Properties

Label 8450.2.a.m.1.1
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,-3,1,0,-3,0,1,6,0,3,-3,0,0,0,1,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 650)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -3.00000 q^{3} +1.00000 q^{4} -3.00000 q^{6} +1.00000 q^{8} +6.00000 q^{9} +3.00000 q^{11} -3.00000 q^{12} +1.00000 q^{16} +7.00000 q^{17} +6.00000 q^{18} -1.00000 q^{19} +3.00000 q^{22} +4.00000 q^{23} -3.00000 q^{24} -9.00000 q^{27} +4.00000 q^{29} +10.0000 q^{31} +1.00000 q^{32} -9.00000 q^{33} +7.00000 q^{34} +6.00000 q^{36} +12.0000 q^{37} -1.00000 q^{38} +5.00000 q^{41} -12.0000 q^{43} +3.00000 q^{44} +4.00000 q^{46} -4.00000 q^{47} -3.00000 q^{48} -7.00000 q^{49} -21.0000 q^{51} -6.00000 q^{53} -9.00000 q^{54} +3.00000 q^{57} +4.00000 q^{58} +4.00000 q^{59} +4.00000 q^{61} +10.0000 q^{62} +1.00000 q^{64} -9.00000 q^{66} -5.00000 q^{67} +7.00000 q^{68} -12.0000 q^{69} +6.00000 q^{72} -11.0000 q^{73} +12.0000 q^{74} -1.00000 q^{76} +4.00000 q^{79} +9.00000 q^{81} +5.00000 q^{82} +15.0000 q^{83} -12.0000 q^{86} -12.0000 q^{87} +3.00000 q^{88} +11.0000 q^{89} +4.00000 q^{92} -30.0000 q^{93} -4.00000 q^{94} -3.00000 q^{96} -2.00000 q^{97} -7.00000 q^{98} +18.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −3.00000 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −3.00000 −1.22474
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 1.00000 0.353553
\(9\) 6.00000 2.00000
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) −3.00000 −0.866025
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 7.00000 1.69775 0.848875 0.528594i \(-0.177281\pi\)
0.848875 + 0.528594i \(0.177281\pi\)
\(18\) 6.00000 1.41421
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 3.00000 0.639602
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) −3.00000 −0.612372
\(25\) 0 0
\(26\) 0 0
\(27\) −9.00000 −1.73205
\(28\) 0 0
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) 1.00000 0.176777
\(33\) −9.00000 −1.56670
\(34\) 7.00000 1.20049
\(35\) 0 0
\(36\) 6.00000 1.00000
\(37\) 12.0000 1.97279 0.986394 0.164399i \(-0.0525685\pi\)
0.986394 + 0.164399i \(0.0525685\pi\)
\(38\) −1.00000 −0.162221
\(39\) 0 0
\(40\) 0 0
\(41\) 5.00000 0.780869 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(42\) 0 0
\(43\) −12.0000 −1.82998 −0.914991 0.403473i \(-0.867803\pi\)
−0.914991 + 0.403473i \(0.867803\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) −3.00000 −0.433013
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) −21.0000 −2.94059
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) −9.00000 −1.22474
\(55\) 0 0
\(56\) 0 0
\(57\) 3.00000 0.397360
\(58\) 4.00000 0.525226
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) 4.00000 0.512148 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(62\) 10.0000 1.27000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −9.00000 −1.10782
\(67\) −5.00000 −0.610847 −0.305424 0.952217i \(-0.598798\pi\)
−0.305424 + 0.952217i \(0.598798\pi\)
\(68\) 7.00000 0.848875
\(69\) −12.0000 −1.44463
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 6.00000 0.707107
\(73\) −11.0000 −1.28745 −0.643726 0.765256i \(-0.722612\pi\)
−0.643726 + 0.765256i \(0.722612\pi\)
\(74\) 12.0000 1.39497
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 5.00000 0.552158
\(83\) 15.0000 1.64646 0.823232 0.567705i \(-0.192169\pi\)
0.823232 + 0.567705i \(0.192169\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −12.0000 −1.29399
\(87\) −12.0000 −1.28654
\(88\) 3.00000 0.319801
\(89\) 11.0000 1.16600 0.582999 0.812473i \(-0.301879\pi\)
0.582999 + 0.812473i \(0.301879\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.00000 0.417029
\(93\) −30.0000 −3.11086
\(94\) −4.00000 −0.412568
\(95\) 0 0
\(96\) −3.00000 −0.306186
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) −7.00000 −0.707107
\(99\) 18.0000 1.80907
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) −21.0000 −2.07931
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) 9.00000 0.870063 0.435031 0.900415i \(-0.356737\pi\)
0.435031 + 0.900415i \(0.356737\pi\)
\(108\) −9.00000 −0.866025
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) 0 0
\(111\) −36.0000 −3.41697
\(112\) 0 0
\(113\) −19.0000 −1.78737 −0.893685 0.448695i \(-0.851889\pi\)
−0.893685 + 0.448695i \(0.851889\pi\)
\(114\) 3.00000 0.280976
\(115\) 0 0
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 4.00000 0.362143
\(123\) −15.0000 −1.35250
\(124\) 10.0000 0.898027
\(125\) 0 0
\(126\) 0 0
\(127\) −10.0000 −0.887357 −0.443678 0.896186i \(-0.646327\pi\)
−0.443678 + 0.896186i \(0.646327\pi\)
\(128\) 1.00000 0.0883883
\(129\) 36.0000 3.16962
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) −9.00000 −0.783349
\(133\) 0 0
\(134\) −5.00000 −0.431934
\(135\) 0 0
\(136\) 7.00000 0.600245
\(137\) −9.00000 −0.768922 −0.384461 0.923141i \(-0.625613\pi\)
−0.384461 + 0.923141i \(0.625613\pi\)
\(138\) −12.0000 −1.02151
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) 0 0
\(141\) 12.0000 1.01058
\(142\) 0 0
\(143\) 0 0
\(144\) 6.00000 0.500000
\(145\) 0 0
\(146\) −11.0000 −0.910366
\(147\) 21.0000 1.73205
\(148\) 12.0000 0.986394
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) −1.00000 −0.0811107
\(153\) 42.0000 3.39550
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −12.0000 −0.957704 −0.478852 0.877896i \(-0.658947\pi\)
−0.478852 + 0.877896i \(0.658947\pi\)
\(158\) 4.00000 0.318223
\(159\) 18.0000 1.42749
\(160\) 0 0
\(161\) 0 0
\(162\) 9.00000 0.707107
\(163\) −1.00000 −0.0783260 −0.0391630 0.999233i \(-0.512469\pi\)
−0.0391630 + 0.999233i \(0.512469\pi\)
\(164\) 5.00000 0.390434
\(165\) 0 0
\(166\) 15.0000 1.16423
\(167\) −14.0000 −1.08335 −0.541676 0.840587i \(-0.682210\pi\)
−0.541676 + 0.840587i \(0.682210\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) −12.0000 −0.914991
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) −12.0000 −0.909718
\(175\) 0 0
\(176\) 3.00000 0.226134
\(177\) −12.0000 −0.901975
\(178\) 11.0000 0.824485
\(179\) −5.00000 −0.373718 −0.186859 0.982387i \(-0.559831\pi\)
−0.186859 + 0.982387i \(0.559831\pi\)
\(180\) 0 0
\(181\) 16.0000 1.18927 0.594635 0.803996i \(-0.297296\pi\)
0.594635 + 0.803996i \(0.297296\pi\)
\(182\) 0 0
\(183\) −12.0000 −0.887066
\(184\) 4.00000 0.294884
\(185\) 0 0
\(186\) −30.0000 −2.19971
\(187\) 21.0000 1.53567
\(188\) −4.00000 −0.291730
\(189\) 0 0
\(190\) 0 0
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) −3.00000 −0.216506
\(193\) 15.0000 1.07972 0.539862 0.841754i \(-0.318476\pi\)
0.539862 + 0.841754i \(0.318476\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) 16.0000 1.13995 0.569976 0.821661i \(-0.306952\pi\)
0.569976 + 0.821661i \(0.306952\pi\)
\(198\) 18.0000 1.27920
\(199\) −6.00000 −0.425329 −0.212664 0.977125i \(-0.568214\pi\)
−0.212664 + 0.977125i \(0.568214\pi\)
\(200\) 0 0
\(201\) 15.0000 1.05802
\(202\) 12.0000 0.844317
\(203\) 0 0
\(204\) −21.0000 −1.47029
\(205\) 0 0
\(206\) −14.0000 −0.975426
\(207\) 24.0000 1.66812
\(208\) 0 0
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) −11.0000 −0.757271 −0.378636 0.925546i \(-0.623607\pi\)
−0.378636 + 0.925546i \(0.623607\pi\)
\(212\) −6.00000 −0.412082
\(213\) 0 0
\(214\) 9.00000 0.615227
\(215\) 0 0
\(216\) −9.00000 −0.612372
\(217\) 0 0
\(218\) 8.00000 0.541828
\(219\) 33.0000 2.22993
\(220\) 0 0
\(221\) 0 0
\(222\) −36.0000 −2.41616
\(223\) −14.0000 −0.937509 −0.468755 0.883328i \(-0.655297\pi\)
−0.468755 + 0.883328i \(0.655297\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −19.0000 −1.26386
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 3.00000 0.198680
\(229\) 16.0000 1.05731 0.528655 0.848837i \(-0.322697\pi\)
0.528655 + 0.848837i \(0.322697\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 4.00000 0.262613
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 4.00000 0.260378
\(237\) −12.0000 −0.779484
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) −23.0000 −1.48156 −0.740780 0.671748i \(-0.765544\pi\)
−0.740780 + 0.671748i \(0.765544\pi\)
\(242\) −2.00000 −0.128565
\(243\) 0 0
\(244\) 4.00000 0.256074
\(245\) 0 0
\(246\) −15.0000 −0.956365
\(247\) 0 0
\(248\) 10.0000 0.635001
\(249\) −45.0000 −2.85176
\(250\) 0 0
\(251\) −19.0000 −1.19927 −0.599635 0.800274i \(-0.704687\pi\)
−0.599635 + 0.800274i \(0.704687\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) −10.0000 −0.627456
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 10.0000 0.623783 0.311891 0.950118i \(-0.399037\pi\)
0.311891 + 0.950118i \(0.399037\pi\)
\(258\) 36.0000 2.24126
\(259\) 0 0
\(260\) 0 0
\(261\) 24.0000 1.48556
\(262\) 4.00000 0.247121
\(263\) −8.00000 −0.493301 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(264\) −9.00000 −0.553912
\(265\) 0 0
\(266\) 0 0
\(267\) −33.0000 −2.01957
\(268\) −5.00000 −0.305424
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) 4.00000 0.242983 0.121491 0.992592i \(-0.461232\pi\)
0.121491 + 0.992592i \(0.461232\pi\)
\(272\) 7.00000 0.424437
\(273\) 0 0
\(274\) −9.00000 −0.543710
\(275\) 0 0
\(276\) −12.0000 −0.722315
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) −5.00000 −0.299880
\(279\) 60.0000 3.59211
\(280\) 0 0
\(281\) −2.00000 −0.119310 −0.0596550 0.998219i \(-0.519000\pi\)
−0.0596550 + 0.998219i \(0.519000\pi\)
\(282\) 12.0000 0.714590
\(283\) 11.0000 0.653882 0.326941 0.945045i \(-0.393982\pi\)
0.326941 + 0.945045i \(0.393982\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 6.00000 0.353553
\(289\) 32.0000 1.88235
\(290\) 0 0
\(291\) 6.00000 0.351726
\(292\) −11.0000 −0.643726
\(293\) 30.0000 1.75262 0.876309 0.481749i \(-0.159998\pi\)
0.876309 + 0.481749i \(0.159998\pi\)
\(294\) 21.0000 1.22474
\(295\) 0 0
\(296\) 12.0000 0.697486
\(297\) −27.0000 −1.56670
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 2.00000 0.115087
\(303\) −36.0000 −2.06815
\(304\) −1.00000 −0.0573539
\(305\) 0 0
\(306\) 42.0000 2.40098
\(307\) 25.0000 1.42683 0.713413 0.700744i \(-0.247149\pi\)
0.713413 + 0.700744i \(0.247149\pi\)
\(308\) 0 0
\(309\) 42.0000 2.38930
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) −12.0000 −0.677199
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) 10.0000 0.561656 0.280828 0.959758i \(-0.409391\pi\)
0.280828 + 0.959758i \(0.409391\pi\)
\(318\) 18.0000 1.00939
\(319\) 12.0000 0.671871
\(320\) 0 0
\(321\) −27.0000 −1.50699
\(322\) 0 0
\(323\) −7.00000 −0.389490
\(324\) 9.00000 0.500000
\(325\) 0 0
\(326\) −1.00000 −0.0553849
\(327\) −24.0000 −1.32720
\(328\) 5.00000 0.276079
\(329\) 0 0
\(330\) 0 0
\(331\) −25.0000 −1.37412 −0.687062 0.726599i \(-0.741100\pi\)
−0.687062 + 0.726599i \(0.741100\pi\)
\(332\) 15.0000 0.823232
\(333\) 72.0000 3.94558
\(334\) −14.0000 −0.766046
\(335\) 0 0
\(336\) 0 0
\(337\) −27.0000 −1.47078 −0.735392 0.677642i \(-0.763002\pi\)
−0.735392 + 0.677642i \(0.763002\pi\)
\(338\) 0 0
\(339\) 57.0000 3.09582
\(340\) 0 0
\(341\) 30.0000 1.62459
\(342\) −6.00000 −0.324443
\(343\) 0 0
\(344\) −12.0000 −0.646997
\(345\) 0 0
\(346\) 18.0000 0.967686
\(347\) 25.0000 1.34207 0.671035 0.741426i \(-0.265850\pi\)
0.671035 + 0.741426i \(0.265850\pi\)
\(348\) −12.0000 −0.643268
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3.00000 0.159901
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) −12.0000 −0.637793
\(355\) 0 0
\(356\) 11.0000 0.582999
\(357\) 0 0
\(358\) −5.00000 −0.264258
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 16.0000 0.840941
\(363\) 6.00000 0.314918
\(364\) 0 0
\(365\) 0 0
\(366\) −12.0000 −0.627250
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 4.00000 0.208514
\(369\) 30.0000 1.56174
\(370\) 0 0
\(371\) 0 0
\(372\) −30.0000 −1.55543
\(373\) −24.0000 −1.24267 −0.621336 0.783544i \(-0.713410\pi\)
−0.621336 + 0.783544i \(0.713410\pi\)
\(374\) 21.0000 1.08588
\(375\) 0 0
\(376\) −4.00000 −0.206284
\(377\) 0 0
\(378\) 0 0
\(379\) 21.0000 1.07870 0.539349 0.842082i \(-0.318670\pi\)
0.539349 + 0.842082i \(0.318670\pi\)
\(380\) 0 0
\(381\) 30.0000 1.53695
\(382\) −18.0000 −0.920960
\(383\) 26.0000 1.32854 0.664269 0.747494i \(-0.268743\pi\)
0.664269 + 0.747494i \(0.268743\pi\)
\(384\) −3.00000 −0.153093
\(385\) 0 0
\(386\) 15.0000 0.763480
\(387\) −72.0000 −3.65997
\(388\) −2.00000 −0.101535
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) 28.0000 1.41602
\(392\) −7.00000 −0.353553
\(393\) −12.0000 −0.605320
\(394\) 16.0000 0.806068
\(395\) 0 0
\(396\) 18.0000 0.904534
\(397\) 18.0000 0.903394 0.451697 0.892171i \(-0.350819\pi\)
0.451697 + 0.892171i \(0.350819\pi\)
\(398\) −6.00000 −0.300753
\(399\) 0 0
\(400\) 0 0
\(401\) 33.0000 1.64794 0.823971 0.566632i \(-0.191754\pi\)
0.823971 + 0.566632i \(0.191754\pi\)
\(402\) 15.0000 0.748132
\(403\) 0 0
\(404\) 12.0000 0.597022
\(405\) 0 0
\(406\) 0 0
\(407\) 36.0000 1.78445
\(408\) −21.0000 −1.03965
\(409\) −23.0000 −1.13728 −0.568638 0.822588i \(-0.692530\pi\)
−0.568638 + 0.822588i \(0.692530\pi\)
\(410\) 0 0
\(411\) 27.0000 1.33181
\(412\) −14.0000 −0.689730
\(413\) 0 0
\(414\) 24.0000 1.17954
\(415\) 0 0
\(416\) 0 0
\(417\) 15.0000 0.734553
\(418\) −3.00000 −0.146735
\(419\) −9.00000 −0.439679 −0.219839 0.975536i \(-0.570553\pi\)
−0.219839 + 0.975536i \(0.570553\pi\)
\(420\) 0 0
\(421\) −16.0000 −0.779792 −0.389896 0.920859i \(-0.627489\pi\)
−0.389896 + 0.920859i \(0.627489\pi\)
\(422\) −11.0000 −0.535472
\(423\) −24.0000 −1.16692
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 9.00000 0.435031
\(429\) 0 0
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) −9.00000 −0.433013
\(433\) 23.0000 1.10531 0.552655 0.833410i \(-0.313615\pi\)
0.552655 + 0.833410i \(0.313615\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 8.00000 0.383131
\(437\) −4.00000 −0.191346
\(438\) 33.0000 1.57680
\(439\) 30.0000 1.43182 0.715911 0.698192i \(-0.246012\pi\)
0.715911 + 0.698192i \(0.246012\pi\)
\(440\) 0 0
\(441\) −42.0000 −2.00000
\(442\) 0 0
\(443\) 39.0000 1.85295 0.926473 0.376361i \(-0.122825\pi\)
0.926473 + 0.376361i \(0.122825\pi\)
\(444\) −36.0000 −1.70848
\(445\) 0 0
\(446\) −14.0000 −0.662919
\(447\) 0 0
\(448\) 0 0
\(449\) 9.00000 0.424736 0.212368 0.977190i \(-0.431882\pi\)
0.212368 + 0.977190i \(0.431882\pi\)
\(450\) 0 0
\(451\) 15.0000 0.706322
\(452\) −19.0000 −0.893685
\(453\) −6.00000 −0.281905
\(454\) −4.00000 −0.187729
\(455\) 0 0
\(456\) 3.00000 0.140488
\(457\) 31.0000 1.45012 0.725059 0.688686i \(-0.241812\pi\)
0.725059 + 0.688686i \(0.241812\pi\)
\(458\) 16.0000 0.747631
\(459\) −63.0000 −2.94059
\(460\) 0 0
\(461\) 10.0000 0.465746 0.232873 0.972507i \(-0.425187\pi\)
0.232873 + 0.972507i \(0.425187\pi\)
\(462\) 0 0
\(463\) 14.0000 0.650635 0.325318 0.945605i \(-0.394529\pi\)
0.325318 + 0.945605i \(0.394529\pi\)
\(464\) 4.00000 0.185695
\(465\) 0 0
\(466\) −6.00000 −0.277945
\(467\) −20.0000 −0.925490 −0.462745 0.886492i \(-0.653135\pi\)
−0.462745 + 0.886492i \(0.653135\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 36.0000 1.65879
\(472\) 4.00000 0.184115
\(473\) −36.0000 −1.65528
\(474\) −12.0000 −0.551178
\(475\) 0 0
\(476\) 0 0
\(477\) −36.0000 −1.64833
\(478\) −20.0000 −0.914779
\(479\) 10.0000 0.456912 0.228456 0.973554i \(-0.426632\pi\)
0.228456 + 0.973554i \(0.426632\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −23.0000 −1.04762
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) 0 0
\(486\) 0 0
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) 4.00000 0.181071
\(489\) 3.00000 0.135665
\(490\) 0 0
\(491\) −4.00000 −0.180517 −0.0902587 0.995918i \(-0.528769\pi\)
−0.0902587 + 0.995918i \(0.528769\pi\)
\(492\) −15.0000 −0.676252
\(493\) 28.0000 1.26106
\(494\) 0 0
\(495\) 0 0
\(496\) 10.0000 0.449013
\(497\) 0 0
\(498\) −45.0000 −2.01650
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) 42.0000 1.87642
\(502\) −19.0000 −0.848012
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 12.0000 0.533465
\(507\) 0 0
\(508\) −10.0000 −0.443678
\(509\) −24.0000 −1.06378 −0.531891 0.846813i \(-0.678518\pi\)
−0.531891 + 0.846813i \(0.678518\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 9.00000 0.397360
\(514\) 10.0000 0.441081
\(515\) 0 0
\(516\) 36.0000 1.58481
\(517\) −12.0000 −0.527759
\(518\) 0 0
\(519\) −54.0000 −2.37034
\(520\) 0 0
\(521\) −7.00000 −0.306676 −0.153338 0.988174i \(-0.549002\pi\)
−0.153338 + 0.988174i \(0.549002\pi\)
\(522\) 24.0000 1.05045
\(523\) 5.00000 0.218635 0.109317 0.994007i \(-0.465134\pi\)
0.109317 + 0.994007i \(0.465134\pi\)
\(524\) 4.00000 0.174741
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) 70.0000 3.04925
\(528\) −9.00000 −0.391675
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 24.0000 1.04151
\(532\) 0 0
\(533\) 0 0
\(534\) −33.0000 −1.42805
\(535\) 0 0
\(536\) −5.00000 −0.215967
\(537\) 15.0000 0.647298
\(538\) 24.0000 1.03471
\(539\) −21.0000 −0.904534
\(540\) 0 0
\(541\) 26.0000 1.11783 0.558914 0.829226i \(-0.311218\pi\)
0.558914 + 0.829226i \(0.311218\pi\)
\(542\) 4.00000 0.171815
\(543\) −48.0000 −2.05988
\(544\) 7.00000 0.300123
\(545\) 0 0
\(546\) 0 0
\(547\) 13.0000 0.555840 0.277920 0.960604i \(-0.410355\pi\)
0.277920 + 0.960604i \(0.410355\pi\)
\(548\) −9.00000 −0.384461
\(549\) 24.0000 1.02430
\(550\) 0 0
\(551\) −4.00000 −0.170406
\(552\) −12.0000 −0.510754
\(553\) 0 0
\(554\) 2.00000 0.0849719
\(555\) 0 0
\(556\) −5.00000 −0.212047
\(557\) 14.0000 0.593199 0.296600 0.955002i \(-0.404147\pi\)
0.296600 + 0.955002i \(0.404147\pi\)
\(558\) 60.0000 2.54000
\(559\) 0 0
\(560\) 0 0
\(561\) −63.0000 −2.65986
\(562\) −2.00000 −0.0843649
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 12.0000 0.505291
\(565\) 0 0
\(566\) 11.0000 0.462364
\(567\) 0 0
\(568\) 0 0
\(569\) 13.0000 0.544988 0.272494 0.962157i \(-0.412151\pi\)
0.272494 + 0.962157i \(0.412151\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 0 0
\(573\) 54.0000 2.25588
\(574\) 0 0
\(575\) 0 0
\(576\) 6.00000 0.250000
\(577\) −19.0000 −0.790980 −0.395490 0.918470i \(-0.629425\pi\)
−0.395490 + 0.918470i \(0.629425\pi\)
\(578\) 32.0000 1.33102
\(579\) −45.0000 −1.87014
\(580\) 0 0
\(581\) 0 0
\(582\) 6.00000 0.248708
\(583\) −18.0000 −0.745484
\(584\) −11.0000 −0.455183
\(585\) 0 0
\(586\) 30.0000 1.23929
\(587\) −5.00000 −0.206372 −0.103186 0.994662i \(-0.532904\pi\)
−0.103186 + 0.994662i \(0.532904\pi\)
\(588\) 21.0000 0.866025
\(589\) −10.0000 −0.412043
\(590\) 0 0
\(591\) −48.0000 −1.97446
\(592\) 12.0000 0.493197
\(593\) 29.0000 1.19089 0.595444 0.803397i \(-0.296976\pi\)
0.595444 + 0.803397i \(0.296976\pi\)
\(594\) −27.0000 −1.10782
\(595\) 0 0
\(596\) 0 0
\(597\) 18.0000 0.736691
\(598\) 0 0
\(599\) −10.0000 −0.408589 −0.204294 0.978909i \(-0.565490\pi\)
−0.204294 + 0.978909i \(0.565490\pi\)
\(600\) 0 0
\(601\) −25.0000 −1.01977 −0.509886 0.860242i \(-0.670312\pi\)
−0.509886 + 0.860242i \(0.670312\pi\)
\(602\) 0 0
\(603\) −30.0000 −1.22169
\(604\) 2.00000 0.0813788
\(605\) 0 0
\(606\) −36.0000 −1.46240
\(607\) 42.0000 1.70473 0.852364 0.522949i \(-0.175168\pi\)
0.852364 + 0.522949i \(0.175168\pi\)
\(608\) −1.00000 −0.0405554
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 42.0000 1.69775
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) 25.0000 1.00892
\(615\) 0 0
\(616\) 0 0
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 42.0000 1.68949
\(619\) −36.0000 −1.44696 −0.723481 0.690344i \(-0.757459\pi\)
−0.723481 + 0.690344i \(0.757459\pi\)
\(620\) 0 0
\(621\) −36.0000 −1.44463
\(622\) 12.0000 0.481156
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) −6.00000 −0.239808
\(627\) 9.00000 0.359425
\(628\) −12.0000 −0.478852
\(629\) 84.0000 3.34930
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 4.00000 0.159111
\(633\) 33.0000 1.31163
\(634\) 10.0000 0.397151
\(635\) 0 0
\(636\) 18.0000 0.713746
\(637\) 0 0
\(638\) 12.0000 0.475085
\(639\) 0 0
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) −27.0000 −1.06561
\(643\) −44.0000 −1.73519 −0.867595 0.497271i \(-0.834335\pi\)
−0.867595 + 0.497271i \(0.834335\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −7.00000 −0.275411
\(647\) 46.0000 1.80845 0.904223 0.427060i \(-0.140451\pi\)
0.904223 + 0.427060i \(0.140451\pi\)
\(648\) 9.00000 0.353553
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) −1.00000 −0.0391630
\(653\) 2.00000 0.0782660 0.0391330 0.999234i \(-0.487540\pi\)
0.0391330 + 0.999234i \(0.487540\pi\)
\(654\) −24.0000 −0.938474
\(655\) 0 0
\(656\) 5.00000 0.195217
\(657\) −66.0000 −2.57491
\(658\) 0 0
\(659\) −15.0000 −0.584317 −0.292159 0.956370i \(-0.594373\pi\)
−0.292159 + 0.956370i \(0.594373\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) −25.0000 −0.971653
\(663\) 0 0
\(664\) 15.0000 0.582113
\(665\) 0 0
\(666\) 72.0000 2.78994
\(667\) 16.0000 0.619522
\(668\) −14.0000 −0.541676
\(669\) 42.0000 1.62381
\(670\) 0 0
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) −27.0000 −1.04000
\(675\) 0 0
\(676\) 0 0
\(677\) 44.0000 1.69106 0.845529 0.533930i \(-0.179285\pi\)
0.845529 + 0.533930i \(0.179285\pi\)
\(678\) 57.0000 2.18907
\(679\) 0 0
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 30.0000 1.14876
\(683\) −35.0000 −1.33924 −0.669619 0.742705i \(-0.733543\pi\)
−0.669619 + 0.742705i \(0.733543\pi\)
\(684\) −6.00000 −0.229416
\(685\) 0 0
\(686\) 0 0
\(687\) −48.0000 −1.83131
\(688\) −12.0000 −0.457496
\(689\) 0 0
\(690\) 0 0
\(691\) 31.0000 1.17930 0.589648 0.807661i \(-0.299267\pi\)
0.589648 + 0.807661i \(0.299267\pi\)
\(692\) 18.0000 0.684257
\(693\) 0 0
\(694\) 25.0000 0.948987
\(695\) 0 0
\(696\) −12.0000 −0.454859
\(697\) 35.0000 1.32572
\(698\) 10.0000 0.378506
\(699\) 18.0000 0.680823
\(700\) 0 0
\(701\) 32.0000 1.20862 0.604312 0.796748i \(-0.293448\pi\)
0.604312 + 0.796748i \(0.293448\pi\)
\(702\) 0 0
\(703\) −12.0000 −0.452589
\(704\) 3.00000 0.113067
\(705\) 0 0
\(706\) −6.00000 −0.225813
\(707\) 0 0
\(708\) −12.0000 −0.450988
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 24.0000 0.900070
\(712\) 11.0000 0.412242
\(713\) 40.0000 1.49801
\(714\) 0 0
\(715\) 0 0
\(716\) −5.00000 −0.186859
\(717\) 60.0000 2.24074
\(718\) −4.00000 −0.149279
\(719\) −50.0000 −1.86469 −0.932343 0.361576i \(-0.882239\pi\)
−0.932343 + 0.361576i \(0.882239\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −18.0000 −0.669891
\(723\) 69.0000 2.56614
\(724\) 16.0000 0.594635
\(725\) 0 0
\(726\) 6.00000 0.222681
\(727\) 10.0000 0.370879 0.185440 0.982656i \(-0.440629\pi\)
0.185440 + 0.982656i \(0.440629\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −84.0000 −3.10685
\(732\) −12.0000 −0.443533
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) −15.0000 −0.552532
\(738\) 30.0000 1.10432
\(739\) 24.0000 0.882854 0.441427 0.897297i \(-0.354472\pi\)
0.441427 + 0.897297i \(0.354472\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8.00000 −0.293492 −0.146746 0.989174i \(-0.546880\pi\)
−0.146746 + 0.989174i \(0.546880\pi\)
\(744\) −30.0000 −1.09985
\(745\) 0 0
\(746\) −24.0000 −0.878702
\(747\) 90.0000 3.29293
\(748\) 21.0000 0.767836
\(749\) 0 0
\(750\) 0 0
\(751\) −22.0000 −0.802791 −0.401396 0.915905i \(-0.631475\pi\)
−0.401396 + 0.915905i \(0.631475\pi\)
\(752\) −4.00000 −0.145865
\(753\) 57.0000 2.07720
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −28.0000 −1.01768 −0.508839 0.860862i \(-0.669925\pi\)
−0.508839 + 0.860862i \(0.669925\pi\)
\(758\) 21.0000 0.762754
\(759\) −36.0000 −1.30672
\(760\) 0 0
\(761\) −27.0000 −0.978749 −0.489375 0.872074i \(-0.662775\pi\)
−0.489375 + 0.872074i \(0.662775\pi\)
\(762\) 30.0000 1.08679
\(763\) 0 0
\(764\) −18.0000 −0.651217
\(765\) 0 0
\(766\) 26.0000 0.939418
\(767\) 0 0
\(768\) −3.00000 −0.108253
\(769\) 5.00000 0.180305 0.0901523 0.995928i \(-0.471265\pi\)
0.0901523 + 0.995928i \(0.471265\pi\)
\(770\) 0 0
\(771\) −30.0000 −1.08042
\(772\) 15.0000 0.539862
\(773\) −38.0000 −1.36677 −0.683383 0.730061i \(-0.739492\pi\)
−0.683383 + 0.730061i \(0.739492\pi\)
\(774\) −72.0000 −2.58799
\(775\) 0 0
\(776\) −2.00000 −0.0717958
\(777\) 0 0
\(778\) −12.0000 −0.430221
\(779\) −5.00000 −0.179144
\(780\) 0 0
\(781\) 0 0
\(782\) 28.0000 1.00128
\(783\) −36.0000 −1.28654
\(784\) −7.00000 −0.250000
\(785\) 0 0
\(786\) −12.0000 −0.428026
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) 16.0000 0.569976
\(789\) 24.0000 0.854423
\(790\) 0 0
\(791\) 0 0
\(792\) 18.0000 0.639602
\(793\) 0 0
\(794\) 18.0000 0.638796
\(795\) 0 0
\(796\) −6.00000 −0.212664
\(797\) −8.00000 −0.283375 −0.141687 0.989911i \(-0.545253\pi\)
−0.141687 + 0.989911i \(0.545253\pi\)
\(798\) 0 0
\(799\) −28.0000 −0.990569
\(800\) 0 0
\(801\) 66.0000 2.33200
\(802\) 33.0000 1.16527
\(803\) −33.0000 −1.16454
\(804\) 15.0000 0.529009
\(805\) 0 0
\(806\) 0 0
\(807\) −72.0000 −2.53452
\(808\) 12.0000 0.422159
\(809\) −22.0000 −0.773479 −0.386739 0.922189i \(-0.626399\pi\)
−0.386739 + 0.922189i \(0.626399\pi\)
\(810\) 0 0
\(811\) −12.0000 −0.421377 −0.210688 0.977553i \(-0.567571\pi\)
−0.210688 + 0.977553i \(0.567571\pi\)
\(812\) 0 0
\(813\) −12.0000 −0.420858
\(814\) 36.0000 1.26180
\(815\) 0 0
\(816\) −21.0000 −0.735147
\(817\) 12.0000 0.419827
\(818\) −23.0000 −0.804176
\(819\) 0 0
\(820\) 0 0
\(821\) −36.0000 −1.25641 −0.628204 0.778048i \(-0.716210\pi\)
−0.628204 + 0.778048i \(0.716210\pi\)
\(822\) 27.0000 0.941733
\(823\) 4.00000 0.139431 0.0697156 0.997567i \(-0.477791\pi\)
0.0697156 + 0.997567i \(0.477791\pi\)
\(824\) −14.0000 −0.487713
\(825\) 0 0
\(826\) 0 0
\(827\) −21.0000 −0.730242 −0.365121 0.930960i \(-0.618972\pi\)
−0.365121 + 0.930960i \(0.618972\pi\)
\(828\) 24.0000 0.834058
\(829\) −10.0000 −0.347314 −0.173657 0.984806i \(-0.555558\pi\)
−0.173657 + 0.984806i \(0.555558\pi\)
\(830\) 0 0
\(831\) −6.00000 −0.208138
\(832\) 0 0
\(833\) −49.0000 −1.69775
\(834\) 15.0000 0.519408
\(835\) 0 0
\(836\) −3.00000 −0.103757
\(837\) −90.0000 −3.11086
\(838\) −9.00000 −0.310900
\(839\) −10.0000 −0.345238 −0.172619 0.984989i \(-0.555223\pi\)
−0.172619 + 0.984989i \(0.555223\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) −16.0000 −0.551396
\(843\) 6.00000 0.206651
\(844\) −11.0000 −0.378636
\(845\) 0 0
\(846\) −24.0000 −0.825137
\(847\) 0 0
\(848\) −6.00000 −0.206041
\(849\) −33.0000 −1.13256
\(850\) 0 0
\(851\) 48.0000 1.64542
\(852\) 0 0
\(853\) −20.0000 −0.684787 −0.342393 0.939557i \(-0.611238\pi\)
−0.342393 + 0.939557i \(0.611238\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 9.00000 0.307614
\(857\) −21.0000 −0.717346 −0.358673 0.933463i \(-0.616771\pi\)
−0.358673 + 0.933463i \(0.616771\pi\)
\(858\) 0 0
\(859\) −13.0000 −0.443554 −0.221777 0.975097i \(-0.571186\pi\)
−0.221777 + 0.975097i \(0.571186\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 24.0000 0.817443
\(863\) −50.0000 −1.70202 −0.851010 0.525150i \(-0.824009\pi\)
−0.851010 + 0.525150i \(0.824009\pi\)
\(864\) −9.00000 −0.306186
\(865\) 0 0
\(866\) 23.0000 0.781572
\(867\) −96.0000 −3.26033
\(868\) 0 0
\(869\) 12.0000 0.407072
\(870\) 0 0
\(871\) 0 0
\(872\) 8.00000 0.270914
\(873\) −12.0000 −0.406138
\(874\) −4.00000 −0.135302
\(875\) 0 0
\(876\) 33.0000 1.11497
\(877\) −40.0000 −1.35070 −0.675352 0.737496i \(-0.736008\pi\)
−0.675352 + 0.737496i \(0.736008\pi\)
\(878\) 30.0000 1.01245
\(879\) −90.0000 −3.03562
\(880\) 0 0
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) −42.0000 −1.41421
\(883\) −55.0000 −1.85090 −0.925449 0.378873i \(-0.876312\pi\)
−0.925449 + 0.378873i \(0.876312\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 39.0000 1.31023
\(887\) −44.0000 −1.47738 −0.738688 0.674048i \(-0.764554\pi\)
−0.738688 + 0.674048i \(0.764554\pi\)
\(888\) −36.0000 −1.20808
\(889\) 0 0
\(890\) 0 0
\(891\) 27.0000 0.904534
\(892\) −14.0000 −0.468755
\(893\) 4.00000 0.133855
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 9.00000 0.300334
\(899\) 40.0000 1.33407
\(900\) 0 0
\(901\) −42.0000 −1.39922
\(902\) 15.0000 0.499445
\(903\) 0 0
\(904\) −19.0000 −0.631931
\(905\) 0 0
\(906\) −6.00000 −0.199337
\(907\) −44.0000 −1.46100 −0.730498 0.682915i \(-0.760712\pi\)
−0.730498 + 0.682915i \(0.760712\pi\)
\(908\) −4.00000 −0.132745
\(909\) 72.0000 2.38809
\(910\) 0 0
\(911\) −6.00000 −0.198789 −0.0993944 0.995048i \(-0.531691\pi\)
−0.0993944 + 0.995048i \(0.531691\pi\)
\(912\) 3.00000 0.0993399
\(913\) 45.0000 1.48928
\(914\) 31.0000 1.02539
\(915\) 0 0
\(916\) 16.0000 0.528655
\(917\) 0 0
\(918\) −63.0000 −2.07931
\(919\) 8.00000 0.263896 0.131948 0.991257i \(-0.457877\pi\)
0.131948 + 0.991257i \(0.457877\pi\)
\(920\) 0 0
\(921\) −75.0000 −2.47133
\(922\) 10.0000 0.329332
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 14.0000 0.460069
\(927\) −84.0000 −2.75892
\(928\) 4.00000 0.131306
\(929\) −22.0000 −0.721797 −0.360898 0.932605i \(-0.617530\pi\)
−0.360898 + 0.932605i \(0.617530\pi\)
\(930\) 0 0
\(931\) 7.00000 0.229416
\(932\) −6.00000 −0.196537
\(933\) −36.0000 −1.17859
\(934\) −20.0000 −0.654420
\(935\) 0 0
\(936\) 0 0
\(937\) 13.0000 0.424691 0.212346 0.977195i \(-0.431890\pi\)
0.212346 + 0.977195i \(0.431890\pi\)
\(938\) 0 0
\(939\) 18.0000 0.587408
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 36.0000 1.17294
\(943\) 20.0000 0.651290
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) −36.0000 −1.17046
\(947\) 32.0000 1.03986 0.519930 0.854209i \(-0.325958\pi\)
0.519930 + 0.854209i \(0.325958\pi\)
\(948\) −12.0000 −0.389742
\(949\) 0 0
\(950\) 0 0
\(951\) −30.0000 −0.972817
\(952\) 0 0
\(953\) 7.00000 0.226752 0.113376 0.993552i \(-0.463833\pi\)
0.113376 + 0.993552i \(0.463833\pi\)
\(954\) −36.0000 −1.16554
\(955\) 0 0
\(956\) −20.0000 −0.646846
\(957\) −36.0000 −1.16371
\(958\) 10.0000 0.323085
\(959\) 0 0
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) 0 0
\(963\) 54.0000 1.74013
\(964\) −23.0000 −0.740780
\(965\) 0 0
\(966\) 0 0
\(967\) −36.0000 −1.15768 −0.578841 0.815440i \(-0.696495\pi\)
−0.578841 + 0.815440i \(0.696495\pi\)
\(968\) −2.00000 −0.0642824
\(969\) 21.0000 0.674617
\(970\) 0 0
\(971\) −13.0000 −0.417190 −0.208595 0.978002i \(-0.566889\pi\)
−0.208595 + 0.978002i \(0.566889\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −32.0000 −1.02535
\(975\) 0 0
\(976\) 4.00000 0.128037
\(977\) −9.00000 −0.287936 −0.143968 0.989582i \(-0.545986\pi\)
−0.143968 + 0.989582i \(0.545986\pi\)
\(978\) 3.00000 0.0959294
\(979\) 33.0000 1.05468
\(980\) 0 0
\(981\) 48.0000 1.53252
\(982\) −4.00000 −0.127645
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) −15.0000 −0.478183
\(985\) 0 0
\(986\) 28.0000 0.891702
\(987\) 0 0
\(988\) 0 0
\(989\) −48.0000 −1.52631
\(990\) 0 0
\(991\) 14.0000 0.444725 0.222362 0.974964i \(-0.428623\pi\)
0.222362 + 0.974964i \(0.428623\pi\)
\(992\) 10.0000 0.317500
\(993\) 75.0000 2.38005
\(994\) 0 0
\(995\) 0 0
\(996\) −45.0000 −1.42588
\(997\) 56.0000 1.77354 0.886769 0.462213i \(-0.152944\pi\)
0.886769 + 0.462213i \(0.152944\pi\)
\(998\) −20.0000 −0.633089
\(999\) −108.000 −3.41697
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.m.1.1 1
5.4 even 2 8450.2.a.l.1.1 1
13.12 even 2 650.2.a.a.1.1 1
39.38 odd 2 5850.2.a.br.1.1 1
52.51 odd 2 5200.2.a.bj.1.1 1
65.12 odd 4 650.2.b.i.599.1 2
65.38 odd 4 650.2.b.i.599.2 2
65.64 even 2 650.2.a.m.1.1 yes 1
195.38 even 4 5850.2.e.y.5149.1 2
195.77 even 4 5850.2.e.y.5149.2 2
195.194 odd 2 5850.2.a.n.1.1 1
260.259 odd 2 5200.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.a.a.1.1 1 13.12 even 2
650.2.a.m.1.1 yes 1 65.64 even 2
650.2.b.i.599.1 2 65.12 odd 4
650.2.b.i.599.2 2 65.38 odd 4
5200.2.a.b.1.1 1 260.259 odd 2
5200.2.a.bj.1.1 1 52.51 odd 2
5850.2.a.n.1.1 1 195.194 odd 2
5850.2.a.br.1.1 1 39.38 odd 2
5850.2.e.y.5149.1 2 195.38 even 4
5850.2.e.y.5149.2 2 195.77 even 4
8450.2.a.l.1.1 1 5.4 even 2
8450.2.a.m.1.1 1 1.1 even 1 trivial