi\)
\(744\) −186.292 186.292i −0.250393 0.250393i
\(745\) −70.9689 106.212i −0.0952602 0.142567i
\(746\) 537.500 222.640i 0.720509 0.298445i
\(747\) 359.929i 0.481832i
\(748\) −237.053 + 81.8847i −0.316916 + 0.109472i
\(749\) −17.4574 −0.0233077
\(750\) 10.0893 + 24.3578i 0.0134525 + 0.0324771i
\(751\) 277.138 185.177i 0.369025 0.246574i −0.357206 0.934026i \(-0.616271\pi\)
0.726231 + 0.687451i \(0.241271\pi\)
\(752\) −131.122 + 131.122i −0.174365 + 0.174365i
\(753\) 252.037 + 50.1332i 0.334710 + 0.0665780i
\(754\) 97.0753 + 64.8637i 0.128747 + 0.0860261i
\(755\) 129.529 25.7650i 0.171562 0.0341258i
\(756\) 307.001 + 127.164i 0.406086 + 0.168206i
\(757\) 160.378 387.187i 0.211860 0.511475i −0.781849 0.623468i \(-0.785723\pi\)
0.993709 + 0.111993i \(0.0357233\pi\)
\(758\) 66.3319 + 333.473i 0.0875091 + 0.439938i
\(759\) 15.9477 23.8674i 0.0210115 0.0314459i
\(760\) −102.477 + 515.186i −0.134838 + 0.677876i
\(761\) 947.231 + 947.231i 1.24472 + 1.24472i 0.958021 + 0.286698i \(0.0925575\pi\)
0.286698 + 0.958021i \(0.407442\pi\)
\(762\) 314.337 + 470.438i 0.412516 + 0.617373i
\(763\) 136.547 56.5596i 0.178961 0.0741280i
\(764\) 571.120i 0.747539i
\(765\) −103.784 50.4927i −0.135666 0.0660035i
\(766\) 239.481 0.312639
\(767\) −24.1664 58.3430i −0.0315077 0.0760664i
\(768\) 312.770 208.986i 0.407252 0.272117i
\(769\) −420.026 + 420.026i −0.546198 + 0.546198i −0.925339 0.379141i \(-0.876219\pi\)
0.379141 + 0.925339i \(0.376219\pi\)
\(770\) 37.5337 + 7.46591i 0.0487450 + 0.00969599i
\(771\) −168.188 112.380i −0.218143 0.145758i
\(772\) 810.724 161.263i 1.05016 0.208890i
\(773\) −272.733 112.970i −0.352825 0.146145i 0.199230 0.979953i \(-0.436156\pi\)
−0.552054 + 0.833808i \(0.686156\pi\)
\(774\) 53.6951 129.631i 0.0693735 0.167483i
\(775\) 15.4197 + 77.5202i 0.0198964 + 0.100026i
\(776\) 137.078 205.152i 0.176647 0.264371i
\(777\) 13.0083 65.3972i 0.0167417 0.0841663i
\(778\) −254.022 254.022i −0.326507 0.326507i
\(779\) 266.997 + 399.590i 0.342744 + 0.512952i
\(780\) −35.9086 + 14.8738i −0.0460366 + 0.0190690i
\(781\) 200.673i 0.256944i
\(782\) −40.0488 2.40998i −0.0512133 0.00308182i
\(783\) −1531.68 −1.95616
\(784\) 76.9914 + 185.874i 0.0982033 + 0.237084i
\(785\) −9.62278 + 6.42973i −0.0122583 + 0.00819074i
\(786\) −363.916 + 363.916i −0.462998 + 0.462998i
\(787\) −816.561 162.424i −1.03756 0.206384i −0.353216 0.935542i \(-0.614912\pi\)
−0.684346 + 0.729158i \(0.739912\pi\)
\(788\) 562.115 + 375.593i 0.713344 + 0.476641i
\(789\) −5.80087 + 1.15387i −0.00735218 + 0.00146244i
\(790\) −132.388 54.8370i −0.167580 0.0694140i
\(791\) −162.663 + 392.703i −0.205642 + 0.496463i
\(792\) −19.4411 97.7368i −0.0245468 0.123405i
\(793\) 88.4627 132.394i 0.111554 0.166953i
\(794\) −142.729 + 717.548i −0.179760 + 0.903713i
\(795\) 48.2035 + 48.2035i 0.0606334 + 0.0606334i
\(796\) 424.772 + 635.716i 0.533633 + 0.798638i
\(797\) −807.124 + 334.322i −1.01270 + 0.419475i −0.826440 0.563025i \(-0.809637\pi\)
−0.186263 + 0.982500i \(0.559637\pi\)
\(798\) 299.139i 0.374861i
\(799\) −335.482 + 442.083i −0.419878 + 0.553295i
\(800\) −163.917 −0.204896
\(801\) 113.727 + 274.560i 0.141981 + 0.342772i
\(802\) 324.125 216.573i 0.404146 0.270041i
\(803\) 180.626 180.626i 0.224939 0.224939i
\(804\) −464.711 92.4368i −0.577999 0.114971i
\(805\) −16.7466 11.1897i −0.0208033 0.0139003i
\(806\) 34.7369 6.90960i 0.0430979 0.00857271i
\(807\) 323.652 + 134.061i 0.401056 + 0.166123i
\(808\) −324.884 + 784.339i −0.402084 + 0.970716i
\(809\) −136.966 688.576i −0.169303 0.851145i −0.968296 0.249805i \(-0.919634\pi\)
0.798993 0.601340i \(-0.205366\pi\)
\(810\) −53.3285 + 79.8117i −0.0658376 + 0.0985329i
\(811\) 234.186 1177.33i 0.288762 1.45171i −0.515222 0.857056i \(-0.672291\pi\)
0.803985 0.594650i \(-0.202709\pi\)
\(812\) 416.557 + 416.557i 0.513001 + 0.513001i
\(813\) 69.9733 + 104.722i 0.0860680 + 0.128810i
\(814\) −31.7867 + 13.1665i −0.0390501 + 0.0161751i
\(815\) 246.091i 0.301952i
\(816\) −176.467 + 156.434i −0.216259 + 0.191709i
\(817\) 1647.36 2.01635
\(818\) 162.583 + 392.510i 0.198757 + 0.479841i
\(819\) −21.5870 + 14.4240i −0.0263578 + 0.0176117i
\(820\) −67.7182 + 67.7182i −0.0825832 + 0.0825832i
\(821\) −52.7387 10.4904i −0.0642371 0.0127776i 0.162867 0.986648i \(-0.447926\pi\)
−0.227104 + 0.973870i \(0.572926\pi\)
\(822\) −301.748 201.622i −0.367091 0.245282i
\(823\) 1145.72 227.898i 1.39213 0.276911i 0.558621 0.829423i \(-0.311331\pi\)
0.833505 + 0.552512i \(0.186331\pi\)
\(824\) 1032.49 + 427.671i 1.25302 + 0.519019i
\(825\) 22.4724 54.2533i 0.0272393 0.0657615i
\(826\) 18.8952 + 94.9927i 0.0228756 + 0.115003i
\(827\) −328.920 + 492.264i −0.397727 + 0.595241i −0.975242 0.221139i \(-0.929022\pi\)
0.577515 + 0.816380i \(0.304022\pi\)
\(828\) −4.44099 + 22.3263i −0.00536351 + 0.0269642i
\(829\) 565.240 + 565.240i 0.681833 + 0.681833i 0.960413 0.278580i \(-0.0898637\pi\)
−0.278580 + 0.960413i \(0.589864\pi\)
\(830\) −142.206 212.826i −0.171332 0.256417i
\(831\) −806.817 + 334.194i −0.970898 + 0.402159i
\(832\) 20.7316i 0.0249178i
\(833\) 303.839 + 519.826i 0.364752 + 0.624041i
\(834\) −432.108 −0.518115
\(835\) −182.605 440.848i −0.218689 0.527962i
\(836\) 422.230 282.125i 0.505059 0.337470i
\(837\) −328.554 + 328.554i −0.392538 + 0.392538i
\(838\) −602.446 119.834i −0.718909 0.143000i
\(839\) 1264.66 + 845.022i 1.50735 + 1.00718i 0.988315 + 0.152423i \(0.0487077\pi\)
0.519033 + 0.854754i \(0.326292\pi\)
\(840\) 134.702 26.7940i 0.160360 0.0318976i
\(841\) −1731.71 717.297i −2.05911 0.852910i
\(842\) 243.587 588.071i 0.289296 0.698422i
\(843\) −227.614 1144.29i −0.270004 1.35740i
\(844\) 17.2263 25.7809i 0.0204103 0.0305461i
\(845\) −71.3752 + 358.827i −0.0844677 + 0.424648i
\(846\) −67.6762 67.6762i −0.0799956 0.0799956i
\(847\) 200.387 + 299.901i 0.236585 + 0.354074i
\(848\) −65.5145 + 27.1370i −0.0772576 + 0.0320012i
\(849\) 536.470i 0.631885i
\(850\) −81.3171 + 11.1482i −0.0956671 + 0.0131155i
\(851\) 18.1078 0.0212782
\(852\) 119.621 + 288.791i 0.140400 + 0.338957i
\(853\) 216.944 144.957i 0.254330 0.169938i −0.421869 0.906657i \(-0.638626\pi\)
0.676199 + 0.736719i \(0.263626\pi\)
\(854\) −172.683 + 172.683i −0.202205 + 0.202205i
\(855\) 229.201 + 45.5909i 0.268071 + 0.0533227i
\(856\) 26.8798 + 17.9605i 0.0314017 + 0.0209819i
\(857\) 1194.09 237.520i 1.39334 0.277153i 0.559350 0.828932i \(-0.311051\pi\)
0.833990 + 0.551779i \(0.186051\pi\)
\(858\) −24.3110 10.0699i −0.0283345 0.0117365i
\(859\) −137.942 + 333.021i −0.160584 + 0.387685i −0.983607 0.180323i \(-0.942286\pi\)
0.823023 + 0.568008i \(0.192286\pi\)
\(860\) 64.0437 + 321.969i 0.0744694 + 0.374383i
\(861\) 69.8100 104.478i 0.0810802 0.121345i
\(862\) −6.79900 + 34.1809i −0.00788747 + 0.0396530i
\(863\) −503.780 503.780i −0.583754 0.583754i 0.352178 0.935933i \(-0.385441\pi\)
−0.935933 + 0.352178i \(0.885441\pi\)
\(864\) −535.358 801.220i −0.619627 0.927338i
\(865\) −374.938 + 155.304i −0.433455 + 0.179543i
\(866\) 30.8789i 0.0356569i
\(867\) −459.643 + 535.567i −0.530153 + 0.617724i
\(868\) 178.708 0.205885
\(869\) 122.141 + 294.874i 0.140553 + 0.339326i
\(870\) −228.463 + 152.654i −0.262601 + 0.175464i
\(871\) 103.771 103.771i 0.119140 0.119140i
\(872\) −268.436 53.3952i −0.307839 0.0612330i
\(873\) −91.2698 60.9845i −0.104547 0.0698563i
\(874\) 79.6760 15.8485i 0.0911624 0.0181333i
\(875\) −38.0669 15.7678i −0.0435051 0.0180204i
\(876\) 152.270 367.613i 0.173824 0.419649i
\(877\) −142.612 716.957i −0.162613 0.817511i −0.972855 0.231415i \(-0.925664\pi\)
0.810242 0.586095i \(-0.199336\pi\)
\(878\) −130.420 + 195.187i −0.148542 + 0.222309i
\(879\) 237.229 1192.63i 0.269886 1.35681i
\(880\) 43.1940 + 43.1940i 0.0490841 + 0.0490841i
\(881\) 206.168 + 308.553i 0.234016 + 0.350230i 0.929828 0.367994i \(-0.119955\pi\)
−0.695812 + 0.718224i \(0.744955\pi\)
\(882\) −95.9352 + 39.7377i −0.108770 + 0.0450540i
\(883\) 1572.78i 1.78118i 0.454805 + 0.890591i \(0.349709\pi\)
−0.454805 + 0.890591i \(0.650291\pi\)
\(884\) −16.4348 119.879i −0.0185914 0.135609i
\(885\) 148.621 0.167933
\(886\) 249.270 + 601.791i 0.281343 + 0.679223i
\(887\) −792.790 + 529.725i −0.893788 + 0.597210i −0.915395 0.402557i \(-0.868122\pi\)
0.0216074 + 0.999767i \(0.493122\pi\)
\(888\) −87.3112 + 87.3112i −0.0983234 + 0.0983234i
\(889\) −867.241 172.505i −0.975524 0.194044i
\(890\) 175.724 + 117.415i 0.197443 + 0.131927i
\(891\) 209.692 41.7103i 0.235344 0.0468129i
\(892\) −692.513 286.848i −0.776360 0.321579i
\(893\) 430.015 1038.15i 0.481540 1.16254i
\(894\) −26.2814 132.125i −0.0293975 0.147791i
\(895\) 45.1707 67.6028i 0.0504701 0.0755339i
\(896\) −88.0786 + 442.801i −0.0983020 + 0.494198i
\(897\) 9.79279 + 9.79279i 0.0109173 + 0.0109173i
\(898\) 281.297 + 420.991i 0.313249 + 0.468810i
\(899\) −761.031 + 315.229i −0.846530 + 0.350644i
\(900\) 46.5688i 0.0517431i
\(901\) −183.222 + 107.093i −0.203354 + 0.118861i
\(902\) −64.8372 −0.0718816
\(903\) −164.831 397.937i −0.182537 0.440684i
\(904\) 654.477 437.307i 0.723979 0.483747i
\(905\) 327.971 327.971i 0.362398 0.362398i
\(906\) 136.600 + 27.1715i 0.150773 + 0.0299906i
\(907\) 17.0762 + 11.4100i 0.0188271 + 0.0125799i 0.564948 0.825126i \(-0.308896\pi\)
−0.546121 + 0.837706i \(0.683896\pi\)
\(908\) 1193.92 237.485i 1.31489 0.261548i
\(909\) 348.944 + 144.537i 0.383877 + 0.159007i
\(910\) −7.06559 + 17.0579i −0.00776439 + 0.0187449i
\(911\) 12.6018 + 63.3533i 0.0138329 + 0.0695426i 0.987085 0.160196i \(-0.0512128\pi\)
−0.973252 + 0.229739i \(0.926213\pi\)
\(912\) 265.280 397.019i 0.290877 0.435328i
\(913\) −111.225 + 559.165i −0.121823 + 0.612448i
\(914\) −376.198 376.198i −0.411595 0.411595i
\(915\) 208.193 + 311.583i 0.227534 + 0.340528i
\(916\) −1187.63 + 491.933i −1.29654 + 0.537045i
\(917\) 804.314i 0.877115i
\(918\) −320.076 361.064i −0.348666 0.393316i
\(919\) −1708.90 −1.85952 −0.929760 0.368167i \(-0.879986\pi\)
−0.929760 + 0.368167i \(0.879986\pi\)
\(920\) 14.2732 + 34.4585i 0.0155143 + 0.0374549i
\(921\) 312.338 208.697i 0.339129 0.226599i
\(922\) −166.492 + 166.492i −0.180577 + 0.180577i
\(923\) −94.9566 18.8880i −0.102878 0.0204638i
\(924\) −110.398 73.7654i −0.119478 0.0798326i
\(925\) 36.3321 7.22689i 0.0392779 0.00781286i
\(926\) 328.307 + 135.989i 0.354544 + 0.146857i
\(927\) 190.266 459.344i 0.205250 0.495517i
\(928\) −333.278 1675.50i −0.359135 1.80550i
\(929\) −71.3897 + 106.842i −0.0768458 + 0.115008i −0.867902 0.496736i \(-0.834532\pi\)
0.791056 + 0.611744i \(0.209532\pi\)
\(930\) −16.2615 + 81.7519i −0.0174854 + 0.0879053i
\(931\) −862.066 862.066i −0.925957 0.925957i
\(932\) 435.931 + 652.418i 0.467738 + 0.700019i
\(933\) −693.985 + 287.458i −0.743821 + 0.308101i
\(934\) 40.7602i 0.0436405i
\(935\) 145.630 + 110.514i 0.155754 + 0.118197i
\(936\) 48.0780 0.0513654
\(937\) 479.379 + 1157.32i 0.511610 + 1.23514i 0.942946 + 0.332945i \(0.108042\pi\)
−0.431336 + 0.902191i \(0.641958\pi\)
\(938\) −187.147 + 125.047i −0.199517 + 0.133313i
\(939\) 413.477 413.477i 0.440338 0.440338i
\(940\) 219.619 + 43.6850i 0.233638 + 0.0464734i
\(941\) −251.481 168.034i −0.267249 0.178570i 0.414725 0.909947i \(-0.363878\pi\)
−0.681973 + 0.731377i \(0.738878\pi\)
\(942\) −11.9705 + 2.38107i −0.0127075 + 0.00252768i
\(943\) 31.5264 + 13.0587i 0.0334320 + 0.0138480i
\(944\) −59.1626 + 142.831i −0.0626723 + 0.151304i
\(945\) −47.2551 237.568i −0.0500054 0.251394i
\(946\) −123.476 + 184.795i −0.130525 + 0.195344i
\(947\) 64.3908 323.715i 0.0679946 0.341832i −0.931781 0.363021i \(-0.881745\pi\)
0.999775 + 0.0211894i \(0.00674530\pi\)
\(948\) 351.549 + 351.549i 0.370832 + 0.370832i
\(949\) 68.4694 + 102.472i 0.0721490 + 0.107979i
\(950\) 153.539 63.5981i 0.161620 0.0669454i
\(951\) 719.933i 0.757027i
\(952\) −25.6828 + 426.794i −0.0269777 + 0.448313i
\(953\) 519.872 0.545511 0.272755 0.962083i \(-0.412065\pi\)
0.272755 + 0.962083i \(0.412065\pi\)
\(954\) −14.0062 33.8141i −0.0146816 0.0354445i
\(955\) 346.149 231.289i 0.362460 0.242188i
\(956\) 490.951 490.951i 0.513547 0.513547i
\(957\) 600.247 + 119.397i 0.627218 + 0.124761i
\(958\) −47.7223 31.8870i −0.0498145 0.0332850i
\(959\) 556.265 110.648i 0.580047 0.115379i
\(960\) −45.0769 18.6715i −0.0469551 0.0194494i
\(961\) 272.132 656.984i 0.283175 0.683646i
\(962\) −3.23838 16.2805i −0.00336630 0.0169235i
\(963\) 7.99045 11.9586i 0.00829746 0.0124180i
\(964\) 274.195 1378.47i 0.284435 1.42995i
\(965\) −426.063 426.063i −0.441516 0.441516i
\(966\) −11.8006 17.6608i −0.0122159 0.0182824i
\(967\) 1113.70 461.309i 1.15171 0.477052i 0.276600 0.960985i \(-0.410792\pi\)
0.875105 + 0.483933i \(0.160792\pi\)
\(968\) 667.930i 0.690010i
\(969\) 625.179 1285.01i 0.645180 1.32612i
\(970\) −78.0626 −0.0804769
\(971\) 445.904 + 1076.51i 0.459222 + 1.10866i 0.968713 + 0.248184i \(0.0798336\pi\)
−0.509491 + 0.860476i \(0.670166\pi\)
\(972\) −397.832 + 265.823i −0.409292 + 0.273480i
\(973\) 477.515 477.515i 0.490766 0.490766i
\(974\) 536.680 + 106.752i 0.551006 + 0.109602i
\(975\) 23.5569 + 15.7402i 0.0241610 + 0.0161438i
\(976\) −382.322 + 76.0486i −0.391724 + 0.0779187i
\(977\) 496.049 + 205.470i 0.507727 + 0.210307i 0.621816 0.783163i \(-0.286395\pi\)
−0.114090 + 0.993470i \(0.536395\pi\)
\(978\) −99.3157 + 239.769i −0.101550 + 0.245163i
\(979\) −91.8349 461.685i −0.0938048 0.471589i
\(980\) 134.973 202.001i 0.137728 0.206124i
\(981\) −23.7550 + 119.424i −0.0242150 + 0.121737i
\(982\) −338.208 338.208i −0.344407 0.344407i
\(983\) −247.073 369.770i −0.251345 0.376165i 0.684245 0.729252i \(-0.260132\pi\)
−0.935590 + 0.353087i \(0.885132\pi\)
\(984\) −214.978 + 89.0467i −0.218473 + 0.0904947i
\(985\) 492.797i 0.500302i
\(986\) −279.287 808.526i −0.283252 0.820006i
\(987\) −293.802 −0.297672
\(988\) 93.7570 + 226.349i 0.0948958 + 0.229099i
\(989\) 97.2580 64.9857i 0.0983397 0.0657085i
\(990\) −22.2938 + 22.2938i −0.0225190 + 0.0225190i
\(991\) −1092.29 217.270i −1.10221 0.219243i −0.389725 0.920931i \(-0.627430\pi\)
−0.712484 + 0.701688i \(0.752430\pi\)
\(992\) −430.895 287.915i −0.434370 0.290237i
\(993\) 843.417 167.766i 0.849363 0.168949i
\(994\) 137.186 + 56.8243i 0.138014 + 0.0571673i
\(995\) 213.278 514.898i 0.214350 0.517486i
\(996\) 173.253 + 871.002i 0.173949 + 0.874500i
\(997\) −906.023 + 1355.96i −0.908750 + 1.36004i 0.0240755 + 0.999710i \(0.492336\pi\)
−0.932825 + 0.360330i \(0.882664\pi\)
\(998\) 45.1686 227.078i 0.0452591 0.227533i
\(999\) 153.986 + 153.986i 0.154140 + 0.154140i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.3.q.a.46.6 96
5.2 odd 4 425.3.t.e.199.7 96
5.3 odd 4 425.3.t.h.199.6 96
5.4 even 2 425.3.u.e.301.7 96
17.10 odd 16 inner 85.3.q.a.61.6 yes 96
85.27 even 16 425.3.t.h.299.6 96
85.44 odd 16 425.3.u.e.401.7 96
85.78 even 16 425.3.t.e.299.7 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.3.q.a.46.6 96 1.1 even 1 trivial
85.3.q.a.61.6 yes 96 17.10 odd 16 inner
425.3.t.e.199.7 96 5.2 odd 4
425.3.t.e.299.7 96 85.78 even 16
425.3.t.h.199.6 96 5.3 odd 4
425.3.t.h.299.6 96 85.27 even 16
425.3.u.e.301.7 96 5.4 even 2
425.3.u.e.401.7 96 85.44 odd 16