Properties

Label 845.4.a.i
Level $845$
Weight $4$
Character orbit 845.a
Self dual yes
Analytic conductor $49.857$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,4,Mod(1,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 845.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.8566139549\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 40x^{5} + 64x^{4} + 409x^{3} - 568x^{2} - 480x + 96 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + \beta_{4} q^{3} + (\beta_{2} + 4) q^{4} - 5 q^{5} + (\beta_{6} - \beta_1 - 3) q^{6} + (\beta_{5} - \beta_{4} + \beta_1 - 8) q^{7} + ( - \beta_{3} - \beta_{2} - 4 \beta_1 - 2) q^{8}+ \cdots + (3 \beta_{6} + 43 \beta_{5} + \cdots - 289) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{2} + 28 q^{4} - 35 q^{5} - 20 q^{6} - 54 q^{7} - 24 q^{8} + 79 q^{9} + 10 q^{10} + 4 q^{11} + 54 q^{12} - 76 q^{14} + 140 q^{16} + 50 q^{17} + 136 q^{18} - 312 q^{19} - 140 q^{20} - 132 q^{21}+ \cdots - 2348 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 2x^{6} - 40x^{5} + 64x^{4} + 409x^{3} - 568x^{2} - 480x + 96 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 20\nu + 10 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{6} - 6\nu^{5} - 16\nu^{4} + 120\nu^{3} - 47\nu^{2} - 204\nu - 32 ) / 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{6} + 10\nu^{5} - 8\nu^{4} - 176\nu^{3} + 495\nu^{2} - 144\nu - 256 ) / 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} - 6\nu^{5} - 14\nu^{4} + 114\nu^{3} - 91\nu^{2} - 110\nu + 30 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 20\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{6} - 4\beta_{4} + 3\beta_{3} + 25\beta_{2} + 13\beta _1 + 239 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 6\beta_{6} + 2\beta_{5} - 22\beta_{4} + 32\beta_{3} + 52\beta_{2} + 445\beta _1 + 190 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 52\beta_{6} + 12\beta_{5} - 188\beta_{4} + 120\beta_{3} + 639\beta_{2} + 682\beta _1 + 5320 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.37688
3.65500
2.10835
0.170066
−0.742335
−4.27643
−4.29153
−5.37688 −0.936724 20.9108 −5.00000 5.03665 −0.201771 −69.4197 −26.1225 26.8844
1.2 −3.65500 8.59394 5.35901 −5.00000 −31.4108 −19.4590 9.65282 46.8559 18.2750
1.3 −2.10835 −3.08338 −3.55484 −5.00000 6.50086 17.4384 24.3617 −17.4928 10.5418
1.4 −0.170066 −8.43460 −7.97108 −5.00000 1.43444 −32.7758 2.71614 44.1424 0.850329
1.5 0.742335 5.13862 −7.44894 −5.00000 3.81458 9.97127 −11.4683 −0.594575 −3.71168
1.6 4.27643 −7.17327 10.2878 −5.00000 −30.6760 5.20875 9.78383 24.4558 −21.3821
1.7 4.29153 5.89541 10.4172 −5.00000 25.3003 −34.1818 10.3735 7.75582 −21.4576
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 845.4.a.i 7
13.b even 2 1 845.4.a.l 7
13.d odd 4 2 65.4.c.a 14
39.f even 4 2 585.4.b.e 14
52.f even 4 2 1040.4.k.d 14
65.f even 4 2 325.4.d.d 14
65.g odd 4 2 325.4.c.e 14
65.k even 4 2 325.4.d.c 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.4.c.a 14 13.d odd 4 2
325.4.c.e 14 65.g odd 4 2
325.4.d.c 14 65.k even 4 2
325.4.d.d 14 65.f even 4 2
585.4.b.e 14 39.f even 4 2
845.4.a.i 7 1.a even 1 1 trivial
845.4.a.l 7 13.b even 2 1
1040.4.k.d 14 52.f even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{7} + 2T_{2}^{6} - 40T_{2}^{5} - 64T_{2}^{4} + 409T_{2}^{3} + 568T_{2}^{2} - 480T_{2} - 96 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(845))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} + 2 T^{6} + \cdots - 96 \) Copy content Toggle raw display
$3$ \( T^{7} - 134 T^{5} + \cdots - 45496 \) Copy content Toggle raw display
$5$ \( (T + 5)^{7} \) Copy content Toggle raw display
$7$ \( T^{7} + 54 T^{6} + \cdots - 3984000 \) Copy content Toggle raw display
$11$ \( T^{7} - 4 T^{6} + \cdots + 250531200 \) Copy content Toggle raw display
$13$ \( T^{7} \) Copy content Toggle raw display
$17$ \( T^{7} + \cdots - 44413747200 \) Copy content Toggle raw display
$19$ \( T^{7} + \cdots + 153425796096 \) Copy content Toggle raw display
$23$ \( T^{7} + \cdots + 5699551522752 \) Copy content Toggle raw display
$29$ \( T^{7} + \cdots + 440579141474400 \) Copy content Toggle raw display
$31$ \( T^{7} + \cdots + 195148355290200 \) Copy content Toggle raw display
$37$ \( T^{7} + \cdots + 877152531948576 \) Copy content Toggle raw display
$41$ \( T^{7} + \cdots - 50\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{7} + \cdots + 97\!\cdots\!24 \) Copy content Toggle raw display
$47$ \( T^{7} + \cdots + 21\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{7} + \cdots - 405893642720256 \) Copy content Toggle raw display
$59$ \( T^{7} + \cdots + 84\!\cdots\!72 \) Copy content Toggle raw display
$61$ \( T^{7} + \cdots - 35\!\cdots\!44 \) Copy content Toggle raw display
$67$ \( T^{7} + \cdots + 14\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( T^{7} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{7} + \cdots - 65\!\cdots\!12 \) Copy content Toggle raw display
$79$ \( T^{7} + \cdots - 47\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{7} + \cdots + 34\!\cdots\!12 \) Copy content Toggle raw display
$89$ \( T^{7} + \cdots + 15\!\cdots\!72 \) Copy content Toggle raw display
$97$ \( T^{7} + \cdots - 13\!\cdots\!72 \) Copy content Toggle raw display
show more
show less