Properties

Label 8450.2.a.cy.1.6
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,9,0,9,0,0,-4,9,15,0,-1,0,0,-4,0,9,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 21x^{7} - 3x^{6} + 133x^{5} + 28x^{4} - 249x^{3} + 21x^{2} + 126x - 43 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.943657\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.943657 q^{3} +1.00000 q^{4} +0.943657 q^{6} +4.61826 q^{7} +1.00000 q^{8} -2.10951 q^{9} +2.88138 q^{11} +0.943657 q^{12} +4.61826 q^{14} +1.00000 q^{16} +3.15453 q^{17} -2.10951 q^{18} -0.0635301 q^{19} +4.35806 q^{21} +2.88138 q^{22} -1.56571 q^{23} +0.943657 q^{24} -4.82163 q^{27} +4.61826 q^{28} -8.04979 q^{29} -7.30744 q^{31} +1.00000 q^{32} +2.71904 q^{33} +3.15453 q^{34} -2.10951 q^{36} +7.82786 q^{37} -0.0635301 q^{38} +11.7352 q^{41} +4.35806 q^{42} +4.77211 q^{43} +2.88138 q^{44} -1.56571 q^{46} +5.61549 q^{47} +0.943657 q^{48} +14.3284 q^{49} +2.97680 q^{51} -1.26236 q^{53} -4.82163 q^{54} +4.61826 q^{56} -0.0599506 q^{57} -8.04979 q^{58} -10.3344 q^{59} +4.48215 q^{61} -7.30744 q^{62} -9.74228 q^{63} +1.00000 q^{64} +2.71904 q^{66} +14.9547 q^{67} +3.15453 q^{68} -1.47750 q^{69} +5.03136 q^{71} -2.10951 q^{72} +9.09682 q^{73} +7.82786 q^{74} -0.0635301 q^{76} +13.3070 q^{77} +9.16845 q^{79} +1.77857 q^{81} +11.7352 q^{82} +5.55586 q^{83} +4.35806 q^{84} +4.77211 q^{86} -7.59624 q^{87} +2.88138 q^{88} -6.75492 q^{89} -1.56571 q^{92} -6.89571 q^{93} +5.61549 q^{94} +0.943657 q^{96} +6.91035 q^{97} +14.3284 q^{98} -6.07831 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{2} + 9 q^{4} - 4 q^{7} + 9 q^{8} + 15 q^{9} - q^{11} - 4 q^{14} + 9 q^{16} + 2 q^{17} + 15 q^{18} + 10 q^{19} + 3 q^{21} - q^{22} - q^{23} - 9 q^{27} - 4 q^{28} - q^{29} - 4 q^{31} + 9 q^{32}+ \cdots - 62 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.943657 0.544821 0.272410 0.962181i \(-0.412179\pi\)
0.272410 + 0.962181i \(0.412179\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0.943657 0.385246
\(7\) 4.61826 1.74554 0.872770 0.488132i \(-0.162322\pi\)
0.872770 + 0.488132i \(0.162322\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.10951 −0.703170
\(10\) 0 0
\(11\) 2.88138 0.868770 0.434385 0.900727i \(-0.356966\pi\)
0.434385 + 0.900727i \(0.356966\pi\)
\(12\) 0.943657 0.272410
\(13\) 0 0
\(14\) 4.61826 1.23428
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.15453 0.765087 0.382543 0.923938i \(-0.375048\pi\)
0.382543 + 0.923938i \(0.375048\pi\)
\(18\) −2.10951 −0.497217
\(19\) −0.0635301 −0.0145748 −0.00728740 0.999973i \(-0.502320\pi\)
−0.00728740 + 0.999973i \(0.502320\pi\)
\(20\) 0 0
\(21\) 4.35806 0.951006
\(22\) 2.88138 0.614313
\(23\) −1.56571 −0.326474 −0.163237 0.986587i \(-0.552193\pi\)
−0.163237 + 0.986587i \(0.552193\pi\)
\(24\) 0.943657 0.192623
\(25\) 0 0
\(26\) 0 0
\(27\) −4.82163 −0.927923
\(28\) 4.61826 0.872770
\(29\) −8.04979 −1.49481 −0.747404 0.664370i \(-0.768700\pi\)
−0.747404 + 0.664370i \(0.768700\pi\)
\(30\) 0 0
\(31\) −7.30744 −1.31245 −0.656227 0.754563i \(-0.727849\pi\)
−0.656227 + 0.754563i \(0.727849\pi\)
\(32\) 1.00000 0.176777
\(33\) 2.71904 0.473324
\(34\) 3.15453 0.540998
\(35\) 0 0
\(36\) −2.10951 −0.351585
\(37\) 7.82786 1.28689 0.643446 0.765491i \(-0.277504\pi\)
0.643446 + 0.765491i \(0.277504\pi\)
\(38\) −0.0635301 −0.0103059
\(39\) 0 0
\(40\) 0 0
\(41\) 11.7352 1.83274 0.916368 0.400336i \(-0.131107\pi\)
0.916368 + 0.400336i \(0.131107\pi\)
\(42\) 4.35806 0.672463
\(43\) 4.77211 0.727740 0.363870 0.931450i \(-0.381455\pi\)
0.363870 + 0.931450i \(0.381455\pi\)
\(44\) 2.88138 0.434385
\(45\) 0 0
\(46\) −1.56571 −0.230852
\(47\) 5.61549 0.819104 0.409552 0.912287i \(-0.365685\pi\)
0.409552 + 0.912287i \(0.365685\pi\)
\(48\) 0.943657 0.136205
\(49\) 14.3284 2.04691
\(50\) 0 0
\(51\) 2.97680 0.416835
\(52\) 0 0
\(53\) −1.26236 −0.173399 −0.0866993 0.996235i \(-0.527632\pi\)
−0.0866993 + 0.996235i \(0.527632\pi\)
\(54\) −4.82163 −0.656140
\(55\) 0 0
\(56\) 4.61826 0.617141
\(57\) −0.0599506 −0.00794065
\(58\) −8.04979 −1.05699
\(59\) −10.3344 −1.34543 −0.672715 0.739902i \(-0.734872\pi\)
−0.672715 + 0.739902i \(0.734872\pi\)
\(60\) 0 0
\(61\) 4.48215 0.573880 0.286940 0.957949i \(-0.407362\pi\)
0.286940 + 0.957949i \(0.407362\pi\)
\(62\) −7.30744 −0.928045
\(63\) −9.74228 −1.22741
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 2.71904 0.334690
\(67\) 14.9547 1.82701 0.913506 0.406826i \(-0.133364\pi\)
0.913506 + 0.406826i \(0.133364\pi\)
\(68\) 3.15453 0.382543
\(69\) −1.47750 −0.177870
\(70\) 0 0
\(71\) 5.03136 0.597113 0.298556 0.954392i \(-0.403495\pi\)
0.298556 + 0.954392i \(0.403495\pi\)
\(72\) −2.10951 −0.248608
\(73\) 9.09682 1.06470 0.532351 0.846523i \(-0.321309\pi\)
0.532351 + 0.846523i \(0.321309\pi\)
\(74\) 7.82786 0.909971
\(75\) 0 0
\(76\) −0.0635301 −0.00728740
\(77\) 13.3070 1.51647
\(78\) 0 0
\(79\) 9.16845 1.03153 0.515765 0.856730i \(-0.327508\pi\)
0.515765 + 0.856730i \(0.327508\pi\)
\(80\) 0 0
\(81\) 1.77857 0.197619
\(82\) 11.7352 1.29594
\(83\) 5.55586 0.609835 0.304917 0.952379i \(-0.401371\pi\)
0.304917 + 0.952379i \(0.401371\pi\)
\(84\) 4.35806 0.475503
\(85\) 0 0
\(86\) 4.77211 0.514590
\(87\) −7.59624 −0.814402
\(88\) 2.88138 0.307157
\(89\) −6.75492 −0.716020 −0.358010 0.933718i \(-0.616545\pi\)
−0.358010 + 0.933718i \(0.616545\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.56571 −0.163237
\(93\) −6.89571 −0.715052
\(94\) 5.61549 0.579194
\(95\) 0 0
\(96\) 0.943657 0.0963116
\(97\) 6.91035 0.701640 0.350820 0.936443i \(-0.385903\pi\)
0.350820 + 0.936443i \(0.385903\pi\)
\(98\) 14.3284 1.44738
\(99\) −6.07831 −0.610893
\(100\) 0 0
\(101\) −11.5103 −1.14532 −0.572658 0.819795i \(-0.694088\pi\)
−0.572658 + 0.819795i \(0.694088\pi\)
\(102\) 2.97680 0.294747
\(103\) −5.83062 −0.574508 −0.287254 0.957854i \(-0.592742\pi\)
−0.287254 + 0.957854i \(0.592742\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −1.26236 −0.122611
\(107\) −13.5760 −1.31244 −0.656220 0.754569i \(-0.727846\pi\)
−0.656220 + 0.754569i \(0.727846\pi\)
\(108\) −4.82163 −0.463961
\(109\) −9.22925 −0.884002 −0.442001 0.897015i \(-0.645731\pi\)
−0.442001 + 0.897015i \(0.645731\pi\)
\(110\) 0 0
\(111\) 7.38682 0.701126
\(112\) 4.61826 0.436385
\(113\) 14.6232 1.37564 0.687819 0.725882i \(-0.258568\pi\)
0.687819 + 0.725882i \(0.258568\pi\)
\(114\) −0.0599506 −0.00561489
\(115\) 0 0
\(116\) −8.04979 −0.747404
\(117\) 0 0
\(118\) −10.3344 −0.951362
\(119\) 14.5685 1.33549
\(120\) 0 0
\(121\) −2.69763 −0.245239
\(122\) 4.48215 0.405794
\(123\) 11.0740 0.998513
\(124\) −7.30744 −0.656227
\(125\) 0 0
\(126\) −9.74228 −0.867911
\(127\) −7.21042 −0.639821 −0.319911 0.947448i \(-0.603653\pi\)
−0.319911 + 0.947448i \(0.603653\pi\)
\(128\) 1.00000 0.0883883
\(129\) 4.50323 0.396488
\(130\) 0 0
\(131\) −1.54747 −0.135203 −0.0676015 0.997712i \(-0.521535\pi\)
−0.0676015 + 0.997712i \(0.521535\pi\)
\(132\) 2.71904 0.236662
\(133\) −0.293399 −0.0254409
\(134\) 14.9547 1.29189
\(135\) 0 0
\(136\) 3.15453 0.270499
\(137\) −7.07504 −0.604462 −0.302231 0.953235i \(-0.597731\pi\)
−0.302231 + 0.953235i \(0.597731\pi\)
\(138\) −1.47750 −0.125773
\(139\) −13.6714 −1.15959 −0.579795 0.814762i \(-0.696868\pi\)
−0.579795 + 0.814762i \(0.696868\pi\)
\(140\) 0 0
\(141\) 5.29910 0.446265
\(142\) 5.03136 0.422223
\(143\) 0 0
\(144\) −2.10951 −0.175793
\(145\) 0 0
\(146\) 9.09682 0.752859
\(147\) 13.5211 1.11520
\(148\) 7.82786 0.643446
\(149\) −12.5436 −1.02761 −0.513805 0.857907i \(-0.671765\pi\)
−0.513805 + 0.857907i \(0.671765\pi\)
\(150\) 0 0
\(151\) −19.6644 −1.60026 −0.800132 0.599824i \(-0.795237\pi\)
−0.800132 + 0.599824i \(0.795237\pi\)
\(152\) −0.0635301 −0.00515297
\(153\) −6.65452 −0.537986
\(154\) 13.3070 1.07231
\(155\) 0 0
\(156\) 0 0
\(157\) 20.3758 1.62616 0.813081 0.582150i \(-0.197788\pi\)
0.813081 + 0.582150i \(0.197788\pi\)
\(158\) 9.16845 0.729403
\(159\) −1.19124 −0.0944711
\(160\) 0 0
\(161\) −7.23087 −0.569873
\(162\) 1.77857 0.139738
\(163\) 20.9608 1.64177 0.820887 0.571091i \(-0.193480\pi\)
0.820887 + 0.571091i \(0.193480\pi\)
\(164\) 11.7352 0.916368
\(165\) 0 0
\(166\) 5.55586 0.431218
\(167\) −21.7851 −1.68578 −0.842890 0.538086i \(-0.819147\pi\)
−0.842890 + 0.538086i \(0.819147\pi\)
\(168\) 4.35806 0.336231
\(169\) 0 0
\(170\) 0 0
\(171\) 0.134017 0.0102486
\(172\) 4.77211 0.363870
\(173\) −12.3298 −0.937415 −0.468708 0.883353i \(-0.655280\pi\)
−0.468708 + 0.883353i \(0.655280\pi\)
\(174\) −7.59624 −0.575869
\(175\) 0 0
\(176\) 2.88138 0.217192
\(177\) −9.75217 −0.733018
\(178\) −6.75492 −0.506303
\(179\) 19.9819 1.49352 0.746760 0.665094i \(-0.231608\pi\)
0.746760 + 0.665094i \(0.231608\pi\)
\(180\) 0 0
\(181\) 4.90650 0.364697 0.182349 0.983234i \(-0.441630\pi\)
0.182349 + 0.983234i \(0.441630\pi\)
\(182\) 0 0
\(183\) 4.22961 0.312662
\(184\) −1.56571 −0.115426
\(185\) 0 0
\(186\) −6.89571 −0.505618
\(187\) 9.08942 0.664684
\(188\) 5.61549 0.409552
\(189\) −22.2675 −1.61973
\(190\) 0 0
\(191\) −14.8526 −1.07470 −0.537349 0.843360i \(-0.680574\pi\)
−0.537349 + 0.843360i \(0.680574\pi\)
\(192\) 0.943657 0.0681026
\(193\) −26.4730 −1.90557 −0.952784 0.303649i \(-0.901795\pi\)
−0.952784 + 0.303649i \(0.901795\pi\)
\(194\) 6.91035 0.496135
\(195\) 0 0
\(196\) 14.3284 1.02345
\(197\) 4.97462 0.354427 0.177213 0.984172i \(-0.443292\pi\)
0.177213 + 0.984172i \(0.443292\pi\)
\(198\) −6.07831 −0.431967
\(199\) 14.6426 1.03799 0.518994 0.854778i \(-0.326307\pi\)
0.518994 + 0.854778i \(0.326307\pi\)
\(200\) 0 0
\(201\) 14.1121 0.995394
\(202\) −11.5103 −0.809860
\(203\) −37.1760 −2.60925
\(204\) 2.97680 0.208417
\(205\) 0 0
\(206\) −5.83062 −0.406239
\(207\) 3.30289 0.229567
\(208\) 0 0
\(209\) −0.183055 −0.0126621
\(210\) 0 0
\(211\) 6.86084 0.472319 0.236160 0.971714i \(-0.424111\pi\)
0.236160 + 0.971714i \(0.424111\pi\)
\(212\) −1.26236 −0.0866993
\(213\) 4.74788 0.325319
\(214\) −13.5760 −0.928035
\(215\) 0 0
\(216\) −4.82163 −0.328070
\(217\) −33.7477 −2.29094
\(218\) −9.22925 −0.625084
\(219\) 8.58428 0.580072
\(220\) 0 0
\(221\) 0 0
\(222\) 7.38682 0.495771
\(223\) −21.0169 −1.40739 −0.703697 0.710500i \(-0.748469\pi\)
−0.703697 + 0.710500i \(0.748469\pi\)
\(224\) 4.61826 0.308571
\(225\) 0 0
\(226\) 14.6232 0.972723
\(227\) 6.56269 0.435581 0.217791 0.975996i \(-0.430115\pi\)
0.217791 + 0.975996i \(0.430115\pi\)
\(228\) −0.0599506 −0.00397033
\(229\) 16.0898 1.06325 0.531623 0.846981i \(-0.321583\pi\)
0.531623 + 0.846981i \(0.321583\pi\)
\(230\) 0 0
\(231\) 12.5572 0.826205
\(232\) −8.04979 −0.528494
\(233\) −6.58375 −0.431316 −0.215658 0.976469i \(-0.569190\pi\)
−0.215658 + 0.976469i \(0.569190\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −10.3344 −0.672715
\(237\) 8.65187 0.561999
\(238\) 14.5685 0.944333
\(239\) −11.5368 −0.746256 −0.373128 0.927780i \(-0.621715\pi\)
−0.373128 + 0.927780i \(0.621715\pi\)
\(240\) 0 0
\(241\) −21.7563 −1.40144 −0.700722 0.713434i \(-0.747139\pi\)
−0.700722 + 0.713434i \(0.747139\pi\)
\(242\) −2.69763 −0.173410
\(243\) 16.1432 1.03559
\(244\) 4.48215 0.286940
\(245\) 0 0
\(246\) 11.0740 0.706055
\(247\) 0 0
\(248\) −7.30744 −0.464023
\(249\) 5.24283 0.332251
\(250\) 0 0
\(251\) 22.7936 1.43872 0.719361 0.694637i \(-0.244435\pi\)
0.719361 + 0.694637i \(0.244435\pi\)
\(252\) −9.74228 −0.613706
\(253\) −4.51142 −0.283630
\(254\) −7.21042 −0.452422
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 16.4152 1.02395 0.511976 0.859000i \(-0.328914\pi\)
0.511976 + 0.859000i \(0.328914\pi\)
\(258\) 4.50323 0.280359
\(259\) 36.1511 2.24632
\(260\) 0 0
\(261\) 16.9811 1.05110
\(262\) −1.54747 −0.0956029
\(263\) −6.81715 −0.420364 −0.210182 0.977662i \(-0.567406\pi\)
−0.210182 + 0.977662i \(0.567406\pi\)
\(264\) 2.71904 0.167345
\(265\) 0 0
\(266\) −0.293399 −0.0179894
\(267\) −6.37433 −0.390103
\(268\) 14.9547 0.913506
\(269\) 4.49766 0.274227 0.137114 0.990555i \(-0.456217\pi\)
0.137114 + 0.990555i \(0.456217\pi\)
\(270\) 0 0
\(271\) −15.7937 −0.959401 −0.479700 0.877432i \(-0.659255\pi\)
−0.479700 + 0.877432i \(0.659255\pi\)
\(272\) 3.15453 0.191272
\(273\) 0 0
\(274\) −7.07504 −0.427419
\(275\) 0 0
\(276\) −1.47750 −0.0889348
\(277\) −11.9344 −0.717068 −0.358534 0.933517i \(-0.616723\pi\)
−0.358534 + 0.933517i \(0.616723\pi\)
\(278\) −13.6714 −0.819955
\(279\) 15.4151 0.922879
\(280\) 0 0
\(281\) 24.2556 1.44697 0.723484 0.690341i \(-0.242540\pi\)
0.723484 + 0.690341i \(0.242540\pi\)
\(282\) 5.29910 0.315557
\(283\) 22.1023 1.31385 0.656924 0.753957i \(-0.271857\pi\)
0.656924 + 0.753957i \(0.271857\pi\)
\(284\) 5.03136 0.298556
\(285\) 0 0
\(286\) 0 0
\(287\) 54.1964 3.19912
\(288\) −2.10951 −0.124304
\(289\) −7.04892 −0.414643
\(290\) 0 0
\(291\) 6.52101 0.382268
\(292\) 9.09682 0.532351
\(293\) −10.5760 −0.617854 −0.308927 0.951086i \(-0.599970\pi\)
−0.308927 + 0.951086i \(0.599970\pi\)
\(294\) 13.5211 0.788564
\(295\) 0 0
\(296\) 7.82786 0.454985
\(297\) −13.8930 −0.806151
\(298\) −12.5436 −0.726630
\(299\) 0 0
\(300\) 0 0
\(301\) 22.0388 1.27030
\(302\) −19.6644 −1.13156
\(303\) −10.8618 −0.623992
\(304\) −0.0635301 −0.00364370
\(305\) 0 0
\(306\) −6.65452 −0.380414
\(307\) 4.38566 0.250303 0.125151 0.992138i \(-0.460058\pi\)
0.125151 + 0.992138i \(0.460058\pi\)
\(308\) 13.3070 0.758236
\(309\) −5.50211 −0.313004
\(310\) 0 0
\(311\) 35.0919 1.98988 0.994941 0.100462i \(-0.0320321\pi\)
0.994941 + 0.100462i \(0.0320321\pi\)
\(312\) 0 0
\(313\) 19.0745 1.07815 0.539076 0.842257i \(-0.318774\pi\)
0.539076 + 0.842257i \(0.318774\pi\)
\(314\) 20.3758 1.14987
\(315\) 0 0
\(316\) 9.16845 0.515765
\(317\) 6.85928 0.385256 0.192628 0.981272i \(-0.438299\pi\)
0.192628 + 0.981272i \(0.438299\pi\)
\(318\) −1.19124 −0.0668012
\(319\) −23.1945 −1.29864
\(320\) 0 0
\(321\) −12.8111 −0.715045
\(322\) −7.23087 −0.402961
\(323\) −0.200408 −0.0111510
\(324\) 1.77857 0.0988095
\(325\) 0 0
\(326\) 20.9608 1.16091
\(327\) −8.70925 −0.481623
\(328\) 11.7352 0.647970
\(329\) 25.9338 1.42978
\(330\) 0 0
\(331\) 6.83284 0.375567 0.187783 0.982210i \(-0.439870\pi\)
0.187783 + 0.982210i \(0.439870\pi\)
\(332\) 5.55586 0.304917
\(333\) −16.5130 −0.904905
\(334\) −21.7851 −1.19203
\(335\) 0 0
\(336\) 4.35806 0.237752
\(337\) 15.1320 0.824293 0.412146 0.911118i \(-0.364779\pi\)
0.412146 + 0.911118i \(0.364779\pi\)
\(338\) 0 0
\(339\) 13.7993 0.749476
\(340\) 0 0
\(341\) −21.0555 −1.14022
\(342\) 0.134017 0.00724683
\(343\) 33.8443 1.82742
\(344\) 4.77211 0.257295
\(345\) 0 0
\(346\) −12.3298 −0.662853
\(347\) 8.17548 0.438883 0.219441 0.975626i \(-0.429576\pi\)
0.219441 + 0.975626i \(0.429576\pi\)
\(348\) −7.59624 −0.407201
\(349\) 22.5745 1.20839 0.604193 0.796838i \(-0.293496\pi\)
0.604193 + 0.796838i \(0.293496\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.88138 0.153578
\(353\) 8.26337 0.439815 0.219907 0.975521i \(-0.429424\pi\)
0.219907 + 0.975521i \(0.429424\pi\)
\(354\) −9.75217 −0.518322
\(355\) 0 0
\(356\) −6.75492 −0.358010
\(357\) 13.7476 0.727602
\(358\) 19.9819 1.05608
\(359\) 0.714798 0.0377256 0.0188628 0.999822i \(-0.493995\pi\)
0.0188628 + 0.999822i \(0.493995\pi\)
\(360\) 0 0
\(361\) −18.9960 −0.999788
\(362\) 4.90650 0.257880
\(363\) −2.54564 −0.133611
\(364\) 0 0
\(365\) 0 0
\(366\) 4.22961 0.221085
\(367\) −2.67301 −0.139530 −0.0697649 0.997563i \(-0.522225\pi\)
−0.0697649 + 0.997563i \(0.522225\pi\)
\(368\) −1.56571 −0.0816184
\(369\) −24.7556 −1.28873
\(370\) 0 0
\(371\) −5.82991 −0.302674
\(372\) −6.89571 −0.357526
\(373\) −38.5507 −1.99608 −0.998039 0.0625886i \(-0.980064\pi\)
−0.998039 + 0.0625886i \(0.980064\pi\)
\(374\) 9.08942 0.470003
\(375\) 0 0
\(376\) 5.61549 0.289597
\(377\) 0 0
\(378\) −22.2675 −1.14532
\(379\) −11.8965 −0.611082 −0.305541 0.952179i \(-0.598837\pi\)
−0.305541 + 0.952179i \(0.598837\pi\)
\(380\) 0 0
\(381\) −6.80416 −0.348588
\(382\) −14.8526 −0.759926
\(383\) −8.52308 −0.435509 −0.217755 0.976004i \(-0.569873\pi\)
−0.217755 + 0.976004i \(0.569873\pi\)
\(384\) 0.943657 0.0481558
\(385\) 0 0
\(386\) −26.4730 −1.34744
\(387\) −10.0668 −0.511725
\(388\) 6.91035 0.350820
\(389\) 26.5619 1.34674 0.673370 0.739306i \(-0.264846\pi\)
0.673370 + 0.739306i \(0.264846\pi\)
\(390\) 0 0
\(391\) −4.93909 −0.249781
\(392\) 14.3284 0.723691
\(393\) −1.46028 −0.0736614
\(394\) 4.97462 0.250618
\(395\) 0 0
\(396\) −6.07831 −0.305447
\(397\) −19.1267 −0.959940 −0.479970 0.877285i \(-0.659353\pi\)
−0.479970 + 0.877285i \(0.659353\pi\)
\(398\) 14.6426 0.733969
\(399\) −0.276868 −0.0138607
\(400\) 0 0
\(401\) 20.4347 1.02046 0.510230 0.860038i \(-0.329560\pi\)
0.510230 + 0.860038i \(0.329560\pi\)
\(402\) 14.1121 0.703850
\(403\) 0 0
\(404\) −11.5103 −0.572658
\(405\) 0 0
\(406\) −37.1760 −1.84502
\(407\) 22.5551 1.11801
\(408\) 2.97680 0.147373
\(409\) −6.39485 −0.316205 −0.158102 0.987423i \(-0.550538\pi\)
−0.158102 + 0.987423i \(0.550538\pi\)
\(410\) 0 0
\(411\) −6.67641 −0.329323
\(412\) −5.83062 −0.287254
\(413\) −47.7272 −2.34850
\(414\) 3.30289 0.162328
\(415\) 0 0
\(416\) 0 0
\(417\) −12.9011 −0.631769
\(418\) −0.183055 −0.00895349
\(419\) −7.16820 −0.350190 −0.175095 0.984552i \(-0.556023\pi\)
−0.175095 + 0.984552i \(0.556023\pi\)
\(420\) 0 0
\(421\) −13.2519 −0.645860 −0.322930 0.946423i \(-0.604668\pi\)
−0.322930 + 0.946423i \(0.604668\pi\)
\(422\) 6.86084 0.333980
\(423\) −11.8459 −0.575970
\(424\) −1.26236 −0.0613056
\(425\) 0 0
\(426\) 4.74788 0.230036
\(427\) 20.6997 1.00173
\(428\) −13.5760 −0.656220
\(429\) 0 0
\(430\) 0 0
\(431\) −15.3450 −0.739142 −0.369571 0.929202i \(-0.620495\pi\)
−0.369571 + 0.929202i \(0.620495\pi\)
\(432\) −4.82163 −0.231981
\(433\) −37.2884 −1.79197 −0.895983 0.444088i \(-0.853528\pi\)
−0.895983 + 0.444088i \(0.853528\pi\)
\(434\) −33.7477 −1.61994
\(435\) 0 0
\(436\) −9.22925 −0.442001
\(437\) 0.0994698 0.00475829
\(438\) 8.58428 0.410173
\(439\) 7.54167 0.359944 0.179972 0.983672i \(-0.442399\pi\)
0.179972 + 0.983672i \(0.442399\pi\)
\(440\) 0 0
\(441\) −30.2258 −1.43933
\(442\) 0 0
\(443\) −14.2813 −0.678526 −0.339263 0.940692i \(-0.610178\pi\)
−0.339263 + 0.940692i \(0.610178\pi\)
\(444\) 7.38682 0.350563
\(445\) 0 0
\(446\) −21.0169 −0.995178
\(447\) −11.8368 −0.559864
\(448\) 4.61826 0.218192
\(449\) −40.5951 −1.91580 −0.957900 0.287103i \(-0.907308\pi\)
−0.957900 + 0.287103i \(0.907308\pi\)
\(450\) 0 0
\(451\) 33.8137 1.59223
\(452\) 14.6232 0.687819
\(453\) −18.5564 −0.871857
\(454\) 6.56269 0.308002
\(455\) 0 0
\(456\) −0.0599506 −0.00280745
\(457\) −6.07253 −0.284061 −0.142031 0.989862i \(-0.545363\pi\)
−0.142031 + 0.989862i \(0.545363\pi\)
\(458\) 16.0898 0.751828
\(459\) −15.2100 −0.709941
\(460\) 0 0
\(461\) −24.0995 −1.12243 −0.561214 0.827671i \(-0.689665\pi\)
−0.561214 + 0.827671i \(0.689665\pi\)
\(462\) 12.5572 0.584216
\(463\) −9.72355 −0.451892 −0.225946 0.974140i \(-0.572547\pi\)
−0.225946 + 0.974140i \(0.572547\pi\)
\(464\) −8.04979 −0.373702
\(465\) 0 0
\(466\) −6.58375 −0.304986
\(467\) 2.62475 0.121459 0.0607295 0.998154i \(-0.480657\pi\)
0.0607295 + 0.998154i \(0.480657\pi\)
\(468\) 0 0
\(469\) 69.0649 3.18912
\(470\) 0 0
\(471\) 19.2277 0.885967
\(472\) −10.3344 −0.475681
\(473\) 13.7503 0.632238
\(474\) 8.65187 0.397394
\(475\) 0 0
\(476\) 14.5685 0.667744
\(477\) 2.66296 0.121929
\(478\) −11.5368 −0.527682
\(479\) 16.7841 0.766886 0.383443 0.923565i \(-0.374738\pi\)
0.383443 + 0.923565i \(0.374738\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −21.7563 −0.990971
\(483\) −6.82346 −0.310478
\(484\) −2.69763 −0.122619
\(485\) 0 0
\(486\) 16.1432 0.732272
\(487\) −31.1107 −1.40976 −0.704881 0.709325i \(-0.749000\pi\)
−0.704881 + 0.709325i \(0.749000\pi\)
\(488\) 4.48215 0.202897
\(489\) 19.7798 0.894472
\(490\) 0 0
\(491\) −18.8663 −0.851425 −0.425712 0.904858i \(-0.639976\pi\)
−0.425712 + 0.904858i \(0.639976\pi\)
\(492\) 11.0740 0.499257
\(493\) −25.3933 −1.14366
\(494\) 0 0
\(495\) 0 0
\(496\) −7.30744 −0.328114
\(497\) 23.2362 1.04228
\(498\) 5.24283 0.234937
\(499\) 38.1163 1.70632 0.853159 0.521650i \(-0.174683\pi\)
0.853159 + 0.521650i \(0.174683\pi\)
\(500\) 0 0
\(501\) −20.5576 −0.918448
\(502\) 22.7936 1.01733
\(503\) 4.47130 0.199365 0.0996827 0.995019i \(-0.468217\pi\)
0.0996827 + 0.995019i \(0.468217\pi\)
\(504\) −9.74228 −0.433956
\(505\) 0 0
\(506\) −4.51142 −0.200557
\(507\) 0 0
\(508\) −7.21042 −0.319911
\(509\) −28.7307 −1.27347 −0.636734 0.771084i \(-0.719715\pi\)
−0.636734 + 0.771084i \(0.719715\pi\)
\(510\) 0 0
\(511\) 42.0115 1.85848
\(512\) 1.00000 0.0441942
\(513\) 0.306318 0.0135243
\(514\) 16.4152 0.724043
\(515\) 0 0
\(516\) 4.50323 0.198244
\(517\) 16.1804 0.711613
\(518\) 36.1511 1.58839
\(519\) −11.6351 −0.510723
\(520\) 0 0
\(521\) −41.4647 −1.81660 −0.908301 0.418318i \(-0.862620\pi\)
−0.908301 + 0.418318i \(0.862620\pi\)
\(522\) 16.9811 0.743243
\(523\) −6.73304 −0.294415 −0.147208 0.989106i \(-0.547029\pi\)
−0.147208 + 0.989106i \(0.547029\pi\)
\(524\) −1.54747 −0.0676015
\(525\) 0 0
\(526\) −6.81715 −0.297242
\(527\) −23.0515 −1.00414
\(528\) 2.71904 0.118331
\(529\) −20.5485 −0.893415
\(530\) 0 0
\(531\) 21.8006 0.946066
\(532\) −0.293399 −0.0127204
\(533\) 0 0
\(534\) −6.37433 −0.275844
\(535\) 0 0
\(536\) 14.9547 0.645946
\(537\) 18.8561 0.813701
\(538\) 4.49766 0.193908
\(539\) 41.2855 1.77829
\(540\) 0 0
\(541\) 34.4004 1.47899 0.739494 0.673163i \(-0.235065\pi\)
0.739494 + 0.673163i \(0.235065\pi\)
\(542\) −15.7937 −0.678399
\(543\) 4.63006 0.198695
\(544\) 3.15453 0.135249
\(545\) 0 0
\(546\) 0 0
\(547\) 8.24645 0.352593 0.176296 0.984337i \(-0.443588\pi\)
0.176296 + 0.984337i \(0.443588\pi\)
\(548\) −7.07504 −0.302231
\(549\) −9.45514 −0.403535
\(550\) 0 0
\(551\) 0.511404 0.0217865
\(552\) −1.47750 −0.0628864
\(553\) 42.3423 1.80058
\(554\) −11.9344 −0.507043
\(555\) 0 0
\(556\) −13.6714 −0.579795
\(557\) 31.3070 1.32652 0.663259 0.748390i \(-0.269173\pi\)
0.663259 + 0.748390i \(0.269173\pi\)
\(558\) 15.4151 0.652574
\(559\) 0 0
\(560\) 0 0
\(561\) 8.57729 0.362134
\(562\) 24.2556 1.02316
\(563\) −20.8507 −0.878752 −0.439376 0.898303i \(-0.644800\pi\)
−0.439376 + 0.898303i \(0.644800\pi\)
\(564\) 5.29910 0.223132
\(565\) 0 0
\(566\) 22.1023 0.929030
\(567\) 8.21391 0.344952
\(568\) 5.03136 0.211111
\(569\) 4.15326 0.174114 0.0870568 0.996203i \(-0.472254\pi\)
0.0870568 + 0.996203i \(0.472254\pi\)
\(570\) 0 0
\(571\) 37.3681 1.56381 0.781904 0.623399i \(-0.214249\pi\)
0.781904 + 0.623399i \(0.214249\pi\)
\(572\) 0 0
\(573\) −14.0158 −0.585518
\(574\) 54.1964 2.26212
\(575\) 0 0
\(576\) −2.10951 −0.0878963
\(577\) −9.10013 −0.378843 −0.189422 0.981896i \(-0.560661\pi\)
−0.189422 + 0.981896i \(0.560661\pi\)
\(578\) −7.04892 −0.293197
\(579\) −24.9814 −1.03819
\(580\) 0 0
\(581\) 25.6584 1.06449
\(582\) 6.52101 0.270304
\(583\) −3.63734 −0.150643
\(584\) 9.09682 0.376429
\(585\) 0 0
\(586\) −10.5760 −0.436889
\(587\) 17.7062 0.730814 0.365407 0.930848i \(-0.380930\pi\)
0.365407 + 0.930848i \(0.380930\pi\)
\(588\) 13.5211 0.557599
\(589\) 0.464242 0.0191288
\(590\) 0 0
\(591\) 4.69433 0.193099
\(592\) 7.82786 0.321723
\(593\) −12.3192 −0.505888 −0.252944 0.967481i \(-0.581399\pi\)
−0.252944 + 0.967481i \(0.581399\pi\)
\(594\) −13.8930 −0.570035
\(595\) 0 0
\(596\) −12.5436 −0.513805
\(597\) 13.8176 0.565518
\(598\) 0 0
\(599\) 25.0676 1.02423 0.512116 0.858916i \(-0.328862\pi\)
0.512116 + 0.858916i \(0.328862\pi\)
\(600\) 0 0
\(601\) −21.7771 −0.888307 −0.444154 0.895951i \(-0.646496\pi\)
−0.444154 + 0.895951i \(0.646496\pi\)
\(602\) 22.0388 0.898236
\(603\) −31.5472 −1.28470
\(604\) −19.6644 −0.800132
\(605\) 0 0
\(606\) −10.8618 −0.441229
\(607\) −16.0040 −0.649582 −0.324791 0.945786i \(-0.605294\pi\)
−0.324791 + 0.945786i \(0.605294\pi\)
\(608\) −0.0635301 −0.00257649
\(609\) −35.0814 −1.42157
\(610\) 0 0
\(611\) 0 0
\(612\) −6.65452 −0.268993
\(613\) −22.9014 −0.924980 −0.462490 0.886625i \(-0.653044\pi\)
−0.462490 + 0.886625i \(0.653044\pi\)
\(614\) 4.38566 0.176991
\(615\) 0 0
\(616\) 13.3070 0.536154
\(617\) 38.6712 1.55684 0.778422 0.627741i \(-0.216020\pi\)
0.778422 + 0.627741i \(0.216020\pi\)
\(618\) −5.50211 −0.221327
\(619\) −5.21721 −0.209698 −0.104849 0.994488i \(-0.533436\pi\)
−0.104849 + 0.994488i \(0.533436\pi\)
\(620\) 0 0
\(621\) 7.54928 0.302942
\(622\) 35.0919 1.40706
\(623\) −31.1960 −1.24984
\(624\) 0 0
\(625\) 0 0
\(626\) 19.0745 0.762369
\(627\) −0.172741 −0.00689860
\(628\) 20.3758 0.813081
\(629\) 24.6933 0.984584
\(630\) 0 0
\(631\) 27.2996 1.08678 0.543389 0.839481i \(-0.317141\pi\)
0.543389 + 0.839481i \(0.317141\pi\)
\(632\) 9.16845 0.364701
\(633\) 6.47428 0.257329
\(634\) 6.85928 0.272417
\(635\) 0 0
\(636\) −1.19124 −0.0472356
\(637\) 0 0
\(638\) −23.1945 −0.918280
\(639\) −10.6137 −0.419872
\(640\) 0 0
\(641\) 0.580201 0.0229166 0.0114583 0.999934i \(-0.496353\pi\)
0.0114583 + 0.999934i \(0.496353\pi\)
\(642\) −12.8111 −0.505613
\(643\) −26.8715 −1.05971 −0.529855 0.848088i \(-0.677754\pi\)
−0.529855 + 0.848088i \(0.677754\pi\)
\(644\) −7.23087 −0.284936
\(645\) 0 0
\(646\) −0.200408 −0.00788494
\(647\) 5.20846 0.204766 0.102383 0.994745i \(-0.467353\pi\)
0.102383 + 0.994745i \(0.467353\pi\)
\(648\) 1.77857 0.0698689
\(649\) −29.7775 −1.16887
\(650\) 0 0
\(651\) −31.8462 −1.24815
\(652\) 20.9608 0.820887
\(653\) −30.2356 −1.18321 −0.591604 0.806228i \(-0.701505\pi\)
−0.591604 + 0.806228i \(0.701505\pi\)
\(654\) −8.70925 −0.340559
\(655\) 0 0
\(656\) 11.7352 0.458184
\(657\) −19.1899 −0.748667
\(658\) 25.9338 1.01101
\(659\) −32.6906 −1.27345 −0.636723 0.771092i \(-0.719711\pi\)
−0.636723 + 0.771092i \(0.719711\pi\)
\(660\) 0 0
\(661\) −22.2015 −0.863538 −0.431769 0.901984i \(-0.642111\pi\)
−0.431769 + 0.901984i \(0.642111\pi\)
\(662\) 6.83284 0.265566
\(663\) 0 0
\(664\) 5.55586 0.215609
\(665\) 0 0
\(666\) −16.5130 −0.639864
\(667\) 12.6037 0.488015
\(668\) −21.7851 −0.842890
\(669\) −19.8327 −0.766778
\(670\) 0 0
\(671\) 12.9148 0.498570
\(672\) 4.35806 0.168116
\(673\) 11.5383 0.444769 0.222384 0.974959i \(-0.428616\pi\)
0.222384 + 0.974959i \(0.428616\pi\)
\(674\) 15.1320 0.582863
\(675\) 0 0
\(676\) 0 0
\(677\) −33.4315 −1.28488 −0.642439 0.766337i \(-0.722077\pi\)
−0.642439 + 0.766337i \(0.722077\pi\)
\(678\) 13.7993 0.529960
\(679\) 31.9138 1.22474
\(680\) 0 0
\(681\) 6.19293 0.237314
\(682\) −21.0555 −0.806258
\(683\) −6.25127 −0.239198 −0.119599 0.992822i \(-0.538161\pi\)
−0.119599 + 0.992822i \(0.538161\pi\)
\(684\) 0.134017 0.00512428
\(685\) 0 0
\(686\) 33.8443 1.29218
\(687\) 15.1833 0.579278
\(688\) 4.77211 0.181935
\(689\) 0 0
\(690\) 0 0
\(691\) 35.3665 1.34540 0.672702 0.739914i \(-0.265134\pi\)
0.672702 + 0.739914i \(0.265134\pi\)
\(692\) −12.3298 −0.468708
\(693\) −28.0712 −1.06634
\(694\) 8.17548 0.310337
\(695\) 0 0
\(696\) −7.59624 −0.287935
\(697\) 37.0192 1.40220
\(698\) 22.5745 0.854458
\(699\) −6.21280 −0.234990
\(700\) 0 0
\(701\) −10.6110 −0.400773 −0.200387 0.979717i \(-0.564220\pi\)
−0.200387 + 0.979717i \(0.564220\pi\)
\(702\) 0 0
\(703\) −0.497305 −0.0187562
\(704\) 2.88138 0.108596
\(705\) 0 0
\(706\) 8.26337 0.310996
\(707\) −53.1575 −1.99919
\(708\) −9.75217 −0.366509
\(709\) −1.18072 −0.0443428 −0.0221714 0.999754i \(-0.507058\pi\)
−0.0221714 + 0.999754i \(0.507058\pi\)
\(710\) 0 0
\(711\) −19.3409 −0.725342
\(712\) −6.75492 −0.253151
\(713\) 11.4413 0.428482
\(714\) 13.7476 0.514492
\(715\) 0 0
\(716\) 19.9819 0.746760
\(717\) −10.8868 −0.406576
\(718\) 0.714798 0.0266760
\(719\) 27.4219 1.02266 0.511332 0.859383i \(-0.329152\pi\)
0.511332 + 0.859383i \(0.329152\pi\)
\(720\) 0 0
\(721\) −26.9273 −1.00283
\(722\) −18.9960 −0.706957
\(723\) −20.5305 −0.763536
\(724\) 4.90650 0.182349
\(725\) 0 0
\(726\) −2.54564 −0.0944774
\(727\) −33.3438 −1.23665 −0.618326 0.785922i \(-0.712189\pi\)
−0.618326 + 0.785922i \(0.712189\pi\)
\(728\) 0 0
\(729\) 9.89797 0.366592
\(730\) 0 0
\(731\) 15.0538 0.556784
\(732\) 4.22961 0.156331
\(733\) 0.370479 0.0136840 0.00684198 0.999977i \(-0.497822\pi\)
0.00684198 + 0.999977i \(0.497822\pi\)
\(734\) −2.67301 −0.0986624
\(735\) 0 0
\(736\) −1.56571 −0.0577129
\(737\) 43.0903 1.58725
\(738\) −24.7556 −0.911267
\(739\) −25.8069 −0.949323 −0.474661 0.880168i \(-0.657429\pi\)
−0.474661 + 0.880168i \(0.657429\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −5.82991 −0.214023
\(743\) −18.3669 −0.673815 −0.336907 0.941538i \(-0.609381\pi\)
−0.336907 + 0.941538i \(0.609381\pi\)
\(744\) −6.89571 −0.252809
\(745\) 0 0
\(746\) −38.5507 −1.41144
\(747\) −11.7201 −0.428818
\(748\) 9.08942 0.332342
\(749\) −62.6975 −2.29092
\(750\) 0 0
\(751\) 37.1618 1.35605 0.678026 0.735038i \(-0.262836\pi\)
0.678026 + 0.735038i \(0.262836\pi\)
\(752\) 5.61549 0.204776
\(753\) 21.5094 0.783845
\(754\) 0 0
\(755\) 0 0
\(756\) −22.2675 −0.809863
\(757\) 21.7326 0.789886 0.394943 0.918706i \(-0.370764\pi\)
0.394943 + 0.918706i \(0.370764\pi\)
\(758\) −11.8965 −0.432100
\(759\) −4.25723 −0.154528
\(760\) 0 0
\(761\) −16.5794 −0.601004 −0.300502 0.953781i \(-0.597154\pi\)
−0.300502 + 0.953781i \(0.597154\pi\)
\(762\) −6.80416 −0.246489
\(763\) −42.6231 −1.54306
\(764\) −14.8526 −0.537349
\(765\) 0 0
\(766\) −8.52308 −0.307951
\(767\) 0 0
\(768\) 0.943657 0.0340513
\(769\) −6.12291 −0.220798 −0.110399 0.993887i \(-0.535213\pi\)
−0.110399 + 0.993887i \(0.535213\pi\)
\(770\) 0 0
\(771\) 15.4903 0.557870
\(772\) −26.4730 −0.952784
\(773\) 50.2815 1.80850 0.904250 0.427004i \(-0.140431\pi\)
0.904250 + 0.427004i \(0.140431\pi\)
\(774\) −10.0668 −0.361844
\(775\) 0 0
\(776\) 6.91035 0.248067
\(777\) 34.1143 1.22384
\(778\) 26.5619 0.952289
\(779\) −0.745541 −0.0267118
\(780\) 0 0
\(781\) 14.4973 0.518754
\(782\) −4.93909 −0.176622
\(783\) 38.8131 1.38707
\(784\) 14.3284 0.511727
\(785\) 0 0
\(786\) −1.46028 −0.0520864
\(787\) −6.12082 −0.218184 −0.109092 0.994032i \(-0.534794\pi\)
−0.109092 + 0.994032i \(0.534794\pi\)
\(788\) 4.97462 0.177213
\(789\) −6.43306 −0.229023
\(790\) 0 0
\(791\) 67.5340 2.40123
\(792\) −6.07831 −0.215983
\(793\) 0 0
\(794\) −19.1267 −0.678780
\(795\) 0 0
\(796\) 14.6426 0.518994
\(797\) −33.3362 −1.18083 −0.590414 0.807100i \(-0.701036\pi\)
−0.590414 + 0.807100i \(0.701036\pi\)
\(798\) −0.276868 −0.00980101
\(799\) 17.7143 0.626685
\(800\) 0 0
\(801\) 14.2496 0.503484
\(802\) 20.4347 0.721574
\(803\) 26.2114 0.924982
\(804\) 14.1121 0.497697
\(805\) 0 0
\(806\) 0 0
\(807\) 4.24425 0.149405
\(808\) −11.5103 −0.404930
\(809\) −20.2237 −0.711029 −0.355514 0.934671i \(-0.615694\pi\)
−0.355514 + 0.934671i \(0.615694\pi\)
\(810\) 0 0
\(811\) −35.9625 −1.26281 −0.631407 0.775452i \(-0.717522\pi\)
−0.631407 + 0.775452i \(0.717522\pi\)
\(812\) −37.1760 −1.30462
\(813\) −14.9039 −0.522701
\(814\) 22.5551 0.790555
\(815\) 0 0
\(816\) 2.97680 0.104209
\(817\) −0.303172 −0.0106067
\(818\) −6.39485 −0.223591
\(819\) 0 0
\(820\) 0 0
\(821\) −19.5926 −0.683786 −0.341893 0.939739i \(-0.611068\pi\)
−0.341893 + 0.939739i \(0.611068\pi\)
\(822\) −6.67641 −0.232867
\(823\) 16.7688 0.584524 0.292262 0.956338i \(-0.405592\pi\)
0.292262 + 0.956338i \(0.405592\pi\)
\(824\) −5.83062 −0.203119
\(825\) 0 0
\(826\) −47.7272 −1.66064
\(827\) −8.40977 −0.292436 −0.146218 0.989252i \(-0.546710\pi\)
−0.146218 + 0.989252i \(0.546710\pi\)
\(828\) 3.30289 0.114783
\(829\) 7.31026 0.253896 0.126948 0.991909i \(-0.459482\pi\)
0.126948 + 0.991909i \(0.459482\pi\)
\(830\) 0 0
\(831\) −11.2620 −0.390673
\(832\) 0 0
\(833\) 45.1993 1.56606
\(834\) −12.9011 −0.446728
\(835\) 0 0
\(836\) −0.183055 −0.00633107
\(837\) 35.2337 1.21786
\(838\) −7.16820 −0.247621
\(839\) −6.10748 −0.210853 −0.105427 0.994427i \(-0.533621\pi\)
−0.105427 + 0.994427i \(0.533621\pi\)
\(840\) 0 0
\(841\) 35.7991 1.23445
\(842\) −13.2519 −0.456692
\(843\) 22.8890 0.788338
\(844\) 6.86084 0.236160
\(845\) 0 0
\(846\) −11.8459 −0.407272
\(847\) −12.4584 −0.428074
\(848\) −1.26236 −0.0433496
\(849\) 20.8570 0.715811
\(850\) 0 0
\(851\) −12.2562 −0.420137
\(852\) 4.74788 0.162660
\(853\) 32.4711 1.11179 0.555894 0.831253i \(-0.312376\pi\)
0.555894 + 0.831253i \(0.312376\pi\)
\(854\) 20.6997 0.708330
\(855\) 0 0
\(856\) −13.5760 −0.464018
\(857\) −38.1166 −1.30204 −0.651020 0.759061i \(-0.725659\pi\)
−0.651020 + 0.759061i \(0.725659\pi\)
\(858\) 0 0
\(859\) 8.61622 0.293982 0.146991 0.989138i \(-0.453041\pi\)
0.146991 + 0.989138i \(0.453041\pi\)
\(860\) 0 0
\(861\) 51.1429 1.74294
\(862\) −15.3450 −0.522652
\(863\) −0.0887238 −0.00302019 −0.00151010 0.999999i \(-0.500481\pi\)
−0.00151010 + 0.999999i \(0.500481\pi\)
\(864\) −4.82163 −0.164035
\(865\) 0 0
\(866\) −37.2884 −1.26711
\(867\) −6.65177 −0.225906
\(868\) −33.7477 −1.14547
\(869\) 26.4178 0.896163
\(870\) 0 0
\(871\) 0 0
\(872\) −9.22925 −0.312542
\(873\) −14.5775 −0.493373
\(874\) 0.0994698 0.00336462
\(875\) 0 0
\(876\) 8.58428 0.290036
\(877\) −37.9504 −1.28149 −0.640747 0.767752i \(-0.721375\pi\)
−0.640747 + 0.767752i \(0.721375\pi\)
\(878\) 7.54167 0.254519
\(879\) −9.98008 −0.336620
\(880\) 0 0
\(881\) −3.49722 −0.117824 −0.0589121 0.998263i \(-0.518763\pi\)
−0.0589121 + 0.998263i \(0.518763\pi\)
\(882\) −30.2258 −1.01776
\(883\) 4.73473 0.159336 0.0796682 0.996821i \(-0.474614\pi\)
0.0796682 + 0.996821i \(0.474614\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −14.2813 −0.479790
\(887\) −51.7330 −1.73702 −0.868512 0.495668i \(-0.834923\pi\)
−0.868512 + 0.495668i \(0.834923\pi\)
\(888\) 7.38682 0.247885
\(889\) −33.2996 −1.11683
\(890\) 0 0
\(891\) 5.12474 0.171685
\(892\) −21.0169 −0.703697
\(893\) −0.356753 −0.0119383
\(894\) −11.8368 −0.395883
\(895\) 0 0
\(896\) 4.61826 0.154285
\(897\) 0 0
\(898\) −40.5951 −1.35467
\(899\) 58.8233 1.96187
\(900\) 0 0
\(901\) −3.98216 −0.132665
\(902\) 33.8137 1.12587
\(903\) 20.7971 0.692085
\(904\) 14.6232 0.486362
\(905\) 0 0
\(906\) −18.5564 −0.616496
\(907\) −17.2248 −0.571941 −0.285971 0.958238i \(-0.592316\pi\)
−0.285971 + 0.958238i \(0.592316\pi\)
\(908\) 6.56269 0.217791
\(909\) 24.2811 0.805352
\(910\) 0 0
\(911\) 9.77031 0.323705 0.161852 0.986815i \(-0.448253\pi\)
0.161852 + 0.986815i \(0.448253\pi\)
\(912\) −0.0599506 −0.00198516
\(913\) 16.0086 0.529806
\(914\) −6.07253 −0.200862
\(915\) 0 0
\(916\) 16.0898 0.531623
\(917\) −7.14662 −0.236002
\(918\) −15.2100 −0.502004
\(919\) 22.0711 0.728057 0.364028 0.931388i \(-0.381401\pi\)
0.364028 + 0.931388i \(0.381401\pi\)
\(920\) 0 0
\(921\) 4.13856 0.136370
\(922\) −24.0995 −0.793676
\(923\) 0 0
\(924\) 12.5572 0.413103
\(925\) 0 0
\(926\) −9.72355 −0.319536
\(927\) 12.2998 0.403977
\(928\) −8.04979 −0.264247
\(929\) 54.9763 1.80372 0.901858 0.432033i \(-0.142204\pi\)
0.901858 + 0.432033i \(0.142204\pi\)
\(930\) 0 0
\(931\) −0.910282 −0.0298333
\(932\) −6.58375 −0.215658
\(933\) 33.1148 1.08413
\(934\) 2.62475 0.0858845
\(935\) 0 0
\(936\) 0 0
\(937\) 7.46577 0.243896 0.121948 0.992536i \(-0.461086\pi\)
0.121948 + 0.992536i \(0.461086\pi\)
\(938\) 69.0649 2.25505
\(939\) 17.9998 0.587400
\(940\) 0 0
\(941\) 22.2620 0.725721 0.362860 0.931844i \(-0.381800\pi\)
0.362860 + 0.931844i \(0.381800\pi\)
\(942\) 19.2277 0.626473
\(943\) −18.3740 −0.598340
\(944\) −10.3344 −0.336357
\(945\) 0 0
\(946\) 13.7503 0.447060
\(947\) −37.0892 −1.20524 −0.602619 0.798029i \(-0.705876\pi\)
−0.602619 + 0.798029i \(0.705876\pi\)
\(948\) 8.65187 0.281000
\(949\) 0 0
\(950\) 0 0
\(951\) 6.47281 0.209895
\(952\) 14.5685 0.472167
\(953\) 5.14282 0.166592 0.0832962 0.996525i \(-0.473455\pi\)
0.0832962 + 0.996525i \(0.473455\pi\)
\(954\) 2.66296 0.0862166
\(955\) 0 0
\(956\) −11.5368 −0.373128
\(957\) −21.8877 −0.707528
\(958\) 16.7841 0.542270
\(959\) −32.6744 −1.05511
\(960\) 0 0
\(961\) 22.3986 0.722536
\(962\) 0 0
\(963\) 28.6387 0.922869
\(964\) −21.7563 −0.700722
\(965\) 0 0
\(966\) −6.82346 −0.219541
\(967\) 20.1037 0.646490 0.323245 0.946315i \(-0.395226\pi\)
0.323245 + 0.946315i \(0.395226\pi\)
\(968\) −2.69763 −0.0867050
\(969\) −0.189116 −0.00607529
\(970\) 0 0
\(971\) −45.5778 −1.46266 −0.731330 0.682024i \(-0.761100\pi\)
−0.731330 + 0.682024i \(0.761100\pi\)
\(972\) 16.1432 0.517795
\(973\) −63.1380 −2.02411
\(974\) −31.1107 −0.996853
\(975\) 0 0
\(976\) 4.48215 0.143470
\(977\) −29.9732 −0.958929 −0.479464 0.877561i \(-0.659169\pi\)
−0.479464 + 0.877561i \(0.659169\pi\)
\(978\) 19.7798 0.632487
\(979\) −19.4635 −0.622057
\(980\) 0 0
\(981\) 19.4692 0.621604
\(982\) −18.8663 −0.602048
\(983\) −41.2661 −1.31618 −0.658092 0.752938i \(-0.728636\pi\)
−0.658092 + 0.752938i \(0.728636\pi\)
\(984\) 11.0740 0.353028
\(985\) 0 0
\(986\) −25.3933 −0.808688
\(987\) 24.4726 0.778973
\(988\) 0 0
\(989\) −7.47175 −0.237588
\(990\) 0 0
\(991\) −48.4215 −1.53816 −0.769080 0.639152i \(-0.779285\pi\)
−0.769080 + 0.639152i \(0.779285\pi\)
\(992\) −7.30744 −0.232011
\(993\) 6.44786 0.204617
\(994\) 23.2362 0.737006
\(995\) 0 0
\(996\) 5.24283 0.166125
\(997\) 2.66944 0.0845421 0.0422711 0.999106i \(-0.486541\pi\)
0.0422711 + 0.999106i \(0.486541\pi\)
\(998\) 38.1163 1.20655
\(999\) −37.7430 −1.19414
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.cy.1.6 yes 9
5.4 even 2 8450.2.a.cu.1.4 9
13.12 even 2 8450.2.a.cv.1.6 yes 9
65.64 even 2 8450.2.a.cz.1.4 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8450.2.a.cu.1.4 9 5.4 even 2
8450.2.a.cv.1.6 yes 9 13.12 even 2
8450.2.a.cy.1.6 yes 9 1.1 even 1 trivial
8450.2.a.cz.1.4 yes 9 65.64 even 2