Properties

Label 8450.2.a.cs.1.7
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0,8,0,0,10,8,16,0,0,0,0,10,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 20x^{6} + 132x^{4} - 332x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(2.40987\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.40987 q^{3} +1.00000 q^{4} +2.40987 q^{6} -1.40561 q^{7} +1.00000 q^{8} +2.80745 q^{9} +5.30846 q^{11} +2.40987 q^{12} -1.40561 q^{14} +1.00000 q^{16} +7.04051 q^{17} +2.80745 q^{18} +2.64187 q^{19} -3.38732 q^{21} +5.30846 q^{22} -2.66659 q^{23} +2.40987 q^{24} -0.464013 q^{27} -1.40561 q^{28} -4.21306 q^{29} +5.07645 q^{31} +1.00000 q^{32} +12.7927 q^{33} +7.04051 q^{34} +2.80745 q^{36} +0.825990 q^{37} +2.64187 q^{38} +2.81100 q^{41} -3.38732 q^{42} +5.28374 q^{43} +5.30846 q^{44} -2.66659 q^{46} -1.79070 q^{47} +2.40987 q^{48} -5.02427 q^{49} +16.9667 q^{51} -7.93952 q^{53} -0.464013 q^{54} -1.40561 q^{56} +6.36656 q^{57} -4.21306 q^{58} -6.46419 q^{59} -14.7351 q^{61} +5.07645 q^{62} -3.94617 q^{63} +1.00000 q^{64} +12.7927 q^{66} +4.00000 q^{67} +7.04051 q^{68} -6.42612 q^{69} +9.63946 q^{71} +2.80745 q^{72} +7.04281 q^{73} +0.825990 q^{74} +2.64187 q^{76} -7.46160 q^{77} -4.05956 q^{79} -9.54057 q^{81} +2.81100 q^{82} +8.55910 q^{83} -3.38732 q^{84} +5.28374 q^{86} -10.1529 q^{87} +5.30846 q^{88} -15.1600 q^{89} -2.66659 q^{92} +12.2336 q^{93} -1.79070 q^{94} +2.40987 q^{96} +4.36656 q^{97} -5.02427 q^{98} +14.9033 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{4} + 10 q^{7} + 8 q^{8} + 16 q^{9} + 10 q^{14} + 8 q^{16} + 16 q^{18} + 10 q^{28} - 6 q^{29} + 8 q^{32} + 20 q^{33} + 16 q^{36} + 40 q^{37} - 6 q^{47} + 30 q^{49} + 20 q^{51} + 10 q^{56}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.40987 1.39134 0.695668 0.718363i \(-0.255108\pi\)
0.695668 + 0.718363i \(0.255108\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 2.40987 0.983824
\(7\) −1.40561 −0.531269 −0.265635 0.964074i \(-0.585581\pi\)
−0.265635 + 0.964074i \(0.585581\pi\)
\(8\) 1.00000 0.353553
\(9\) 2.80745 0.935818
\(10\) 0 0
\(11\) 5.30846 1.60056 0.800280 0.599626i \(-0.204684\pi\)
0.800280 + 0.599626i \(0.204684\pi\)
\(12\) 2.40987 0.695668
\(13\) 0 0
\(14\) −1.40561 −0.375664
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 7.04051 1.70757 0.853787 0.520622i \(-0.174300\pi\)
0.853787 + 0.520622i \(0.174300\pi\)
\(18\) 2.80745 0.661723
\(19\) 2.64187 0.606087 0.303044 0.952977i \(-0.401997\pi\)
0.303044 + 0.952977i \(0.401997\pi\)
\(20\) 0 0
\(21\) −3.38732 −0.739174
\(22\) 5.30846 1.13177
\(23\) −2.66659 −0.556022 −0.278011 0.960578i \(-0.589675\pi\)
−0.278011 + 0.960578i \(0.589675\pi\)
\(24\) 2.40987 0.491912
\(25\) 0 0
\(26\) 0 0
\(27\) −0.464013 −0.0892993
\(28\) −1.40561 −0.265635
\(29\) −4.21306 −0.782345 −0.391173 0.920317i \(-0.627930\pi\)
−0.391173 + 0.920317i \(0.627930\pi\)
\(30\) 0 0
\(31\) 5.07645 0.911758 0.455879 0.890042i \(-0.349325\pi\)
0.455879 + 0.890042i \(0.349325\pi\)
\(32\) 1.00000 0.176777
\(33\) 12.7927 2.22692
\(34\) 7.04051 1.20744
\(35\) 0 0
\(36\) 2.80745 0.467909
\(37\) 0.825990 0.135792 0.0678960 0.997692i \(-0.478371\pi\)
0.0678960 + 0.997692i \(0.478371\pi\)
\(38\) 2.64187 0.428568
\(39\) 0 0
\(40\) 0 0
\(41\) 2.81100 0.439005 0.219502 0.975612i \(-0.429557\pi\)
0.219502 + 0.975612i \(0.429557\pi\)
\(42\) −3.38732 −0.522675
\(43\) 5.28374 0.805763 0.402882 0.915252i \(-0.368009\pi\)
0.402882 + 0.915252i \(0.368009\pi\)
\(44\) 5.30846 0.800280
\(45\) 0 0
\(46\) −2.66659 −0.393167
\(47\) −1.79070 −0.261200 −0.130600 0.991435i \(-0.541690\pi\)
−0.130600 + 0.991435i \(0.541690\pi\)
\(48\) 2.40987 0.347834
\(49\) −5.02427 −0.717753
\(50\) 0 0
\(51\) 16.9667 2.37581
\(52\) 0 0
\(53\) −7.93952 −1.09058 −0.545288 0.838248i \(-0.683580\pi\)
−0.545288 + 0.838248i \(0.683580\pi\)
\(54\) −0.464013 −0.0631441
\(55\) 0 0
\(56\) −1.40561 −0.187832
\(57\) 6.36656 0.843271
\(58\) −4.21306 −0.553202
\(59\) −6.46419 −0.841566 −0.420783 0.907161i \(-0.638245\pi\)
−0.420783 + 0.907161i \(0.638245\pi\)
\(60\) 0 0
\(61\) −14.7351 −1.88663 −0.943317 0.331892i \(-0.892313\pi\)
−0.943317 + 0.331892i \(0.892313\pi\)
\(62\) 5.07645 0.644710
\(63\) −3.94617 −0.497171
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 12.7927 1.57467
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 7.04051 0.853787
\(69\) −6.42612 −0.773614
\(70\) 0 0
\(71\) 9.63946 1.14399 0.571997 0.820256i \(-0.306169\pi\)
0.571997 + 0.820256i \(0.306169\pi\)
\(72\) 2.80745 0.330861
\(73\) 7.04281 0.824298 0.412149 0.911116i \(-0.364778\pi\)
0.412149 + 0.911116i \(0.364778\pi\)
\(74\) 0.825990 0.0960194
\(75\) 0 0
\(76\) 2.64187 0.303044
\(77\) −7.46160 −0.850329
\(78\) 0 0
\(79\) −4.05956 −0.456736 −0.228368 0.973575i \(-0.573339\pi\)
−0.228368 + 0.973575i \(0.573339\pi\)
\(80\) 0 0
\(81\) −9.54057 −1.06006
\(82\) 2.81100 0.310423
\(83\) 8.55910 0.939484 0.469742 0.882804i \(-0.344347\pi\)
0.469742 + 0.882804i \(0.344347\pi\)
\(84\) −3.38732 −0.369587
\(85\) 0 0
\(86\) 5.28374 0.569761
\(87\) −10.1529 −1.08851
\(88\) 5.30846 0.565884
\(89\) −15.1600 −1.60695 −0.803477 0.595336i \(-0.797019\pi\)
−0.803477 + 0.595336i \(0.797019\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.66659 −0.278011
\(93\) 12.2336 1.26856
\(94\) −1.79070 −0.184697
\(95\) 0 0
\(96\) 2.40987 0.245956
\(97\) 4.36656 0.443357 0.221678 0.975120i \(-0.428847\pi\)
0.221678 + 0.975120i \(0.428847\pi\)
\(98\) −5.02427 −0.507528
\(99\) 14.9033 1.49783
\(100\) 0 0
\(101\) 8.38707 0.834545 0.417272 0.908782i \(-0.362986\pi\)
0.417272 + 0.908782i \(0.362986\pi\)
\(102\) 16.9667 1.67995
\(103\) 5.56518 0.548354 0.274177 0.961679i \(-0.411595\pi\)
0.274177 + 0.961679i \(0.411595\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −7.93952 −0.771154
\(107\) 15.1847 1.46796 0.733980 0.679172i \(-0.237661\pi\)
0.733980 + 0.679172i \(0.237661\pi\)
\(108\) −0.464013 −0.0446496
\(109\) 0.667003 0.0638873 0.0319436 0.999490i \(-0.489830\pi\)
0.0319436 + 0.999490i \(0.489830\pi\)
\(110\) 0 0
\(111\) 1.99053 0.188932
\(112\) −1.40561 −0.132817
\(113\) 3.36912 0.316940 0.158470 0.987364i \(-0.449344\pi\)
0.158470 + 0.987364i \(0.449344\pi\)
\(114\) 6.36656 0.596283
\(115\) 0 0
\(116\) −4.21306 −0.391173
\(117\) 0 0
\(118\) −6.46419 −0.595077
\(119\) −9.89618 −0.907182
\(120\) 0 0
\(121\) 17.1797 1.56179
\(122\) −14.7351 −1.33405
\(123\) 6.77414 0.610803
\(124\) 5.07645 0.455879
\(125\) 0 0
\(126\) −3.94617 −0.351553
\(127\) −10.8489 −0.962686 −0.481343 0.876532i \(-0.659851\pi\)
−0.481343 + 0.876532i \(0.659851\pi\)
\(128\) 1.00000 0.0883883
\(129\) 12.7331 1.12109
\(130\) 0 0
\(131\) 15.3500 1.34114 0.670568 0.741848i \(-0.266051\pi\)
0.670568 + 0.741848i \(0.266051\pi\)
\(132\) 12.7927 1.11346
\(133\) −3.71343 −0.321995
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 7.04051 0.603719
\(137\) 11.3908 0.973184 0.486592 0.873629i \(-0.338240\pi\)
0.486592 + 0.873629i \(0.338240\pi\)
\(138\) −6.42612 −0.547028
\(139\) −11.3500 −0.962694 −0.481347 0.876530i \(-0.659852\pi\)
−0.481347 + 0.876530i \(0.659852\pi\)
\(140\) 0 0
\(141\) −4.31535 −0.363418
\(142\) 9.63946 0.808926
\(143\) 0 0
\(144\) 2.80745 0.233954
\(145\) 0 0
\(146\) 7.04281 0.582867
\(147\) −12.1078 −0.998636
\(148\) 0.825990 0.0678960
\(149\) 1.96406 0.160902 0.0804509 0.996759i \(-0.474364\pi\)
0.0804509 + 0.996759i \(0.474364\pi\)
\(150\) 0 0
\(151\) 10.3602 0.843101 0.421550 0.906805i \(-0.361486\pi\)
0.421550 + 0.906805i \(0.361486\pi\)
\(152\) 2.64187 0.214284
\(153\) 19.7659 1.59798
\(154\) −7.46160 −0.601273
\(155\) 0 0
\(156\) 0 0
\(157\) −5.83105 −0.465368 −0.232684 0.972552i \(-0.574751\pi\)
−0.232684 + 0.972552i \(0.574751\pi\)
\(158\) −4.05956 −0.322961
\(159\) −19.1332 −1.51736
\(160\) 0 0
\(161\) 3.74817 0.295397
\(162\) −9.54057 −0.749578
\(163\) −11.7518 −0.920475 −0.460238 0.887796i \(-0.652236\pi\)
−0.460238 + 0.887796i \(0.652236\pi\)
\(164\) 2.81100 0.219502
\(165\) 0 0
\(166\) 8.55910 0.664315
\(167\) −11.1760 −0.864824 −0.432412 0.901676i \(-0.642337\pi\)
−0.432412 + 0.901676i \(0.642337\pi\)
\(168\) −3.38732 −0.261338
\(169\) 0 0
\(170\) 0 0
\(171\) 7.41693 0.567187
\(172\) 5.28374 0.402882
\(173\) −0.533400 −0.0405537 −0.0202768 0.999794i \(-0.506455\pi\)
−0.0202768 + 0.999794i \(0.506455\pi\)
\(174\) −10.1529 −0.769690
\(175\) 0 0
\(176\) 5.30846 0.400140
\(177\) −15.5778 −1.17090
\(178\) −15.1600 −1.13629
\(179\) 9.23733 0.690430 0.345215 0.938524i \(-0.387806\pi\)
0.345215 + 0.938524i \(0.387806\pi\)
\(180\) 0 0
\(181\) 4.76464 0.354153 0.177077 0.984197i \(-0.443336\pi\)
0.177077 + 0.984197i \(0.443336\pi\)
\(182\) 0 0
\(183\) −35.5096 −2.62494
\(184\) −2.66659 −0.196583
\(185\) 0 0
\(186\) 12.2336 0.897009
\(187\) 37.3743 2.73308
\(188\) −1.79070 −0.130600
\(189\) 0.652219 0.0474420
\(190\) 0 0
\(191\) −17.9444 −1.29841 −0.649205 0.760613i \(-0.724898\pi\)
−0.649205 + 0.760613i \(0.724898\pi\)
\(192\) 2.40987 0.173917
\(193\) 20.9462 1.50774 0.753869 0.657024i \(-0.228185\pi\)
0.753869 + 0.657024i \(0.228185\pi\)
\(194\) 4.36656 0.313501
\(195\) 0 0
\(196\) −5.02427 −0.358877
\(197\) −26.7724 −1.90745 −0.953726 0.300678i \(-0.902787\pi\)
−0.953726 + 0.300678i \(0.902787\pi\)
\(198\) 14.9033 1.05913
\(199\) 14.3890 1.02001 0.510006 0.860171i \(-0.329643\pi\)
0.510006 + 0.860171i \(0.329643\pi\)
\(200\) 0 0
\(201\) 9.63946 0.679915
\(202\) 8.38707 0.590112
\(203\) 5.92190 0.415636
\(204\) 16.9667 1.18791
\(205\) 0 0
\(206\) 5.56518 0.387745
\(207\) −7.48632 −0.520335
\(208\) 0 0
\(209\) 14.0243 0.970079
\(210\) 0 0
\(211\) −24.3908 −1.67913 −0.839567 0.543256i \(-0.817191\pi\)
−0.839567 + 0.543256i \(0.817191\pi\)
\(212\) −7.93952 −0.545288
\(213\) 23.2298 1.59168
\(214\) 15.1847 1.03800
\(215\) 0 0
\(216\) −0.464013 −0.0315721
\(217\) −7.13549 −0.484389
\(218\) 0.667003 0.0451751
\(219\) 16.9722 1.14688
\(220\) 0 0
\(221\) 0 0
\(222\) 1.99053 0.133595
\(223\) 2.97949 0.199521 0.0997606 0.995011i \(-0.468192\pi\)
0.0997606 + 0.995011i \(0.468192\pi\)
\(224\) −1.40561 −0.0939160
\(225\) 0 0
\(226\) 3.36912 0.224110
\(227\) 3.96293 0.263029 0.131514 0.991314i \(-0.458016\pi\)
0.131514 + 0.991314i \(0.458016\pi\)
\(228\) 6.36656 0.421636
\(229\) −9.85151 −0.651006 −0.325503 0.945541i \(-0.605534\pi\)
−0.325503 + 0.945541i \(0.605534\pi\)
\(230\) 0 0
\(231\) −17.9815 −1.18309
\(232\) −4.21306 −0.276601
\(233\) −19.3821 −1.26976 −0.634881 0.772610i \(-0.718951\pi\)
−0.634881 + 0.772610i \(0.718951\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −6.46419 −0.420783
\(237\) −9.78300 −0.635474
\(238\) −9.89618 −0.641474
\(239\) 30.0138 1.94143 0.970715 0.240232i \(-0.0772237\pi\)
0.970715 + 0.240232i \(0.0772237\pi\)
\(240\) 0 0
\(241\) −19.1467 −1.23334 −0.616672 0.787220i \(-0.711520\pi\)
−0.616672 + 0.787220i \(0.711520\pi\)
\(242\) 17.1797 1.10436
\(243\) −21.5994 −1.38561
\(244\) −14.7351 −0.943317
\(245\) 0 0
\(246\) 6.77414 0.431903
\(247\) 0 0
\(248\) 5.07645 0.322355
\(249\) 20.6263 1.30714
\(250\) 0 0
\(251\) −17.0430 −1.07574 −0.537872 0.843026i \(-0.680772\pi\)
−0.537872 + 0.843026i \(0.680772\pi\)
\(252\) −3.94617 −0.248586
\(253\) −14.1555 −0.889947
\(254\) −10.8489 −0.680722
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 8.22526 0.513077 0.256539 0.966534i \(-0.417418\pi\)
0.256539 + 0.966534i \(0.417418\pi\)
\(258\) 12.7331 0.792729
\(259\) −1.16102 −0.0721421
\(260\) 0 0
\(261\) −11.8280 −0.732133
\(262\) 15.3500 0.948326
\(263\) −10.4296 −0.643116 −0.321558 0.946890i \(-0.604206\pi\)
−0.321558 + 0.946890i \(0.604206\pi\)
\(264\) 12.7927 0.787335
\(265\) 0 0
\(266\) −3.71343 −0.227685
\(267\) −36.5335 −2.23581
\(268\) 4.00000 0.244339
\(269\) 22.6412 1.38046 0.690228 0.723592i \(-0.257510\pi\)
0.690228 + 0.723592i \(0.257510\pi\)
\(270\) 0 0
\(271\) −0.252421 −0.0153335 −0.00766675 0.999971i \(-0.502440\pi\)
−0.00766675 + 0.999971i \(0.502440\pi\)
\(272\) 7.04051 0.426894
\(273\) 0 0
\(274\) 11.3908 0.688145
\(275\) 0 0
\(276\) −6.42612 −0.386807
\(277\) 4.65536 0.279713 0.139857 0.990172i \(-0.455336\pi\)
0.139857 + 0.990172i \(0.455336\pi\)
\(278\) −11.3500 −0.680727
\(279\) 14.2519 0.853239
\(280\) 0 0
\(281\) 3.70262 0.220880 0.110440 0.993883i \(-0.464774\pi\)
0.110440 + 0.993883i \(0.464774\pi\)
\(282\) −4.31535 −0.256975
\(283\) 5.34796 0.317903 0.158952 0.987286i \(-0.449189\pi\)
0.158952 + 0.987286i \(0.449189\pi\)
\(284\) 9.63946 0.571997
\(285\) 0 0
\(286\) 0 0
\(287\) −3.95116 −0.233230
\(288\) 2.80745 0.165431
\(289\) 32.5688 1.91581
\(290\) 0 0
\(291\) 10.5228 0.616858
\(292\) 7.04281 0.412149
\(293\) 24.1742 1.41227 0.706136 0.708076i \(-0.250437\pi\)
0.706136 + 0.708076i \(0.250437\pi\)
\(294\) −12.1078 −0.706142
\(295\) 0 0
\(296\) 0.825990 0.0480097
\(297\) −2.46319 −0.142929
\(298\) 1.96406 0.113775
\(299\) 0 0
\(300\) 0 0
\(301\) −7.42686 −0.428077
\(302\) 10.3602 0.596162
\(303\) 20.2117 1.16113
\(304\) 2.64187 0.151522
\(305\) 0 0
\(306\) 19.7659 1.12994
\(307\) 27.5443 1.57204 0.786019 0.618203i \(-0.212139\pi\)
0.786019 + 0.618203i \(0.212139\pi\)
\(308\) −7.46160 −0.425164
\(309\) 13.4113 0.762944
\(310\) 0 0
\(311\) −12.8262 −0.727306 −0.363653 0.931534i \(-0.618471\pi\)
−0.363653 + 0.931534i \(0.618471\pi\)
\(312\) 0 0
\(313\) −2.72604 −0.154085 −0.0770425 0.997028i \(-0.524548\pi\)
−0.0770425 + 0.997028i \(0.524548\pi\)
\(314\) −5.83105 −0.329065
\(315\) 0 0
\(316\) −4.05956 −0.228368
\(317\) 1.89961 0.106692 0.0533462 0.998576i \(-0.483011\pi\)
0.0533462 + 0.998576i \(0.483011\pi\)
\(318\) −19.1332 −1.07294
\(319\) −22.3649 −1.25219
\(320\) 0 0
\(321\) 36.5931 2.04243
\(322\) 3.74817 0.208877
\(323\) 18.6001 1.03494
\(324\) −9.54057 −0.530031
\(325\) 0 0
\(326\) −11.7518 −0.650874
\(327\) 1.60739 0.0888887
\(328\) 2.81100 0.155212
\(329\) 2.51702 0.138768
\(330\) 0 0
\(331\) −8.98724 −0.493984 −0.246992 0.969018i \(-0.579442\pi\)
−0.246992 + 0.969018i \(0.579442\pi\)
\(332\) 8.55910 0.469742
\(333\) 2.31893 0.127076
\(334\) −11.1760 −0.611523
\(335\) 0 0
\(336\) −3.38732 −0.184794
\(337\) 1.37859 0.0750967 0.0375484 0.999295i \(-0.488045\pi\)
0.0375484 + 0.999295i \(0.488045\pi\)
\(338\) 0 0
\(339\) 8.11912 0.440970
\(340\) 0 0
\(341\) 26.9481 1.45932
\(342\) 7.41693 0.401062
\(343\) 16.9014 0.912589
\(344\) 5.28374 0.284880
\(345\) 0 0
\(346\) −0.533400 −0.0286758
\(347\) 11.8958 0.638598 0.319299 0.947654i \(-0.396553\pi\)
0.319299 + 0.947654i \(0.396553\pi\)
\(348\) −10.1529 −0.544253
\(349\) 4.56777 0.244507 0.122254 0.992499i \(-0.460988\pi\)
0.122254 + 0.992499i \(0.460988\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5.30846 0.282942
\(353\) −0.842019 −0.0448161 −0.0224081 0.999749i \(-0.507133\pi\)
−0.0224081 + 0.999749i \(0.507133\pi\)
\(354\) −15.5778 −0.827952
\(355\) 0 0
\(356\) −15.1600 −0.803477
\(357\) −23.8485 −1.26220
\(358\) 9.23733 0.488208
\(359\) 8.05922 0.425349 0.212675 0.977123i \(-0.431783\pi\)
0.212675 + 0.977123i \(0.431783\pi\)
\(360\) 0 0
\(361\) −12.0205 −0.632659
\(362\) 4.76464 0.250424
\(363\) 41.4009 2.17298
\(364\) 0 0
\(365\) 0 0
\(366\) −35.5096 −1.85612
\(367\) −16.5182 −0.862245 −0.431122 0.902293i \(-0.641882\pi\)
−0.431122 + 0.902293i \(0.641882\pi\)
\(368\) −2.66659 −0.139005
\(369\) 7.89176 0.410828
\(370\) 0 0
\(371\) 11.1598 0.579390
\(372\) 12.2336 0.634281
\(373\) −26.5545 −1.37494 −0.687471 0.726212i \(-0.741279\pi\)
−0.687471 + 0.726212i \(0.741279\pi\)
\(374\) 37.3743 1.93258
\(375\) 0 0
\(376\) −1.79070 −0.0923483
\(377\) 0 0
\(378\) 0.652219 0.0335465
\(379\) 1.15573 0.0593659 0.0296830 0.999559i \(-0.490550\pi\)
0.0296830 + 0.999559i \(0.490550\pi\)
\(380\) 0 0
\(381\) −26.1445 −1.33942
\(382\) −17.9444 −0.918115
\(383\) −35.0077 −1.78881 −0.894405 0.447258i \(-0.852401\pi\)
−0.894405 + 0.447258i \(0.852401\pi\)
\(384\) 2.40987 0.122978
\(385\) 0 0
\(386\) 20.9462 1.06613
\(387\) 14.8339 0.754048
\(388\) 4.36656 0.221678
\(389\) 11.3135 0.573615 0.286807 0.957988i \(-0.407406\pi\)
0.286807 + 0.957988i \(0.407406\pi\)
\(390\) 0 0
\(391\) −18.7741 −0.949449
\(392\) −5.02427 −0.253764
\(393\) 36.9914 1.86597
\(394\) −26.7724 −1.34877
\(395\) 0 0
\(396\) 14.9033 0.748917
\(397\) 18.0057 0.903682 0.451841 0.892099i \(-0.350767\pi\)
0.451841 + 0.892099i \(0.350767\pi\)
\(398\) 14.3890 0.721258
\(399\) −8.94887 −0.448004
\(400\) 0 0
\(401\) −4.58861 −0.229144 −0.114572 0.993415i \(-0.536550\pi\)
−0.114572 + 0.993415i \(0.536550\pi\)
\(402\) 9.63946 0.480773
\(403\) 0 0
\(404\) 8.38707 0.417272
\(405\) 0 0
\(406\) 5.92190 0.293899
\(407\) 4.38474 0.217343
\(408\) 16.9667 0.839976
\(409\) −26.2500 −1.29798 −0.648991 0.760796i \(-0.724809\pi\)
−0.648991 + 0.760796i \(0.724809\pi\)
\(410\) 0 0
\(411\) 27.4504 1.35403
\(412\) 5.56518 0.274177
\(413\) 9.08611 0.447098
\(414\) −7.48632 −0.367933
\(415\) 0 0
\(416\) 0 0
\(417\) −27.3520 −1.33943
\(418\) 14.0243 0.685950
\(419\) 12.0774 0.590018 0.295009 0.955494i \(-0.404677\pi\)
0.295009 + 0.955494i \(0.404677\pi\)
\(420\) 0 0
\(421\) 3.11716 0.151921 0.0759604 0.997111i \(-0.475798\pi\)
0.0759604 + 0.997111i \(0.475798\pi\)
\(422\) −24.3908 −1.18733
\(423\) −5.02731 −0.244436
\(424\) −7.93952 −0.385577
\(425\) 0 0
\(426\) 23.2298 1.12549
\(427\) 20.7117 1.00231
\(428\) 15.1847 0.733980
\(429\) 0 0
\(430\) 0 0
\(431\) 5.23001 0.251921 0.125960 0.992035i \(-0.459799\pi\)
0.125960 + 0.992035i \(0.459799\pi\)
\(432\) −0.464013 −0.0223248
\(433\) −22.3063 −1.07197 −0.535986 0.844227i \(-0.680060\pi\)
−0.535986 + 0.844227i \(0.680060\pi\)
\(434\) −7.13549 −0.342515
\(435\) 0 0
\(436\) 0.667003 0.0319436
\(437\) −7.04478 −0.336998
\(438\) 16.9722 0.810964
\(439\) −5.24835 −0.250490 −0.125245 0.992126i \(-0.539972\pi\)
−0.125245 + 0.992126i \(0.539972\pi\)
\(440\) 0 0
\(441\) −14.1054 −0.671686
\(442\) 0 0
\(443\) 1.11623 0.0530338 0.0265169 0.999648i \(-0.491558\pi\)
0.0265169 + 0.999648i \(0.491558\pi\)
\(444\) 1.99053 0.0944661
\(445\) 0 0
\(446\) 2.97949 0.141083
\(447\) 4.73311 0.223869
\(448\) −1.40561 −0.0664086
\(449\) −34.4883 −1.62760 −0.813802 0.581142i \(-0.802606\pi\)
−0.813802 + 0.581142i \(0.802606\pi\)
\(450\) 0 0
\(451\) 14.9221 0.702654
\(452\) 3.36912 0.158470
\(453\) 24.9667 1.17304
\(454\) 3.96293 0.185989
\(455\) 0 0
\(456\) 6.36656 0.298141
\(457\) −4.07540 −0.190639 −0.0953196 0.995447i \(-0.530387\pi\)
−0.0953196 + 0.995447i \(0.530387\pi\)
\(458\) −9.85151 −0.460331
\(459\) −3.26689 −0.152485
\(460\) 0 0
\(461\) −30.3417 −1.41315 −0.706576 0.707637i \(-0.749761\pi\)
−0.706576 + 0.707637i \(0.749761\pi\)
\(462\) −17.9815 −0.836573
\(463\) 25.2291 1.17250 0.586248 0.810132i \(-0.300605\pi\)
0.586248 + 0.810132i \(0.300605\pi\)
\(464\) −4.21306 −0.195586
\(465\) 0 0
\(466\) −19.3821 −0.897858
\(467\) −21.9997 −1.01802 −0.509012 0.860759i \(-0.669989\pi\)
−0.509012 + 0.860759i \(0.669989\pi\)
\(468\) 0 0
\(469\) −5.62242 −0.259619
\(470\) 0 0
\(471\) −14.0520 −0.647484
\(472\) −6.46419 −0.297538
\(473\) 28.0485 1.28967
\(474\) −9.78300 −0.449348
\(475\) 0 0
\(476\) −9.89618 −0.453591
\(477\) −22.2898 −1.02058
\(478\) 30.0138 1.37280
\(479\) −22.1081 −1.01015 −0.505073 0.863077i \(-0.668534\pi\)
−0.505073 + 0.863077i \(0.668534\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −19.1467 −0.872107
\(483\) 9.03259 0.410997
\(484\) 17.1797 0.780897
\(485\) 0 0
\(486\) −21.5994 −0.979771
\(487\) 3.66873 0.166246 0.0831231 0.996539i \(-0.473511\pi\)
0.0831231 + 0.996539i \(0.473511\pi\)
\(488\) −14.7351 −0.667026
\(489\) −28.3204 −1.28069
\(490\) 0 0
\(491\) −26.4689 −1.19453 −0.597263 0.802045i \(-0.703745\pi\)
−0.597263 + 0.802045i \(0.703745\pi\)
\(492\) 6.77414 0.305402
\(493\) −29.6621 −1.33591
\(494\) 0 0
\(495\) 0 0
\(496\) 5.07645 0.227939
\(497\) −13.5493 −0.607769
\(498\) 20.6263 0.924286
\(499\) −37.0404 −1.65816 −0.829078 0.559133i \(-0.811134\pi\)
−0.829078 + 0.559133i \(0.811134\pi\)
\(500\) 0 0
\(501\) −26.9326 −1.20326
\(502\) −17.0430 −0.760666
\(503\) 34.0196 1.51686 0.758429 0.651756i \(-0.225967\pi\)
0.758429 + 0.651756i \(0.225967\pi\)
\(504\) −3.94617 −0.175777
\(505\) 0 0
\(506\) −14.1555 −0.629288
\(507\) 0 0
\(508\) −10.8489 −0.481343
\(509\) 16.1439 0.715568 0.357784 0.933804i \(-0.383532\pi\)
0.357784 + 0.933804i \(0.383532\pi\)
\(510\) 0 0
\(511\) −9.89942 −0.437924
\(512\) 1.00000 0.0441942
\(513\) −1.22586 −0.0541231
\(514\) 8.22526 0.362801
\(515\) 0 0
\(516\) 12.7331 0.560544
\(517\) −9.50586 −0.418067
\(518\) −1.16102 −0.0510121
\(519\) −1.28542 −0.0564238
\(520\) 0 0
\(521\) −36.5483 −1.60121 −0.800605 0.599193i \(-0.795488\pi\)
−0.800605 + 0.599193i \(0.795488\pi\)
\(522\) −11.8280 −0.517696
\(523\) 0.667003 0.0291660 0.0145830 0.999894i \(-0.495358\pi\)
0.0145830 + 0.999894i \(0.495358\pi\)
\(524\) 15.3500 0.670568
\(525\) 0 0
\(526\) −10.4296 −0.454752
\(527\) 35.7408 1.55689
\(528\) 12.7927 0.556730
\(529\) −15.8893 −0.690840
\(530\) 0 0
\(531\) −18.1479 −0.787552
\(532\) −3.71343 −0.160998
\(533\) 0 0
\(534\) −36.5335 −1.58096
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) 22.2607 0.960621
\(538\) 22.6412 0.976129
\(539\) −26.6711 −1.14881
\(540\) 0 0
\(541\) −7.70275 −0.331167 −0.165584 0.986196i \(-0.552951\pi\)
−0.165584 + 0.986196i \(0.552951\pi\)
\(542\) −0.252421 −0.0108424
\(543\) 11.4822 0.492746
\(544\) 7.04051 0.301859
\(545\) 0 0
\(546\) 0 0
\(547\) −27.5445 −1.17772 −0.588858 0.808236i \(-0.700422\pi\)
−0.588858 + 0.808236i \(0.700422\pi\)
\(548\) 11.3908 0.486592
\(549\) −41.3681 −1.76555
\(550\) 0 0
\(551\) −11.1304 −0.474169
\(552\) −6.42612 −0.273514
\(553\) 5.70614 0.242650
\(554\) 4.65536 0.197787
\(555\) 0 0
\(556\) −11.3500 −0.481347
\(557\) −4.16273 −0.176381 −0.0881903 0.996104i \(-0.528108\pi\)
−0.0881903 + 0.996104i \(0.528108\pi\)
\(558\) 14.2519 0.603331
\(559\) 0 0
\(560\) 0 0
\(561\) 90.0670 3.80263
\(562\) 3.70262 0.156186
\(563\) 31.5897 1.33135 0.665674 0.746242i \(-0.268144\pi\)
0.665674 + 0.746242i \(0.268144\pi\)
\(564\) −4.31535 −0.181709
\(565\) 0 0
\(566\) 5.34796 0.224791
\(567\) 13.4103 0.563179
\(568\) 9.63946 0.404463
\(569\) −23.9166 −1.00264 −0.501318 0.865263i \(-0.667151\pi\)
−0.501318 + 0.865263i \(0.667151\pi\)
\(570\) 0 0
\(571\) −0.653231 −0.0273369 −0.0136684 0.999907i \(-0.504351\pi\)
−0.0136684 + 0.999907i \(0.504351\pi\)
\(572\) 0 0
\(573\) −43.2436 −1.80653
\(574\) −3.95116 −0.164918
\(575\) 0 0
\(576\) 2.80745 0.116977
\(577\) −21.3167 −0.887425 −0.443712 0.896169i \(-0.646339\pi\)
−0.443712 + 0.896169i \(0.646339\pi\)
\(578\) 32.5688 1.35468
\(579\) 50.4775 2.09777
\(580\) 0 0
\(581\) −12.0307 −0.499119
\(582\) 10.5228 0.436185
\(583\) −42.1466 −1.74553
\(584\) 7.04281 0.291433
\(585\) 0 0
\(586\) 24.1742 0.998627
\(587\) 15.2298 0.628602 0.314301 0.949323i \(-0.398230\pi\)
0.314301 + 0.949323i \(0.398230\pi\)
\(588\) −12.1078 −0.499318
\(589\) 13.4113 0.552605
\(590\) 0 0
\(591\) −64.5178 −2.65391
\(592\) 0.825990 0.0339480
\(593\) −9.70527 −0.398548 −0.199274 0.979944i \(-0.563858\pi\)
−0.199274 + 0.979944i \(0.563858\pi\)
\(594\) −2.46319 −0.101066
\(595\) 0 0
\(596\) 1.96406 0.0804509
\(597\) 34.6757 1.41918
\(598\) 0 0
\(599\) 1.20026 0.0490411 0.0245206 0.999699i \(-0.492194\pi\)
0.0245206 + 0.999699i \(0.492194\pi\)
\(600\) 0 0
\(601\) 14.0736 0.574075 0.287037 0.957919i \(-0.407330\pi\)
0.287037 + 0.957919i \(0.407330\pi\)
\(602\) −7.42686 −0.302696
\(603\) 11.2298 0.457313
\(604\) 10.3602 0.421550
\(605\) 0 0
\(606\) 20.2117 0.821045
\(607\) −31.5294 −1.27974 −0.639870 0.768484i \(-0.721012\pi\)
−0.639870 + 0.768484i \(0.721012\pi\)
\(608\) 2.64187 0.107142
\(609\) 14.2710 0.578290
\(610\) 0 0
\(611\) 0 0
\(612\) 19.7659 0.798989
\(613\) −2.83351 −0.114444 −0.0572222 0.998361i \(-0.518224\pi\)
−0.0572222 + 0.998361i \(0.518224\pi\)
\(614\) 27.5443 1.11160
\(615\) 0 0
\(616\) −7.46160 −0.300637
\(617\) 2.25408 0.0907460 0.0453730 0.998970i \(-0.485552\pi\)
0.0453730 + 0.998970i \(0.485552\pi\)
\(618\) 13.4113 0.539483
\(619\) −6.37526 −0.256243 −0.128122 0.991758i \(-0.540895\pi\)
−0.128122 + 0.991758i \(0.540895\pi\)
\(620\) 0 0
\(621\) 1.23733 0.0496524
\(622\) −12.8262 −0.514283
\(623\) 21.3090 0.853725
\(624\) 0 0
\(625\) 0 0
\(626\) −2.72604 −0.108955
\(627\) 33.7966 1.34971
\(628\) −5.83105 −0.232684
\(629\) 5.81539 0.231875
\(630\) 0 0
\(631\) −30.8334 −1.22746 −0.613729 0.789517i \(-0.710331\pi\)
−0.613729 + 0.789517i \(0.710331\pi\)
\(632\) −4.05956 −0.161481
\(633\) −58.7786 −2.33624
\(634\) 1.89961 0.0754430
\(635\) 0 0
\(636\) −19.1332 −0.758680
\(637\) 0 0
\(638\) −22.3649 −0.885433
\(639\) 27.0623 1.07057
\(640\) 0 0
\(641\) 19.1890 0.757919 0.378960 0.925413i \(-0.376282\pi\)
0.378960 + 0.925413i \(0.376282\pi\)
\(642\) 36.5931 1.44421
\(643\) 24.5555 0.968376 0.484188 0.874964i \(-0.339115\pi\)
0.484188 + 0.874964i \(0.339115\pi\)
\(644\) 3.74817 0.147699
\(645\) 0 0
\(646\) 18.6001 0.731812
\(647\) 29.3667 1.15453 0.577263 0.816558i \(-0.304121\pi\)
0.577263 + 0.816558i \(0.304121\pi\)
\(648\) −9.54057 −0.374789
\(649\) −34.3149 −1.34698
\(650\) 0 0
\(651\) −17.1956 −0.673948
\(652\) −11.7518 −0.460238
\(653\) 25.0514 0.980337 0.490168 0.871628i \(-0.336935\pi\)
0.490168 + 0.871628i \(0.336935\pi\)
\(654\) 1.60739 0.0628538
\(655\) 0 0
\(656\) 2.81100 0.109751
\(657\) 19.7724 0.771393
\(658\) 2.51702 0.0981236
\(659\) 35.0933 1.36704 0.683521 0.729931i \(-0.260448\pi\)
0.683521 + 0.729931i \(0.260448\pi\)
\(660\) 0 0
\(661\) −31.1291 −1.21078 −0.605392 0.795928i \(-0.706984\pi\)
−0.605392 + 0.795928i \(0.706984\pi\)
\(662\) −8.98724 −0.349299
\(663\) 0 0
\(664\) 8.55910 0.332158
\(665\) 0 0
\(666\) 2.31893 0.0898566
\(667\) 11.2345 0.435001
\(668\) −11.1760 −0.432412
\(669\) 7.18017 0.277601
\(670\) 0 0
\(671\) −78.2206 −3.01967
\(672\) −3.38732 −0.130669
\(673\) 0.193846 0.00747220 0.00373610 0.999993i \(-0.498811\pi\)
0.00373610 + 0.999993i \(0.498811\pi\)
\(674\) 1.37859 0.0531014
\(675\) 0 0
\(676\) 0 0
\(677\) −21.9008 −0.841718 −0.420859 0.907126i \(-0.638271\pi\)
−0.420859 + 0.907126i \(0.638271\pi\)
\(678\) 8.11912 0.311813
\(679\) −6.13766 −0.235542
\(680\) 0 0
\(681\) 9.55012 0.365961
\(682\) 26.9481 1.03190
\(683\) −5.11821 −0.195843 −0.0979214 0.995194i \(-0.531219\pi\)
−0.0979214 + 0.995194i \(0.531219\pi\)
\(684\) 7.41693 0.283593
\(685\) 0 0
\(686\) 16.9014 0.645298
\(687\) −23.7408 −0.905769
\(688\) 5.28374 0.201441
\(689\) 0 0
\(690\) 0 0
\(691\) −1.91684 −0.0729199 −0.0364600 0.999335i \(-0.511608\pi\)
−0.0364600 + 0.999335i \(0.511608\pi\)
\(692\) −0.533400 −0.0202768
\(693\) −20.9481 −0.795753
\(694\) 11.8958 0.451557
\(695\) 0 0
\(696\) −10.1529 −0.384845
\(697\) 19.7909 0.749633
\(698\) 4.56777 0.172893
\(699\) −46.7082 −1.76667
\(700\) 0 0
\(701\) 23.4448 0.885500 0.442750 0.896645i \(-0.354003\pi\)
0.442750 + 0.896645i \(0.354003\pi\)
\(702\) 0 0
\(703\) 2.18216 0.0823017
\(704\) 5.30846 0.200070
\(705\) 0 0
\(706\) −0.842019 −0.0316898
\(707\) −11.7889 −0.443368
\(708\) −15.5778 −0.585451
\(709\) 5.00101 0.187817 0.0939085 0.995581i \(-0.470064\pi\)
0.0939085 + 0.995581i \(0.470064\pi\)
\(710\) 0 0
\(711\) −11.3970 −0.427422
\(712\) −15.1600 −0.568144
\(713\) −13.5368 −0.506957
\(714\) −23.8485 −0.892507
\(715\) 0 0
\(716\) 9.23733 0.345215
\(717\) 72.3292 2.70118
\(718\) 8.05922 0.300767
\(719\) −45.4777 −1.69603 −0.848016 0.529971i \(-0.822203\pi\)
−0.848016 + 0.529971i \(0.822203\pi\)
\(720\) 0 0
\(721\) −7.82245 −0.291323
\(722\) −12.0205 −0.447357
\(723\) −46.1409 −1.71600
\(724\) 4.76464 0.177077
\(725\) 0 0
\(726\) 41.4009 1.53653
\(727\) −6.38432 −0.236781 −0.118391 0.992967i \(-0.537774\pi\)
−0.118391 + 0.992967i \(0.537774\pi\)
\(728\) 0 0
\(729\) −23.4301 −0.867780
\(730\) 0 0
\(731\) 37.2003 1.37590
\(732\) −35.5096 −1.31247
\(733\) −46.0006 −1.69907 −0.849536 0.527530i \(-0.823118\pi\)
−0.849536 + 0.527530i \(0.823118\pi\)
\(734\) −16.5182 −0.609699
\(735\) 0 0
\(736\) −2.66659 −0.0982917
\(737\) 21.2338 0.782159
\(738\) 7.89176 0.290500
\(739\) −4.78499 −0.176019 −0.0880094 0.996120i \(-0.528051\pi\)
−0.0880094 + 0.996120i \(0.528051\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 11.1598 0.409691
\(743\) −15.8150 −0.580195 −0.290098 0.956997i \(-0.593688\pi\)
−0.290098 + 0.956997i \(0.593688\pi\)
\(744\) 12.2336 0.448504
\(745\) 0 0
\(746\) −26.5545 −0.972231
\(747\) 24.0293 0.879185
\(748\) 37.3743 1.36654
\(749\) −21.3437 −0.779881
\(750\) 0 0
\(751\) −9.88840 −0.360833 −0.180416 0.983590i \(-0.557745\pi\)
−0.180416 + 0.983590i \(0.557745\pi\)
\(752\) −1.79070 −0.0653001
\(753\) −41.0713 −1.49672
\(754\) 0 0
\(755\) 0 0
\(756\) 0.652219 0.0237210
\(757\) −8.74091 −0.317694 −0.158847 0.987303i \(-0.550778\pi\)
−0.158847 + 0.987303i \(0.550778\pi\)
\(758\) 1.15573 0.0419780
\(759\) −34.1128 −1.23822
\(760\) 0 0
\(761\) 49.4743 1.79344 0.896721 0.442595i \(-0.145942\pi\)
0.896721 + 0.442595i \(0.145942\pi\)
\(762\) −26.1445 −0.947114
\(763\) −0.937543 −0.0339413
\(764\) −17.9444 −0.649205
\(765\) 0 0
\(766\) −35.0077 −1.26488
\(767\) 0 0
\(768\) 2.40987 0.0869585
\(769\) −23.3722 −0.842823 −0.421412 0.906870i \(-0.638465\pi\)
−0.421412 + 0.906870i \(0.638465\pi\)
\(770\) 0 0
\(771\) 19.8218 0.713863
\(772\) 20.9462 0.753869
\(773\) 1.65771 0.0596238 0.0298119 0.999556i \(-0.490509\pi\)
0.0298119 + 0.999556i \(0.490509\pi\)
\(774\) 14.8339 0.533192
\(775\) 0 0
\(776\) 4.36656 0.156750
\(777\) −2.79789 −0.100374
\(778\) 11.3135 0.405607
\(779\) 7.42631 0.266075
\(780\) 0 0
\(781\) 51.1707 1.83103
\(782\) −18.7741 −0.671362
\(783\) 1.95491 0.0698629
\(784\) −5.02427 −0.179438
\(785\) 0 0
\(786\) 36.9914 1.31944
\(787\) −43.3447 −1.54507 −0.772536 0.634971i \(-0.781012\pi\)
−0.772536 + 0.634971i \(0.781012\pi\)
\(788\) −26.7724 −0.953726
\(789\) −25.1339 −0.894791
\(790\) 0 0
\(791\) −4.73565 −0.168380
\(792\) 14.9033 0.529564
\(793\) 0 0
\(794\) 18.0057 0.639000
\(795\) 0 0
\(796\) 14.3890 0.510006
\(797\) −20.4233 −0.723430 −0.361715 0.932289i \(-0.617809\pi\)
−0.361715 + 0.932289i \(0.617809\pi\)
\(798\) −8.94887 −0.316787
\(799\) −12.6074 −0.446019
\(800\) 0 0
\(801\) −42.5609 −1.50382
\(802\) −4.58861 −0.162029
\(803\) 37.3865 1.31934
\(804\) 9.63946 0.339958
\(805\) 0 0
\(806\) 0 0
\(807\) 54.5621 1.92068
\(808\) 8.38707 0.295056
\(809\) 23.0235 0.809465 0.404732 0.914435i \(-0.367365\pi\)
0.404732 + 0.914435i \(0.367365\pi\)
\(810\) 0 0
\(811\) −5.67837 −0.199395 −0.0996973 0.995018i \(-0.531787\pi\)
−0.0996973 + 0.995018i \(0.531787\pi\)
\(812\) 5.92190 0.207818
\(813\) −0.608301 −0.0213340
\(814\) 4.38474 0.153685
\(815\) 0 0
\(816\) 16.9667 0.593953
\(817\) 13.9590 0.488363
\(818\) −26.2500 −0.917811
\(819\) 0 0
\(820\) 0 0
\(821\) −12.9626 −0.452397 −0.226198 0.974081i \(-0.572630\pi\)
−0.226198 + 0.974081i \(0.572630\pi\)
\(822\) 27.4504 0.957441
\(823\) −8.18710 −0.285384 −0.142692 0.989767i \(-0.545576\pi\)
−0.142692 + 0.989767i \(0.545576\pi\)
\(824\) 5.56518 0.193872
\(825\) 0 0
\(826\) 9.08611 0.316146
\(827\) −9.13747 −0.317741 −0.158870 0.987299i \(-0.550785\pi\)
−0.158870 + 0.987299i \(0.550785\pi\)
\(828\) −7.48632 −0.260168
\(829\) −4.90515 −0.170363 −0.0851814 0.996365i \(-0.527147\pi\)
−0.0851814 + 0.996365i \(0.527147\pi\)
\(830\) 0 0
\(831\) 11.2188 0.389176
\(832\) 0 0
\(833\) −35.3734 −1.22562
\(834\) −27.3520 −0.947121
\(835\) 0 0
\(836\) 14.0243 0.485040
\(837\) −2.35554 −0.0814193
\(838\) 12.0774 0.417206
\(839\) 2.25773 0.0779455 0.0389727 0.999240i \(-0.487591\pi\)
0.0389727 + 0.999240i \(0.487591\pi\)
\(840\) 0 0
\(841\) −11.2501 −0.387936
\(842\) 3.11716 0.107424
\(843\) 8.92282 0.307318
\(844\) −24.3908 −0.839567
\(845\) 0 0
\(846\) −5.02731 −0.172842
\(847\) −24.1480 −0.829734
\(848\) −7.93952 −0.272644
\(849\) 12.8879 0.442310
\(850\) 0 0
\(851\) −2.20257 −0.0755033
\(852\) 23.2298 0.795840
\(853\) 14.7832 0.506166 0.253083 0.967445i \(-0.418555\pi\)
0.253083 + 0.967445i \(0.418555\pi\)
\(854\) 20.7117 0.708741
\(855\) 0 0
\(856\) 15.1847 0.519002
\(857\) 19.3235 0.660079 0.330039 0.943967i \(-0.392938\pi\)
0.330039 + 0.943967i \(0.392938\pi\)
\(858\) 0 0
\(859\) −48.8245 −1.66587 −0.832935 0.553371i \(-0.813341\pi\)
−0.832935 + 0.553371i \(0.813341\pi\)
\(860\) 0 0
\(861\) −9.52177 −0.324501
\(862\) 5.23001 0.178135
\(863\) 15.2366 0.518660 0.259330 0.965789i \(-0.416498\pi\)
0.259330 + 0.965789i \(0.416498\pi\)
\(864\) −0.464013 −0.0157860
\(865\) 0 0
\(866\) −22.3063 −0.757998
\(867\) 78.4864 2.66554
\(868\) −7.13549 −0.242194
\(869\) −21.5500 −0.731034
\(870\) 0 0
\(871\) 0 0
\(872\) 0.667003 0.0225876
\(873\) 12.2589 0.414901
\(874\) −7.04478 −0.238293
\(875\) 0 0
\(876\) 16.9722 0.573438
\(877\) −0.445906 −0.0150572 −0.00752859 0.999972i \(-0.502396\pi\)
−0.00752859 + 0.999972i \(0.502396\pi\)
\(878\) −5.24835 −0.177123
\(879\) 58.2566 1.96495
\(880\) 0 0
\(881\) −38.8107 −1.30756 −0.653782 0.756683i \(-0.726819\pi\)
−0.653782 + 0.756683i \(0.726819\pi\)
\(882\) −14.1054 −0.474954
\(883\) 25.2239 0.848853 0.424427 0.905462i \(-0.360476\pi\)
0.424427 + 0.905462i \(0.360476\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.11623 0.0375005
\(887\) −0.261895 −0.00879357 −0.00439678 0.999990i \(-0.501400\pi\)
−0.00439678 + 0.999990i \(0.501400\pi\)
\(888\) 1.99053 0.0667977
\(889\) 15.2493 0.511446
\(890\) 0 0
\(891\) −50.6457 −1.69670
\(892\) 2.97949 0.0997606
\(893\) −4.73080 −0.158310
\(894\) 4.73311 0.158299
\(895\) 0 0
\(896\) −1.40561 −0.0469580
\(897\) 0 0
\(898\) −34.4883 −1.15089
\(899\) −21.3874 −0.713310
\(900\) 0 0
\(901\) −55.8983 −1.86224
\(902\) 14.9221 0.496851
\(903\) −17.8977 −0.595600
\(904\) 3.36912 0.112055
\(905\) 0 0
\(906\) 24.9667 0.829463
\(907\) 38.0630 1.26386 0.631930 0.775025i \(-0.282263\pi\)
0.631930 + 0.775025i \(0.282263\pi\)
\(908\) 3.96293 0.131514
\(909\) 23.5463 0.780982
\(910\) 0 0
\(911\) −50.4261 −1.67069 −0.835346 0.549725i \(-0.814733\pi\)
−0.835346 + 0.549725i \(0.814733\pi\)
\(912\) 6.36656 0.210818
\(913\) 45.4357 1.50370
\(914\) −4.07540 −0.134802
\(915\) 0 0
\(916\) −9.85151 −0.325503
\(917\) −21.5760 −0.712504
\(918\) −3.26689 −0.107823
\(919\) −6.72916 −0.221975 −0.110987 0.993822i \(-0.535401\pi\)
−0.110987 + 0.993822i \(0.535401\pi\)
\(920\) 0 0
\(921\) 66.3781 2.18723
\(922\) −30.3417 −0.999249
\(923\) 0 0
\(924\) −17.9815 −0.591547
\(925\) 0 0
\(926\) 25.2291 0.829079
\(927\) 15.6240 0.513159
\(928\) −4.21306 −0.138300
\(929\) 15.9956 0.524800 0.262400 0.964959i \(-0.415486\pi\)
0.262400 + 0.964959i \(0.415486\pi\)
\(930\) 0 0
\(931\) −13.2735 −0.435021
\(932\) −19.3821 −0.634881
\(933\) −30.9094 −1.01193
\(934\) −21.9997 −0.719852
\(935\) 0 0
\(936\) 0 0
\(937\) 32.2129 1.05235 0.526176 0.850376i \(-0.323625\pi\)
0.526176 + 0.850376i \(0.323625\pi\)
\(938\) −5.62242 −0.183579
\(939\) −6.56940 −0.214384
\(940\) 0 0
\(941\) 14.9874 0.488576 0.244288 0.969703i \(-0.421446\pi\)
0.244288 + 0.969703i \(0.421446\pi\)
\(942\) −14.0520 −0.457840
\(943\) −7.49578 −0.244096
\(944\) −6.46419 −0.210391
\(945\) 0 0
\(946\) 28.0485 0.911937
\(947\) 14.8776 0.483456 0.241728 0.970344i \(-0.422286\pi\)
0.241728 + 0.970344i \(0.422286\pi\)
\(948\) −9.78300 −0.317737
\(949\) 0 0
\(950\) 0 0
\(951\) 4.57779 0.148445
\(952\) −9.89618 −0.320737
\(953\) 6.62205 0.214509 0.107255 0.994232i \(-0.465794\pi\)
0.107255 + 0.994232i \(0.465794\pi\)
\(954\) −22.2898 −0.721660
\(955\) 0 0
\(956\) 30.0138 0.970715
\(957\) −53.8963 −1.74222
\(958\) −22.1081 −0.714281
\(959\) −16.0110 −0.517023
\(960\) 0 0
\(961\) −5.22962 −0.168697
\(962\) 0 0
\(963\) 42.6303 1.37374
\(964\) −19.1467 −0.616672
\(965\) 0 0
\(966\) 9.03259 0.290619
\(967\) 24.8355 0.798655 0.399328 0.916808i \(-0.369244\pi\)
0.399328 + 0.916808i \(0.369244\pi\)
\(968\) 17.1797 0.552178
\(969\) 44.8238 1.43995
\(970\) 0 0
\(971\) −23.0829 −0.740766 −0.370383 0.928879i \(-0.620774\pi\)
−0.370383 + 0.928879i \(0.620774\pi\)
\(972\) −21.5994 −0.692803
\(973\) 15.9536 0.511450
\(974\) 3.66873 0.117554
\(975\) 0 0
\(976\) −14.7351 −0.471659
\(977\) −8.01979 −0.256576 −0.128288 0.991737i \(-0.540948\pi\)
−0.128288 + 0.991737i \(0.540948\pi\)
\(978\) −28.3204 −0.905585
\(979\) −80.4761 −2.57203
\(980\) 0 0
\(981\) 1.87258 0.0597868
\(982\) −26.4689 −0.844657
\(983\) 16.0606 0.512254 0.256127 0.966643i \(-0.417553\pi\)
0.256127 + 0.966643i \(0.417553\pi\)
\(984\) 6.77414 0.215952
\(985\) 0 0
\(986\) −29.6621 −0.944633
\(987\) 6.06568 0.193073
\(988\) 0 0
\(989\) −14.0896 −0.448022
\(990\) 0 0
\(991\) −34.4747 −1.09512 −0.547562 0.836765i \(-0.684444\pi\)
−0.547562 + 0.836765i \(0.684444\pi\)
\(992\) 5.07645 0.161178
\(993\) −21.6581 −0.687297
\(994\) −13.5493 −0.429757
\(995\) 0 0
\(996\) 20.6263 0.653569
\(997\) −44.2466 −1.40130 −0.700652 0.713503i \(-0.747108\pi\)
−0.700652 + 0.713503i \(0.747108\pi\)
\(998\) −37.0404 −1.17249
\(999\) −0.383270 −0.0121261
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.cs.1.7 8
5.2 odd 4 1690.2.b.e.339.10 16
5.3 odd 4 1690.2.b.e.339.7 16
5.4 even 2 8450.2.a.cr.1.2 8
13.2 odd 12 650.2.m.e.251.5 16
13.7 odd 12 650.2.m.e.101.5 16
13.12 even 2 8450.2.a.cr.1.7 8
65.2 even 12 130.2.m.a.69.4 yes 8
65.7 even 12 130.2.m.b.49.1 yes 8
65.8 even 4 1690.2.c.f.1689.7 8
65.12 odd 4 1690.2.b.e.339.2 16
65.18 even 4 1690.2.c.e.1689.7 8
65.28 even 12 130.2.m.b.69.1 yes 8
65.33 even 12 130.2.m.a.49.4 8
65.38 odd 4 1690.2.b.e.339.15 16
65.47 even 4 1690.2.c.e.1689.2 8
65.54 odd 12 650.2.m.e.251.4 16
65.57 even 4 1690.2.c.f.1689.2 8
65.59 odd 12 650.2.m.e.101.4 16
65.64 even 2 inner 8450.2.a.cs.1.2 8
195.2 odd 12 1170.2.bj.b.199.1 8
195.98 odd 12 1170.2.bj.b.829.1 8
195.137 odd 12 1170.2.bj.a.829.4 8
195.158 odd 12 1170.2.bj.a.199.4 8
260.7 odd 12 1040.2.df.a.49.4 8
260.67 odd 12 1040.2.df.c.849.1 8
260.163 odd 12 1040.2.df.c.49.1 8
260.223 odd 12 1040.2.df.a.849.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.m.a.49.4 8 65.33 even 12
130.2.m.a.69.4 yes 8 65.2 even 12
130.2.m.b.49.1 yes 8 65.7 even 12
130.2.m.b.69.1 yes 8 65.28 even 12
650.2.m.e.101.4 16 65.59 odd 12
650.2.m.e.101.5 16 13.7 odd 12
650.2.m.e.251.4 16 65.54 odd 12
650.2.m.e.251.5 16 13.2 odd 12
1040.2.df.a.49.4 8 260.7 odd 12
1040.2.df.a.849.4 8 260.223 odd 12
1040.2.df.c.49.1 8 260.163 odd 12
1040.2.df.c.849.1 8 260.67 odd 12
1170.2.bj.a.199.4 8 195.158 odd 12
1170.2.bj.a.829.4 8 195.137 odd 12
1170.2.bj.b.199.1 8 195.2 odd 12
1170.2.bj.b.829.1 8 195.98 odd 12
1690.2.b.e.339.2 16 65.12 odd 4
1690.2.b.e.339.7 16 5.3 odd 4
1690.2.b.e.339.10 16 5.2 odd 4
1690.2.b.e.339.15 16 65.38 odd 4
1690.2.c.e.1689.2 8 65.47 even 4
1690.2.c.e.1689.7 8 65.18 even 4
1690.2.c.f.1689.2 8 65.57 even 4
1690.2.c.f.1689.7 8 65.8 even 4
8450.2.a.cr.1.2 8 5.4 even 2
8450.2.a.cr.1.7 8 13.12 even 2
8450.2.a.cs.1.2 8 65.64 even 2 inner
8450.2.a.cs.1.7 8 1.1 even 1 trivial