Properties

Label 425.3.u.e.401.7
Level $425$
Weight $3$
Character 425.401
Analytic conductor $11.580$
Analytic rank $0$
Dimension $96$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(126,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.126"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.u (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,0,0,0,0,0,0,192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 401.7
Character \(\chi\) \(=\) 425.401
Dual form 425.3.u.e.301.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.369527 - 0.892116i) q^{2} +(-2.03052 - 1.35675i) q^{3} +(2.16911 + 2.16911i) q^{4} +(-1.96072 + 1.31011i) q^{6} +(-3.61453 - 0.718974i) q^{7} +(6.30510 - 2.61166i) q^{8} +(-1.16190 - 2.80507i) q^{9} +(2.67188 + 3.99876i) q^{11} +(-1.46148 - 7.34736i) q^{12} +(-1.64069 + 1.64069i) q^{13} +(-1.97707 + 2.95890i) q^{14} +5.68035i q^{16} +(2.30902 - 16.8425i) q^{17} -2.93181 q^{18} +(13.1725 - 31.8012i) q^{19} +(6.36391 + 6.36391i) q^{21} +(4.55469 - 0.905984i) q^{22} +(-2.03220 + 1.35787i) q^{23} +(-16.3460 - 3.25143i) q^{24} +(0.857405 + 2.06996i) q^{26} +(-5.73438 + 28.8287i) q^{27} +(-6.28076 - 9.39982i) q^{28} +(-10.1660 - 51.1081i) q^{29} +(8.78233 - 13.1437i) q^{31} +(30.2879 + 12.5457i) q^{32} -11.7447i q^{33} +(-14.1722 - 8.28365i) q^{34} +(3.56422 - 8.60478i) q^{36} +(-6.16017 - 4.11609i) q^{37} +(-23.5028 - 23.5028i) q^{38} +(5.55746 - 1.10545i) q^{39} +(13.6935 + 2.72380i) q^{41} +(8.02899 - 3.32572i) q^{42} +(-18.3147 - 44.2156i) q^{43} +(-2.87813 + 14.4693i) q^{44} +(0.460427 + 2.31472i) q^{46} +(23.0835 - 23.0835i) q^{47} +(7.70683 - 11.5341i) q^{48} +(-32.7222 - 13.5540i) q^{49} +(-27.5396 + 31.0663i) q^{51} -7.11764 q^{52} +(4.77734 - 11.5335i) q^{53} +(23.5995 + 15.7687i) q^{54} +(-24.6677 + 4.90671i) q^{56} +(-69.8934 + 46.7013i) q^{57} +(-49.3510 - 9.81653i) q^{58} +(-25.1448 + 10.4153i) q^{59} +(-13.3880 + 67.3061i) q^{61} +(-8.48040 - 12.6918i) q^{62} +(2.18294 + 10.9744i) q^{63} +(6.31796 - 6.31796i) q^{64} +(-10.4776 - 4.33997i) q^{66} -63.2487i q^{67} +(41.5416 - 31.5246i) q^{68} +5.96872 q^{69} +(-34.6942 - 23.1819i) q^{71} +(-14.6518 - 14.6518i) q^{72} +(-52.0944 + 10.3622i) q^{73} +(-5.94838 + 3.97458i) q^{74} +(97.5527 - 40.4076i) q^{76} +(-6.78259 - 16.3746i) q^{77} +(1.06744 - 5.36639i) q^{78} +(-36.8708 - 55.1810i) q^{79} +(31.4350 - 31.4350i) q^{81} +(7.49005 - 11.2097i) q^{82} +(109.522 + 45.3657i) q^{83} +27.6080i q^{84} -46.2132 q^{86} +(-48.6987 + 117.569i) q^{87} +(27.2899 + 18.2345i) q^{88} +(69.2116 + 69.2116i) q^{89} +(7.10991 - 4.75069i) q^{91} +(-7.35341 - 1.46268i) q^{92} +(-35.6655 + 14.7731i) q^{93} +(-12.0632 - 29.1231i) q^{94} +(-44.4790 - 66.5676i) q^{96} +(7.05322 + 35.4589i) q^{97} +(-24.1835 + 24.1835i) q^{98} +(8.11235 - 12.1410i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 192 q^{12} + 48 q^{13} - 64 q^{14} - 16 q^{17} - 128 q^{18} + 48 q^{19} - 192 q^{22} - 112 q^{23} + 240 q^{24} - 224 q^{26} + 288 q^{27} + 480 q^{28} - 64 q^{31} + 80 q^{32} + 64 q^{34} + 192 q^{36}+ \cdots - 592 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.369527 0.892116i 0.184763 0.446058i −0.804174 0.594394i \(-0.797392\pi\)
0.988937 + 0.148336i \(0.0473918\pi\)
\(3\) −2.03052 1.35675i −0.676842 0.452251i 0.169049 0.985608i \(-0.445930\pi\)
−0.845891 + 0.533357i \(0.820930\pi\)
\(4\) 2.16911 + 2.16911i 0.542276 + 0.542276i
\(5\) 0 0
\(6\) −1.96072 + 1.31011i −0.326786 + 0.218351i
\(7\) −3.61453 0.718974i −0.516361 0.102711i −0.0699708 0.997549i \(-0.522291\pi\)
−0.446390 + 0.894838i \(0.647291\pi\)
\(8\) 6.30510 2.61166i 0.788138 0.326457i
\(9\) −1.16190 2.80507i −0.129100 0.311675i
\(10\) 0 0
\(11\) 2.67188 + 3.99876i 0.242898 + 0.363523i 0.932809 0.360372i \(-0.117350\pi\)
−0.689910 + 0.723895i \(0.742350\pi\)
\(12\) −1.46148 7.34736i −0.121790 0.612280i
\(13\) −1.64069 + 1.64069i −0.126207 + 0.126207i −0.767389 0.641182i \(-0.778444\pi\)
0.641182 + 0.767389i \(0.278444\pi\)
\(14\) −1.97707 + 2.95890i −0.141219 + 0.211350i
\(15\) 0 0
\(16\) 5.68035i 0.355022i
\(17\) 2.30902 16.8425i 0.135825 0.990733i
\(18\) −2.93181 −0.162878
\(19\) 13.1725 31.8012i 0.693289 1.67375i −0.0447581 0.998998i \(-0.514252\pi\)
0.738047 0.674749i \(-0.235748\pi\)
\(20\) 0 0
\(21\) 6.36391 + 6.36391i 0.303044 + 0.303044i
\(22\) 4.55469 0.905984i 0.207031 0.0411811i
\(23\) −2.03220 + 1.35787i −0.0883563 + 0.0590378i −0.598964 0.800776i \(-0.704421\pi\)
0.510607 + 0.859814i \(0.329421\pi\)
\(24\) −16.3460 3.25143i −0.681085 0.135476i
\(25\) 0 0
\(26\) 0.857405 + 2.06996i 0.0329771 + 0.0796138i
\(27\) −5.73438 + 28.8287i −0.212385 + 1.06773i
\(28\) −6.28076 9.39982i −0.224313 0.335708i
\(29\) −10.1660 51.1081i −0.350553 1.76235i −0.605940 0.795510i \(-0.707203\pi\)
0.255387 0.966839i \(-0.417797\pi\)
\(30\) 0 0
\(31\) 8.78233 13.1437i 0.283301 0.423990i −0.662339 0.749204i \(-0.730436\pi\)
0.945640 + 0.325214i \(0.105436\pi\)
\(32\) 30.2879 + 12.5457i 0.946498 + 0.392052i
\(33\) 11.7447i 0.355899i
\(34\) −14.1722 8.28365i −0.416829 0.243637i
\(35\) 0 0
\(36\) 3.56422 8.60478i 0.0990061 0.239022i
\(37\) −6.16017 4.11609i −0.166491 0.111246i 0.469533 0.882915i \(-0.344422\pi\)
−0.636024 + 0.771669i \(0.719422\pi\)
\(38\) −23.5028 23.5028i −0.618494 0.618494i
\(39\) 5.55746 1.10545i 0.142499 0.0283448i
\(40\) 0 0
\(41\) 13.6935 + 2.72380i 0.333987 + 0.0664342i 0.359235 0.933247i \(-0.383038\pi\)
−0.0252481 + 0.999681i \(0.508038\pi\)
\(42\) 8.02899 3.32572i 0.191166 0.0791837i
\(43\) −18.3147 44.2156i −0.425923 1.02827i −0.980568 0.196182i \(-0.937146\pi\)
0.554645 0.832087i \(-0.312854\pi\)
\(44\) −2.87813 + 14.4693i −0.0654120 + 0.328848i
\(45\) 0 0
\(46\) 0.460427 + 2.31472i 0.0100093 + 0.0503201i
\(47\) 23.0835 23.0835i 0.491138 0.491138i −0.417527 0.908665i \(-0.637103\pi\)
0.908665 + 0.417527i \(0.137103\pi\)
\(48\) 7.70683 11.5341i 0.160559 0.240293i
\(49\) −32.7222 13.5540i −0.667800 0.276612i
\(50\) 0 0
\(51\) −27.5396 + 31.0663i −0.539992 + 0.609142i
\(52\) −7.11764 −0.136878
\(53\) 4.77734 11.5335i 0.0901386 0.217614i −0.872381 0.488827i \(-0.837425\pi\)
0.962519 + 0.271213i \(0.0874249\pi\)
\(54\) 23.5995 + 15.7687i 0.437029 + 0.292013i
\(55\) 0 0
\(56\) −24.6677 + 4.90671i −0.440494 + 0.0876197i
\(57\) −69.8934 + 46.7013i −1.22620 + 0.819321i
\(58\) −49.3510 9.81653i −0.850880 0.169250i
\(59\) −25.1448 + 10.4153i −0.426183 + 0.176531i −0.585457 0.810704i \(-0.699085\pi\)
0.159274 + 0.987234i \(0.449085\pi\)
\(60\) 0 0
\(61\) −13.3880 + 67.3061i −0.219476 + 1.10338i 0.701174 + 0.712990i \(0.252660\pi\)
−0.920650 + 0.390389i \(0.872340\pi\)
\(62\) −8.48040 12.6918i −0.136781 0.204707i
\(63\) 2.18294 + 10.9744i 0.0346499 + 0.174197i
\(64\) 6.31796 6.31796i 0.0987181 0.0987181i
\(65\) 0 0
\(66\) −10.4776 4.33997i −0.158752 0.0657571i
\(67\) 63.2487i 0.944011i −0.881596 0.472005i \(-0.843530\pi\)
0.881596 0.472005i \(-0.156470\pi\)
\(68\) 41.5416 31.5246i 0.610906 0.463596i
\(69\) 5.96872 0.0865031
\(70\) 0 0
\(71\) −34.6942 23.1819i −0.488651 0.326506i 0.286717 0.958015i \(-0.407436\pi\)
−0.775369 + 0.631509i \(0.782436\pi\)
\(72\) −14.6518 14.6518i −0.203497 0.203497i
\(73\) −52.0944 + 10.3622i −0.713622 + 0.141948i −0.538533 0.842604i \(-0.681021\pi\)
−0.175089 + 0.984553i \(0.556021\pi\)
\(74\) −5.94838 + 3.97458i −0.0803835 + 0.0537105i
\(75\) 0 0
\(76\) 97.5527 40.4076i 1.28359 0.531679i
\(77\) −6.78259 16.3746i −0.0880856 0.212657i
\(78\) 1.06744 5.36639i 0.0136852 0.0687999i
\(79\) −36.8708 55.1810i −0.466718 0.698494i 0.521206 0.853431i \(-0.325482\pi\)
−0.987924 + 0.154937i \(0.950482\pi\)
\(80\) 0 0
\(81\) 31.4350 31.4350i 0.388087 0.388087i
\(82\) 7.49005 11.2097i 0.0913421 0.136703i
\(83\) 109.522 + 45.3657i 1.31955 + 0.546574i 0.927655 0.373437i \(-0.121821\pi\)
0.391891 + 0.920012i \(0.371821\pi\)
\(84\) 27.6080i 0.328667i
\(85\) 0 0
\(86\) −46.2132 −0.537363
\(87\) −48.6987 + 117.569i −0.559755 + 1.35137i
\(88\) 27.2899 + 18.2345i 0.310112 + 0.207210i
\(89\) 69.2116 + 69.2116i 0.777658 + 0.777658i 0.979432 0.201774i \(-0.0646707\pi\)
−0.201774 + 0.979432i \(0.564671\pi\)
\(90\) 0 0
\(91\) 7.10991 4.75069i 0.0781309 0.0522054i
\(92\) −7.35341 1.46268i −0.0799283 0.0158987i
\(93\) −35.6655 + 14.7731i −0.383500 + 0.158851i
\(94\) −12.0632 29.1231i −0.128332 0.309820i
\(95\) 0 0
\(96\) −44.4790 66.5676i −0.463323 0.693412i
\(97\) 7.05322 + 35.4589i 0.0727136 + 0.365556i 0.999960 0.00889462i \(-0.00283128\pi\)
−0.927247 + 0.374451i \(0.877831\pi\)
\(98\) −24.1835 + 24.1835i −0.246770 + 0.246770i
\(99\) 8.11235 12.1410i 0.0819429 0.122636i
\(100\) 0 0
\(101\) 124.397i 1.23166i 0.787880 + 0.615829i \(0.211179\pi\)
−0.787880 + 0.615829i \(0.788821\pi\)
\(102\) 17.5381 + 36.0483i 0.171942 + 0.353415i
\(103\) 163.755 1.58985 0.794925 0.606707i \(-0.207510\pi\)
0.794925 + 0.606707i \(0.207510\pi\)
\(104\) −6.05978 + 14.6296i −0.0582671 + 0.140669i
\(105\) 0 0
\(106\) −8.52390 8.52390i −0.0804141 0.0804141i
\(107\) 4.64598 0.924143i 0.0434204 0.00863685i −0.173332 0.984863i \(-0.555453\pi\)
0.216753 + 0.976227i \(0.430453\pi\)
\(108\) −74.9709 + 50.0940i −0.694175 + 0.463833i
\(109\) 39.3336 + 7.82394i 0.360859 + 0.0717792i 0.372190 0.928157i \(-0.378607\pi\)
−0.0113314 + 0.999936i \(0.503607\pi\)
\(110\) 0 0
\(111\) 6.92385 + 16.7156i 0.0623770 + 0.150591i
\(112\) 4.08402 20.5318i 0.0364645 0.183319i
\(113\) 64.0781 + 95.8997i 0.567063 + 0.848670i 0.998571 0.0534391i \(-0.0170183\pi\)
−0.431508 + 0.902109i \(0.642018\pi\)
\(114\) 15.8355 + 79.6105i 0.138908 + 0.698337i
\(115\) 0 0
\(116\) 88.8077 132.910i 0.765583 1.14578i
\(117\) 6.50856 + 2.69593i 0.0556287 + 0.0230422i
\(118\) 26.2808i 0.222719i
\(119\) −20.4553 + 59.2174i −0.171893 + 0.497625i
\(120\) 0 0
\(121\) 37.4536 90.4210i 0.309534 0.747281i
\(122\) 55.0977 + 36.8151i 0.451620 + 0.301763i
\(123\) −24.1094 24.1094i −0.196011 0.196011i
\(124\) 47.5599 9.46024i 0.383547 0.0762923i
\(125\) 0 0
\(126\) 10.5971 + 2.10789i 0.0841039 + 0.0167293i
\(127\) 221.668 91.8180i 1.74542 0.722976i 0.747120 0.664689i \(-0.231436\pi\)
0.998300 0.0582871i \(-0.0185639\pi\)
\(128\) 46.8810 + 113.181i 0.366258 + 0.884225i
\(129\) −22.8012 + 114.629i −0.176753 + 0.888599i
\(130\) 0 0
\(131\) 42.5779 + 214.053i 0.325022 + 1.63400i 0.705147 + 0.709061i \(0.250881\pi\)
−0.380126 + 0.924935i \(0.624119\pi\)
\(132\) 25.4754 25.4754i 0.192995 0.192995i
\(133\) −70.4765 + 105.476i −0.529899 + 0.793049i
\(134\) −56.4252 23.3721i −0.421084 0.174419i
\(135\) 0 0
\(136\) −29.4281 112.224i −0.216383 0.825175i
\(137\) −153.897 −1.12334 −0.561668 0.827362i \(-0.689840\pi\)
−0.561668 + 0.827362i \(0.689840\pi\)
\(138\) 2.20560 5.32479i 0.0159826 0.0385854i
\(139\) 152.360 + 101.804i 1.09611 + 0.732401i 0.965856 0.259079i \(-0.0834191\pi\)
0.130259 + 0.991480i \(0.458419\pi\)
\(140\) 0 0
\(141\) −78.1901 + 15.5530i −0.554540 + 0.110305i
\(142\) −33.5014 + 22.3849i −0.235926 + 0.157640i
\(143\) −10.9444 2.17698i −0.0765344 0.0152236i
\(144\) 15.9338 6.60000i 0.110651 0.0458333i
\(145\) 0 0
\(146\) −10.0060 + 50.3034i −0.0685341 + 0.344544i
\(147\) 48.0539 + 71.9177i 0.326897 + 0.489236i
\(148\) −4.43381 22.2903i −0.0299582 0.150610i
\(149\) 40.3951 40.3951i 0.271108 0.271108i −0.558438 0.829546i \(-0.688599\pi\)
0.829546 + 0.558438i \(0.188599\pi\)
\(150\) 0 0
\(151\) −54.5664 22.6021i −0.361367 0.149683i 0.194610 0.980881i \(-0.437656\pi\)
−0.555977 + 0.831198i \(0.687656\pi\)
\(152\) 234.912i 1.54547i
\(153\) −49.9272 + 13.0923i −0.326322 + 0.0855704i
\(154\) −17.1144 −0.111133
\(155\) 0 0
\(156\) 14.4525 + 9.65688i 0.0926445 + 0.0619031i
\(157\) −3.65977 3.65977i −0.0233107 0.0233107i 0.695355 0.718666i \(-0.255247\pi\)
−0.718666 + 0.695355i \(0.755247\pi\)
\(158\) −62.8526 + 12.5022i −0.397801 + 0.0791276i
\(159\) −25.3487 + 16.9374i −0.159426 + 0.106525i
\(160\) 0 0
\(161\) 8.32169 3.44696i 0.0516875 0.0214097i
\(162\) −16.4276 39.6598i −0.101405 0.244813i
\(163\) 21.4707 107.940i 0.131722 0.662211i −0.857345 0.514743i \(-0.827887\pi\)
0.989067 0.147469i \(-0.0471125\pi\)
\(164\) 23.7944 + 35.6108i 0.145088 + 0.217139i
\(165\) 0 0
\(166\) 80.9429 80.9429i 0.487608 0.487608i
\(167\) −118.557 + 177.433i −0.709923 + 1.06247i 0.284671 + 0.958625i \(0.408116\pi\)
−0.994593 + 0.103849i \(0.966884\pi\)
\(168\) 56.7455 + 23.5048i 0.337771 + 0.139909i
\(169\) 163.616i 0.968144i
\(170\) 0 0
\(171\) −104.510 −0.611169
\(172\) 56.1817 135.635i 0.326638 0.788574i
\(173\) −150.906 100.832i −0.872287 0.582844i 0.0368589 0.999320i \(-0.488265\pi\)
−0.909146 + 0.416477i \(0.863265\pi\)
\(174\) 86.8898 + 86.8898i 0.499367 + 0.499367i
\(175\) 0 0
\(176\) −22.7143 + 15.1772i −0.129059 + 0.0862343i
\(177\) 65.1881 + 12.9667i 0.368295 + 0.0732583i
\(178\) 87.3203 36.1693i 0.490564 0.203198i
\(179\) −13.9147 33.5930i −0.0777356 0.187670i 0.880234 0.474540i \(-0.157385\pi\)
−0.957970 + 0.286869i \(0.907385\pi\)
\(180\) 0 0
\(181\) −115.240 172.469i −0.636686 0.952868i −0.999777 0.0211143i \(-0.993279\pi\)
0.363091 0.931754i \(-0.381721\pi\)
\(182\) −1.61087 8.09838i −0.00885092 0.0444966i
\(183\) 118.503 118.503i 0.647555 0.647555i
\(184\) −9.26691 + 13.8689i −0.0503636 + 0.0753745i
\(185\) 0 0
\(186\) 37.2768i 0.200413i
\(187\) 73.5183 35.7679i 0.393146 0.191272i
\(188\) 100.141 0.532665
\(189\) 41.4541 100.079i 0.219334 0.529519i
\(190\) 0 0
\(191\) −131.649 131.649i −0.689260 0.689260i 0.272808 0.962068i \(-0.412048\pi\)
−0.962068 + 0.272808i \(0.912048\pi\)
\(192\) −21.4007 + 4.25686i −0.111462 + 0.0221712i
\(193\) −224.053 + 149.707i −1.16089 + 0.775685i −0.978237 0.207492i \(-0.933470\pi\)
−0.182657 + 0.983177i \(0.558470\pi\)
\(194\) 34.2399 + 6.81073i 0.176494 + 0.0351069i
\(195\) 0 0
\(196\) −41.5779 100.378i −0.212132 0.512133i
\(197\) −42.9951 + 216.151i −0.218249 + 1.09721i 0.703877 + 0.710322i \(0.251451\pi\)
−0.922126 + 0.386890i \(0.873549\pi\)
\(198\) −7.83344 11.7236i −0.0395628 0.0592100i
\(199\) −48.6247 244.453i −0.244345 1.22841i −0.886826 0.462104i \(-0.847095\pi\)
0.642480 0.766302i \(-0.277905\pi\)
\(200\) 0 0
\(201\) −85.8129 + 128.428i −0.426930 + 0.638946i
\(202\) 110.977 + 45.9682i 0.549391 + 0.227565i
\(203\) 192.041i 0.946013i
\(204\) −127.122 + 7.64973i −0.623148 + 0.0374987i
\(205\) 0 0
\(206\) 60.5117 146.088i 0.293746 0.709166i
\(207\) 6.17013 + 4.12275i 0.0298074 + 0.0199167i
\(208\) −9.31967 9.31967i −0.0448061 0.0448061i
\(209\) 162.361 32.2955i 0.776845 0.154524i
\(210\) 0 0
\(211\) 9.91358 + 1.97193i 0.0469838 + 0.00934565i 0.218526 0.975831i \(-0.429875\pi\)
−0.171542 + 0.985177i \(0.554875\pi\)
\(212\) 35.3800 14.6549i 0.166887 0.0691268i
\(213\) 38.9953 + 94.1430i 0.183077 + 0.441986i
\(214\) 0.892371 4.48625i 0.00416996 0.0209638i
\(215\) 0 0
\(216\) 39.1348 + 196.744i 0.181180 + 0.910852i
\(217\) −41.1939 + 41.1939i −0.189834 + 0.189834i
\(218\) 21.5147 32.1990i 0.0986912 0.147702i
\(219\) 119.838 + 49.6385i 0.547206 + 0.226660i
\(220\) 0 0
\(221\) 23.8448 + 31.4216i 0.107895 + 0.142179i
\(222\) 17.4709 0.0786975
\(223\) 93.5097 225.752i 0.419326 1.01234i −0.563217 0.826309i \(-0.690437\pi\)
0.982543 0.186034i \(-0.0595634\pi\)
\(224\) −100.457 67.1229i −0.448467 0.299656i
\(225\) 0 0
\(226\) 109.232 21.7277i 0.483329 0.0961401i
\(227\) −329.953 + 220.468i −1.45354 + 0.971223i −0.456880 + 0.889528i \(0.651033\pi\)
−0.996657 + 0.0816943i \(0.973967\pi\)
\(228\) −252.906 50.3062i −1.10924 0.220641i
\(229\) −387.156 + 160.365i −1.69064 + 0.700286i −0.999743 0.0226689i \(-0.992784\pi\)
−0.690896 + 0.722954i \(0.742784\pi\)
\(230\) 0 0
\(231\) −8.44410 + 42.4514i −0.0365546 + 0.183772i
\(232\) −197.575 295.692i −0.851616 1.27453i
\(233\) 49.9022 + 250.875i 0.214172 + 1.07672i 0.926909 + 0.375286i \(0.122455\pi\)
−0.712737 + 0.701432i \(0.752545\pi\)
\(234\) 4.81017 4.81017i 0.0205563 0.0205563i
\(235\) 0 0
\(236\) −77.1336 31.9498i −0.326837 0.135380i
\(237\) 162.071i 0.683843i
\(238\) 45.2700 + 40.1309i 0.190210 + 0.168617i
\(239\) 226.338 0.947021 0.473511 0.880788i \(-0.342987\pi\)
0.473511 + 0.880788i \(0.342987\pi\)
\(240\) 0 0
\(241\) 380.956 + 254.547i 1.58073 + 1.05621i 0.962885 + 0.269911i \(0.0869943\pi\)
0.617846 + 0.786299i \(0.288006\pi\)
\(242\) −66.8260 66.8260i −0.276140 0.276140i
\(243\) 152.979 30.4294i 0.629543 0.125224i
\(244\) −175.034 + 116.954i −0.717353 + 0.479320i
\(245\) 0 0
\(246\) −30.4175 + 12.5993i −0.123648 + 0.0512168i
\(247\) 30.5639 + 73.7877i 0.123740 + 0.298736i
\(248\) 21.0467 105.809i 0.0848656 0.426648i
\(249\) −160.838 240.711i −0.645935 0.966710i
\(250\) 0 0
\(251\) 74.4069 74.4069i 0.296442 0.296442i −0.543177 0.839618i \(-0.682779\pi\)
0.839618 + 0.543177i \(0.182779\pi\)
\(252\) −19.0696 + 28.5396i −0.0756729 + 0.113253i
\(253\) −10.8596 4.49818i −0.0429232 0.0177794i
\(254\) 231.683i 0.912138i
\(255\) 0 0
\(256\) 154.034 0.601695
\(257\) 31.6976 76.5248i 0.123337 0.297762i −0.850136 0.526563i \(-0.823481\pi\)
0.973473 + 0.228801i \(0.0734805\pi\)
\(258\) 93.8371 + 62.6999i 0.363710 + 0.243023i
\(259\) 19.3067 + 19.3067i 0.0745433 + 0.0745433i
\(260\) 0 0
\(261\) −131.550 + 87.8990i −0.504023 + 0.336778i
\(262\) 206.694 + 41.1140i 0.788909 + 0.156924i
\(263\) 2.23755 0.926824i 0.00850780 0.00352405i −0.378425 0.925632i \(-0.623534\pi\)
0.386933 + 0.922108i \(0.373534\pi\)
\(264\) −30.6730 74.0513i −0.116186 0.280497i
\(265\) 0 0
\(266\) 68.0535 + 101.849i 0.255840 + 0.382892i
\(267\) −46.6328 234.439i −0.174655 0.878048i
\(268\) 137.193 137.193i 0.511915 0.511915i
\(269\) 79.6966 119.274i 0.296270 0.443399i −0.653233 0.757157i \(-0.726588\pi\)
0.949503 + 0.313757i \(0.101588\pi\)
\(270\) 0 0
\(271\) 51.5741i 0.190310i −0.995462 0.0951551i \(-0.969665\pi\)
0.995462 0.0951551i \(-0.0303347\pi\)
\(272\) 95.6710 + 13.1160i 0.351732 + 0.0482207i
\(273\) −20.8824 −0.0764922
\(274\) −56.8691 + 137.294i −0.207552 + 0.501074i
\(275\) 0 0
\(276\) 12.9468 + 12.9468i 0.0469086 + 0.0469086i
\(277\) 350.729 69.7643i 1.26617 0.251857i 0.484080 0.875024i \(-0.339154\pi\)
0.782089 + 0.623167i \(0.214154\pi\)
\(278\) 147.122 98.3037i 0.529215 0.353610i
\(279\) −47.0732 9.36344i −0.168721 0.0335607i
\(280\) 0 0
\(281\) 182.827 + 441.383i 0.650630 + 1.57076i 0.811866 + 0.583844i \(0.198452\pi\)
−0.161236 + 0.986916i \(0.551548\pi\)
\(282\) −15.0183 + 75.5019i −0.0532563 + 0.267737i
\(283\) −122.046 182.654i −0.431257 0.645422i 0.550661 0.834729i \(-0.314376\pi\)
−0.981918 + 0.189307i \(0.939376\pi\)
\(284\) −24.9714 125.540i −0.0879273 0.442041i
\(285\) 0 0
\(286\) −5.98638 + 8.95925i −0.0209314 + 0.0313260i
\(287\) −47.5371 19.6905i −0.165634 0.0686080i
\(288\) 99.5367i 0.345614i
\(289\) −278.337 77.7792i −0.963103 0.269132i
\(290\) 0 0
\(291\) 33.7873 81.5697i 0.116108 0.280308i
\(292\) −135.475 90.5216i −0.463956 0.310005i
\(293\) −352.092 352.092i −1.20168 1.20168i −0.973656 0.228023i \(-0.926774\pi\)
−0.228023 0.973656i \(-0.573226\pi\)
\(294\) 81.9161 16.2941i 0.278626 0.0554222i
\(295\) 0 0
\(296\) −49.5903 9.86412i −0.167535 0.0333247i
\(297\) −130.600 + 54.0965i −0.439732 + 0.182143i
\(298\) −21.1101 50.9642i −0.0708392 0.171021i
\(299\) 1.10636 5.56203i 0.00370019 0.0186021i
\(300\) 0 0
\(301\) 34.4091 + 172.986i 0.114316 + 0.574705i
\(302\) −40.3275 + 40.3275i −0.133535 + 0.133535i
\(303\) 168.777 252.592i 0.557019 0.833637i
\(304\) 180.642 + 74.8243i 0.594217 + 0.246133i
\(305\) 0 0
\(306\) −6.76960 + 49.3788i −0.0221229 + 0.161369i
\(307\) −153.821 −0.501046 −0.250523 0.968111i \(-0.580603\pi\)
−0.250523 + 0.968111i \(0.580603\pi\)
\(308\) 20.8061 50.2304i 0.0675524 0.163086i
\(309\) −332.508 222.175i −1.07608 0.719012i
\(310\) 0 0
\(311\) −301.680 + 60.0079i −0.970032 + 0.192951i −0.654582 0.755991i \(-0.727155\pi\)
−0.315450 + 0.948942i \(0.602155\pi\)
\(312\) 32.1533 21.4841i 0.103055 0.0688594i
\(313\) −234.843 46.7133i −0.750299 0.149244i −0.194894 0.980824i \(-0.562436\pi\)
−0.555404 + 0.831581i \(0.687436\pi\)
\(314\) −4.61733 + 1.91256i −0.0147049 + 0.00609095i
\(315\) 0 0
\(316\) 39.7168 199.670i 0.125686 0.631867i
\(317\) −163.783 245.119i −0.516666 0.773245i 0.477782 0.878479i \(-0.341441\pi\)
−0.994448 + 0.105233i \(0.966441\pi\)
\(318\) 5.74316 + 28.8728i 0.0180602 + 0.0907950i
\(319\) 177.206 177.206i 0.555506 0.555506i
\(320\) 0 0
\(321\) −10.6876 4.42695i −0.0332947 0.0137911i
\(322\) 8.69766i 0.0270114i
\(323\) −505.195 295.287i −1.56407 0.914200i
\(324\) 136.372 0.420900
\(325\) 0 0
\(326\) −88.3614 59.0412i −0.271047 0.181108i
\(327\) −69.2527 69.2527i −0.211782 0.211782i
\(328\) 93.4524 18.5888i 0.284916 0.0566733i
\(329\) −100.032 + 66.8394i −0.304049 + 0.203159i
\(330\) 0 0
\(331\) 325.328 134.755i 0.982865 0.407116i 0.167379 0.985893i \(-0.446470\pi\)
0.815486 + 0.578777i \(0.196470\pi\)
\(332\) 139.163 + 335.968i 0.419165 + 1.01195i
\(333\) −4.38845 + 22.0622i −0.0131785 + 0.0662529i
\(334\) 114.481 + 171.333i 0.342758 + 0.512973i
\(335\) 0 0
\(336\) −36.1492 + 36.1492i −0.107587 + 0.107587i
\(337\) 104.502 156.398i 0.310095 0.464090i −0.643386 0.765542i \(-0.722471\pi\)
0.953482 + 0.301451i \(0.0974711\pi\)
\(338\) 145.965 + 60.4606i 0.431849 + 0.178878i
\(339\) 281.665i 0.830870i
\(340\) 0 0
\(341\) 76.0238 0.222944
\(342\) −38.6192 + 93.2349i −0.112922 + 0.272617i
\(343\) 258.678 + 172.843i 0.754165 + 0.503917i
\(344\) −230.952 230.952i −0.671372 0.671372i
\(345\) 0 0
\(346\) −145.718 + 97.3654i −0.421149 + 0.281403i
\(347\) 355.397 + 70.6929i 1.02420 + 0.203726i 0.678485 0.734614i \(-0.262637\pi\)
0.345714 + 0.938340i \(0.387637\pi\)
\(348\) −360.652 + 149.387i −1.03636 + 0.429273i
\(349\) 121.253 + 292.730i 0.347429 + 0.838767i 0.996922 + 0.0783995i \(0.0249810\pi\)
−0.649493 + 0.760367i \(0.725019\pi\)
\(350\) 0 0
\(351\) −37.8905 56.7071i −0.107950 0.161559i
\(352\) 30.7588 + 154.635i 0.0873828 + 0.439303i
\(353\) 77.6740 77.6740i 0.220040 0.220040i −0.588475 0.808515i \(-0.700272\pi\)
0.808515 + 0.588475i \(0.200272\pi\)
\(354\) 35.6566 53.3639i 0.100725 0.150745i
\(355\) 0 0
\(356\) 300.254i 0.843411i
\(357\) 121.878 92.4896i 0.341396 0.259074i
\(358\) −35.1107 −0.0980746
\(359\) 181.912 439.175i 0.506719 1.22333i −0.439042 0.898467i \(-0.644682\pi\)
0.945761 0.324862i \(-0.105318\pi\)
\(360\) 0 0
\(361\) −582.536 582.536i −1.61367 1.61367i
\(362\) −196.447 + 39.0757i −0.542671 + 0.107944i
\(363\) −198.729 + 132.787i −0.547464 + 0.365804i
\(364\) 25.7269 + 5.11740i 0.0706783 + 0.0140588i
\(365\) 0 0
\(366\) −61.9282 149.508i −0.169203 0.408492i
\(367\) 25.3166 127.275i 0.0689824 0.346798i −0.930844 0.365416i \(-0.880927\pi\)
0.999827 + 0.0186181i \(0.00592667\pi\)
\(368\) −7.71317 11.5436i −0.0209597 0.0313684i
\(369\) −8.26998 41.5760i −0.0224119 0.112672i
\(370\) 0 0
\(371\) −25.5601 + 38.2535i −0.0688953 + 0.103109i
\(372\) −109.407 45.3177i −0.294104 0.121822i
\(373\) 602.500i 1.61528i 0.589676 + 0.807640i \(0.299256\pi\)
−0.589676 + 0.807640i \(0.700744\pi\)
\(374\) −4.74213 78.8041i −0.0126795 0.210706i
\(375\) 0 0
\(376\) 85.2575 205.830i 0.226749 0.547420i
\(377\) 100.532 + 67.1731i 0.266662 + 0.178178i
\(378\) −73.9639 73.9639i −0.195672 0.195672i
\(379\) −345.346 + 68.6936i −0.911203 + 0.181250i −0.628365 0.777918i \(-0.716276\pi\)
−0.282838 + 0.959168i \(0.591276\pi\)
\(380\) 0 0
\(381\) −574.677 114.310i −1.50834 0.300027i
\(382\) −166.094 + 68.7983i −0.434800 + 0.180100i
\(383\) 94.9085 + 229.129i 0.247803 + 0.598249i 0.998017 0.0629459i \(-0.0200495\pi\)
−0.750214 + 0.661195i \(0.770050\pi\)
\(384\) 58.3653 293.422i 0.151993 0.764121i
\(385\) 0 0
\(386\) 50.7628 + 255.202i 0.131510 + 0.661144i
\(387\) −102.748 + 102.748i −0.265499 + 0.265499i
\(388\) −61.6150 + 92.2134i −0.158802 + 0.237663i
\(389\) 343.713 + 142.371i 0.883581 + 0.365991i 0.777885 0.628407i \(-0.216293\pi\)
0.105697 + 0.994398i \(0.466293\pi\)
\(390\) 0 0
\(391\) 18.1775 + 37.3625i 0.0464897 + 0.0955563i
\(392\) −241.715 −0.616621
\(393\) 203.962 492.408i 0.518988 1.25295i
\(394\) 176.944 + 118.230i 0.449096 + 0.300077i
\(395\) 0 0
\(396\) 43.9316 8.73854i 0.110938 0.0220670i
\(397\) 629.967 420.930i 1.58682 1.06028i 0.627243 0.778824i \(-0.284183\pi\)
0.959575 0.281454i \(-0.0908165\pi\)
\(398\) −236.049 46.9530i −0.593087 0.117972i
\(399\) 286.209 118.552i 0.717315 0.297122i
\(400\) 0 0
\(401\) 78.7581 395.944i 0.196404 0.987391i −0.749267 0.662268i \(-0.769594\pi\)
0.945672 0.325123i \(-0.105406\pi\)
\(402\) 82.8627 + 124.013i 0.206126 + 0.308489i
\(403\) 7.15562 + 35.9737i 0.0177559 + 0.0892648i
\(404\) −269.831 + 269.831i −0.667899 + 0.667899i
\(405\) 0 0
\(406\) 171.323 + 70.9642i 0.421977 + 0.174789i
\(407\) 35.6307i 0.0875448i
\(408\) −92.5054 + 267.800i −0.226729 + 0.656372i
\(409\) −439.976 −1.07574 −0.537868 0.843029i \(-0.680770\pi\)
−0.537868 + 0.843029i \(0.680770\pi\)
\(410\) 0 0
\(411\) 312.492 + 208.800i 0.760321 + 0.508030i
\(412\) 355.201 + 355.201i 0.862138 + 0.862138i
\(413\) 98.3749 19.5680i 0.238196 0.0473801i
\(414\) 5.95800 3.98101i 0.0143913 0.00961596i
\(415\) 0 0
\(416\) −70.2765 + 29.1095i −0.168934 + 0.0699747i
\(417\) −171.248 413.430i −0.410667 0.991438i
\(418\) 31.1852 156.779i 0.0746058 0.375068i
\(419\) 353.408 + 528.913i 0.843457 + 1.26232i 0.963002 + 0.269493i \(0.0868562\pi\)
−0.119546 + 0.992829i \(0.538144\pi\)
\(420\) 0 0
\(421\) 466.115 466.115i 1.10716 1.10716i 0.113640 0.993522i \(-0.463749\pi\)
0.993522 0.113640i \(-0.0362510\pi\)
\(422\) 5.42253 8.11538i 0.0128496 0.0192308i
\(423\) −91.5715 37.9302i −0.216481 0.0896694i
\(424\) 85.1969i 0.200936i
\(425\) 0 0
\(426\) 98.3964 0.230977
\(427\) 96.7827 233.654i 0.226657 0.547199i
\(428\) 12.0822 + 8.07306i 0.0282294 + 0.0188623i
\(429\) 19.2693 + 19.2693i 0.0449168 + 0.0449168i
\(430\) 0 0
\(431\) −30.0089 + 20.0513i −0.0696262 + 0.0465227i −0.589896 0.807479i \(-0.700831\pi\)
0.520270 + 0.854002i \(0.325831\pi\)
\(432\) −163.757 32.5733i −0.379067 0.0754011i
\(433\) 29.5441 12.2376i 0.0682312 0.0282623i −0.348307 0.937381i \(-0.613243\pi\)
0.416538 + 0.909118i \(0.363243\pi\)
\(434\) 21.5275 + 51.9721i 0.0496026 + 0.119751i
\(435\) 0 0
\(436\) 68.3478 + 102.290i 0.156761 + 0.234609i
\(437\) 16.4128 + 82.5128i 0.0375579 + 0.188816i
\(438\) 88.5667 88.5667i 0.202207 0.202207i
\(439\) −135.063 + 202.136i −0.307661 + 0.460447i −0.952792 0.303625i \(-0.901803\pi\)
0.645131 + 0.764072i \(0.276803\pi\)
\(440\) 0 0
\(441\) 107.537i 0.243847i
\(442\) 36.8430 9.66124i 0.0833552 0.0218580i
\(443\) 674.566 1.52272 0.761361 0.648328i \(-0.224531\pi\)
0.761361 + 0.648328i \(0.224531\pi\)
\(444\) −21.2394 + 51.2766i −0.0478366 + 0.115488i
\(445\) 0 0
\(446\) −166.843 166.843i −0.374088 0.374088i
\(447\) −136.830 + 27.2171i −0.306106 + 0.0608883i
\(448\) −27.3789 + 18.2940i −0.0611136 + 0.0408348i
\(449\) −514.273 102.295i −1.14538 0.227829i −0.414309 0.910136i \(-0.635977\pi\)
−0.731066 + 0.682307i \(0.760977\pi\)
\(450\) 0 0
\(451\) 25.6955 + 62.0345i 0.0569746 + 0.137549i
\(452\) −69.0243 + 347.009i −0.152709 + 0.767719i
\(453\) 80.1328 + 119.927i 0.176894 + 0.264740i
\(454\) 74.7563 + 375.825i 0.164661 + 0.827809i
\(455\) 0 0
\(456\) −318.717 + 476.994i −0.698942 + 1.04604i
\(457\) −509.027 210.846i −1.11384 0.461369i −0.251584 0.967835i \(-0.580952\pi\)
−0.862260 + 0.506466i \(0.830952\pi\)
\(458\) 404.648i 0.883510i
\(459\) 472.305 + 163.147i 1.02899 + 0.355440i
\(460\) 0 0
\(461\) −93.3130 + 225.278i −0.202414 + 0.488672i −0.992192 0.124722i \(-0.960196\pi\)
0.789777 + 0.613394i \(0.210196\pi\)
\(462\) 34.7512 + 23.2200i 0.0752192 + 0.0502598i
\(463\) 260.222 + 260.222i 0.562035 + 0.562035i 0.929885 0.367850i \(-0.119906\pi\)
−0.367850 + 0.929885i \(0.619906\pi\)
\(464\) 290.312 57.7466i 0.625672 0.124454i
\(465\) 0 0
\(466\) 242.250 + 48.1865i 0.519850 + 0.103405i
\(467\) −38.9983 + 16.1536i −0.0835081 + 0.0345902i −0.424046 0.905640i \(-0.639391\pi\)
0.340538 + 0.940231i \(0.389391\pi\)
\(468\) 8.26998 + 19.9655i 0.0176709 + 0.0426613i
\(469\) −45.4742 + 228.614i −0.0969599 + 0.487450i
\(470\) 0 0
\(471\) 2.46585 + 12.3967i 0.00523535 + 0.0263199i
\(472\) −131.339 + 131.339i −0.278261 + 0.278261i
\(473\) 127.873 191.375i 0.270344 0.404598i
\(474\) 144.586 + 59.8895i 0.305034 + 0.126349i
\(475\) 0 0
\(476\) −172.818 + 84.0790i −0.363064 + 0.176637i
\(477\) −37.9032 −0.0794616
\(478\) 83.6380 201.920i 0.174975 0.422427i
\(479\) 49.4214 + 33.0224i 0.103176 + 0.0689402i 0.606088 0.795398i \(-0.292738\pi\)
−0.502912 + 0.864338i \(0.667738\pi\)
\(480\) 0 0
\(481\) 16.8601 3.35368i 0.0350522 0.00697231i
\(482\) 367.859 245.795i 0.763193 0.509949i
\(483\) −21.5741 4.29135i −0.0446668 0.00888478i
\(484\) 277.373 114.892i 0.573086 0.237380i
\(485\) 0 0
\(486\) 29.3833 147.720i 0.0604594 0.303950i
\(487\) 314.829 + 471.175i 0.646466 + 0.967504i 0.999491 + 0.0318907i \(0.0101528\pi\)
−0.353026 + 0.935614i \(0.614847\pi\)
\(488\) 91.3678 + 459.337i 0.187229 + 0.941265i
\(489\) −190.045 + 190.045i −0.388641 + 0.388641i
\(490\) 0 0
\(491\) 457.623 + 189.554i 0.932022 + 0.386056i 0.796445 0.604711i \(-0.206711\pi\)
0.135577 + 0.990767i \(0.456711\pi\)
\(492\) 104.592i 0.212585i
\(493\) −884.260 + 53.2114i −1.79363 + 0.107934i
\(494\) 77.1214 0.156116
\(495\) 0 0
\(496\) 74.6607 + 49.8867i 0.150526 + 0.100578i
\(497\) 108.736 + 108.736i 0.218785 + 0.218785i
\(498\) −274.176 + 54.5370i −0.550554 + 0.109512i
\(499\) 199.361 133.209i 0.399522 0.266952i −0.339537 0.940593i \(-0.610270\pi\)
0.739059 + 0.673641i \(0.235270\pi\)
\(500\) 0 0
\(501\) 481.466 199.430i 0.961010 0.398063i
\(502\) −38.8843 93.8749i −0.0774587 0.187002i
\(503\) −39.5565 + 198.864i −0.0786411 + 0.395355i 0.921337 + 0.388764i \(0.127098\pi\)
−0.999978 + 0.00659103i \(0.997902\pi\)
\(504\) 42.4250 + 63.4935i 0.0841767 + 0.125979i
\(505\) 0 0
\(506\) −8.02581 + 8.02581i −0.0158613 + 0.0158613i
\(507\) 221.987 332.227i 0.437844 0.655280i
\(508\) 679.985 + 281.659i 1.33855 + 0.554447i
\(509\) 979.909i 1.92516i 0.270990 + 0.962582i \(0.412649\pi\)
−0.270990 + 0.962582i \(0.587351\pi\)
\(510\) 0 0
\(511\) 195.747 0.383066
\(512\) −130.604 + 315.307i −0.255087 + 0.615834i
\(513\) 841.251 + 562.106i 1.63986 + 1.09572i
\(514\) −56.5559 56.5559i −0.110031 0.110031i
\(515\) 0 0
\(516\) −298.101 + 199.185i −0.577716 + 0.386017i
\(517\) 153.981 + 30.6288i 0.297837 + 0.0592434i
\(518\) 24.3582 10.0895i 0.0470235 0.0194778i
\(519\) 169.614 + 409.484i 0.326809 + 0.788986i
\(520\) 0 0
\(521\) 171.777 + 257.082i 0.329706 + 0.493439i 0.958875 0.283829i \(-0.0916048\pi\)
−0.629169 + 0.777268i \(0.716605\pi\)
\(522\) 29.8048 + 149.839i 0.0570974 + 0.287048i
\(523\) 333.555 333.555i 0.637772 0.637772i −0.312233 0.950005i \(-0.601077\pi\)
0.950005 + 0.312233i \(0.101077\pi\)
\(524\) −371.949 + 556.660i −0.709825 + 1.06233i
\(525\) 0 0
\(526\) 2.33864i 0.00444609i
\(527\) −201.093 178.265i −0.381582 0.338264i
\(528\) 66.7138 0.126352
\(529\) −200.154 + 483.213i −0.378362 + 0.913447i
\(530\) 0 0
\(531\) 58.4315 + 58.4315i 0.110040 + 0.110040i
\(532\) −381.659 + 75.9166i −0.717403 + 0.142700i
\(533\) −26.9356 + 17.9978i −0.0505358 + 0.0337669i
\(534\) −226.379 45.0295i −0.423930 0.0843250i
\(535\) 0 0
\(536\) −165.184 398.790i −0.308179 0.744011i
\(537\) −17.3233 + 87.0902i −0.0322594 + 0.162179i
\(538\) −76.9567 115.174i −0.143042 0.214078i
\(539\) −33.2309 167.063i −0.0616528 0.309950i
\(540\) 0 0
\(541\) 512.263 766.656i 0.946882 1.41711i 0.0383645 0.999264i \(-0.487785\pi\)
0.908518 0.417846i \(-0.137215\pi\)
\(542\) −46.0101 19.0580i −0.0848895 0.0351624i
\(543\) 506.555i 0.932883i
\(544\) 281.236 481.155i 0.516977 0.884477i
\(545\) 0 0
\(546\) −7.71659 + 18.6295i −0.0141330 + 0.0341200i
\(547\) −487.252 325.572i −0.890772 0.595195i 0.0237557 0.999718i \(-0.492438\pi\)
−0.914528 + 0.404523i \(0.867438\pi\)
\(548\) −333.819 333.819i −0.609159 0.609159i
\(549\) 204.354 40.6486i 0.372230 0.0740411i
\(550\) 0 0
\(551\) −1759.21 349.929i −3.19276 0.635080i
\(552\) 37.6334 15.5883i 0.0681764 0.0282396i
\(553\) 93.5966 + 225.962i 0.169252 + 0.408612i
\(554\) 67.3658 338.671i 0.121599 0.611319i
\(555\) 0 0
\(556\) 109.662 + 551.308i 0.197234 + 0.991561i
\(557\) −195.753 + 195.753i −0.351442 + 0.351442i −0.860646 0.509204i \(-0.829940\pi\)
0.509204 + 0.860646i \(0.329940\pi\)
\(558\) −25.7481 + 38.5347i −0.0461435 + 0.0690587i
\(559\) 102.592 + 42.4952i 0.183529 + 0.0760200i
\(560\) 0 0
\(561\) −197.809 27.1187i −0.352601 0.0483399i
\(562\) 461.325 0.820863
\(563\) 96.5883 233.185i 0.171560 0.414183i −0.814590 0.580037i \(-0.803038\pi\)
0.986150 + 0.165854i \(0.0530381\pi\)
\(564\) −203.339 135.867i −0.360530 0.240898i
\(565\) 0 0
\(566\) −208.048 + 41.3834i −0.367576 + 0.0731155i
\(567\) −136.224 + 91.0217i −0.240253 + 0.160532i
\(568\) −279.294 55.5550i −0.491715 0.0978082i
\(569\) −434.022 + 179.778i −0.762781 + 0.315954i −0.729944 0.683507i \(-0.760454\pi\)
−0.0328365 + 0.999461i \(0.510454\pi\)
\(570\) 0 0
\(571\) 158.498 796.824i 0.277580 1.39549i −0.550479 0.834849i \(-0.685555\pi\)
0.828059 0.560640i \(-0.189445\pi\)
\(572\) −19.0175 28.4617i −0.0332474 0.0497582i
\(573\) 88.7012 + 445.931i 0.154801 + 0.778239i
\(574\) −35.1324 + 35.1324i −0.0612063 + 0.0612063i
\(575\) 0 0
\(576\) −25.0632 10.3815i −0.0435125 0.0180235i
\(577\) 834.634i 1.44651i 0.690583 + 0.723253i \(0.257354\pi\)
−0.690583 + 0.723253i \(0.742646\pi\)
\(578\) −172.241 + 219.567i −0.297995 + 0.379874i
\(579\) 658.060 1.13655
\(580\) 0 0
\(581\) −363.255 242.719i −0.625223 0.417761i
\(582\) −60.2844 60.2844i −0.103581 0.103581i
\(583\) 58.8843 11.7128i 0.101002 0.0200906i
\(584\) −301.398 + 201.388i −0.516093 + 0.344842i
\(585\) 0 0
\(586\) −444.214 + 184.000i −0.758045 + 0.313993i
\(587\) 205.403 + 495.886i 0.349920 + 0.844781i 0.996629 + 0.0820440i \(0.0261448\pi\)
−0.646709 + 0.762737i \(0.723855\pi\)
\(588\) −51.7632 + 260.231i −0.0880326 + 0.442570i
\(589\) −302.300 452.424i −0.513243 0.768122i
\(590\) 0 0
\(591\) 380.566 380.566i 0.643936 0.643936i
\(592\) 23.3808 34.9919i 0.0394946 0.0591079i
\(593\) −484.571 200.716i −0.817152 0.338475i −0.0653481 0.997863i \(-0.520816\pi\)
−0.751803 + 0.659387i \(0.770816\pi\)
\(594\) 136.501i 0.229800i
\(595\) 0 0
\(596\) 175.243 0.294031
\(597\) −232.929 + 562.339i −0.390165 + 0.941942i
\(598\) −4.55315 3.04232i −0.00761396 0.00508749i
\(599\) −164.659 164.659i −0.274890 0.274890i 0.556175 0.831065i \(-0.312268\pi\)
−0.831065 + 0.556175i \(0.812268\pi\)
\(600\) 0 0
\(601\) 127.119 84.9381i 0.211512 0.141328i −0.445302 0.895380i \(-0.646904\pi\)
0.656814 + 0.754053i \(0.271904\pi\)
\(602\) 167.039 + 33.2261i 0.277473 + 0.0551928i
\(603\) −177.417 + 73.4887i −0.294225 + 0.121872i
\(604\) −69.3338 167.387i −0.114791 0.277130i
\(605\) 0 0
\(606\) −162.974 243.908i −0.268934 0.402488i
\(607\) −217.351 1092.70i −0.358074 1.80016i −0.568649 0.822580i \(-0.692534\pi\)
0.210576 0.977578i \(-0.432466\pi\)
\(608\) 797.935 797.935i 1.31239 1.31239i
\(609\) 260.552 389.943i 0.427836 0.640301i
\(610\) 0 0
\(611\) 75.7454i 0.123970i
\(612\) −136.696 79.8988i −0.223359 0.130554i
\(613\) −130.322 −0.212597 −0.106298 0.994334i \(-0.533900\pi\)
−0.106298 + 0.994334i \(0.533900\pi\)
\(614\) −56.8410 + 137.226i −0.0925750 + 0.223496i
\(615\) 0 0
\(616\) −85.5299 85.5299i −0.138847 0.138847i
\(617\) 98.2934 19.5518i 0.159309 0.0316885i −0.114792 0.993390i \(-0.536620\pi\)
0.274100 + 0.961701i \(0.411620\pi\)
\(618\) −321.076 + 214.536i −0.519541 + 0.347146i
\(619\) 426.866 + 84.9089i 0.689606 + 0.137171i 0.527440 0.849592i \(-0.323152\pi\)
0.162166 + 0.986763i \(0.448152\pi\)
\(620\) 0 0
\(621\) −27.4922 66.3721i −0.0442709 0.106879i
\(622\) −57.9448 + 291.308i −0.0931589 + 0.468341i
\(623\) −200.406 299.928i −0.321678 0.481426i
\(624\) 6.27932 + 31.5683i 0.0100630 + 0.0505902i
\(625\) 0 0
\(626\) −128.455 + 192.246i −0.205199 + 0.307102i
\(627\) −373.494 154.706i −0.595685 0.246741i
\(628\) 15.8769i 0.0252816i
\(629\) −83.5490 + 94.2482i −0.132828 + 0.149838i
\(630\) 0 0
\(631\) 46.4257 112.082i 0.0735748 0.177625i −0.882813 0.469724i \(-0.844354\pi\)
0.956388 + 0.292099i \(0.0943535\pi\)
\(632\) −376.588 251.628i −0.595867 0.398145i
\(633\) −17.4543 17.4543i −0.0275740 0.0275740i
\(634\) −279.197 + 55.5357i −0.440373 + 0.0875957i
\(635\) 0 0
\(636\) −91.7230 18.2448i −0.144219 0.0286869i
\(637\) 75.9247 31.4490i 0.119191 0.0493706i
\(638\) −92.6063 223.571i −0.145151 0.350425i
\(639\) −24.7159 + 124.255i −0.0386790 + 0.194452i
\(640\) 0 0
\(641\) −47.9641 241.132i −0.0748270 0.376181i 0.925167 0.379560i \(-0.123924\pi\)
−0.999994 + 0.00337889i \(0.998924\pi\)
\(642\) −7.89872 + 7.89872i −0.0123033 + 0.0123033i
\(643\) 63.5318 95.0820i 0.0988052 0.147872i −0.778773 0.627306i \(-0.784158\pi\)
0.877578 + 0.479433i \(0.159158\pi\)
\(644\) 25.5274 + 10.5738i 0.0396389 + 0.0164190i
\(645\) 0 0
\(646\) −450.113 + 341.576i −0.696770 + 0.528756i
\(647\) 534.514 0.826143 0.413071 0.910699i \(-0.364456\pi\)
0.413071 + 0.910699i \(0.364456\pi\)
\(648\) 116.103 280.299i 0.179172 0.432560i
\(649\) −108.832 72.7194i −0.167692 0.112048i
\(650\) 0 0
\(651\) 139.535 27.7553i 0.214340 0.0426349i
\(652\) 280.706 187.562i 0.430531 0.287672i
\(653\) −788.185 156.780i −1.20702 0.240092i −0.449728 0.893166i \(-0.648479\pi\)
−0.757294 + 0.653074i \(0.773479\pi\)
\(654\) −87.3722 + 36.1907i −0.133597 + 0.0553375i
\(655\) 0 0
\(656\) −15.4721 + 77.7837i −0.0235856 + 0.118573i
\(657\) 89.5953 + 134.089i 0.136370 + 0.204093i
\(658\) 22.6639 + 113.939i 0.0344437 + 0.173160i
\(659\) 382.598 382.598i 0.580574 0.580574i −0.354487 0.935061i \(-0.615344\pi\)
0.935061 + 0.354487i \(0.115344\pi\)
\(660\) 0 0
\(661\) 555.991 + 230.299i 0.841136 + 0.348410i 0.761301 0.648398i \(-0.224561\pi\)
0.0798346 + 0.996808i \(0.474561\pi\)
\(662\) 340.027i 0.513635i
\(663\) −5.78616 96.1538i −0.00872724 0.145028i
\(664\) 809.029 1.21842
\(665\) 0 0
\(666\) 18.0604 + 12.0676i 0.0271177 + 0.0181195i
\(667\) 90.0575 + 90.0575i 0.135019 + 0.135019i
\(668\) −642.034 + 127.709i −0.961129 + 0.191180i
\(669\) −496.164 + 331.526i −0.741650 + 0.495555i
\(670\) 0 0
\(671\) −304.912 + 126.299i −0.454414 + 0.188225i
\(672\) 112.910 + 272.589i 0.168021 + 0.405639i
\(673\) 212.613 1068.88i 0.315918 1.58823i −0.417648 0.908609i \(-0.637146\pi\)
0.733566 0.679618i \(-0.237854\pi\)
\(674\) −100.909 151.021i −0.149717 0.224067i
\(675\) 0 0
\(676\) −354.901 + 354.901i −0.525001 + 0.525001i
\(677\) 239.398 358.284i 0.353616 0.529223i −0.611432 0.791297i \(-0.709406\pi\)
0.965048 + 0.262074i \(0.0844063\pi\)
\(678\) −251.278 104.083i −0.370616 0.153514i
\(679\) 133.238i 0.196227i
\(680\) 0 0
\(681\) 969.098 1.42305
\(682\) 28.0928 67.8221i 0.0411918 0.0994458i
\(683\) 448.957 + 299.984i 0.657331 + 0.439215i 0.838990 0.544147i \(-0.183147\pi\)
−0.181659 + 0.983362i \(0.558147\pi\)
\(684\) −226.693 226.693i −0.331422 0.331422i
\(685\) 0 0
\(686\) 249.785 166.901i 0.364118 0.243296i
\(687\) 1003.71 + 199.650i 1.46100 + 0.290611i
\(688\) 251.160 104.034i 0.365058 0.151212i
\(689\) 11.0848 + 26.7610i 0.0160882 + 0.0388404i
\(690\) 0 0
\(691\) 595.542 + 891.292i 0.861855 + 1.28986i 0.955721 + 0.294273i \(0.0950774\pi\)
−0.0938662 + 0.995585i \(0.529923\pi\)
\(692\) −108.615 546.046i −0.156958 0.789083i
\(693\) −38.0513 + 38.0513i −0.0549081 + 0.0549081i
\(694\) 194.395 290.933i 0.280108 0.419211i
\(695\) 0 0
\(696\) 868.470i 1.24780i
\(697\) 77.4940 224.342i 0.111182 0.321869i
\(698\) 305.955 0.438331
\(699\) 239.048 577.113i 0.341986 0.825627i
\(700\) 0 0
\(701\) 747.664 + 747.664i 1.06657 + 1.06657i 0.997620 + 0.0689480i \(0.0219642\pi\)
0.0689480 + 0.997620i \(0.478036\pi\)
\(702\) −64.5909 + 12.8479i −0.0920099 + 0.0183019i
\(703\) −212.041 + 141.681i −0.301624 + 0.201538i
\(704\) 42.1448 + 8.38313i 0.0598648 + 0.0119079i
\(705\) 0 0
\(706\) −40.5916 97.9969i −0.0574952 0.138806i
\(707\) 89.4385 449.638i 0.126504 0.635980i
\(708\) 113.274 + 169.526i 0.159991 + 0.239444i
\(709\) −26.7092 134.276i −0.0376716 0.189388i 0.957367 0.288873i \(-0.0932805\pi\)
−0.995039 + 0.0994848i \(0.968281\pi\)
\(710\) 0 0
\(711\) −111.947 + 167.540i −0.157450 + 0.235640i
\(712\) 617.143 + 255.629i 0.866774 + 0.359030i
\(713\) 38.6358i 0.0541877i
\(714\) −37.4741 142.907i −0.0524848 0.200150i
\(715\) 0 0
\(716\) 42.6843 103.049i 0.0596150 0.143923i
\(717\) −459.585 307.085i −0.640983 0.428291i
\(718\) −324.574 324.574i −0.452053 0.452053i
\(719\) −178.522 + 35.5103i −0.248292 + 0.0493884i −0.317667 0.948202i \(-0.602900\pi\)
0.0693750 + 0.997591i \(0.477900\pi\)
\(720\) 0 0
\(721\) −591.895 117.735i −0.820937 0.163294i
\(722\) −734.953 + 304.427i −1.01794 + 0.421645i
\(723\) −428.184 1033.73i −0.592232 1.42977i
\(724\) 124.136 624.072i 0.171458 0.861977i
\(725\) 0 0
\(726\) 45.0254 + 226.358i 0.0620185 + 0.311788i
\(727\) −235.573 + 235.573i −0.324035 + 0.324035i −0.850313 0.526278i \(-0.823587\pi\)
0.526278 + 0.850313i \(0.323587\pi\)
\(728\) 32.4215 48.5223i 0.0445351 0.0666514i
\(729\) −721.559 298.880i −0.989793 0.409986i
\(730\) 0 0
\(731\) −786.988 + 206.370i −1.07659 + 0.282312i
\(732\) 514.089 0.702307
\(733\) 258.816 624.836i 0.353091 0.852437i −0.643144 0.765745i \(-0.722370\pi\)
0.996235 0.0866918i \(-0.0276295\pi\)
\(734\) −104.189 69.6168i −0.141947 0.0948458i
\(735\) 0 0
\(736\) −78.5864 + 15.6318i −0.106775 + 0.0212389i
\(737\) 252.916 168.993i 0.343170 0.229299i
\(738\) −40.1466 7.98566i −0.0543992 0.0108207i
\(739\) −398.638 + 165.121i −0.539429 + 0.223439i −0.635727 0.771914i \(-0.719300\pi\)
0.0962982 + 0.995353i \(0.469300\pi\)
\(740\) 0 0
\(741\) 38.0510 191.295i 0.0513509 0.258158i
\(742\) 24.6814 + 36.9383i 0.0332633 + 0.0497821i
\(743\) 181.893 + 914.439i 0.244809 + 1.23074i 0.886119 + 0.463457i \(0.153391\pi\)
−0.641310 + 0.767282i \(0.721609\pi\)
\(744\) −186.292 + 186.292i −0.250393 + 0.250393i
\(745\) 0 0
\(746\) 537.500 + 222.640i 0.720509 + 0.298445i
\(747\) 359.929i 0.481832i
\(748\) 237.053 + 81.8847i 0.316916 + 0.109472i
\(749\) −17.4574 −0.0233077
\(750\) 0 0
\(751\) 277.138 + 185.177i 0.369025 + 0.246574i 0.726231 0.687451i \(-0.241271\pi\)
−0.357206 + 0.934026i \(0.616271\pi\)
\(752\) 131.122 + 131.122i 0.174365 + 0.174365i
\(753\) −252.037 + 50.1332i −0.334710 + 0.0665780i
\(754\) 97.0753 64.8637i 0.128747 0.0860261i
\(755\) 0 0
\(756\) 307.001 127.164i 0.406086 0.168206i
\(757\) −160.378 387.187i −0.211860 0.511475i 0.781849 0.623468i \(-0.214277\pi\)
−0.993709 + 0.111993i \(0.964277\pi\)
\(758\) −66.3319 + 333.473i −0.0875091 + 0.439938i
\(759\) 15.9477 + 23.8674i 0.0210115 + 0.0314459i
\(760\) 0 0
\(761\) 947.231 947.231i 1.24472 1.24472i 0.286698 0.958021i \(-0.407442\pi\)
0.958021 0.286698i \(-0.0925575\pi\)
\(762\) −314.337 + 470.438i −0.412516 + 0.617373i
\(763\) −136.547 56.5596i −0.178961 0.0741280i
\(764\) 571.120i 0.747539i
\(765\) 0 0
\(766\) 239.481 0.312639
\(767\) 24.1664 58.3430i 0.0315077 0.0760664i
\(768\) −312.770 208.986i −0.407252 0.272117i
\(769\) −420.026 420.026i −0.546198 0.546198i 0.379141 0.925339i \(-0.376219\pi\)
−0.925339 + 0.379141i \(0.876219\pi\)
\(770\) 0 0
\(771\) −168.188 + 112.380i −0.218143 + 0.145758i
\(772\) −810.724 161.263i −1.05016 0.208890i
\(773\) 272.733 112.970i 0.352825 0.146145i −0.199230 0.979953i \(-0.563844\pi\)
0.552054 + 0.833808i \(0.313844\pi\)
\(774\) 53.6951 + 129.631i 0.0693735 + 0.167483i
\(775\) 0 0
\(776\) 137.078 + 205.152i 0.176647 + 0.264371i
\(777\) −13.0083 65.3972i −0.0167417 0.0841663i
\(778\) 254.022 254.022i 0.326507 0.326507i
\(779\) 266.997 399.590i 0.342744 0.512952i
\(780\) 0 0
\(781\) 200.673i 0.256944i
\(782\) 40.0488 2.40998i 0.0512133 0.00308182i
\(783\) 1531.68 1.95616
\(784\) 76.9914 185.874i 0.0982033 0.237084i
\(785\) 0 0
\(786\) −363.916 363.916i −0.462998 0.462998i
\(787\) 816.561 162.424i 1.03756 0.206384i 0.353216 0.935542i \(-0.385088\pi\)
0.684346 + 0.729158i \(0.260088\pi\)
\(788\) −562.115 + 375.593i −0.713344 + 0.476641i
\(789\) −5.80087 1.15387i −0.00735218 0.00146244i
\(790\) 0 0
\(791\) −162.663 392.703i −0.205642 0.496463i
\(792\) 19.4411 97.7368i 0.0245468 0.123405i
\(793\) −88.4627 132.394i −0.111554 0.166953i
\(794\) −142.729 717.548i −0.179760 0.903713i
\(795\) 0 0
\(796\) 424.772 635.716i 0.533633 0.798638i
\(797\) 807.124 + 334.322i 1.01270 + 0.419475i 0.826440 0.563025i \(-0.190363\pi\)
0.186263 + 0.982500i \(0.440363\pi\)
\(798\) 299.139i 0.374861i
\(799\) −335.482 442.083i −0.419878 0.553295i
\(800\) 0 0
\(801\) 113.727 274.560i 0.141981 0.342772i
\(802\) −324.125 216.573i −0.404146 0.270041i
\(803\) −180.626 180.626i −0.224939 0.224939i
\(804\) −464.711 + 92.4368i −0.577999 + 0.114971i
\(805\) 0 0
\(806\) 34.7369 + 6.90960i 0.0430979 + 0.00857271i
\(807\) −323.652 + 134.061i −0.401056 + 0.166123i
\(808\) 324.884 + 784.339i 0.402084 + 0.970716i
\(809\) −136.966 + 688.576i −0.169303 + 0.851145i 0.798993 + 0.601340i \(0.205366\pi\)
−0.968296 + 0.249805i \(0.919634\pi\)
\(810\) 0 0
\(811\) 234.186 + 1177.33i 0.288762 + 1.45171i 0.803985 + 0.594650i \(0.202709\pi\)
−0.515222 + 0.857056i \(0.672291\pi\)
\(812\) −416.557 + 416.557i −0.513001 + 0.513001i
\(813\) −69.9733 + 104.722i −0.0860680 + 0.128810i
\(814\) −31.7867 13.1665i −0.0390501 0.0161751i
\(815\) 0 0
\(816\) −176.467 156.434i −0.216259 0.191709i
\(817\) −1647.36 −2.01635
\(818\) −162.583 + 392.510i −0.198757 + 0.479841i
\(819\) −21.5870 14.4240i −0.0263578 0.0176117i
\(820\) 0 0
\(821\) −52.7387 + 10.4904i −0.0642371 + 0.0127776i −0.227104 0.973870i \(-0.572926\pi\)
0.162867 + 0.986648i \(0.447926\pi\)
\(822\) 301.748 201.622i 0.367091 0.245282i
\(823\) −1145.72 227.898i −1.39213 0.276911i −0.558621 0.829423i \(-0.688669\pi\)
−0.833505 + 0.552512i \(0.813669\pi\)
\(824\) 1032.49 427.671i 1.25302 0.519019i
\(825\) 0 0
\(826\) 18.8952 94.9927i 0.0228756 0.115003i
\(827\) 328.920 + 492.264i 0.397727 + 0.595241i 0.975242 0.221139i \(-0.0709776\pi\)
−0.577515 + 0.816380i \(0.695978\pi\)
\(828\) 4.44099 + 22.3263i 0.00536351 + 0.0269642i
\(829\) 565.240 565.240i 0.681833 0.681833i −0.278580 0.960413i \(-0.589864\pi\)
0.960413 + 0.278580i \(0.0898637\pi\)
\(830\) 0 0
\(831\) −806.817 334.194i −0.970898 0.402159i
\(832\) 20.7316i 0.0249178i
\(833\) −303.839 + 519.826i −0.364752 + 0.624041i
\(834\) −432.108 −0.518115
\(835\) 0 0
\(836\) 422.230 + 282.125i 0.505059 + 0.337470i
\(837\) 328.554 + 328.554i 0.392538 + 0.392538i
\(838\) 602.446 119.834i 0.718909 0.143000i
\(839\) 1264.66 845.022i 1.50735 1.00718i 0.519033 0.854754i \(-0.326292\pi\)
0.988315 0.152423i \(-0.0487077\pi\)
\(840\) 0 0
\(841\) −1731.71 + 717.297i −2.05911 + 0.852910i
\(842\) −243.587 588.071i −0.289296 0.698422i
\(843\) 227.614 1144.29i 0.270004 1.35740i
\(844\) 17.2263 + 25.7809i 0.0204103 + 0.0305461i
\(845\) 0 0
\(846\) −67.6762 + 67.6762i −0.0799956 + 0.0799956i
\(847\) −200.387 + 299.901i −0.236585 + 0.354074i
\(848\) 65.5145 + 27.1370i 0.0772576 + 0.0320012i
\(849\) 536.470i 0.631885i
\(850\) 0 0
\(851\) 18.1078 0.0212782
\(852\) −119.621 + 288.791i −0.140400 + 0.338957i
\(853\) −216.944 144.957i −0.254330 0.169938i 0.421869 0.906657i \(-0.361374\pi\)
−0.676199 + 0.736719i \(0.736374\pi\)
\(854\) −172.683 172.683i −0.202205 0.202205i
\(855\) 0 0
\(856\) 26.8798 17.9605i 0.0314017 0.0209819i
\(857\) −1194.09 237.520i −1.39334 0.277153i −0.559350 0.828932i \(-0.688949\pi\)
−0.833990 + 0.551779i \(0.813949\pi\)
\(858\) 24.3110 10.0699i 0.0283345 0.0117365i
\(859\) −137.942 333.021i −0.160584 0.387685i 0.823023 0.568008i \(-0.192286\pi\)
−0.983607 + 0.180323i \(0.942286\pi\)
\(860\) 0 0
\(861\) 69.8100 + 104.478i 0.0810802 + 0.121345i
\(862\) 6.79900 + 34.1809i 0.00788747 + 0.0396530i
\(863\) 503.780 503.780i 0.583754 0.583754i −0.352178 0.935933i \(-0.614559\pi\)
0.935933 + 0.352178i \(0.114559\pi\)
\(864\) −535.358 + 801.220i −0.619627 + 0.927338i
\(865\) 0 0
\(866\) 30.8789i 0.0356569i
\(867\) 459.643 + 535.567i 0.530153 + 0.617724i
\(868\) −178.708 −0.205885
\(869\) 122.141 294.874i 0.140553 0.339326i
\(870\) 0 0
\(871\) 103.771 + 103.771i 0.119140 + 0.119140i
\(872\) 268.436 53.3952i 0.307839 0.0612330i
\(873\) 91.2698 60.9845i 0.104547 0.0698563i
\(874\) 79.6760 + 15.8485i 0.0911624 + 0.0181333i
\(875\) 0 0
\(876\) 152.270 + 367.613i 0.173824 + 0.419649i
\(877\) 142.612 716.957i 0.162613 0.817511i −0.810242 0.586095i \(-0.800664\pi\)
0.972855 0.231415i \(-0.0743356\pi\)
\(878\) 130.420 + 195.187i 0.148542 + 0.222309i
\(879\) 237.229 + 1192.63i 0.269886 + 1.35681i
\(880\) 0 0
\(881\) 206.168 308.553i 0.234016 0.350230i −0.695812 0.718224i \(-0.744955\pi\)
0.929828 + 0.367994i \(0.119955\pi\)
\(882\) 95.9352 + 39.7377i 0.108770 + 0.0450540i
\(883\) 1572.78i 1.78118i 0.454805 + 0.890591i \(0.349709\pi\)
−0.454805 + 0.890591i \(0.650291\pi\)
\(884\) −16.4348 + 119.879i −0.0185914 + 0.135609i
\(885\) 0 0
\(886\) 249.270 601.791i 0.281343 0.679223i
\(887\) 792.790 + 529.725i 0.893788 + 0.597210i 0.915395 0.402557i \(-0.131878\pi\)
−0.0216074 + 0.999767i \(0.506878\pi\)
\(888\) 87.3112 + 87.3112i 0.0983234 + 0.0983234i
\(889\) −867.241 + 172.505i −0.975524 + 0.194044i
\(890\) 0 0
\(891\) 209.692 + 41.7103i 0.235344 + 0.0468129i
\(892\) 692.513 286.848i 0.776360 0.321579i
\(893\) −430.015 1038.15i −0.481540 1.16254i
\(894\) −26.2814 + 132.125i −0.0293975 + 0.147791i
\(895\) 0 0
\(896\) −88.0786 442.801i −0.0983020 0.494198i
\(897\) −9.79279 + 9.79279i −0.0109173 + 0.0109173i
\(898\) −281.297 + 420.991i −0.313249 + 0.468810i
\(899\) −761.031 315.229i −0.846530 0.350644i
\(900\) 0 0
\(901\) −183.222 107.093i −0.203354 0.118861i
\(902\) 64.8372 0.0718816
\(903\) 164.831 397.937i 0.182537 0.440684i
\(904\) 654.477 + 437.307i 0.723979 + 0.483747i
\(905\) 0 0
\(906\) 136.600 27.1715i 0.150773 0.0299906i
\(907\) −17.0762 + 11.4100i −0.0188271 + 0.0125799i −0.564948 0.825126i \(-0.691104\pi\)
0.546121 + 0.837706i \(0.316104\pi\)
\(908\) −1193.92 237.485i −1.31489 0.261548i
\(909\) 348.944 144.537i 0.383877 0.159007i
\(910\) 0 0
\(911\) 12.6018 63.3533i 0.0138329 0.0695426i −0.973252 0.229739i \(-0.926213\pi\)
0.987085 + 0.160196i \(0.0512128\pi\)
\(912\) −265.280 397.019i −0.290877 0.435328i
\(913\) 111.225 + 559.165i 0.121823 + 0.612448i
\(914\) −376.198 + 376.198i −0.411595 + 0.411595i
\(915\) 0 0
\(916\) −1187.63 491.933i −1.29654 0.537045i
\(917\) 804.314i 0.877115i
\(918\) 320.076 361.064i 0.348666 0.393316i
\(919\) −1708.90 −1.85952 −0.929760 0.368167i \(-0.879986\pi\)
−0.929760 + 0.368167i \(0.879986\pi\)
\(920\) 0 0
\(921\) 312.338 + 208.697i 0.339129 + 0.226599i
\(922\) 166.492 + 166.492i 0.180577 + 0.180577i
\(923\) 94.9566 18.8880i 0.102878 0.0204638i
\(924\) −110.398 + 73.7654i −0.119478 + 0.0798326i
\(925\) 0 0
\(926\) 328.307 135.989i 0.354544 0.146857i
\(927\) −190.266 459.344i −0.205250 0.495517i
\(928\) 333.278 1675.50i 0.359135 1.80550i
\(929\) −71.3897 106.842i −0.0768458 0.115008i 0.791056 0.611744i \(-0.209532\pi\)
−0.867902 + 0.496736i \(0.834532\pi\)
\(930\) 0 0
\(931\) −862.066 + 862.066i −0.925957 + 0.925957i
\(932\) −435.931 + 652.418i −0.467738 + 0.700019i
\(933\) 693.985 + 287.458i 0.743821 + 0.308101i
\(934\) 40.7602i 0.0436405i
\(935\) 0 0
\(936\) 48.0780 0.0513654
\(937\) −479.379 + 1157.32i −0.511610 + 1.23514i 0.431336 + 0.902191i \(0.358042\pi\)
−0.942946 + 0.332945i \(0.891958\pi\)
\(938\) 187.147 + 125.047i 0.199517 + 0.133313i
\(939\) 413.477 + 413.477i 0.440338 + 0.440338i
\(940\) 0 0
\(941\) −251.481 + 168.034i −0.267249 + 0.178570i −0.681973 0.731377i \(-0.738878\pi\)
0.414725 + 0.909947i \(0.363878\pi\)
\(942\) 11.9705 + 2.38107i 0.0127075 + 0.00252768i
\(943\) −31.5264 + 13.0587i −0.0334320 + 0.0138480i
\(944\) −59.1626 142.831i −0.0626723 0.151304i
\(945\) 0 0
\(946\) −123.476 184.795i −0.130525 0.195344i
\(947\) −64.3908 323.715i −0.0679946 0.341832i 0.931781 0.363021i \(-0.118255\pi\)
−0.999775 + 0.0211894i \(0.993255\pi\)
\(948\) −351.549 + 351.549i −0.370832 + 0.370832i
\(949\) 68.4694 102.472i 0.0721490 0.107979i
\(950\) 0 0
\(951\) 719.933i 0.757027i
\(952\) 25.6828 + 426.794i 0.0269777 + 0.448313i
\(953\) −519.872 −0.545511 −0.272755 0.962083i \(-0.587935\pi\)
−0.272755 + 0.962083i \(0.587935\pi\)
\(954\) −14.0062 + 33.8141i −0.0146816 + 0.0354445i
\(955\) 0 0
\(956\) 490.951 + 490.951i 0.513547 + 0.513547i
\(957\) −600.247 + 119.397i −0.627218 + 0.124761i
\(958\) 47.7223 31.8870i 0.0498145 0.0332850i
\(959\) 556.265 + 110.648i 0.580047 + 0.115379i
\(960\) 0 0
\(961\) 272.132 + 656.984i 0.283175 + 0.683646i
\(962\) 3.23838 16.2805i 0.00336630 0.0169235i
\(963\) −7.99045 11.9586i −0.00829746 0.0124180i
\(964\) 274.195 + 1378.47i 0.284435 + 1.42995i
\(965\) 0 0
\(966\) −11.8006 + 17.6608i −0.0122159 + 0.0182824i
\(967\) −1113.70 461.309i −1.15171 0.477052i −0.276600 0.960985i \(-0.589208\pi\)
−0.875105 + 0.483933i \(0.839208\pi\)
\(968\) 667.930i 0.690010i
\(969\) 625.179 + 1285.01i 0.645180 + 1.32612i
\(970\) 0 0
\(971\) 445.904 1076.51i 0.459222 1.10866i −0.509491 0.860476i \(-0.670166\pi\)
0.968713 0.248184i \(-0.0798336\pi\)
\(972\) 397.832 + 265.823i 0.409292 + 0.273480i
\(973\) −477.515 477.515i −0.490766 0.490766i
\(974\) 536.680 106.752i 0.551006 0.109602i
\(975\) 0 0
\(976\) −382.322 76.0486i −0.391724 0.0779187i
\(977\) −496.049 + 205.470i −0.507727 + 0.210307i −0.621816 0.783163i \(-0.713605\pi\)
0.114090 + 0.993470i \(0.463605\pi\)
\(978\) 99.3157 + 239.769i 0.101550 + 0.245163i
\(979\) −91.8349 + 461.685i −0.0938048 + 0.471589i
\(980\) 0 0
\(981\) −23.7550 119.424i −0.0242150 0.121737i
\(982\) 338.208 338.208i 0.344407 0.344407i
\(983\) 247.073 369.770i 0.251345 0.376165i −0.684245 0.729252i \(-0.739868\pi\)
0.935590 + 0.353087i \(0.114868\pi\)
\(984\) −214.978 89.0467i −0.218473 0.0904947i
\(985\) 0 0
\(986\) −279.287 + 808.526i −0.283252 + 0.820006i
\(987\) 293.802 0.297672
\(988\) −93.7570 + 226.349i −0.0948958 + 0.229099i
\(989\) 97.2580 + 64.9857i 0.0983397 + 0.0657085i
\(990\) 0 0
\(991\) −1092.29 + 217.270i −1.10221 + 0.219243i −0.712484 0.701688i \(-0.752430\pi\)
−0.389725 + 0.920931i \(0.627430\pi\)
\(992\) 430.895 287.915i 0.434370 0.290237i
\(993\) −843.417 167.766i −0.849363 0.168949i
\(994\) 137.186 56.8243i 0.138014 0.0571673i
\(995\) 0 0
\(996\) 173.253 871.002i 0.173949 0.874500i
\(997\) 906.023 + 1355.96i 0.908750 + 1.36004i 0.932825 + 0.360330i \(0.117336\pi\)
−0.0240755 + 0.999710i \(0.507664\pi\)
\(998\) −45.1686 227.078i −0.0452591 0.227533i
\(999\) 153.986 153.986i 0.154140 0.154140i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.u.e.401.7 96
5.2 odd 4 425.3.t.e.299.7 96
5.3 odd 4 425.3.t.h.299.6 96
5.4 even 2 85.3.q.a.61.6 yes 96
17.12 odd 16 inner 425.3.u.e.301.7 96
85.12 even 16 425.3.t.h.199.6 96
85.29 odd 16 85.3.q.a.46.6 96
85.63 even 16 425.3.t.e.199.7 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.3.q.a.46.6 96 85.29 odd 16
85.3.q.a.61.6 yes 96 5.4 even 2
425.3.t.e.199.7 96 85.63 even 16
425.3.t.e.299.7 96 5.2 odd 4
425.3.t.h.199.6 96 85.12 even 16
425.3.t.h.299.6 96 5.3 odd 4
425.3.u.e.301.7 96 17.12 odd 16 inner
425.3.u.e.401.7 96 1.1 even 1 trivial