Properties

Label 8450.2.a.ca
Level $8450$
Weight $2$
Character orbit 8450.a
Self dual yes
Analytic conductor $67.474$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,0,3,0,0,-5,3,-1,0,-3,0,0,-5,0,3,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + \beta_{2} q^{3} + q^{4} + \beta_{2} q^{6} + (\beta_{2} + \beta_1 - 2) q^{7} + q^{8} + ( - \beta_{2} - \beta_1) q^{9} + (3 \beta_1 - 2) q^{11} + \beta_{2} q^{12} + (\beta_{2} + \beta_1 - 2) q^{14}+ \cdots + ( - \beta_{2} - 4 \beta_1 - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} - 5 q^{7} + 3 q^{8} - q^{9} - 3 q^{11} - 5 q^{14} + 3 q^{16} - 4 q^{17} - q^{18} + 13 q^{19} + 6 q^{21} - 3 q^{22} - 6 q^{27} - 5 q^{28} - 14 q^{29} - 6 q^{31} + 3 q^{32} - 6 q^{33}+ \cdots - 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.311108
2.17009
−1.48119
1.00000 −2.21432 1.00000 0 −2.21432 −3.90321 1.00000 1.90321 0
1.2 1.00000 0.539189 1.00000 0 0.539189 0.709275 1.00000 −2.70928 0
1.3 1.00000 1.67513 1.00000 0 1.67513 −1.80606 1.00000 −0.193937 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8450.2.a.ca 3
5.b even 2 1 8450.2.a.bt 3
5.c odd 4 2 1690.2.b.b 6
13.b even 2 1 8450.2.a.bu 3
13.e even 6 2 650.2.e.k 6
65.d even 2 1 8450.2.a.cb 3
65.f even 4 2 1690.2.c.b 6
65.h odd 4 2 1690.2.b.c 6
65.k even 4 2 1690.2.c.c 6
65.l even 6 2 650.2.e.j 6
65.r odd 12 4 130.2.n.a 12
195.bf even 12 4 1170.2.bp.h 12
260.bg even 12 4 1040.2.dh.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.n.a 12 65.r odd 12 4
650.2.e.j 6 65.l even 6 2
650.2.e.k 6 13.e even 6 2
1040.2.dh.b 12 260.bg even 12 4
1170.2.bp.h 12 195.bf even 12 4
1690.2.b.b 6 5.c odd 4 2
1690.2.b.c 6 65.h odd 4 2
1690.2.c.b 6 65.f even 4 2
1690.2.c.c 6 65.k even 4 2
8450.2.a.bt 3 5.b even 2 1
8450.2.a.bu 3 13.b even 2 1
8450.2.a.ca 3 1.a even 1 1 trivial
8450.2.a.cb 3 65.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8450))\):

\( T_{3}^{3} - 4T_{3} + 2 \) Copy content Toggle raw display
\( T_{7}^{3} + 5T_{7}^{2} + 3T_{7} - 5 \) Copy content Toggle raw display
\( T_{11}^{3} + 3T_{11}^{2} - 27T_{11} - 31 \) Copy content Toggle raw display
\( T_{17}^{3} + 4T_{17}^{2} + 2T_{17} - 2 \) Copy content Toggle raw display
\( T_{31}^{3} + 6T_{31}^{2} - 58T_{31} - 218 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 4T + 2 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 5 T^{2} + \cdots - 5 \) Copy content Toggle raw display
$11$ \( T^{3} + 3 T^{2} + \cdots - 31 \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 4 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$19$ \( T^{3} - 13 T^{2} + \cdots - 5 \) Copy content Toggle raw display
$23$ \( T^{3} - 40T - 76 \) Copy content Toggle raw display
$29$ \( T^{3} + 14 T^{2} + \cdots - 152 \) Copy content Toggle raw display
$31$ \( T^{3} + 6 T^{2} + \cdots - 218 \) Copy content Toggle raw display
$37$ \( T^{3} + 5 T^{2} + \cdots - 107 \) Copy content Toggle raw display
$41$ \( T^{3} + 2 T^{2} + \cdots - 20 \) Copy content Toggle raw display
$43$ \( (T + 2)^{3} \) Copy content Toggle raw display
$47$ \( T^{3} + 7 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{3} + 9 T^{2} + \cdots - 13 \) Copy content Toggle raw display
$59$ \( T^{3} + 8 T^{2} + \cdots - 272 \) Copy content Toggle raw display
$61$ \( T^{3} - 4 T^{2} + \cdots + 610 \) Copy content Toggle raw display
$67$ \( T^{3} + 12 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$71$ \( T^{3} - 20 T^{2} + \cdots + 464 \) Copy content Toggle raw display
$73$ \( T^{3} + 6 T^{2} + \cdots + 270 \) Copy content Toggle raw display
$79$ \( T^{3} + 14 T^{2} + \cdots - 158 \) Copy content Toggle raw display
$83$ \( T^{3} + 4 T^{2} + \cdots - 46 \) Copy content Toggle raw display
$89$ \( T^{3} + 7 T^{2} + \cdots - 19 \) Copy content Toggle raw display
$97$ \( T^{3} + 26 T^{2} + \cdots + 466 \) Copy content Toggle raw display
show more
show less