Properties

Label 8450.2.a.cy.1.9
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,9,0,9,0,0,-4,9,15,0,-1,0,0,-4,0,9,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 21x^{7} - 3x^{6} + 133x^{5} + 28x^{4} - 249x^{3} + 21x^{2} + 126x - 43 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-3.19756\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +3.19756 q^{3} +1.00000 q^{4} +3.19756 q^{6} -4.88245 q^{7} +1.00000 q^{8} +7.22438 q^{9} +2.67335 q^{11} +3.19756 q^{12} -4.88245 q^{14} +1.00000 q^{16} +0.251383 q^{17} +7.22438 q^{18} +6.00402 q^{19} -15.6119 q^{21} +2.67335 q^{22} +8.21459 q^{23} +3.19756 q^{24} +13.5077 q^{27} -4.88245 q^{28} -4.32537 q^{29} +0.311545 q^{31} +1.00000 q^{32} +8.54820 q^{33} +0.251383 q^{34} +7.22438 q^{36} -9.29183 q^{37} +6.00402 q^{38} -3.48438 q^{41} -15.6119 q^{42} +3.39417 q^{43} +2.67335 q^{44} +8.21459 q^{46} +0.622582 q^{47} +3.19756 q^{48} +16.8383 q^{49} +0.803810 q^{51} -3.61716 q^{53} +13.5077 q^{54} -4.88245 q^{56} +19.1982 q^{57} -4.32537 q^{58} +2.01655 q^{59} -2.09255 q^{61} +0.311545 q^{62} -35.2727 q^{63} +1.00000 q^{64} +8.54820 q^{66} +4.59674 q^{67} +0.251383 q^{68} +26.2666 q^{69} +15.2210 q^{71} +7.22438 q^{72} -12.0033 q^{73} -9.29183 q^{74} +6.00402 q^{76} -13.0525 q^{77} +5.70863 q^{79} +21.5185 q^{81} -3.48438 q^{82} -2.32437 q^{83} -15.6119 q^{84} +3.39417 q^{86} -13.8306 q^{87} +2.67335 q^{88} +10.3329 q^{89} +8.21459 q^{92} +0.996184 q^{93} +0.622582 q^{94} +3.19756 q^{96} -2.13228 q^{97} +16.8383 q^{98} +19.3133 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{2} + 9 q^{4} - 4 q^{7} + 9 q^{8} + 15 q^{9} - q^{11} - 4 q^{14} + 9 q^{16} + 2 q^{17} + 15 q^{18} + 10 q^{19} + 3 q^{21} - q^{22} - q^{23} - 9 q^{27} - 4 q^{28} - q^{29} - 4 q^{31} + 9 q^{32}+ \cdots - 62 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 3.19756 1.84611 0.923055 0.384667i \(-0.125684\pi\)
0.923055 + 0.384667i \(0.125684\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 3.19756 1.30540
\(7\) −4.88245 −1.84539 −0.922696 0.385528i \(-0.874019\pi\)
−0.922696 + 0.385528i \(0.874019\pi\)
\(8\) 1.00000 0.353553
\(9\) 7.22438 2.40813
\(10\) 0 0
\(11\) 2.67335 0.806047 0.403023 0.915190i \(-0.367959\pi\)
0.403023 + 0.915190i \(0.367959\pi\)
\(12\) 3.19756 0.923055
\(13\) 0 0
\(14\) −4.88245 −1.30489
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0.251383 0.0609692 0.0304846 0.999535i \(-0.490295\pi\)
0.0304846 + 0.999535i \(0.490295\pi\)
\(18\) 7.22438 1.70280
\(19\) 6.00402 1.37742 0.688708 0.725039i \(-0.258178\pi\)
0.688708 + 0.725039i \(0.258178\pi\)
\(20\) 0 0
\(21\) −15.6119 −3.40680
\(22\) 2.67335 0.569961
\(23\) 8.21459 1.71286 0.856430 0.516263i \(-0.172677\pi\)
0.856430 + 0.516263i \(0.172677\pi\)
\(24\) 3.19756 0.652699
\(25\) 0 0
\(26\) 0 0
\(27\) 13.5077 2.59956
\(28\) −4.88245 −0.922696
\(29\) −4.32537 −0.803201 −0.401600 0.915815i \(-0.631546\pi\)
−0.401600 + 0.915815i \(0.631546\pi\)
\(30\) 0 0
\(31\) 0.311545 0.0559552 0.0279776 0.999609i \(-0.491093\pi\)
0.0279776 + 0.999609i \(0.491093\pi\)
\(32\) 1.00000 0.176777
\(33\) 8.54820 1.48805
\(34\) 0.251383 0.0431117
\(35\) 0 0
\(36\) 7.22438 1.20406
\(37\) −9.29183 −1.52757 −0.763784 0.645472i \(-0.776661\pi\)
−0.763784 + 0.645472i \(0.776661\pi\)
\(38\) 6.00402 0.973980
\(39\) 0 0
\(40\) 0 0
\(41\) −3.48438 −0.544169 −0.272085 0.962273i \(-0.587713\pi\)
−0.272085 + 0.962273i \(0.587713\pi\)
\(42\) −15.6119 −2.40897
\(43\) 3.39417 0.517606 0.258803 0.965930i \(-0.416672\pi\)
0.258803 + 0.965930i \(0.416672\pi\)
\(44\) 2.67335 0.403023
\(45\) 0 0
\(46\) 8.21459 1.21117
\(47\) 0.622582 0.0908129 0.0454065 0.998969i \(-0.485542\pi\)
0.0454065 + 0.998969i \(0.485542\pi\)
\(48\) 3.19756 0.461528
\(49\) 16.8383 2.40547
\(50\) 0 0
\(51\) 0.803810 0.112556
\(52\) 0 0
\(53\) −3.61716 −0.496855 −0.248427 0.968651i \(-0.579914\pi\)
−0.248427 + 0.968651i \(0.579914\pi\)
\(54\) 13.5077 1.83816
\(55\) 0 0
\(56\) −4.88245 −0.652445
\(57\) 19.1982 2.54286
\(58\) −4.32537 −0.567949
\(59\) 2.01655 0.262533 0.131267 0.991347i \(-0.458096\pi\)
0.131267 + 0.991347i \(0.458096\pi\)
\(60\) 0 0
\(61\) −2.09255 −0.267924 −0.133962 0.990986i \(-0.542770\pi\)
−0.133962 + 0.990986i \(0.542770\pi\)
\(62\) 0.311545 0.0395663
\(63\) −35.2727 −4.44394
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 8.54820 1.05221
\(67\) 4.59674 0.561581 0.280791 0.959769i \(-0.409403\pi\)
0.280791 + 0.959769i \(0.409403\pi\)
\(68\) 0.251383 0.0304846
\(69\) 26.2666 3.16213
\(70\) 0 0
\(71\) 15.2210 1.80640 0.903202 0.429215i \(-0.141210\pi\)
0.903202 + 0.429215i \(0.141210\pi\)
\(72\) 7.22438 0.851401
\(73\) −12.0033 −1.40489 −0.702443 0.711740i \(-0.747907\pi\)
−0.702443 + 0.711740i \(0.747907\pi\)
\(74\) −9.29183 −1.08015
\(75\) 0 0
\(76\) 6.00402 0.688708
\(77\) −13.0525 −1.48747
\(78\) 0 0
\(79\) 5.70863 0.642271 0.321136 0.947033i \(-0.395935\pi\)
0.321136 + 0.947033i \(0.395935\pi\)
\(80\) 0 0
\(81\) 21.5185 2.39094
\(82\) −3.48438 −0.384786
\(83\) −2.32437 −0.255133 −0.127566 0.991830i \(-0.540717\pi\)
−0.127566 + 0.991830i \(0.540717\pi\)
\(84\) −15.6119 −1.70340
\(85\) 0 0
\(86\) 3.39417 0.366003
\(87\) −13.8306 −1.48280
\(88\) 2.67335 0.284981
\(89\) 10.3329 1.09529 0.547644 0.836711i \(-0.315525\pi\)
0.547644 + 0.836711i \(0.315525\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 8.21459 0.856430
\(93\) 0.996184 0.103299
\(94\) 0.622582 0.0642144
\(95\) 0 0
\(96\) 3.19756 0.326349
\(97\) −2.13228 −0.216500 −0.108250 0.994124i \(-0.534525\pi\)
−0.108250 + 0.994124i \(0.534525\pi\)
\(98\) 16.8383 1.70093
\(99\) 19.3133 1.94106
\(100\) 0 0
\(101\) −14.6401 −1.45675 −0.728374 0.685180i \(-0.759724\pi\)
−0.728374 + 0.685180i \(0.759724\pi\)
\(102\) 0.803810 0.0795891
\(103\) 13.9235 1.37192 0.685960 0.727640i \(-0.259383\pi\)
0.685960 + 0.727640i \(0.259383\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −3.61716 −0.351329
\(107\) 2.94584 0.284785 0.142392 0.989810i \(-0.454521\pi\)
0.142392 + 0.989810i \(0.454521\pi\)
\(108\) 13.5077 1.29978
\(109\) 1.81954 0.174280 0.0871401 0.996196i \(-0.472227\pi\)
0.0871401 + 0.996196i \(0.472227\pi\)
\(110\) 0 0
\(111\) −29.7112 −2.82006
\(112\) −4.88245 −0.461348
\(113\) 15.1589 1.42603 0.713014 0.701150i \(-0.247330\pi\)
0.713014 + 0.701150i \(0.247330\pi\)
\(114\) 19.1982 1.79808
\(115\) 0 0
\(116\) −4.32537 −0.401600
\(117\) 0 0
\(118\) 2.01655 0.185639
\(119\) −1.22736 −0.112512
\(120\) 0 0
\(121\) −3.85318 −0.350289
\(122\) −2.09255 −0.189451
\(123\) −11.1415 −1.00460
\(124\) 0.311545 0.0279776
\(125\) 0 0
\(126\) −35.2727 −3.14234
\(127\) 0.572035 0.0507599 0.0253799 0.999678i \(-0.491920\pi\)
0.0253799 + 0.999678i \(0.491920\pi\)
\(128\) 1.00000 0.0883883
\(129\) 10.8531 0.955558
\(130\) 0 0
\(131\) 14.3728 1.25576 0.627878 0.778312i \(-0.283924\pi\)
0.627878 + 0.778312i \(0.283924\pi\)
\(132\) 8.54820 0.744026
\(133\) −29.3143 −2.54187
\(134\) 4.59674 0.397098
\(135\) 0 0
\(136\) 0.251383 0.0215559
\(137\) −5.10073 −0.435785 −0.217892 0.975973i \(-0.569918\pi\)
−0.217892 + 0.975973i \(0.569918\pi\)
\(138\) 26.2666 2.23596
\(139\) 21.3219 1.80850 0.904248 0.427007i \(-0.140432\pi\)
0.904248 + 0.427007i \(0.140432\pi\)
\(140\) 0 0
\(141\) 1.99074 0.167651
\(142\) 15.2210 1.27732
\(143\) 0 0
\(144\) 7.22438 0.602031
\(145\) 0 0
\(146\) −12.0033 −0.993404
\(147\) 53.8415 4.44077
\(148\) −9.29183 −0.763784
\(149\) −8.05447 −0.659848 −0.329924 0.944008i \(-0.607023\pi\)
−0.329924 + 0.944008i \(0.607023\pi\)
\(150\) 0 0
\(151\) 14.1403 1.15072 0.575360 0.817900i \(-0.304862\pi\)
0.575360 + 0.817900i \(0.304862\pi\)
\(152\) 6.00402 0.486990
\(153\) 1.81608 0.146822
\(154\) −13.0525 −1.05180
\(155\) 0 0
\(156\) 0 0
\(157\) −10.3364 −0.824934 −0.412467 0.910973i \(-0.635333\pi\)
−0.412467 + 0.910973i \(0.635333\pi\)
\(158\) 5.70863 0.454154
\(159\) −11.5661 −0.917249
\(160\) 0 0
\(161\) −40.1073 −3.16090
\(162\) 21.5185 1.69065
\(163\) −1.30284 −0.102046 −0.0510231 0.998697i \(-0.516248\pi\)
−0.0510231 + 0.998697i \(0.516248\pi\)
\(164\) −3.48438 −0.272085
\(165\) 0 0
\(166\) −2.32437 −0.180406
\(167\) −10.4567 −0.809160 −0.404580 0.914503i \(-0.632582\pi\)
−0.404580 + 0.914503i \(0.632582\pi\)
\(168\) −15.6119 −1.20449
\(169\) 0 0
\(170\) 0 0
\(171\) 43.3753 3.31699
\(172\) 3.39417 0.258803
\(173\) 8.37489 0.636731 0.318366 0.947968i \(-0.396866\pi\)
0.318366 + 0.947968i \(0.396866\pi\)
\(174\) −13.8306 −1.04850
\(175\) 0 0
\(176\) 2.67335 0.201512
\(177\) 6.44805 0.484665
\(178\) 10.3329 0.774486
\(179\) −7.12772 −0.532751 −0.266375 0.963869i \(-0.585826\pi\)
−0.266375 + 0.963869i \(0.585826\pi\)
\(180\) 0 0
\(181\) 1.22784 0.0912643 0.0456321 0.998958i \(-0.485470\pi\)
0.0456321 + 0.998958i \(0.485470\pi\)
\(182\) 0 0
\(183\) −6.69106 −0.494617
\(184\) 8.21459 0.605587
\(185\) 0 0
\(186\) 0.996184 0.0730438
\(187\) 0.672035 0.0491440
\(188\) 0.622582 0.0454065
\(189\) −65.9506 −4.79720
\(190\) 0 0
\(191\) 18.1199 1.31111 0.655555 0.755147i \(-0.272435\pi\)
0.655555 + 0.755147i \(0.272435\pi\)
\(192\) 3.19756 0.230764
\(193\) −23.7221 −1.70756 −0.853778 0.520638i \(-0.825694\pi\)
−0.853778 + 0.520638i \(0.825694\pi\)
\(194\) −2.13228 −0.153089
\(195\) 0 0
\(196\) 16.8383 1.20274
\(197\) 7.73716 0.551250 0.275625 0.961265i \(-0.411115\pi\)
0.275625 + 0.961265i \(0.411115\pi\)
\(198\) 19.3133 1.37254
\(199\) −7.14002 −0.506142 −0.253071 0.967448i \(-0.581441\pi\)
−0.253071 + 0.967448i \(0.581441\pi\)
\(200\) 0 0
\(201\) 14.6983 1.03674
\(202\) −14.6401 −1.03008
\(203\) 21.1184 1.48222
\(204\) 0.803810 0.0562780
\(205\) 0 0
\(206\) 13.9235 0.970093
\(207\) 59.3453 4.12478
\(208\) 0 0
\(209\) 16.0509 1.11026
\(210\) 0 0
\(211\) −25.6074 −1.76289 −0.881444 0.472289i \(-0.843428\pi\)
−0.881444 + 0.472289i \(0.843428\pi\)
\(212\) −3.61716 −0.248427
\(213\) 48.6701 3.33482
\(214\) 2.94584 0.201373
\(215\) 0 0
\(216\) 13.5077 0.919082
\(217\) −1.52110 −0.103259
\(218\) 1.81954 0.123235
\(219\) −38.3814 −2.59357
\(220\) 0 0
\(221\) 0 0
\(222\) −29.7112 −1.99408
\(223\) 3.02615 0.202646 0.101323 0.994854i \(-0.467692\pi\)
0.101323 + 0.994854i \(0.467692\pi\)
\(224\) −4.88245 −0.326222
\(225\) 0 0
\(226\) 15.1589 1.00835
\(227\) 10.9527 0.726959 0.363480 0.931602i \(-0.381589\pi\)
0.363480 + 0.931602i \(0.381589\pi\)
\(228\) 19.1982 1.27143
\(229\) −14.6073 −0.965281 −0.482640 0.875819i \(-0.660322\pi\)
−0.482640 + 0.875819i \(0.660322\pi\)
\(230\) 0 0
\(231\) −41.7362 −2.74604
\(232\) −4.32537 −0.283974
\(233\) −23.2146 −1.52084 −0.760421 0.649431i \(-0.775007\pi\)
−0.760421 + 0.649431i \(0.775007\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2.01655 0.131267
\(237\) 18.2537 1.18570
\(238\) −1.22736 −0.0795581
\(239\) −10.3141 −0.667161 −0.333580 0.942722i \(-0.608257\pi\)
−0.333580 + 0.942722i \(0.608257\pi\)
\(240\) 0 0
\(241\) 5.45201 0.351195 0.175597 0.984462i \(-0.443814\pi\)
0.175597 + 0.984462i \(0.443814\pi\)
\(242\) −3.85318 −0.247692
\(243\) 28.2835 1.81439
\(244\) −2.09255 −0.133962
\(245\) 0 0
\(246\) −11.1415 −0.710357
\(247\) 0 0
\(248\) 0.311545 0.0197831
\(249\) −7.43231 −0.471003
\(250\) 0 0
\(251\) 6.94123 0.438127 0.219063 0.975711i \(-0.429700\pi\)
0.219063 + 0.975711i \(0.429700\pi\)
\(252\) −35.2727 −2.22197
\(253\) 21.9605 1.38064
\(254\) 0.572035 0.0358927
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −1.46921 −0.0916466 −0.0458233 0.998950i \(-0.514591\pi\)
−0.0458233 + 0.998950i \(0.514591\pi\)
\(258\) 10.8531 0.675682
\(259\) 45.3669 2.81896
\(260\) 0 0
\(261\) −31.2481 −1.93421
\(262\) 14.3728 0.887954
\(263\) −17.6267 −1.08691 −0.543456 0.839438i \(-0.682884\pi\)
−0.543456 + 0.839438i \(0.682884\pi\)
\(264\) 8.54820 0.526106
\(265\) 0 0
\(266\) −29.3143 −1.79738
\(267\) 33.0401 2.02202
\(268\) 4.59674 0.280791
\(269\) −14.7647 −0.900217 −0.450109 0.892974i \(-0.648615\pi\)
−0.450109 + 0.892974i \(0.648615\pi\)
\(270\) 0 0
\(271\) 0.418154 0.0254011 0.0127005 0.999919i \(-0.495957\pi\)
0.0127005 + 0.999919i \(0.495957\pi\)
\(272\) 0.251383 0.0152423
\(273\) 0 0
\(274\) −5.10073 −0.308146
\(275\) 0 0
\(276\) 26.2666 1.58106
\(277\) −17.6433 −1.06008 −0.530040 0.847972i \(-0.677823\pi\)
−0.530040 + 0.847972i \(0.677823\pi\)
\(278\) 21.3219 1.27880
\(279\) 2.25072 0.134747
\(280\) 0 0
\(281\) 7.14422 0.426188 0.213094 0.977032i \(-0.431646\pi\)
0.213094 + 0.977032i \(0.431646\pi\)
\(282\) 1.99074 0.118547
\(283\) −25.9638 −1.54339 −0.771693 0.635996i \(-0.780590\pi\)
−0.771693 + 0.635996i \(0.780590\pi\)
\(284\) 15.2210 0.903202
\(285\) 0 0
\(286\) 0 0
\(287\) 17.0123 1.00421
\(288\) 7.22438 0.425700
\(289\) −16.9368 −0.996283
\(290\) 0 0
\(291\) −6.81808 −0.399683
\(292\) −12.0033 −0.702443
\(293\) 19.4593 1.13682 0.568411 0.822744i \(-0.307558\pi\)
0.568411 + 0.822744i \(0.307558\pi\)
\(294\) 53.8415 3.14010
\(295\) 0 0
\(296\) −9.29183 −0.540077
\(297\) 36.1108 2.09536
\(298\) −8.05447 −0.466583
\(299\) 0 0
\(300\) 0 0
\(301\) −16.5719 −0.955187
\(302\) 14.1403 0.813682
\(303\) −46.8127 −2.68932
\(304\) 6.00402 0.344354
\(305\) 0 0
\(306\) 1.81608 0.103818
\(307\) 28.8189 1.64478 0.822390 0.568924i \(-0.192640\pi\)
0.822390 + 0.568924i \(0.192640\pi\)
\(308\) −13.0525 −0.743736
\(309\) 44.5211 2.53271
\(310\) 0 0
\(311\) 1.28730 0.0729962 0.0364981 0.999334i \(-0.488380\pi\)
0.0364981 + 0.999334i \(0.488380\pi\)
\(312\) 0 0
\(313\) −12.0688 −0.682167 −0.341084 0.940033i \(-0.610794\pi\)
−0.341084 + 0.940033i \(0.610794\pi\)
\(314\) −10.3364 −0.583316
\(315\) 0 0
\(316\) 5.70863 0.321136
\(317\) −5.72558 −0.321581 −0.160790 0.986989i \(-0.551404\pi\)
−0.160790 + 0.986989i \(0.551404\pi\)
\(318\) −11.5661 −0.648593
\(319\) −11.5632 −0.647417
\(320\) 0 0
\(321\) 9.41948 0.525744
\(322\) −40.1073 −2.23509
\(323\) 1.50931 0.0839800
\(324\) 21.5185 1.19547
\(325\) 0 0
\(326\) −1.30284 −0.0721576
\(327\) 5.81808 0.321741
\(328\) −3.48438 −0.192393
\(329\) −3.03973 −0.167585
\(330\) 0 0
\(331\) −17.2506 −0.948178 −0.474089 0.880477i \(-0.657222\pi\)
−0.474089 + 0.880477i \(0.657222\pi\)
\(332\) −2.32437 −0.127566
\(333\) −67.1277 −3.67857
\(334\) −10.4567 −0.572163
\(335\) 0 0
\(336\) −15.6119 −0.851700
\(337\) −1.82457 −0.0993905 −0.0496953 0.998764i \(-0.515825\pi\)
−0.0496953 + 0.998764i \(0.515825\pi\)
\(338\) 0 0
\(339\) 48.4714 2.63260
\(340\) 0 0
\(341\) 0.832871 0.0451025
\(342\) 43.3753 2.34547
\(343\) −48.0351 −2.59365
\(344\) 3.39417 0.183001
\(345\) 0 0
\(346\) 8.37489 0.450237
\(347\) −28.9749 −1.55546 −0.777728 0.628601i \(-0.783628\pi\)
−0.777728 + 0.628601i \(0.783628\pi\)
\(348\) −13.8306 −0.741399
\(349\) −0.850671 −0.0455354 −0.0227677 0.999741i \(-0.507248\pi\)
−0.0227677 + 0.999741i \(0.507248\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.67335 0.142490
\(353\) 24.3387 1.29542 0.647710 0.761887i \(-0.275727\pi\)
0.647710 + 0.761887i \(0.275727\pi\)
\(354\) 6.44805 0.342710
\(355\) 0 0
\(356\) 10.3329 0.547644
\(357\) −3.92456 −0.207710
\(358\) −7.12772 −0.376712
\(359\) −7.71757 −0.407318 −0.203659 0.979042i \(-0.565283\pi\)
−0.203659 + 0.979042i \(0.565283\pi\)
\(360\) 0 0
\(361\) 17.0482 0.897276
\(362\) 1.22784 0.0645336
\(363\) −12.3208 −0.646672
\(364\) 0 0
\(365\) 0 0
\(366\) −6.69106 −0.349747
\(367\) −10.1218 −0.528354 −0.264177 0.964474i \(-0.585100\pi\)
−0.264177 + 0.964474i \(0.585100\pi\)
\(368\) 8.21459 0.428215
\(369\) −25.1725 −1.31043
\(370\) 0 0
\(371\) 17.6606 0.916892
\(372\) 0.996184 0.0516497
\(373\) 23.4158 1.21242 0.606211 0.795303i \(-0.292688\pi\)
0.606211 + 0.795303i \(0.292688\pi\)
\(374\) 0.672035 0.0347501
\(375\) 0 0
\(376\) 0.622582 0.0321072
\(377\) 0 0
\(378\) −65.9506 −3.39213
\(379\) −6.59880 −0.338958 −0.169479 0.985534i \(-0.554208\pi\)
−0.169479 + 0.985534i \(0.554208\pi\)
\(380\) 0 0
\(381\) 1.82911 0.0937084
\(382\) 18.1199 0.927095
\(383\) −25.1726 −1.28626 −0.643131 0.765756i \(-0.722365\pi\)
−0.643131 + 0.765756i \(0.722365\pi\)
\(384\) 3.19756 0.163175
\(385\) 0 0
\(386\) −23.7221 −1.20742
\(387\) 24.5208 1.24646
\(388\) −2.13228 −0.108250
\(389\) −14.8655 −0.753708 −0.376854 0.926273i \(-0.622994\pi\)
−0.376854 + 0.926273i \(0.622994\pi\)
\(390\) 0 0
\(391\) 2.06500 0.104432
\(392\) 16.8383 0.850463
\(393\) 45.9578 2.31826
\(394\) 7.73716 0.389792
\(395\) 0 0
\(396\) 19.3133 0.970531
\(397\) −17.7608 −0.891388 −0.445694 0.895185i \(-0.647043\pi\)
−0.445694 + 0.895185i \(0.647043\pi\)
\(398\) −7.14002 −0.357897
\(399\) −93.7342 −4.69258
\(400\) 0 0
\(401\) 16.2630 0.812138 0.406069 0.913842i \(-0.366899\pi\)
0.406069 + 0.913842i \(0.366899\pi\)
\(402\) 14.6983 0.733087
\(403\) 0 0
\(404\) −14.6401 −0.728374
\(405\) 0 0
\(406\) 21.1184 1.04809
\(407\) −24.8404 −1.23129
\(408\) 0.803810 0.0397945
\(409\) −20.1556 −0.996631 −0.498316 0.866996i \(-0.666048\pi\)
−0.498316 + 0.866996i \(0.666048\pi\)
\(410\) 0 0
\(411\) −16.3099 −0.804507
\(412\) 13.9235 0.685960
\(413\) −9.84573 −0.484477
\(414\) 59.3453 2.91666
\(415\) 0 0
\(416\) 0 0
\(417\) 68.1779 3.33869
\(418\) 16.0509 0.785074
\(419\) 28.6680 1.40052 0.700261 0.713887i \(-0.253067\pi\)
0.700261 + 0.713887i \(0.253067\pi\)
\(420\) 0 0
\(421\) 21.0686 1.02682 0.513409 0.858144i \(-0.328382\pi\)
0.513409 + 0.858144i \(0.328382\pi\)
\(422\) −25.6074 −1.24655
\(423\) 4.49777 0.218689
\(424\) −3.61716 −0.175665
\(425\) 0 0
\(426\) 48.6701 2.35808
\(427\) 10.2168 0.494425
\(428\) 2.94584 0.142392
\(429\) 0 0
\(430\) 0 0
\(431\) −5.38784 −0.259523 −0.129762 0.991545i \(-0.541421\pi\)
−0.129762 + 0.991545i \(0.541421\pi\)
\(432\) 13.5077 0.649889
\(433\) 5.87863 0.282509 0.141255 0.989973i \(-0.454886\pi\)
0.141255 + 0.989973i \(0.454886\pi\)
\(434\) −1.52110 −0.0730153
\(435\) 0 0
\(436\) 1.81954 0.0871401
\(437\) 49.3205 2.35932
\(438\) −38.3814 −1.83393
\(439\) −21.5346 −1.02779 −0.513896 0.857853i \(-0.671798\pi\)
−0.513896 + 0.857853i \(0.671798\pi\)
\(440\) 0 0
\(441\) 121.646 5.79268
\(442\) 0 0
\(443\) 37.3549 1.77478 0.887391 0.461017i \(-0.152515\pi\)
0.887391 + 0.461017i \(0.152515\pi\)
\(444\) −29.7112 −1.41003
\(445\) 0 0
\(446\) 3.02615 0.143292
\(447\) −25.7546 −1.21815
\(448\) −4.88245 −0.230674
\(449\) 10.4914 0.495122 0.247561 0.968872i \(-0.420371\pi\)
0.247561 + 0.968872i \(0.420371\pi\)
\(450\) 0 0
\(451\) −9.31499 −0.438626
\(452\) 15.1589 0.713014
\(453\) 45.2144 2.12436
\(454\) 10.9527 0.514038
\(455\) 0 0
\(456\) 19.1982 0.899038
\(457\) 16.7814 0.785002 0.392501 0.919751i \(-0.371610\pi\)
0.392501 + 0.919751i \(0.371610\pi\)
\(458\) −14.6073 −0.682557
\(459\) 3.39560 0.158493
\(460\) 0 0
\(461\) 24.8690 1.15826 0.579132 0.815234i \(-0.303392\pi\)
0.579132 + 0.815234i \(0.303392\pi\)
\(462\) −41.7362 −1.94174
\(463\) −33.4890 −1.55637 −0.778184 0.628037i \(-0.783859\pi\)
−0.778184 + 0.628037i \(0.783859\pi\)
\(464\) −4.32537 −0.200800
\(465\) 0 0
\(466\) −23.2146 −1.07540
\(467\) −8.28758 −0.383504 −0.191752 0.981443i \(-0.561417\pi\)
−0.191752 + 0.981443i \(0.561417\pi\)
\(468\) 0 0
\(469\) −22.4434 −1.03634
\(470\) 0 0
\(471\) −33.0512 −1.52292
\(472\) 2.01655 0.0928195
\(473\) 9.07382 0.417215
\(474\) 18.2537 0.838419
\(475\) 0 0
\(476\) −1.22736 −0.0562561
\(477\) −26.1317 −1.19649
\(478\) −10.3141 −0.471754
\(479\) 21.8070 0.996387 0.498194 0.867066i \(-0.333997\pi\)
0.498194 + 0.867066i \(0.333997\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 5.45201 0.248332
\(483\) −128.245 −5.83537
\(484\) −3.85318 −0.175144
\(485\) 0 0
\(486\) 28.2835 1.28297
\(487\) 18.0233 0.816714 0.408357 0.912822i \(-0.366102\pi\)
0.408357 + 0.912822i \(0.366102\pi\)
\(488\) −2.09255 −0.0947254
\(489\) −4.16591 −0.188389
\(490\) 0 0
\(491\) −1.31023 −0.0591299 −0.0295649 0.999563i \(-0.509412\pi\)
−0.0295649 + 0.999563i \(0.509412\pi\)
\(492\) −11.1415 −0.502298
\(493\) −1.08732 −0.0489705
\(494\) 0 0
\(495\) 0 0
\(496\) 0.311545 0.0139888
\(497\) −74.3159 −3.33353
\(498\) −7.43231 −0.333050
\(499\) −29.8490 −1.33623 −0.668113 0.744060i \(-0.732898\pi\)
−0.668113 + 0.744060i \(0.732898\pi\)
\(500\) 0 0
\(501\) −33.4358 −1.49380
\(502\) 6.94123 0.309802
\(503\) −35.8660 −1.59919 −0.799593 0.600543i \(-0.794951\pi\)
−0.799593 + 0.600543i \(0.794951\pi\)
\(504\) −35.2727 −1.57117
\(505\) 0 0
\(506\) 21.9605 0.976263
\(507\) 0 0
\(508\) 0.572035 0.0253799
\(509\) 20.4116 0.904730 0.452365 0.891833i \(-0.350580\pi\)
0.452365 + 0.891833i \(0.350580\pi\)
\(510\) 0 0
\(511\) 58.6057 2.59256
\(512\) 1.00000 0.0441942
\(513\) 81.1004 3.58067
\(514\) −1.46921 −0.0648039
\(515\) 0 0
\(516\) 10.8531 0.477779
\(517\) 1.66438 0.0731994
\(518\) 45.3669 1.99331
\(519\) 26.7792 1.17548
\(520\) 0 0
\(521\) −35.7922 −1.56809 −0.784043 0.620706i \(-0.786846\pi\)
−0.784043 + 0.620706i \(0.786846\pi\)
\(522\) −31.2481 −1.36769
\(523\) 5.60042 0.244889 0.122445 0.992475i \(-0.460927\pi\)
0.122445 + 0.992475i \(0.460927\pi\)
\(524\) 14.3728 0.627878
\(525\) 0 0
\(526\) −17.6267 −0.768562
\(527\) 0.0783170 0.00341154
\(528\) 8.54820 0.372013
\(529\) 44.4794 1.93389
\(530\) 0 0
\(531\) 14.5683 0.632212
\(532\) −29.3143 −1.27094
\(533\) 0 0
\(534\) 33.0401 1.42979
\(535\) 0 0
\(536\) 4.59674 0.198549
\(537\) −22.7913 −0.983517
\(538\) −14.7647 −0.636550
\(539\) 45.0148 1.93892
\(540\) 0 0
\(541\) −13.5312 −0.581753 −0.290877 0.956761i \(-0.593947\pi\)
−0.290877 + 0.956761i \(0.593947\pi\)
\(542\) 0.418154 0.0179613
\(543\) 3.92608 0.168484
\(544\) 0.251383 0.0107779
\(545\) 0 0
\(546\) 0 0
\(547\) 19.9690 0.853814 0.426907 0.904296i \(-0.359603\pi\)
0.426907 + 0.904296i \(0.359603\pi\)
\(548\) −5.10073 −0.217892
\(549\) −15.1174 −0.645194
\(550\) 0 0
\(551\) −25.9696 −1.10634
\(552\) 26.2666 1.11798
\(553\) −27.8721 −1.18524
\(554\) −17.6433 −0.749590
\(555\) 0 0
\(556\) 21.3219 0.904248
\(557\) 11.5258 0.488365 0.244182 0.969729i \(-0.421480\pi\)
0.244182 + 0.969729i \(0.421480\pi\)
\(558\) 2.25072 0.0952806
\(559\) 0 0
\(560\) 0 0
\(561\) 2.14887 0.0907253
\(562\) 7.14422 0.301361
\(563\) −28.3639 −1.19540 −0.597699 0.801721i \(-0.703918\pi\)
−0.597699 + 0.801721i \(0.703918\pi\)
\(564\) 1.99074 0.0838253
\(565\) 0 0
\(566\) −25.9638 −1.09134
\(567\) −105.063 −4.41223
\(568\) 15.2210 0.638660
\(569\) 33.6641 1.41127 0.705636 0.708574i \(-0.250661\pi\)
0.705636 + 0.708574i \(0.250661\pi\)
\(570\) 0 0
\(571\) −32.6070 −1.36456 −0.682281 0.731090i \(-0.739012\pi\)
−0.682281 + 0.731090i \(0.739012\pi\)
\(572\) 0 0
\(573\) 57.9394 2.42045
\(574\) 17.0123 0.710080
\(575\) 0 0
\(576\) 7.22438 0.301016
\(577\) −42.2328 −1.75817 −0.879087 0.476662i \(-0.841847\pi\)
−0.879087 + 0.476662i \(0.841847\pi\)
\(578\) −16.9368 −0.704478
\(579\) −75.8528 −3.15234
\(580\) 0 0
\(581\) 11.3486 0.470820
\(582\) −6.81808 −0.282619
\(583\) −9.66995 −0.400488
\(584\) −12.0033 −0.496702
\(585\) 0 0
\(586\) 19.4593 0.803855
\(587\) −28.6716 −1.18340 −0.591702 0.806157i \(-0.701544\pi\)
−0.591702 + 0.806157i \(0.701544\pi\)
\(588\) 53.8415 2.22039
\(589\) 1.87052 0.0770736
\(590\) 0 0
\(591\) 24.7400 1.01767
\(592\) −9.29183 −0.381892
\(593\) −8.89057 −0.365092 −0.182546 0.983197i \(-0.558434\pi\)
−0.182546 + 0.983197i \(0.558434\pi\)
\(594\) 36.1108 1.48165
\(595\) 0 0
\(596\) −8.05447 −0.329924
\(597\) −22.8306 −0.934395
\(598\) 0 0
\(599\) −7.24674 −0.296094 −0.148047 0.988980i \(-0.547299\pi\)
−0.148047 + 0.988980i \(0.547299\pi\)
\(600\) 0 0
\(601\) −16.8042 −0.685457 −0.342728 0.939435i \(-0.611351\pi\)
−0.342728 + 0.939435i \(0.611351\pi\)
\(602\) −16.5719 −0.675419
\(603\) 33.2086 1.35236
\(604\) 14.1403 0.575360
\(605\) 0 0
\(606\) −46.8127 −1.90164
\(607\) −0.510157 −0.0207066 −0.0103533 0.999946i \(-0.503296\pi\)
−0.0103533 + 0.999946i \(0.503296\pi\)
\(608\) 6.00402 0.243495
\(609\) 67.5273 2.73634
\(610\) 0 0
\(611\) 0 0
\(612\) 1.81608 0.0734108
\(613\) −13.2522 −0.535253 −0.267626 0.963523i \(-0.586239\pi\)
−0.267626 + 0.963523i \(0.586239\pi\)
\(614\) 28.8189 1.16304
\(615\) 0 0
\(616\) −13.0525 −0.525901
\(617\) 12.9669 0.522029 0.261014 0.965335i \(-0.415943\pi\)
0.261014 + 0.965335i \(0.415943\pi\)
\(618\) 44.5211 1.79090
\(619\) −35.9106 −1.44337 −0.721685 0.692221i \(-0.756632\pi\)
−0.721685 + 0.692221i \(0.756632\pi\)
\(620\) 0 0
\(621\) 110.960 4.45267
\(622\) 1.28730 0.0516161
\(623\) −50.4500 −2.02124
\(624\) 0 0
\(625\) 0 0
\(626\) −12.0688 −0.482365
\(627\) 51.3236 2.04967
\(628\) −10.3364 −0.412467
\(629\) −2.33580 −0.0931346
\(630\) 0 0
\(631\) 20.3134 0.808664 0.404332 0.914612i \(-0.367504\pi\)
0.404332 + 0.914612i \(0.367504\pi\)
\(632\) 5.70863 0.227077
\(633\) −81.8812 −3.25449
\(634\) −5.72558 −0.227392
\(635\) 0 0
\(636\) −11.5661 −0.458625
\(637\) 0 0
\(638\) −11.5632 −0.457793
\(639\) 109.962 4.35005
\(640\) 0 0
\(641\) −4.01466 −0.158569 −0.0792847 0.996852i \(-0.525264\pi\)
−0.0792847 + 0.996852i \(0.525264\pi\)
\(642\) 9.41948 0.371757
\(643\) −19.2085 −0.757508 −0.378754 0.925497i \(-0.623647\pi\)
−0.378754 + 0.925497i \(0.623647\pi\)
\(644\) −40.1073 −1.58045
\(645\) 0 0
\(646\) 1.50931 0.0593828
\(647\) −42.6054 −1.67499 −0.837495 0.546445i \(-0.815981\pi\)
−0.837495 + 0.546445i \(0.815981\pi\)
\(648\) 21.5185 0.845326
\(649\) 5.39096 0.211614
\(650\) 0 0
\(651\) −4.86382 −0.190628
\(652\) −1.30284 −0.0510231
\(653\) 26.6810 1.04411 0.522054 0.852913i \(-0.325166\pi\)
0.522054 + 0.852913i \(0.325166\pi\)
\(654\) 5.81808 0.227505
\(655\) 0 0
\(656\) −3.48438 −0.136042
\(657\) −86.7167 −3.38314
\(658\) −3.03973 −0.118501
\(659\) −27.4957 −1.07108 −0.535540 0.844510i \(-0.679892\pi\)
−0.535540 + 0.844510i \(0.679892\pi\)
\(660\) 0 0
\(661\) −29.8055 −1.15930 −0.579649 0.814866i \(-0.696810\pi\)
−0.579649 + 0.814866i \(0.696810\pi\)
\(662\) −17.2506 −0.670463
\(663\) 0 0
\(664\) −2.32437 −0.0902030
\(665\) 0 0
\(666\) −67.1277 −2.60114
\(667\) −35.5311 −1.37577
\(668\) −10.4567 −0.404580
\(669\) 9.67630 0.374107
\(670\) 0 0
\(671\) −5.59413 −0.215959
\(672\) −15.6119 −0.602243
\(673\) −16.0319 −0.617986 −0.308993 0.951064i \(-0.599992\pi\)
−0.308993 + 0.951064i \(0.599992\pi\)
\(674\) −1.82457 −0.0702797
\(675\) 0 0
\(676\) 0 0
\(677\) −21.7965 −0.837707 −0.418853 0.908054i \(-0.637568\pi\)
−0.418853 + 0.908054i \(0.637568\pi\)
\(678\) 48.4714 1.86153
\(679\) 10.4107 0.399528
\(680\) 0 0
\(681\) 35.0220 1.34205
\(682\) 0.832871 0.0318923
\(683\) −37.7285 −1.44364 −0.721820 0.692081i \(-0.756694\pi\)
−0.721820 + 0.692081i \(0.756694\pi\)
\(684\) 43.3753 1.65850
\(685\) 0 0
\(686\) −48.0351 −1.83399
\(687\) −46.7078 −1.78202
\(688\) 3.39417 0.129402
\(689\) 0 0
\(690\) 0 0
\(691\) 44.8284 1.70535 0.852677 0.522438i \(-0.174977\pi\)
0.852677 + 0.522438i \(0.174977\pi\)
\(692\) 8.37489 0.318366
\(693\) −94.2963 −3.58202
\(694\) −28.9749 −1.09987
\(695\) 0 0
\(696\) −13.8306 −0.524248
\(697\) −0.875913 −0.0331776
\(698\) −0.850671 −0.0321984
\(699\) −74.2301 −2.80764
\(700\) 0 0
\(701\) −33.3165 −1.25835 −0.629173 0.777265i \(-0.716606\pi\)
−0.629173 + 0.777265i \(0.716606\pi\)
\(702\) 0 0
\(703\) −55.7883 −2.10410
\(704\) 2.67335 0.100756
\(705\) 0 0
\(706\) 24.3387 0.916001
\(707\) 71.4798 2.68827
\(708\) 6.44805 0.242333
\(709\) −0.811295 −0.0304688 −0.0152344 0.999884i \(-0.504849\pi\)
−0.0152344 + 0.999884i \(0.504849\pi\)
\(710\) 0 0
\(711\) 41.2413 1.54667
\(712\) 10.3329 0.387243
\(713\) 2.55922 0.0958434
\(714\) −3.92456 −0.146873
\(715\) 0 0
\(716\) −7.12772 −0.266375
\(717\) −32.9798 −1.23165
\(718\) −7.71757 −0.288017
\(719\) 18.1297 0.676123 0.338061 0.941124i \(-0.390229\pi\)
0.338061 + 0.941124i \(0.390229\pi\)
\(720\) 0 0
\(721\) −67.9806 −2.53173
\(722\) 17.0482 0.634470
\(723\) 17.4331 0.648345
\(724\) 1.22784 0.0456321
\(725\) 0 0
\(726\) −12.3208 −0.457266
\(727\) −40.3661 −1.49710 −0.748548 0.663080i \(-0.769249\pi\)
−0.748548 + 0.663080i \(0.769249\pi\)
\(728\) 0 0
\(729\) 25.8827 0.958620
\(730\) 0 0
\(731\) 0.853235 0.0315580
\(732\) −6.69106 −0.247309
\(733\) 27.4536 1.01402 0.507010 0.861940i \(-0.330751\pi\)
0.507010 + 0.861940i \(0.330751\pi\)
\(734\) −10.1218 −0.373603
\(735\) 0 0
\(736\) 8.21459 0.302794
\(737\) 12.2887 0.452661
\(738\) −25.1725 −0.926612
\(739\) 15.8917 0.584584 0.292292 0.956329i \(-0.405582\pi\)
0.292292 + 0.956329i \(0.405582\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 17.6606 0.648341
\(743\) −0.856474 −0.0314210 −0.0157105 0.999877i \(-0.505001\pi\)
−0.0157105 + 0.999877i \(0.505001\pi\)
\(744\) 0.996184 0.0365219
\(745\) 0 0
\(746\) 23.4158 0.857313
\(747\) −16.7921 −0.614392
\(748\) 0.672035 0.0245720
\(749\) −14.3829 −0.525540
\(750\) 0 0
\(751\) −20.6326 −0.752892 −0.376446 0.926438i \(-0.622854\pi\)
−0.376446 + 0.926438i \(0.622854\pi\)
\(752\) 0.622582 0.0227032
\(753\) 22.1950 0.808830
\(754\) 0 0
\(755\) 0 0
\(756\) −65.9506 −2.39860
\(757\) −17.3062 −0.629003 −0.314502 0.949257i \(-0.601837\pi\)
−0.314502 + 0.949257i \(0.601837\pi\)
\(758\) −6.59880 −0.239679
\(759\) 70.2200 2.54882
\(760\) 0 0
\(761\) −32.7721 −1.18799 −0.593994 0.804469i \(-0.702450\pi\)
−0.593994 + 0.804469i \(0.702450\pi\)
\(762\) 1.82911 0.0662618
\(763\) −8.88381 −0.321615
\(764\) 18.1199 0.655555
\(765\) 0 0
\(766\) −25.1726 −0.909525
\(767\) 0 0
\(768\) 3.19756 0.115382
\(769\) −35.5603 −1.28234 −0.641169 0.767400i \(-0.721550\pi\)
−0.641169 + 0.767400i \(0.721550\pi\)
\(770\) 0 0
\(771\) −4.69787 −0.169190
\(772\) −23.7221 −0.853778
\(773\) 13.6078 0.489440 0.244720 0.969594i \(-0.421304\pi\)
0.244720 + 0.969594i \(0.421304\pi\)
\(774\) 24.5208 0.881381
\(775\) 0 0
\(776\) −2.13228 −0.0765443
\(777\) 145.063 5.20412
\(778\) −14.8655 −0.532952
\(779\) −20.9203 −0.749547
\(780\) 0 0
\(781\) 40.6912 1.45605
\(782\) 2.06500 0.0738444
\(783\) −58.4257 −2.08796
\(784\) 16.8383 0.601368
\(785\) 0 0
\(786\) 45.9578 1.63926
\(787\) 14.4420 0.514803 0.257401 0.966305i \(-0.417134\pi\)
0.257401 + 0.966305i \(0.417134\pi\)
\(788\) 7.73716 0.275625
\(789\) −56.3625 −2.00656
\(790\) 0 0
\(791\) −74.0125 −2.63158
\(792\) 19.3133 0.686269
\(793\) 0 0
\(794\) −17.7608 −0.630307
\(795\) 0 0
\(796\) −7.14002 −0.253071
\(797\) 24.1395 0.855064 0.427532 0.904000i \(-0.359383\pi\)
0.427532 + 0.904000i \(0.359383\pi\)
\(798\) −93.7342 −3.31816
\(799\) 0.156506 0.00553679
\(800\) 0 0
\(801\) 74.6489 2.63759
\(802\) 16.2630 0.574268
\(803\) −32.0892 −1.13240
\(804\) 14.6983 0.518371
\(805\) 0 0
\(806\) 0 0
\(807\) −47.2109 −1.66190
\(808\) −14.6401 −0.515038
\(809\) −16.5090 −0.580425 −0.290212 0.956962i \(-0.593726\pi\)
−0.290212 + 0.956962i \(0.593726\pi\)
\(810\) 0 0
\(811\) 31.7149 1.11366 0.556831 0.830626i \(-0.312017\pi\)
0.556831 + 0.830626i \(0.312017\pi\)
\(812\) 21.1184 0.741110
\(813\) 1.33707 0.0468932
\(814\) −24.8404 −0.870654
\(815\) 0 0
\(816\) 0.803810 0.0281390
\(817\) 20.3787 0.712959
\(818\) −20.1556 −0.704725
\(819\) 0 0
\(820\) 0 0
\(821\) 21.3196 0.744059 0.372030 0.928221i \(-0.378662\pi\)
0.372030 + 0.928221i \(0.378662\pi\)
\(822\) −16.3099 −0.568872
\(823\) −28.3509 −0.988249 −0.494124 0.869391i \(-0.664511\pi\)
−0.494124 + 0.869391i \(0.664511\pi\)
\(824\) 13.9235 0.485047
\(825\) 0 0
\(826\) −9.84573 −0.342577
\(827\) 1.39404 0.0484755 0.0242377 0.999706i \(-0.492284\pi\)
0.0242377 + 0.999706i \(0.492284\pi\)
\(828\) 59.3453 2.06239
\(829\) 15.9922 0.555432 0.277716 0.960663i \(-0.410423\pi\)
0.277716 + 0.960663i \(0.410423\pi\)
\(830\) 0 0
\(831\) −56.4153 −1.95703
\(832\) 0 0
\(833\) 4.23286 0.146660
\(834\) 68.1779 2.36081
\(835\) 0 0
\(836\) 16.0509 0.555131
\(837\) 4.20826 0.145459
\(838\) 28.6680 0.990318
\(839\) 50.8074 1.75407 0.877033 0.480431i \(-0.159520\pi\)
0.877033 + 0.480431i \(0.159520\pi\)
\(840\) 0 0
\(841\) −10.2912 −0.354869
\(842\) 21.0686 0.726070
\(843\) 22.8440 0.786791
\(844\) −25.6074 −0.881444
\(845\) 0 0
\(846\) 4.49777 0.154636
\(847\) 18.8129 0.646421
\(848\) −3.61716 −0.124214
\(849\) −83.0206 −2.84926
\(850\) 0 0
\(851\) −76.3285 −2.61651
\(852\) 48.6701 1.66741
\(853\) 15.4878 0.530293 0.265146 0.964208i \(-0.414580\pi\)
0.265146 + 0.964208i \(0.414580\pi\)
\(854\) 10.2168 0.349611
\(855\) 0 0
\(856\) 2.94584 0.100687
\(857\) 33.8502 1.15630 0.578150 0.815931i \(-0.303775\pi\)
0.578150 + 0.815931i \(0.303775\pi\)
\(858\) 0 0
\(859\) 36.9014 1.25906 0.629529 0.776977i \(-0.283248\pi\)
0.629529 + 0.776977i \(0.283248\pi\)
\(860\) 0 0
\(861\) 54.3979 1.85387
\(862\) −5.38784 −0.183511
\(863\) −35.7631 −1.21739 −0.608694 0.793405i \(-0.708306\pi\)
−0.608694 + 0.793405i \(0.708306\pi\)
\(864\) 13.5077 0.459541
\(865\) 0 0
\(866\) 5.87863 0.199764
\(867\) −54.1564 −1.83925
\(868\) −1.52110 −0.0516296
\(869\) 15.2612 0.517700
\(870\) 0 0
\(871\) 0 0
\(872\) 1.81954 0.0616174
\(873\) −15.4044 −0.521359
\(874\) 49.3205 1.66829
\(875\) 0 0
\(876\) −38.3814 −1.29679
\(877\) −20.0585 −0.677329 −0.338665 0.940907i \(-0.609975\pi\)
−0.338665 + 0.940907i \(0.609975\pi\)
\(878\) −21.5346 −0.726758
\(879\) 62.2221 2.09870
\(880\) 0 0
\(881\) −28.7097 −0.967253 −0.483627 0.875274i \(-0.660681\pi\)
−0.483627 + 0.875274i \(0.660681\pi\)
\(882\) 121.646 4.09604
\(883\) −20.4699 −0.688865 −0.344433 0.938811i \(-0.611929\pi\)
−0.344433 + 0.938811i \(0.611929\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 37.3549 1.25496
\(887\) −34.0271 −1.14252 −0.571259 0.820770i \(-0.693545\pi\)
−0.571259 + 0.820770i \(0.693545\pi\)
\(888\) −29.7112 −0.997041
\(889\) −2.79293 −0.0936719
\(890\) 0 0
\(891\) 57.5265 1.92721
\(892\) 3.02615 0.101323
\(893\) 3.73799 0.125087
\(894\) −25.7546 −0.861364
\(895\) 0 0
\(896\) −4.88245 −0.163111
\(897\) 0 0
\(898\) 10.4914 0.350104
\(899\) −1.34755 −0.0449432
\(900\) 0 0
\(901\) −0.909290 −0.0302929
\(902\) −9.31499 −0.310155
\(903\) −52.9895 −1.76338
\(904\) 15.1589 0.504177
\(905\) 0 0
\(906\) 45.2144 1.50215
\(907\) −43.9743 −1.46014 −0.730071 0.683371i \(-0.760513\pi\)
−0.730071 + 0.683371i \(0.760513\pi\)
\(908\) 10.9527 0.363480
\(909\) −105.766 −3.50803
\(910\) 0 0
\(911\) 43.5382 1.44249 0.721243 0.692682i \(-0.243571\pi\)
0.721243 + 0.692682i \(0.243571\pi\)
\(912\) 19.1982 0.635716
\(913\) −6.21386 −0.205649
\(914\) 16.7814 0.555081
\(915\) 0 0
\(916\) −14.6073 −0.482640
\(917\) −70.1744 −2.31736
\(918\) 3.39560 0.112071
\(919\) −21.9336 −0.723523 −0.361762 0.932271i \(-0.617825\pi\)
−0.361762 + 0.932271i \(0.617825\pi\)
\(920\) 0 0
\(921\) 92.1500 3.03645
\(922\) 24.8690 0.819016
\(923\) 0 0
\(924\) −41.7362 −1.37302
\(925\) 0 0
\(926\) −33.4890 −1.10052
\(927\) 100.588 3.30375
\(928\) −4.32537 −0.141987
\(929\) −7.76056 −0.254616 −0.127308 0.991863i \(-0.540634\pi\)
−0.127308 + 0.991863i \(0.540634\pi\)
\(930\) 0 0
\(931\) 101.098 3.31334
\(932\) −23.2146 −0.760421
\(933\) 4.11623 0.134759
\(934\) −8.28758 −0.271178
\(935\) 0 0
\(936\) 0 0
\(937\) 37.2577 1.21716 0.608578 0.793494i \(-0.291740\pi\)
0.608578 + 0.793494i \(0.291740\pi\)
\(938\) −22.4434 −0.732802
\(939\) −38.5906 −1.25936
\(940\) 0 0
\(941\) −46.2849 −1.50885 −0.754423 0.656389i \(-0.772083\pi\)
−0.754423 + 0.656389i \(0.772083\pi\)
\(942\) −33.0512 −1.07687
\(943\) −28.6228 −0.932085
\(944\) 2.01655 0.0656333
\(945\) 0 0
\(946\) 9.07382 0.295015
\(947\) 29.9853 0.974392 0.487196 0.873293i \(-0.338020\pi\)
0.487196 + 0.873293i \(0.338020\pi\)
\(948\) 18.2537 0.592852
\(949\) 0 0
\(950\) 0 0
\(951\) −18.3079 −0.593674
\(952\) −1.22736 −0.0397791
\(953\) 48.1719 1.56044 0.780220 0.625505i \(-0.215107\pi\)
0.780220 + 0.625505i \(0.215107\pi\)
\(954\) −26.1317 −0.846045
\(955\) 0 0
\(956\) −10.3141 −0.333580
\(957\) −36.9741 −1.19520
\(958\) 21.8070 0.704552
\(959\) 24.9040 0.804194
\(960\) 0 0
\(961\) −30.9029 −0.996869
\(962\) 0 0
\(963\) 21.2818 0.685797
\(964\) 5.45201 0.175597
\(965\) 0 0
\(966\) −128.245 −4.12623
\(967\) −40.6180 −1.30619 −0.653094 0.757277i \(-0.726529\pi\)
−0.653094 + 0.757277i \(0.726529\pi\)
\(968\) −3.85318 −0.123846
\(969\) 4.82609 0.155036
\(970\) 0 0
\(971\) −40.2598 −1.29200 −0.646000 0.763337i \(-0.723559\pi\)
−0.646000 + 0.763337i \(0.723559\pi\)
\(972\) 28.2835 0.907194
\(973\) −104.103 −3.33739
\(974\) 18.0233 0.577504
\(975\) 0 0
\(976\) −2.09255 −0.0669810
\(977\) 21.7806 0.696823 0.348411 0.937342i \(-0.386721\pi\)
0.348411 + 0.937342i \(0.386721\pi\)
\(978\) −4.16591 −0.133211
\(979\) 27.6236 0.882853
\(980\) 0 0
\(981\) 13.1450 0.419689
\(982\) −1.31023 −0.0418111
\(983\) −37.9727 −1.21114 −0.605571 0.795792i \(-0.707055\pi\)
−0.605571 + 0.795792i \(0.707055\pi\)
\(984\) −11.1415 −0.355178
\(985\) 0 0
\(986\) −1.08732 −0.0346274
\(987\) −9.71970 −0.309381
\(988\) 0 0
\(989\) 27.8817 0.886587
\(990\) 0 0
\(991\) −4.92433 −0.156426 −0.0782132 0.996937i \(-0.524921\pi\)
−0.0782132 + 0.996937i \(0.524921\pi\)
\(992\) 0.311545 0.00989157
\(993\) −55.1597 −1.75044
\(994\) −74.3159 −2.35716
\(995\) 0 0
\(996\) −7.43231 −0.235502
\(997\) 33.0666 1.04723 0.523615 0.851955i \(-0.324583\pi\)
0.523615 + 0.851955i \(0.324583\pi\)
\(998\) −29.8490 −0.944855
\(999\) −125.511 −3.97100
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.cy.1.9 yes 9
5.4 even 2 8450.2.a.cu.1.1 9
13.12 even 2 8450.2.a.cv.1.9 yes 9
65.64 even 2 8450.2.a.cz.1.1 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8450.2.a.cu.1.1 9 5.4 even 2
8450.2.a.cv.1.9 yes 9 13.12 even 2
8450.2.a.cy.1.9 yes 9 1.1 even 1 trivial
8450.2.a.cz.1.1 yes 9 65.64 even 2